Category Archives: graphene

Flexible graphene-rubber sensor for wearables

Courtesy: University of Waterloo

This waffled, greyish thing may not look like much but scientists are hopeful that it can be useful as a health sensor in athletic shoes and elsewhere. A March 6, 2020 news item on Nanowerk describes the work in more detail (Note: Links have been removed),

Researchers have utilized 3D printing and nanotechnology to create a durable, flexible sensor for wearable devices to monitor everything from vital signs to athletic performance (ACS Nano, “3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring”).

The new technology, developed by engineers at the University of Waterloo [Ontario, Canada], combines silicone rubber with ultra-thin layers of graphene in a material ideal for making wristbands or insoles in running shoes.

A March 6, 2020 University of Waterloo news release, which originated the news item, delves further,

When that rubber material bends or moves, electrical signals are created by the highly conductive, nanoscale graphene embedded within its engineered honeycomb structure.

“Silicone gives us the flexibility and durability required for biomonitoring applications, and the added, embedded graphene makes it an effective sensor,” said Ehsan Toyserkani, research director at the Multi-Scale Additive Manufacturing (MSAM) Lab at Waterloo. “It’s all together in a single part.”

Fabricating a silicone rubber structure with such complex internal features is only possible using state-of-the-art 3D printing – also known as additive manufacturing – equipment and processes.

The rubber-graphene material is extremely flexible and durable in addition to highly conductive.

“It can be used in the harshest environments, in extreme temperatures and humidity,” said Elham Davoodi, an engineering PhD student at Waterloo who led the project. “It could even withstand being washed with your laundry.”

The material and the 3D printing process enable custom-made devices to precisely fit the body shapes of users, while also improving comfort compared to existing wearable devices and reducing manufacturing costs due to simplicity.

Toyserkani, a professor of mechanical and mechatronics engineering, said the rubber-graphene sensor can be paired with electronic components to make wearable devices that record heart and breathing rates, register the forces exerted when athletes run, allow doctors to remotely monitor patients and numerous other potential applications.

Researchers from the University of California, Los Angeles and the University of British Columbia collaborated on the project.

Here’s a link to and a citation for the paper,

3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring by Elham Davoodi, Hossein Montazerian, Reihaneh Haghniaz, Armin Rashidi, Samad Ahadian, Amir Sheikhi, Jun Chen, Ali Khademhosseini, Abbas S. Milani, Mina Hoorfar, Ehsan Toyserkani. ACS Nano 2020, 14, 2, 1520-1532 DOI: https://doi.org/10.1021/acsnano.9b06283 Publication Date: January 6, 2020 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

Graphene fatigue

Graphene fatigue operates under the same principle as metal fatigue. Subject graphene to stress over and over and at some point it (just like metal) will fail. Scientists at the University of Toronto (Ontatrio, Canada) and Rice University (Texas, US) have determined just how much stress graphene can withstand before breaking according to a January 28, 2020 University of Toronto news release by Tyler Irving (also on EurekAlert but published on January 29, 2020),

Graphene is a paradox. It is the thinnest material known to science, yet also one of the strongest. Now, research from University of Toronto Engineering shows that graphene is also highly resistant to fatigue — able to withstand more than a billion cycles of high stress before it breaks.

Graphene resembles a sheet of interlocking hexagonal rings, similar to the pattern you might see in bathroom flooring tiles. At each corner is a single carbon atom bonded to its three nearest neighbours. While the sheet could extend laterally over any area, it is only one atom thick.

The intrinsic strength of graphene has been measured at more than 100 gigapascals, among the highest values recorded for any material. But materials don’t always fail because the load exceeds their maximum strength. Stresses that are small but repetitive can weaken materials by causing microscopic dislocations and fractures that slowly accumulate over time, a process known as fatigue.

“To understand fatigue, imagine bending a metal spoon,” says Professor Tobin Filleter, one of the senior authors of the study, which was recently published in Nature Materials. “The first time you bend it, it just deforms. But if you keep working it back and forth, eventually it’s going to break in two.”

The research team — consisting of Filleter, fellow University of Toronto Engineering professors Chandra Veer Singh and Yu Sun, their students, and collaborators at Rice University — wanted to know how graphene would stand up to repeated stresses. Their approach included both physical experiments and computer simulations.

“In our atomistic simulations, we found that cyclic loading can lead to irreversible bond reconfigurations in the graphene lattice, causing catastrophic failure on subsequent loading,” says Singh, who along with postdoctoral fellow Sankha Mukherjee led the modelling portion of the study. “This is unusual behaviour in that while the bonds change, there are no obvious cracks or dislocations, which would usually form in metals, until the moment of failure.”

PhD candidate Teng Cui, who is co-supervised by Filleter and Sun, used the Toronto Nanofabrication Centre to build a physical device for the experiments. The design consisted of a silicon chip etched with half a million tiny holes only a few micrometres in diameter. The graphene sheet was stretched over these holes, like the head of a tiny drum.

Using an atomic force microscope, Cui then lowered a diamond-tipped probe into the hole to push on the graphene sheet, applying anywhere from 20 to 85 per cent of the force that he knew would break the material.

“We ran the cycles at a rate of 100,000 times per second,” says Cui. “Even at 70 per cent of the maximum stress, the graphene didn’t break for more than three hours, which works out to over a billion cycles. At lower stress levels, some of our trials ran for more than 17 hours.”

As with the simulations, the graphene didn’t accumulate cracks or other tell-tale signs of stress — it either broke or it didn’t.

“Unlike metals, there is no progressive damage during fatigue loading of graphene,” says Sun. “Its failure is global and catastrophic, confirming simulation results.”

The team also tested a related material, graphene oxide, which has small groups of atoms such as oxygen and hydrogen bonded to both the top and bottom of the sheet. Its fatigue behaviour was more like traditional materials, in that the failure was more progressive and localized. This suggests that the simple, regular structure of graphene is a major contributor to its unique properties.

“There are no other materials that have been studied under fatigue conditions that behave the way graphene does,” says Filleter. “We’re still working on some new theories to try and understand this.”

In terms of commercial applications, Filleter says that graphene-containing composites — mixtures of conventional plastic and graphene — are already being produced and used in sports equipment such as tennis rackets and skis.

In the future, such materials may begin to be used in cars or in aircraft, where the emphasis on light and strong materials is driven by the need to reduce weight, improve fuel efficiency and enhance environmental performance.

“There have been some studies to suggest that graphene-containing composites offer improved resistance to fatigue, but until now, nobody had measured the fatigue behaviour of the underlying material,” he says. “Our goal in doing this was to get at that fundamental understanding so that in the future, we’ll be able to design composites that work even better.”

Here’s a link to and a citation for the paper,

Fatigue of graphene by Teng Cui, Sankha Mukherjee, Parambath M. Sudeep, Guillaume Colas, Farzin Najafi, Jason Tam, Pulickel M. Ajayan, Chandra Veer Singh, Yu Sun & Tobin Filleter. Nature Materials (2020) DOI: DOIhttps://doi.org/10.1038/s41563-019-0586-y Published: 20 January 2020

This paper is behind a paywall.

Understanding the fundamental limits of graphene electronics by way of a new quantum phenomenon

A July 26, 2019 news item on Nanowerk takes us into the world of quantum physics and graphene (Note: Links have been removed),

A team of researchers from the Universities of Manchester, Nottingham and Loughborough have discovered quantum phenomena that helps to understand the fundamental limits of graphene electronics.

As published in Nature Communications (“Strong magnetophonon oscillations in extra-large graphene”), the work describes how electrons in a single atomically-thin sheet of graphene scatter off the vibrating carbon atoms which make up the hexagonal crystal lattice.

By applying a magnetic field perpendicular to the plane of graphene, the current-carrying electrons are forced to move in closed circular “cyclotron” orbits. In pure graphene, the only way in which an electron can escape from this orbit is by bouncing off a “phonon” in a scattering event. These phonons are particle-like bundles of energy and momentum and are the “quanta” of the sound waves associated with the vibrating carbon atom. The phonons are generated in increasing numbers when the graphene crystal is warmed up from very low temperatures.

By passing a small electrical current through the graphene sheet, the team were able to measure precisely the amount of energy and momentum that is transferred between an electron and a phonon during a scattering event.

A July 26, 2019 University of Manchester press release, which originated the news item, provides additional technical details,

Their experiment revealed that two types of phonon scatter the electrons: transverse acoustic (TA) phonons in which the carbon atoms vibrate perpendicular to the direction of phonon propagation and wave motion (somewhat analogous to surface waves on water) and longitudinal acoustic (LA) phonons in which the carbon atoms vibrate back and forth along the direction of the phonon and the wave motion; (this motion is somewhat analogous to the motion of sound waves through air).

The measurements provide a very accurate measure of the speed of both types of phonons, a measurement which is otherwise difficult to make for the case of a single atomic layer. An important outcome of the experiments is the discovery that TA phonon scattering dominates over LA phonon scattering.

The observed phenomena, commonly referred to as “magnetophonon oscillations”, was measured in many semiconductors years before the discovery of graphene. It is one of the oldest quantum transport phenomena that has been known for more than fifty years, predating the quantum Hall effect. Whereas graphene possesses a number of novel, exotic electronic properties, this rather fundamental phenomenon has remained hidden.

Laurence Eaves & Roshan Krishna Kumar, co-authors of the work said: “We were pleasantly surprised to find such prominent magnetophonon oscillations appearing in graphene. We were also puzzled why people had not seen them before, considering the extensive amount of literature on quantum transport in graphene.”

Their appearance requires two key ingredients. First, the team had to fabricate high quality graphene transistors with large areas at the National Graphene Institute. If the device dimensions are smaller than a few micrometres the phenomena could not be observed.

Piranavan Kumaravadivel from The University of Manchester, lead author of the paper said: “At the beginning of quantum transport experiments, people used to study macroscopic, millimetre sized crystals. In most of the work on quantum transport on graphene, the studied devices are typically only a few micrometres in size. It seems that making larger graphene devices is not only important for applications but now also for fundamental studies.”

The second ingredient is temperature. Most graphene quantum transport experiments are performed at ultra-cold temperatures in-order to slow down the vibrating carbon atoms and “freeze-out” the phonons that usually break quantum coherence. Therefore, the graphene is warmed up as the phonons need to be active to cause the effect.

Mark Greenaway, from Loughborough University, who worked on the quantum theory of this effect said: “This result is extremely exciting – it opens a new route to probe the properties of phonons in two-dimensional crystals and their heterostructures. This will allow us to better understand electron-phonon interactions in these promising materials, understanding which is vital to develop them for use in new devices and applications.”

Here’s a link to and a citation for the paper,

Strong magnetophonon oscillations in extra-large graphene by P. Kumaravadivel, M. T. Greenaway, D. Perello, A. Berdyugin, J. Birkbeck, J. Wengraf, S. Liu, J. H. Edgar, A. K. Geim, L. Eaves & R. Krishna Kumar. ature Communicationsvolume 10, Article number: 3334 (2019) DOI: https://doi.org/10.1038/s41467-019-11379-3 Published 26 July 2019

This paper is open access.

An artificial graphene throat

A July 24, 2019 American Chemical Society (ACS) news release (received via email and also on EurekAlert) describes a ‘tattoo-like- artificial throat derived from graphene,

Most people take speech for granted, but it’s actually a complex process that involves both motions of the mouth and vibrations of folded tissues, called vocal cords, within the throat. If the vocal cords sustain injuries or other lesions, a person can lose the ability to speak. Now, researchers reporting in ACS Nano have developed a wearable artificial throat that, when attached to the neck like a temporary tattoo, can transform throat movements into sounds.

Scientists have developed detectors that measure movements on human skin, such as pulse or heartbeat. However, the devices typically can’t convert these motions into sounds. Recently, He Tian, Yi Yang, Tian-Ling Ren and colleagues developed a prototype artificial throat with both capabilities, but because the device needed to be taped to the skin, it wasn’t comfortable enough to wear for long periods of time. So the researchers wanted to develop a thinner, skin-like artificial throat that would adhere to the neck like a temporary tattoo.

To make their artificial throat, the researchers laser-scribed graphene on a thin sheet of polyvinyl alcohol film. The flexible device measured 0.6 by 1.2 inches, or about double the size of a person’s thumbnail. The researchers used water to attach the film to the skin over a volunteer’s throat and connected it with electrodes to a small armband that contained a circuit board, microcomputer, power amplifier and decoder. When the volunteer noiselessly imitated the throat motions of speech, the instrument converted these movements into emitted sounds, such as the words “OK” and “No.” The researchers say that, in the future, mute people could be trained to generate signals with their throats that the device would translate into speech.

Caption: A wearable artificial graphene throat, abbreviated here as ‘WAGT,’ can transform human throat movements into different sounds with training of the wearer. Credit: Adapted from ACS Nano 2019, 10.1021/acsnano.9b03218

Here’s a link to and a citation for the paper,

A Wearable Skinlike Ultra-Sensitive Artificial Graphene Throat by Yuhong Wei, Yancong Qiao, Guangya Jiang, Yunfan Wang, Fangwei Wang, Mingrui Li, Yunfei Zhao, Ye Tian, Guangyang Gou, Songyao Tan He, Tian, Yi Yang, Tian-Ling Ren. ACS Nano2019XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/acsnano.9b03218 Publication Date: July 3, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

Bacteria and graphene oxide as a basis for producing computers

A July 10, 2019 news item on ScienceDaily announces a more environmentally friendly way to produce graphene leading to more environmentally friendly devices such as computers,

In order to create new and more efficient computers, medical devices, and other advanced technologies, researchers are turning to nanomaterials: materials manipulated on the scale of atoms or molecules that exhibit unique properties.

Graphene — a flake of carbon as thin as a single later of atoms — is a revolutionary nanomaterial due to its ability to easily conduct electricity, as well as its extraordinary mechanical strength and flexibility. However, a major hurdle in adopting it for everyday applications is producing graphene at a large scale, while still retaining its amazing properties.

In a paper published in the journal ChemOpen, Anne S. Meyer, an associate professor of biology at the University of Rochester [New York state, US], and her colleagues at Delft University of Technology in the Netherlands, describe a way to overcome this barrier. The researchers outline their method to produce graphene materials using a novel technique: mixing oxidized graphite with bacteria. Their method is a more cost-efficient, time-saving, and environmentally friendly way of producing graphene materials versus those produced chemically, and could lead to the creation of innovative computer technologies and medical equipment.

A July 10, 2019 University of Rochester news release (also on EurekAlert), which originated the news item, provides details as to how this new technique for extracting graphene differs from the technique currently used,

Graphene is extracted from graphite, the material found in an ordinary pencil. At exactly one atom thick, graphene is the thinnest–yet strongest–two-dimensional material known to researchers. Scientists from the University of Manchester in the United Kingdom were awarded the 2010 Nobel Prize in Physics for their discovery of graphene; however, their method of using sticky tape to make graphene yielded only small amounts of the material.

“For real applications you need large amounts,” Meyer says. “Producing these bulk amounts is challenging and typically results in graphene that is thicker and less pure. This is where our work came in.”

In order to produce larger quantities of graphene materials, Meyer and her colleagues started with a vial of graphite. They exfoliated the graphite–shedding the layers of material–to produce graphene oxide (GO), which they then mixed with the bacteria Shewanella. They let the beaker of bacteria and precursor materials sit overnight, during which time the bacteria reduced the GO to a graphene material.

“Graphene oxide is easy to produce, but it is not very conductive due to all of the oxygen groups in it,” Meyer says. “The bacteria remove most of the oxygen groups, which turns it into a conductive material.”

While the bacterially-produced graphene material created in Meyer’s lab is conductive, it is also thinner and more stable than graphene produced chemically. It can additionally be stored for longer periods of time, making it well suited for a variety of applications, including field-effect transistor (FET) biosensors and conducting ink. FET biosensors are devices that detect biological molecules and could be used to perform, for example, real-time glucose monitoring for diabetics.

“When biological molecules bind to the device, they change the conductance of the surface, sending a signal that the molecule is present,” Meyer says. “To make a good FET biosensor you want a material that is highly conductive but can also be modified to bind to specific molecules.” Graphene oxide that has been reduced is an ideal material because it is lightweight and very conductive, but it typically retains a small number of oxygen groups that can be used to bind to the molecules of interest.

The bacterially produced graphene material could also be the basis for conductive inks, which could, in turn, be used to make faster and more efficient computer keyboards, circuit boards, or small wires such as those used to defrost car windshields. Using conductive inks is an “easier, more economical way to produce electrical circuits, compared to traditional techniques,” Meyer says. Conductive inks could also be used to produce electrical circuits on top of nontraditional materials like fabric or paper.

“Our bacterially produced graphene material will lead to far better suitability for product development,” Meyer says. “We were even able to develop a technique of ‘bacterial lithography’ to create graphene materials that were only conductive on one side, which can lead to the development of new, advanced nanocomposite materials.”

Here’s a link to and a citation for the paper,

Creation of Conductive Graphene Materials by Bacterial Reduction Using Shewanella Oneidensis by Benjamin A. E. Lehner, Vera A. E. C. Janssen, Dr. Ewa M. Spiesz, Dominik Benz, Dr. Stan J. J. Brouns, Dr. Anne S. Meyer, Prof. Dr. Herre S. J. van der Zant. ChemistryOpen Volume 8, Issue 7 July 2019 Pages 888-895 DOI: https://doi.org/10.1002/open.201900186
First published: 04 July 2019

As you would expect given the journal’s title, this paper is open access.

Graphene from gum trees

Caption: Eucalyptus bark extract has never been used to synthesise graphene sheets before. Courtesy: RMIT University

It’s been quite educational reading a June 24, 2019 news item on Nanowerk about deriving graphene from Eucalyptus bark (Note: Links have been removed),

Graphene is the thinnest and strongest material known to humans. It’s also flexible, transparent and conducts heat and electricity 10 times better than copper, making it ideal for anything from flexible nanoelectronics to better fuel cells.

The new approach by researchers from RMIT University (Australia) and the National Institute of Technology, Warangal (India), uses Eucalyptus bark extract and is cheaper and more sustainable than current synthesis methods (ACS Sustainable Chemistry & Engineering, “Novel and Highly Efficient Strategy for the Green Synthesis of Soluble Graphene by Aqueous Polyphenol Extracts of Eucalyptus Bark and Its Applications in High-Performance Supercapacitors”).

A June 24, 2019 RMIT University news release (also on EurekAlert), which originated the news item, provides a little more detail,

RMIT lead researcher, Distinguished Professor Suresh Bhargava, said the new method could reduce the cost of production from $USD100 per gram to a staggering $USD0.5 per gram.

“Eucalyptus bark extract has never been used to synthesise graphene sheets before and we are thrilled to find that it not only works, it’s in fact a superior method, both in terms of safety and overall cost,” said Bhargava.

“Our approach could bring down the cost of making graphene from around $USD100 per gram to just 50 cents, increasing it availability to industries globally and enabling the development of an array of vital new technologies.”

Graphene’s distinctive features make it a transformative material that could be used in the development of flexible electronics, more powerful computer chips and better solar panels, water filters and bio-sensors.

Professor Vishnu Shanker from the National Institute of Technology, Warangal, said the ‘green’ chemistry avoided the use of toxic reagents, potentially opening the door to the application of graphene not only for electronic devices but also biocompatible materials.

“Working collaboratively with RMIT’s Centre for Advanced Materials and Industrial Chemistry we’re harnessing the power of collective intelligence to make these discoveries,” he said.

A novel approach to graphene synthesis:

Chemical reduction is the most common method for synthesising graphene oxide as it allows for the production of graphene at a low cost in bulk quantities.

This method however relies on reducing agents that are dangerous to both people and the environment.

When tested in the application of a supercapacitor, the ‘green’ graphene produced using this method matched the quality and performance characteristics of traditionally-produced graphene without the toxic reagents.

Bhargava said the abundance of eucalyptus trees in Australia made it a cheap and accessible resource for producing graphene locally.

“Graphene is a remarkable material with great potential in many applications due to its chemical and physical properties and there’s a growing demand for economical and environmentally friendly large-scale production,” he said.

Here’s a link to and a citation for the paper,

Novel and Highly Efficient Strategy for the Green Synthesis of Soluble Graphene by Aqueous Polyphenol Extracts of Eucalyptus Bark and Its Applications in High-Performance Supercapacitors by Saikumar ManchalaV. S. R. K. Tandava, Deshetti Jampaiah, Suresh K. Bhargava, Vishnu Shanker. ACS Sustainable Chem. Eng.2019XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/acssuschemeng.9b01506 Publication Date:June 13, 2019

Copyright © 2019 American Chemical Society

This paper is behind a paywall.

Cleaning water with bacteria

There seems to be much interest in bacteria as collaborators as opposed to the old ‘enemy that must be destoyed’ concept. The latest collaborative effort was announced in a January 19,2019 news item on Nanowerk,

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world’s population will be living in water-stressed areas, which is why access to clean water is one of the National Academy of Engineering’s Grand Challenges. Engineers at Washington University in St. Louis [WUSTL] have designed a novel membrane technology that purifies water while preventing biofouling, or buildup of bacteria and other harmful microorganisms that reduce the flow of water.

And they used bacteria to build such filtering membranes.

A January 17, 2019 WUSTL news release by Beth Miller, which originated the news item, provides more detail,

Srikanth Singamaneni, professor of mechanical engineering & materials science, and Young-Shin Jun, professor of energy, environmental & chemical engineering, and their teams blended their expertise to develop an ultrafiltration membrane using graphene oxide and bacterial nanocellulose that they found to be highly efficient, long-lasting and environmentally friendly. If their technique were to be scaled up to a large size, it could benefit many developing countries where clean water is scarce.


Biofouling accounts for nearly half of all membrane fouling and is highly challenging to eradicate completely. Singamaneni and Jun have been tackling this challenge together for nearly five years. They previously developed other membranes using gold nanostars, but wanted to design one that used less expensive materials.

Their new membrane begins with feeding Gluconacetobacter hansenii bacteria a sugary substance so that they form cellulose nanofibers when in water. The team then incorporated graphene oxide (GO) flakes into the bacterial nanocellulose while it was growing, essentially trapping GO in the membrane to make it stable and durable.

After GO is incorporated, the membrane is treated with base solution to kill Gluconacetobacter. During this process, the oxygen groups of GO are eliminated, making it reduced GO.  When the team shone sunlight onto the membrane, the reduced GO flakes immediately generated heat, which is dissipated into the surrounding water and bacteria nanocellulose.

Ironically, the membrane created from bacteria also can kill bacteria.
“If you want to purify water with microorganisms in it, the reduced graphene oxide in the membrane can absorb the sunlight, heat the membrane and kill the bacteria,” Singamaneni said.

Singamaneni and Jun and their team exposed the membrane to E. coli bacteria, then shone light on the membrane’s surface. After being irradiated with light for just 3 minutes, the E. coli bacteria died. The team determined that the membrane quickly heated to above the 70 degrees Celsius required to deteriorate the cell walls of E. coli bacteria.

While the bacteria are killed, the researchers had a pristine membrane with a high quality of nanocellulose fibers that was able to filter water twice as fast as commercially available ultrafiltration membranes under a high operating pressure.

When they did the same experiment on a membrane made from bacterial nanocellulose without the reduced GO, the E. coli bacteria stayed alive.

“This is like 3-D printing with microorganisms,” Jun said. “We can add whatever we like to the bacteria nanocellulose during its growth. We looked at it under different pH conditions similar to what we encounter in the environment, and these membranes are much more stable compared to membranes prepared by vacuum filtration or spin-coating of graphene oxide.”

While Singamaneni and Jun acknowledge that implementing this process in conventional reverse osmosis systems is taxing, they propose a spiral-wound module system, similar to a roll of towels. It could be equipped with LEDs or a type of nanogenerator that harnesses mechanical energy from the fluid flow to produce light and heat, which would reduce the overall cost.

Here’s a link to and a citation for the paper,

Photothermally Active Reduced Graphene Oxide/Bacterial Nanocellulose Composites as Biofouling-Resistant Ultrafiltration Membranes by Qisheng Jiang, Deoukchen Ghim, Sisi Cao, Sirimuvva Tadepalli, Keng-Ku Liu, Hyuna Kwon, Jingyi Luan, Yujia Min, Young-Shin Jun, and Srikanth Singamaneni. Environ. Sci. Technol., 2019, 53 (1), pp 412–421 DOI: 10.1021/acs.est.8b02772 Publication Date (Web): September 14, print Jan. 2, 2019.

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Human Brain Project: update

The European Union’s Human Brain Project was announced in January 2013. It, along with the Graphene Flagship, had won a multi-year competition for the extraordinary sum of one million euros each to be paid out over a 10-year period. (My January 28, 2013 posting gives the details available at the time.)

At a little more than half-way through the project period, Ed Yong, in his July 22, 2019 article for The Atlantic, offers an update (of sorts),

Ten years ago, a neuroscientist said that within a decade he could simulate a human brain. Spoiler: It didn’t happen.

On July 22, 2009, the neuroscientist Henry Markram walked onstage at the TEDGlobal conference in Oxford, England, and told the audience that he was going to simulate the human brain, in all its staggering complexity, in a computer. His goals were lofty: “It’s perhaps to understand perception, to understand reality, and perhaps to even also understand physical reality.” His timeline was ambitious: “We can do it within 10 years, and if we do succeed, we will send to TED, in 10 years, a hologram to talk to you.” …

It’s been exactly 10 years. He did not succeed.

One could argue that the nature of pioneers is to reach far and talk big, and that it’s churlish to single out any one failed prediction when science is so full of them. (Science writers joke that breakthrough medicines and technologies always seem five to 10 years away, on a rolling window.) But Markram’s claims are worth revisiting for two reasons. First, the stakes were huge: In 2013, the European Commission awarded his initiative—the Human Brain Project (HBP)—a staggering 1 billion euro grant (worth about $1.42 billion at the time). Second, the HBP’s efforts, and the intense backlash to them, exposed important divides in how neuroscientists think about the brain and how it should be studied.

Markram’s goal wasn’t to create a simplified version of the brain, but a gloriously complex facsimile, down to the constituent neurons, the electrical activity coursing along them, and even the genes turning on and off within them. From the outset, the criticism to this approach was very widespread, and to many other neuroscientists, its bottom-up strategy seemed implausible to the point of absurdity. The brain’s intricacies—how neurons connect and cooperate, how memories form, how decisions are made—are more unknown than known, and couldn’t possibly be deciphered in enough detail within a mere decade. It is hard enough to map and model the 302 neurons of the roundworm C. elegans, let alone the 86 billion neurons within our skulls. “People thought it was unrealistic and not even reasonable as a goal,” says the neuroscientist Grace Lindsay, who is writing a book about modeling the brain.
And what was the point? The HBP wasn’t trying to address any particular research question, or test a specific hypothesis about how the brain works. The simulation seemed like an end in itself—an overengineered answer to a nonexistent question, a tool in search of a use. …

Markram seems undeterred. In a recent paper, he and his colleague Xue Fan firmly situated brain simulations within not just neuroscience as a field, but the entire arc of Western philosophy and human civilization. And in an email statement, he told me, “Political resistance (non-scientific) to the project has indeed slowed us down considerably, but it has by no means stopped us nor will it.” He noted the 140 people still working on the Blue Brain Project, a recent set of positive reviews from five external reviewers, and its “exponentially increasing” ability to “build biologically accurate models of larger and larger brain regions.”

No time frame, this time, but there’s no shortage of other people ready to make extravagant claims about the future of neuroscience. In 2014, I attended TED’s main Vancouver conference and watched the opening talk, from the MIT Media Lab founder Nicholas Negroponte. In his closing words, he claimed that in 30 years, “we are going to ingest information. …

I’m happy to see the update. As I recall, there was murmuring almost immediately about the Human Brain Project (HBP). I never got details but it seemed that people were quite actively unhappy about the disbursements. Of course, this kind of uproar is not unusual when great sums of money are involved and the Graphene Flagship also had its rocky moments.

As for Yong’s contribution, I’m glad he’s debunking some of the hype and glory associated with the current drive to colonize the human brain and other efforts (e.g. genetics) which they often claim are the ‘future of medicine’.

To be fair. Yong is focused on the brain simulation aspect of the HBP (and Markram’s efforts in the Blue Brain Project) but there are other HBP efforts, as well, even if brain simulation seems to be the HBP’s main interest.

After reading the article, I looked up Henry Markram’s Wikipedia entry and found this,

In 2013, the European Union funded the Human Brain Project, led by Markram, to the tune of $1.3 billion. Markram claimed that the project would create a simulation of the entire human brain on a supercomputer within a decade, revolutionising the treatment of Alzheimer’s disease and other brain disorders. Less than two years into it, the project was recognised to be mismanaged and its claims overblown, and Markram was asked to step down.[7][8]

On 8 October 2015, the Blue Brain Project published the first digital reconstruction and simulation of the micro-circuitry of a neonatal rat somatosensory cortex.[9]

I also looked up the Human Brain Project and, talking about their other efforts, was reminded that they have a neuromorphic computing platform, SpiNNaker (mentioned here in a January 24, 2019 posting; scroll down about 50% of the way). For anyone unfamiliar with the term, neuromorphic computing/engineering is what scientists call the effort to replicate the human brain’s ability to synthesize and process information in computing processors.

In fact, there was some discussion in 2013 that the Human Brain Project and the Graphene Flagship would have some crossover projects, e.g., trying to make computers more closely resemble human brains in terms of energy use and processing power.

The Human Brain Project’s (HBP) Silicon Brains webpage notes this about their neuromorphic computing platform,

Neuromorphic computing implements aspects of biological neural networks as analogue or digital copies on electronic circuits. The goal of this approach is twofold: Offering a tool for neuroscience to understand the dynamic processes of learning and development in the brain and applying brain inspiration to generic cognitive computing. Key advantages of neuromorphic computing compared to traditional approaches are energy efficiency, execution speed, robustness against local failures and the ability to learn.

Neuromorphic Computing in the HBP

In the HBP the neuromorphic computing Subproject carries out two major activities: Constructing two large-scale, unique neuromorphic machines and prototyping the next generation neuromorphic chips.

The large-scale neuromorphic machines are based on two complementary principles. The many-core SpiNNaker machine located in Manchester [emphasis mine] (UK) connects 1 million ARM processors with a packet-based network optimized for the exchange of neural action potentials (spikes). The BrainScaleS physical model machine located in Heidelberg (Germany) implements analogue electronic models of 4 Million neurons and 1 Billion synapses on 20 silicon wafers. Both machines are integrated into the HBP collaboratory and offer full software support for their configuration, operation and data analysis.

The most prominent feature of the neuromorphic machines is their execution speed. The SpiNNaker system runs at real-time, BrainScaleS is implemented as an accelerated system and operates at 10,000 times real-time. Simulations at conventional supercomputers typical run factors of 1000 slower than biology and cannot access the vastly different timescales involved in learning and development ranging from milliseconds to years.

Recent research in neuroscience and computing has indicated that learning and development are a key aspect for neuroscience and real world applications of cognitive computing. HBP is the only project worldwide addressing this need with dedicated novel hardware architectures.

I’ve highlighted Manchester because that’s a very important city where graphene is concerned. The UK’s National Graphene Institute is housed at the University of Manchester where graphene was first isolated in 2004 by two scientists, Andre Geim and Konstantin (Kostya) Novoselov. (For their effort, they were awarded the Nobel Prize for physics in 2010.)

Getting back to the HBP (and the Graphene Flagship for that matter), the funding should be drying up sometime around 2023 and I wonder if it will be possible to assess the impact.

Searchable database for hazardous nanomaterials and a Graphene Verification Programme

I have two relatively recent news bits about nanomaterials, the second being entirely focused on graphene.

Searchable database

A July 9, 2019 news item on Nanowerk announces a means of finding out what hazards may be associated with 300 different nanomaterials (Note: A Link has been removed),

A new search tool for nanomaterials has been published on the European Union Observatory for Nanomaterials (EUON) website. It will enable regulators to form a better view of available data and give consumers access to chemicals safety information.

The tool combines data submitted by companies in their REACH registrations [Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) ], data collected about nanomaterials used as ingredients in cosmetic products under the Cosmetics Regulation and data from the public national nanomaterial inventories of Belgium and France.

A July 3, 2019 EUON press release, which originated the news item, provides a bit more detail,

The EUON’s search brings data from these sources together in one place, allowing users to easily search for nanomaterials that are currently on the EU market. The results are linked to ECHA’s [European Chemicals Agency] database of chemicals registered in the EU and, for the first time, summarised information about the substances, their properties as well as detailed safety and characterisation data can be easily found.

Background

While there are over 300 nanomaterials on the EU market, 37 are currently covered by an existing registration under REACH. The information requirements for REACH were revised last year with explicit obligations for nanomaterials manufactured in or imported to the EU. The new requirements enter into force in January 2020 and will result in more publicly available information.

The EUON aims to increase the transparency of information available to the public on the safety and markets of nanomaterials in the EU. A key aim of the observatory is to create a one-stop shop for information, where EU citizens and stakeholders including NGOs, industry, and regulators can all easily find accessible and relevant safety information on nanomaterials on the EU market.

Here’s the searchable database.

Graphene verification

There was a bit of a scandal about fake graphene in the Fall of 2018 (my May 28, 2019 posting gives details). Dexter Johnson provides additional insight and information about the launch of a new graphene verification programme and news of a slightly older graphene verification programme in his July 9, 2019 article for the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website (Note: Links have been removed),

Last year [2018], the graphene community was rocked by a series of critical articles that appeared in some high-profile journals. First there was an Advanced Material’s article with the rather innocuously title: “The Worldwide Graphene Flake Production”. It was perhaps the follow-up article that appeared in the journal Nature that really shook things up with its incendiary title: “The war on fake graphene”.

In these two articles it was revealed that material that had been claimed to be high-quality (and high-priced) graphene was little more than graphite powder. Boosted by their appearance in high-impact journals, these articles threatened the foundations of the graphene marketplace.

But while these articles triggered a lot of hand wringing among the buyers and sellers of graphene, it’s not clear that their impact extended much beyond the supply chain of graphene. Whether or not graphene has aggregated back to being graphite is one question. An even bigger one is whether or not consumers are actually being sold a better product on the basis that it incorporates graphene.

Dexter details some of the issues from the consumer’s perspective (Note: Links have been removed),

Consumer products featuring graphene today include everything from headphones to light bulbs. Consequently, there is already confusion among buyers about the tangible benefits graphene is supposed to provide. And of course the situation becomes even worse if the graphene sold to make products may not even be graphene: how are consumers supposed to determine whether graphene infuses their products with anything other than a buzzword?

Another source of confusion arises because when graphene is incorporated into a product it is effectively a different animal from graphene in isolation. There is ample scientific evidence that graphene when included in a material matrix, like a polymer or even paper, can impart new properties to the materials. “You can transfer some very useful properties of graphene into other materials by adding graphene, but just because the resultant material contains graphene it does not mean it will behave like free-standing graphene, explains Tom Eldridge, of UK-based Fullerex, a consultancy that provides companies with information on how to include graphene in a material matrix

The rest of Dexter’s posting goes on to mention two new graphene verification progammes (producer and product) available through The Graphene Council. As for what the council is, there’s this from council’s About webpage,

The Graphene Council was founded in 2013 with a mission to serve the global community of graphene professionals. Today, The Graphene Council is the largest community in the world for graphene researchers, academics, producers, developers, investors, nanotechnologists, regulatory agencies, research institutes, material science specialists and even the general public. We reach more than 50,000 people with an interest in this amazing material. 

Interestingly the council’s offices are located in the US state of North Carolina. (I would have guessed that its headquarters would be in the UK, given the ‘ownership’ the UK has been attempting to establish over graphene Let me clarify, by ownership I mean the Brits want to be recognized as dominant or preeminent in graphene research and commercialization.)

The council’s first verified graphene producer is a company based in the UK as can be seen in an April 1, 2019 posting by council director Terrance Barkan on the council’s blog,

The Graphene Council is pleased to announce that Versarien plc is the first graphene company in the world to successfully complete the Verified Graphene Producer™ program, an independent, third party verification system that involves a physical inspection of the production facilities, a review of the entire production process, a random sample of product material and rigorous characterization and testing by a first class, international materials laboratory.

The Verified Graphene Producer™ program is an important step to bring transparency and clarity to a rapidly changing and opaque market for graphene materials, providing graphene customers with a level of confidence that has not existed before.

“We are pleased to have worked with the National Physical Laboratory (NPL) in the UK, regarded as one of the absolute top facilities for metrology and graphene characterization in the world.
 
They have provided outstanding analytical expertise for the materials testing portion of the program including Raman Spectroscopy, XPS, AFM and SEM testing services.” stated Terrance Barkan CAE, Executive Director of The Graphene Council.
 
Andrew Pollard, Science Area Leader of the Surface Technology Group, National Physical Laboratory, said: “In order to develop real-world products that can benefit from the ‘wonder material’, graphene, we first need to fully understand its properties, reliably and reproducibly.
 
“Whilst international measurement standards are currently being developed, it is critical that material characterisation is performed to the highest possible level.
 
As the UK’s National Measurement Institute (NMI) with a focus on developing the metrology of graphene and related 2D materials, we aim to be an independent third party in the testing of graphene material for companies and associations around the world, such as The Graphene Council.” 
 
Neill Ricketts, CEO of Versarien said: “We are delighted that Versarien is the first graphene producer in the world to successfully complete the Graphene Council’s Verified Graphene Producer™ programme.”
 
“This is a huge validation of our technology and will enable our partners and potential customers to have confidence that the graphene we produce meets globally accepted standards.”
 
“There are many companies that claim to be graphene producers, but to enjoy the benefits that this material can deliver requires high quality, consistent product to be supplied.  The Verified Producer programme is designed to verify that our production facilities, processes and tested material meet the stringent requirements laid down by The Graphene Council.”

“I am proud that Versarien has been independently acclaimed as a Verified Graphene Producer™ and look forward to making further progress with our collaboration partners and numerous other parties that we are in discussions with.”

James Baker CEng FIET, the CEO of Graphene@Manchester (which includes coordinating the efforts of the National Graphene Institute and the Graphene Engineering and Innovation Centre [GEIC]) stated: “We applaud The Graphene Council for promoting independent third party verification for graphene producers that is supported by world class metrology and characterization services.”

“This is an important contribution to the commercialization of graphene as an industrial material and are proud to have The Graphene Council as an Affiliate Member of the Graphene Engineering and Innovation Centre (GEIC) here in Manchester ”.

Successful commercialization of graphene materials requires not only the ability to produce graphene to a declared specification but to be able to do so at a commercial scale.
It is nearly impossible for a graphene customer to verify the type of material they are receiving without going through an expensive and time consuming process of having sample materials fully characterized by a laboratory that has the equipment and expertise to test graphene.

The Verified Graphene Producer™ program developed by The Graphene Councilprovides a level of independent inspection and verification that is not available anywhere else.

As for the “Verified Graphene Product” programme mentioned in Dexter’s article (it’s not included in the excerpts here), I can’t find any sign of it ion the council’s website.

Better performing solar cells with newly discovered property of pristine graphene

Light-harvesting devices—I like that better than solar cells or the like but I think that the term serves as a category rather than a name/label for a specific device. Enough musing. A December 17, 2018 news item on Nanowerk describes the latest about graphene and light-harvesting devices (Note: A link has been removed,

An international research team, co-led by a physicist at the University of California, Riverside, has discovered a new mechanism for ultra-efficient charge and energy flow in graphene, opening up opportunities for developing new types of light-harvesting devices.

The researchers fabricated pristine graphene — graphene with no impurities — into different geometric shapes, connecting narrow ribbons and crosses to wide open rectangular regions. They found that when light illuminated constricted areas, such as the region where a narrow ribbon connected two wide regions, they detected a large light-induced current, or photocurrent.

The finding that pristine graphene can very efficiently convert light into electricity could lead to the development of efficient and ultrafast photodetectors — and potentially more efficient solar panels.

A December 14, 2018 University of California at Riverside (UCR) news release by Iqbal Pittalwala (also on EurekAlert but published Dec. 17, 2018), which originated the news item,gives a brief description of graphene while adding context for this research,


Graphene, a 1-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable material properties, such as high current-carrying capacity and thermal conductivity. In principle, graphene can absorb light at any frequency, making it ideal material for infrared and other types of photodetection, with wide applications in bio-sensing, imaging, and night vision.

In most solar energy harvesting devices, a photocurrent arises only in the presence of a junction between two dissimilar materials, such as “p-n” junctions, the boundary between two types of semiconductor materials. The electrical current is generated in the junction region and moves through the distinct regions of the two materials.

“But in graphene, everything changes,” said Nathaniel Gabor, an associate professor of physics at UCR, who co-led the research project. “We found that photocurrents may arise in pristine graphene under a special condition in which the entire sheet of graphene is completely free of excess electronic charge. Generating the photocurrent requires no special junctions and can instead be controlled, surprisingly, by simply cutting and shaping the graphene sheet into unusual configurations, from ladder-like linear arrays of contacts, to narrowly constricted rectangles, to tapered and terraced edges.”

Pristine graphene is completely charge neutral, meaning there is no excess electronic charge in the material. When wired into a device, however, an electronic charge can be introduced by applying a voltage to a nearby metal. This voltage can induce positive charge, negative charge, or perfectly balance negative and positive charges so the graphene sheet is perfectly charge neutral.

“The light-harvesting device we fabricated is only as thick as a single atom,” Gabor said. “We could use it to engineer devices that are semi-transparent. These could be embedded in unusual environments, such as windows, or they could be combined with other more conventional light-harvesting devices to harvest excess energy that is usually not absorbed. Depending on how the edges are cut to shape, the device can give extraordinarily different signals.”

The research team reports this first observation of an entirely new physical mechanism — a photocurrent generated in charge-neutral graphene with no need for p-n junctions — in Nature Nanotechnology today [Dec. 17, 2018].

Previous work by the Gabor lab showed a photocurrent in graphene results from highly excited “hot” charge carriers. When light hits graphene, high-energy electrons relax to form a population of many relatively cooler electrons, Gabor explained, which are subsequently collected as current. Even though graphene is not a semiconductor, this light-induced hot electron population can be used to generate very large currents.

“All of this behavior is due to graphene’s unique electronic structure,” he said. “In this ‘wonder material,’ light energy is efficiently converted into electronic energy, which can subsequently be transported within the material over remarkably long distances.”

He explained that, about a decade ago, pristine graphene was predicted to exhibit very unusual electronic behavior: electrons should behave like a liquid, allowing energy to be transferred through the electronic medium rather than by moving charges around physically.
“But despite this prediction, no photocurrent measurements had been done on pristine graphene devices — until now,” he said.

The new work on pristine graphene shows electronic energy travels great distances in the absence of excess electronic charge.

The research team has found evidence that the new mechanism results in a greatly enhanced photoresponse in the infrared regime with an ultrafast operation speed.
“We plan to further study this effect in a broad range of infrared and other frequencies, and measure its response speed,” said first author Qiong Ma, a postdoctoral associate in physics at the Massachusetts Institute of Technology, or MIT.

The researchers have provided an image illustrating their work,

Caption: Shining light on graphene: Although graphene has been studied vigorously for more than a decade, new measurements on high-performance graphene devices have revealed yet another unusual property. In ultra-clean graphene sheets, energy can flow over great distances, giving rise to an unprecedented response to light. Credit: Max Grossnickle and QMO Labs, UC Riverside.

Here’s a link to and a citation for the paper,

Giant intrinsic photoresponse in pristine graphene by Qiong Ma, Chun Hung Lui, Justin C. W. Song, Yuxuan Lin, Jian Feng Kong, Yuan Cao, Thao H. Dinh, Nityan L. Nair, Wenjing Fang, Kenji Watanabe, Takashi Taniguchi, Su-Yang Xu, Jing Kong, Tomás Palacios, Nuh Gedik, Nathaniel M. Gabor, & Pablo Jarillo-Herrero. Nature Nanotechnology (2018) Published 17 December 2018 DOI: https://doi.org/10.1038/s41565-018-0323-8

This paper is behind a paywall.