Category Archives: graphene

Nanobiotics and artificial intelligence (AI)

Antibiotics at the nanoscale = nanobiotics. For a more complete explanation, there’s this (Note: the video runs a little longer than most of the others embedded on this blog),

Before pushing further into this research, a note about antibiotic resistance. In a sense, we’ve created the problem we (those scientists in particular) are trying to solve.

Antibiotics and cleaning products kill 99.9% of the bacteria, leaving 0.1% that are immune. As so many living things on earth do, bacteria reproduce. Now, a new antibiotic is needed and discovered; it too kills 99.9% of the bacteria. The 0.1% left are immune to two antibiotics. And,so it goes.

As the scientists have made clear, we’re running out of options using standard methods and they’re hoping this ‘nanoparticle approach’ as described in a June 5, 2023 news item on Nanowerk will work, Note: A link has been removed,

Identifying whether and how a nanoparticle and protein will bind with one another is an important step toward being able to design antibiotics and antivirals on demand, and a computer model developed at the University of Michigan can do it.

The new tool could help find ways to stop antibiotic-resistant infections and new viruses—and aid in the design of nanoparticles for different purposes.

“Just in 2019, the number of people who died of antimicrobial resistance was 4.95 million. Even before COVID, which worsened the problem, studies showed that by 2050, the number of deaths by antibiotic resistance will be 10 million,” said Angela Violi, an Arthur F. Thurnau Professor of mechanical engineering, and corresponding author of the study that made the cover of Nature Computational Science (“Domain-agnostic predictions of nanoscale interactions in proteins and nanoparticles”).

In my ideal scenario, 20 or 30 years from now, I would like—given any superbug—to be able to quickly produce the best nanoparticles that can treat it.”

A June 5, 2023 University of Michigan news release (also on EurekAlert), which originated the news item, provides more technical details, Note: A link has been removed,

Much of the work within cells is done by proteins. Interaction sites on their surfaces can stitch molecules together, break them apart and perform other modifications—opening doorways into cells, breaking sugars down to release energy, building structures to support groups of cells and more. If we could design medicines that target crucial proteins in bacteria and viruses without harming our own cells, that would enable humans to fight new and changing diseases quickly.

The new [computer] model, named NeCLAS [NeCLAS (Nanoparticle-Computed Ligand Affinity Scoring)], uses machine learning—the AI technique that powers the virtual assistant on your smartphone and ChatGPT. But instead of learning to process language, it absorbs structural models of proteins and their known interaction sites. From this information, it learns to extrapolate how proteins and nanoparticles might interact, predict binding sites and the likelihood of binding between them—as well as predicting interactions between two proteins or two nanoparticles.

“Other models exist, but ours is the best for predicting interactions between proteins and nanoparticles,” said Paolo Elvati, U-M associate research scientist in mechanical engineering.

AlphaFold, for example, is a widely used tool for predicting the 3D structure of a protein based on its building blocks, called amino acids. While this capacity is crucial, this is only the beginning: Discovering how these proteins assemble into larger structures and designing practical nanoscale systems are the next steps.

“That’s where NeCLAS comes in,” said Jacob Saldinger, U-M doctoral student in chemical engineering and first author of the study. “It goes beyond AlphaFold by showing how nanostructures will interact with one another, and it’s not limited to proteins. This enables researchers to understand the potential applications of nanoparticles and optimize their designs.”

The team tested three case studies for which they had additional data: 

  • Molecular tweezers, in which a molecule binds to a particular site on another molecule. This approach can stop harmful biological processes, such as the aggregation of protein plaques in diseases of the brain like Alzheimer’s.
  • How graphene quantum dots break up the biofilm produced by staph bacteria. These nanoparticles are flakes of carbon, no more than a few atomic layers thick and 0.0001 millimeters to a side. Breaking up biofilms is likely a crucial tool in fighting antibiotic-resistant infections—including the superbug methicillin-resistant Staphylococcus aureus (MRSA), commonly acquired at hospitals.
  • Whether graphene quantum dots would disperse in water, demonstrating the model’s ability to predict nanoparticle-nanoparticle binding even though it had been trained exclusively on protein-protein data.

While many protein-protein models set amino acids as the smallest unit that the model must consider, this doesn’t work for nanoparticles. Instead, the team set the size of that smallest feature to be roughly the size of the amino acid but then let the computer model decide where the boundaries between these minimum features were. The result is representations of proteins and nanoparticles that look a bit like collections of interconnected beads, providing more flexibility in exploring small scale interactions.

“Besides being more general, NeCLAS also uses way less training data than AlphaFold. We only have 21 nanoparticles to look at, so we have to use protein data in a clever way,” said Matt Raymond, U-M doctoral student in electrical and computer engineering and study co-author.  

Next, the team intends to explore other biofilms and microorganisms, including viruses.

The Nature Computational Science study was funded by the University of Michigan Blue Sky Initiative, the Army Research Office and the National Science Foundation. 

Here’s a link to and a citation for the paper,

Domain-agnostic predictions of nanoscale interactions in proteins and nanoparticles by Jacob Charles Saldinger, Matt Raymond, Paolo Elvati & Angela Violi. Nature Computational Science volume 3, pages 393–402 (2023) DOI: https://doi.org/10.1038/s43588-023-00438-x Published: 01 May 2023 Issue Date: May 2023

This paper is behind a paywall.

Water talks to electrons in graphene (i.e., carbon)?

Institutions from Spain, Germany, and England collaborated on the study announced in this June 23, 2023 news item on Nanowerk, Note: A link has been removed,

For the last 20 years, scientists have been puzzled by how water behaves near carbon surfaces. It may flow much faster than expected from conventional flow theories or form strange arrangements such as square ice.

Now, an international team of researchers from the Max Plank Institute for Polymer Research of Mainz (Germany), the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain), and the University of Manchester (England), reports in a study published in Nature Nanotechnology (“Electron cooling in graphene enhanced by plasmon–hydron resonance”) that water can interact directly with the carbon’s electrons: a quantum phenomenon that is very unusual in fluid dynamics.

Pictured above: Water-graphene quantum friction (Credits: Lucy Reading-Ikkanda / Simons Foundation)

There are two press releases with almost identical text, the June 22, 2023 Max Planck Institute press release with its additional introductory paragraph is below,

Water and carbon make a quantum couple: the flow of water on a carbon surface is governed by an unusual phenomenon dubbed quantum friction. A work published in ‘Nature Nanotechnology’ experimentally demonstrates this phenomenon – which was predicted in a previous theoretical study— at the interface between liquid water and graphene, a single layer of carbon atoms. Advanced ultrafast techniques were used to perform this study. These results could lead to applications in water purification and desalination processes and maybe even to liquid-based computers.

A liquid, such as water, is made up of small molecules that randomly move and constantly collide with each other. A solid, in contrast, is made of neatly arranged atoms that bathe in a cloud of electrons. The solid and the liquid worlds are assumed to interact only through collisions of the liquid molecules with the solid’s atoms: the liquid molecules do not “see” the solid’s electrons. Nevertheless, just over a year ago, a paradigm-shifting theoretical study proposed that at the water-carbon interface, the liquid’s molecules and the solid’s electrons push and pull on each other, slowing down the liquid flow: this new effect was called quantum friction. However, the theoretical proposal lacked experimental verification.

“We have now used lasers to see quantum friction at work,” explains study lead author Dr Nikita Kavokine, a researcher at the Max Planck Institute in Mainz and the Flatiron Institute in New York. The team studied a sample of graphene – a single monolayer of carbon atoms arranged in a honeycomb pattern. They used ultrashort red laser pulses (with a duration of only a millionth of a billionth of a second) to instantaneously heat up the graphene’s electron cloud. They then monitored its cooling with terahertz laser pulses, which are sensitive to the temperature of the graphene electrons. This technique is called optical pump – terahertz probe (OPTP) spectroscopy.

To their surprise, the electron cloud cooled faster when the graphene was immersed in water, while immersing the graphene in ethanol made no difference to the cooling rate. “This was yet another indication that the water-carbon couple is somehow special, but we still had to understand what exactly was going on,” Kavokine says. A possible explanation was that the hot electrons push and pull on the water molecules to release some of their heat: in other words, they cool through quantum friction. The researchers delved into the theory, and indeed: water-graphene quantum friction could explain the experimental data.

“It’s fascinating to see that the carrier dynamics of graphene keep surprising us with unexpected mechanisms, this time involving solid-liquid interactions with molecules none other than the omnipresent water,” comments Prof Klaas-Jan Tielrooij from ICN2 (Spain) and TU Eindhoven (The Netherlands). What makes water special here is that its vibrations, called hydrons, are in sync with the vibrations of the graphene electrons, called plasmons, so that the graphene-water heat transfer is enhanced through an effect known as resonance.

The experiments thus confirm the basic mechanism of solid-liquid quantum friction. This will have implications for filtration and desalination processes, in which quantum friction could be used to tune the permeation properties of the nanoporous membranes. “Our findings are not only interesting for physicists, but they also hold potential implications for electrocatalysis and photocatalysis at the solid-liquid interface,” says Xiaoqing Yu, PhD student at the Max Planck Institute in Mainz and first author of the work.

The discovery was down to bringing together an experimental system, a measurement tool and a theoretical framework that seldom go hand in hand. The key challenge is now to gain control over the water-electron interaction. “Our dream is to switch quantum friction on and off on demand,” Kavokine says. “This way, we could design smarter water filtration processes, or perhaps even fluid-based computers.”   

The almost identical June 26, 2023 University of Manchester press release is here.

Here’s a link to and a citation for the paper,

Electron cooling in graphene enhanced by plasmon–hydron resonance by Xiaoqing Yu, Alessandro Principi, Klaas-Jan Tielrooij, Mischa Bonn & Nikita Kavokine. Nature Nanotechnology (2023) DOI: https://doi.org/10.1038/s41565-023-01421-3 Published: 22 June 2023

This paper is open access.

Flexible keyboards and wearable sketchpads: all in a touch-responsive fabric armband

Who doesn’t love a panda? It looks like someone is drawing on the armband with their fingers but the lines look a lot finer, more like a stylus was used.

Caption: When a person draws a panda on this touch-responsive armband that’s worn on their forearm (bottom right of photo), it shows up on a computer. Credit: Adapted from ACS Nano 2023, DOI: 10.1021/acsnano.2c12612

A May 2, 2023 news item on ScienceDaily announces the flexible armband,

It’s time to roll up your sleeves for the next advance in wearable technology — a fabric armband that’s actually a touch pad. In ACS [American Chemical Society] Nano, researchers say they have devised a way to make playing video games, sketching cartoons and signing documents easier. Their proof-of-concept silk armband turns a person’s forearm into a keyboard or sketchpad. The three-layer, touch-responsive material interprets what a user draws or types and converts it into images on a computer.

A May 2, 2023 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, describes the work in more detail,

Computer trackpads and electronic signature-capture devices seem to be everywhere, but they aren’t as widely used in wearables. Researchers have suggested making flexible touch-responsive panels from clear, electrically conductive hydrogels, but these substances are sticky, making them hard to write on and irritating to the skin. So, Xueji Zhang, Lijun Qu, Mingwei Tian and colleagues wanted to incorporate a similar hydrogel into a comfortable fabric sleeve for drawing or playing games on a computer.

The researchers sandwiched a pressure-sensitive hydrogel between layers of knit silk. The top piece was coated in graphene nanosheets to make the fabric electrically conductive. Attaching the sensing panel to electrodes and a data collection system produced a pressure-responsive pad with real-time, rapid sensing when a finger slid over it, writing numbers and letters. The device was then incorporated into an arm-length silk sleeve with a touch-responsive area on the forearm. In experiments, a user controlled the direction of blocks in a computer game and sketched colorful cartoons in a computer drawing program from the armband. The researchers say that their proof-of-concept wearable touch panel could inspire the next generation of flexible keyboards and wearable sketchpads.       

Here’s a link to and a citation for the paper,

Skin-Friendly and Wearable Iontronic Touch Panel for Virtual-Real Handwriting Interaction by Ruidong Xu, Minghua She, Jiaxu Liu, Shikang Zhao, Jisheng Zhao, Xueji Zhang, Lijun Qu, and Mingwei Tian. ACS Nano 2023, 17, 9, 8293–8302 DOI: https://doi.org/10.1021/acsnano.2c12612 Publication Date: April 19, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

Biodegradable electronics: a seaweed biosensor

By combining seaweed and graphene, scientists have been able to create sensors that can be worn like a ‘second skin’ and outperform other similar biosensors, according to a March 3, 2023 news item on ScienceDaily,

Scientists at the University of Sussex have successfully trialed new biodegradable health sensors that could change the way we experience personal healthcare and fitness monitoring technology.

The team at Sussex have developed the new health sensors — such as those worn by runners or patients to monitor heart rate and temperature — using natural elements like rock salt, water and seaweed, combined with graphene. Because they are solely made with ingredients found in nature, the sensors are fully biodegradable, making them more environmentally friendly than commonly used rubber and plastic-based alternatives. Their natural composition also places them within the emerging scientific field of edible electronics — electronic devices that are safe for a person to consume.

Better still, the researchers found that their sustainable seaweed-based sensors actually outperform existing synthetic based hydrogels and nanomaterials, used in wearable health monitors, in terms of sensitivity. Therefore, improving the accuracy, as the more sensitive a sensor, the more accurately it will record a person’s vital signs.

A March 2, 2023 University of Sussex press release (also on EurekAlert) by Poppy Luckett, which originated the news item, describes the inspiration for the research,

Dr Conor Boland, a materials physics lecturer in the School of Mathematical and Physical Sciences, said:  “I was first inspired to use seaweed in the lab after watching MasterChef during lockdown. Seaweed, when used to thicken deserts, gives them a soft and bouncy structure – favored by vegans and vegetarians as an alternative to gelatin. It got me thinking: “what if we could do that with sensing technology?”.

“For me, one of the most exciting aspects to this development is that we have a sensor that is both fully biodegradable and highly effective. The mass production of unsustainable rubber and plastic based health technology could, ironically, pose a risk to human health through microplastics leeching into water sources as they degrade.  

“As a new parent, I see it as my responsibility to ensure my research enables the realisation of a cleaner world for all our children.” 

Seaweed is first and foremost an insulator, but by adding a critical amount of graphene to a seaweed mixture the scientists were able to create an electrically conductive film. When soaked in a salt bath, the film rapidly absorbs water, resulting in a soft, spongy, electrically conductive hydrogel.  

The development has the potential to revolutionise health monitoring technology, as future applications of the clinical grade wearable sensors would look something like a second skin or a temporary tattoo: lightweight, easy to apply, and safe, as they are made with all natural ingredients. This would significantly improve the overall patient experience, without the need for more commonly used and potentially invasive hospital instruments, wires and leads.  

Dr Sue Baxter, Director of Innovation and Business Partnerships at the University of Sussex, is excited about the potential benefits of this technology:  “At the University of Sussex, we are committed to protecting the future of the planet through sustainability research, expertise and innovation. What’s so exciting about this development from Dr Conor Boland and his team is that it manages to be all at once truly sustainable, affordable, and highly effective – out-performing synthetic alternatives.  

“What’s also remarkable for this stage of research – and I think this speaks to the meticulous ground-work that Dr Boland and his team put in when they created their blueprint – is that it’s more than a proof of principle development. Our Sussex scientists have created a device that has real potential for industry development into a product from which you or I could benefit in the relatively near future.” 

This latest  research breakthrough follows the publication of a blueprint for nanomaterial development from the Sussex scientists in 2019, which presented a method for researchers to follow in order to optimise the development of nanomaterial sensors.  

Kevin Doty, a Masters student in the School of Mathematical and Physical Sciences, at the University of Sussex, said:  “I taught chemistry previously, but decided I wanted to learn more about nanoscience. My gamble paid off, and not only did I enjoy it more than I expected, but I also ended up with an opportunity to utilize the information I had learned to work on a novel idea that has evolved into a first author publication as an MSc student. Learning about nanoscience showed me just how varied and multidisciplinary the field is. Any science background can bring knowledge that can be applied to this field in a unique way. This has led to further studies in a PhD studentship, opening up an all new career path I could not have previously considered.” 

Here’s a link to and a citation for the paper,

Food-Inspired, High-Sensitivity Piezoresistive Graphene Hydrogels by Adel A. K. Aljarid, Kevin L. Doty, Cencen Wei, Jonathan P. Salvage, and Conor S. Boland. ACS Sustainable Chem. Eng. 2023, 11, 5, 1820–1827 DOI: https://doi.org/10.1021/acssuschemeng.2c06101 Publication Date:January 25, 2023 Copyright © 2023 The Authors. Published by American Chemical Society

This paper appears to be open access.

A nonvolatile photo-memristor

Credit: by Xiao Fu, Tangxin Li, Bin Caid, Jinshui Miao, Gennady N. Panin, Xinyu Ma, Jinjin Wang, Xiaoyong Jiang, Qing Lia, Yi Dong, Chunhui Hao, Juyi Sun, Hangyu Xu, Qixiao Zhao, Mengjia Xia, Bo Song, Fansheng Chen, Xiaoshuang Chen, Wei Lu, Weida Hu

it took a while to get there but the February 13, 2023 news item on phys.org announced research into extending memristors from tunable conductance to reconfigurable photo-response,

In traditional vision systems, the optical information is captured by a frame-based digital camera, and then the digital signal is processed afterwards using machine-learning algorithms. In this scenario, a large amount of data (mostly redundant) has to be transferred from a standalone sensing elements to the processing units, which leads to high latency and power consumption.

To address this problem, much effort has been devoted to developing an efficient approach, where some of the memory and computational tasks are offloaded to sensor elements that can perceive and process the optical signal simultaneously.

In a new paper published in Light: Science & Applications, a team of scientists, led by Professor Weida Hu from School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China, and co-workers have developed a non-volatile photo-memristor, in which the reconfigurable responsivity can be modulated by the charge and/or photon flux through it and further stored in the device.

A February 13, 2023 Chinese Academy of Sciences press release, which originated the news item, provided more technical detail about the work,

The non-volatile photo-memristor has a simple two-terminal architecture, in which photoexcited carriers and oxygen-related ions are coupled, leading to a displaced and pinched hysteresis in the current-voltage characteristics. For the first time, non-volatile photo-memristors implement computationally complete logic with photoresponse-stateful operations, for which the same photo-memristor serves as both a logic gate and memory, using photoresponse as a physical state variable instead of light, voltage and memresistance. Polarity reversal of photo-memristors shows great potential for in-memory sensing and computing with feature extraction and image recognition for neuromorphic vision.

The photo-memristor demonstrates tunable short-circuit current in a non-volatile mode under illumination. By mimicking the biological functionalities of the human retina and designing specific device structures, the devices can act as neural network for neuromorphic visual processing and implementation of completely photoresponse-stateful logic operations triggered by electrical and light stimuli together. It can support various kinds of sensing tasks with all-in-one sensing-memory-computing approaches. These scientists summarize the operational principle and feature of their device:

“We design[ed] a two-terminal device with MoS2-xOx and specific graphene for three purposes in one: (1) to provide low barrier energy for the migration of oxygen ions; (2) to perform as geometry-asymmetric metal–semiconductor–metal van der Waals heterostructures with multi-photoresponse states; and (3) as an extension of a memristor, this device not only provides tunable conductance, but also demonstrates reconfigurable photoresponse for reading at zero bias voltage.”

“Moreover, the tunable short-circuit photocurrent and photoresponse can be increased to 889.8 nA and 98.8 mA/W, respectively, which are much higher than that of other reconfigurable phototransistors based on 2D materials. To reverse the channel polarity and obtain a gate-tunable short-circuit photocurrent, the channel semiconductor must be thin enough. Thus, it is difficult to use the thick film needed to absorb enough light to get a large signal. In our case, the mechanism of the two-terminal device rearrangement is based on ion migration, which is not limited by the thickness. We can increase the thickness of the film to absorb more photons and get a large short-circuit photocurrent.” they added.

“This new concept of a two-terminal photo-memristor not only enables all-in-one sensing-memory-computing approaches for neuromorphic vision hardware, but also brings great convenience for high-density integration.” the scientists forecast.

Here’s a link to and a citation for the paper,

Graphene/MoS2−xOx/graphene photomemristor with tunable non-volatile responsivities for neuromorphic vision processing by Xiao Fu, Tangxin Li, Bin Caid, Jinshui Miao, Gennady N. Panin, Xinyu Ma, Jinjin Wang, Xiaoyong Jiang, Qing Lia, Yi Dong, Chunhui Hao, Juyi Sun, Hangyu Xu, Qixiao Zhao, Mengjia Xia, Bo Song, Fansheng Chen, Xiaoshuang Chen, Wei Lu, Weida Hu. Light: Science & Applications volume 12, Article number: 39 (2023) DOI: https://doi.org/10.1038/s41377-023-01079-5 Published: 07 February 2023

This paper is open access.

Treating cardiac arrhythmia with light: a graphene tattoo

An April 17, 2023 news item on Nanowerk announced research into a graphene cardiac implant/tattoo,

Researchers led by Northwestern University and the University of Texas at Austin (UT) have developed the first cardiac implant made from graphene, a two-dimensional super material with ultra-strong, lightweight and conductive properties.

Similar in appearance to a child’s temporary tattoo, the new graphene “tattoo” implant is thinner than a single strand of hair yet still functions like a classical pacemaker. But unlike current pacemakers and implanted defibrillators, which require hard, rigid materials that are mechanically incompatible with the body, the new device softly melds to the heart to simultaneously sense and treat irregular heartbeats. The implant is thin and flexible enough to conform to the heart’s delicate contours as well as stretchy and strong enough to withstand the dynamic motions of a beating heart.

Caption: Graphene implant on tattoo paper. Credit: Ning Liu/University of Texas at Austin

An April 17, 2023 Northwestern University news release (also on EurekAlert), which originated the news item, provides more detail about the research, graphene, and the difficulties of monitoring a beating heart, Note: Links have been removed,

After implanting the device into a rat model, the researchers demonstrated that the graphene tattoo could successfully sense irregular heart rhythms and then deliver electrical stimulation through a series of pulses without constraining or altering the heart’s natural motions. Even better: The technology also is optically transparent, allowing the researchers to use an external source of optical light to record and stimulate the heart through the device.

The study will be published on Thursday (April 20 [2023]) in the journal Advanced Materials. It marks the thinnest known cardiac implant to date.

“One of the challenges for current pacemakers and defibrillators is that they are difficult to affix onto the surface of the heart,” said Northwestern’s Igor Efimov, the study’s senior author. “Defibrillator electrodes, for example, are essentially coils made of very thick wires. These wires are not flexible, and they break. Rigid interfaces with soft tissues, like the heart, can cause various complications. By contrast, our soft, flexible device is not only unobtrusive but also intimately and seamlessly conforms directly onto the heart to deliver more precise measurements.”

An experimental cardiologist, Efimov is a professor of biomedical engineering at Northwestern’s McCormick School of Engineering and professor of medicine at Northwestern University Feinberg School of Medicine. He co-led the study with Dmitry Kireev, a research associate at UT. Zexu Lin, a Ph.D. candidate in Efimov’s laboratory, is the paper’s first author.

Miracle material

Known as cardiac arrhythmias, heart rhythm disorders occur when the heart beats either too quickly or too slowly. While some cases of arrhythmia are not serious, many cases can lead to heart failure, stroke and even sudden death. In fact, complications related to arrythmia claim about 300,000 lives annually in the United States. Physicians commonly treat arrhythmia with implantable pacemakers and defibrillators that detect abnormal heartbeats and then correct rhythm with electrical stimulation. While these devices are lifesaving, their rigid nature may constrain the heart’s natural motions, injure soft tissues, cause temporary discomfort and induce complications, such as painful swelling, perforations, blood clots, infection and more.

With these challenges in mind, Efimov and his team sought to develop a bio-compatible device ideal for conforming to soft, dynamic tissues. After reviewing multiple materials, the researchers settled on graphene, an atomically thin form of carbon. With its ultra-strong, lightweight structure and superior conductivity, graphene has potential for many applications in high-performance electronics, high-strength materials and energy devices.

“For bio-compatibility reasons, graphene is particularly attractive,” Efimov said. “Carbon is the basis of life, so it’s a safe material that is already used in different clinical applications. It also is flexible and soft, which works well as an interface between electronics and a soft, mechanically active organ.”

Hitting a beating target

At UT, study co-authors Dimitry Kireev and Deji Akinwande were already developing graphene electronic tattoos (GETs) with sensing capabilities. Flexible and weightless, their team’s e-tattoos adhere to the skin to continuously monitor the body’s vital signs, including blood pressure and the electrical activity of the brain, heart and muscles.

But, while the e-tattoos work well on the skin’s surface, Efimov’s team needed to investigate new methods to use these devices inside the body — directly onto the surface of the heart.

“It’s a completely different application scheme,” Efimov said. “Skin is relatively dry and easily accessible. Obviously, the heart is inside the chest, so it’s difficult to access and in a wet environment.”

The researchers developed an entirely new technique to encase the graphene tattoo and adhere it to the surface of a beating heart. First, they encapsulated the graphene inside a flexible, elastic silicone membrane — with a hole punched in it to give access to the interior graphene electrode. Then, they gently placed gold tape (with a thickness of 10 microns) onto the encapsulating layer to serve as an electrical interconnect between the graphene and the external electronics used to measure and stimulate the heart. Finally, they placed it onto the heart. The entire thickness of all layers together measures about 100 microns in total.

The resulting device was stable for 60 days on an actively beating heart at body temperature, which is comparable to the duration of temporary pacemakers used as bridges to permanent pacemakers or rhythm management after surgery or other therapies.

Optical opportunities

Leveraging the device’s transparent nature, Efimov and his team performed optocardiography — using light to track and modulate heart rhythm — in the animal study. Not only does this offer a new way to diagnose and treat heart ailments, the approach also opens new possibilities for optogenetics, a method to control and monitor single cells with light. 

While electrical stimulation can correct a heart’s abnormal rhythm, optical stimulation is more precise. With light, researchers can track specific enzymes as well as interrogate specific heart, muscle or nerve cells.

“We can essentially combine electrical and optical functions into one biointerface,” Efimov said. “Because graphene is optically transparent, we can actually read through it, which gives us a much higher density of readout.”

The University of Texas at Austin issued an April 18, 2023 news release and as you would expect the focus is on their researchers, Note 1: I’ve removed many but not all of the redundancies between the two news releases; Note 2: A link has been removed,

A new cardiac implant made from graphene, a two-dimensional super material with ultra-strong, lightweight and conductive properties, functions like a classic pacemaker with some major improvements.

A team led by researchers from The University of Texas at Austin and Northwestern University developed the implantable derivative from wearable graphene-based electronic tattoo, or e-tattoo – graphene biointerface. The device, detailed in the journal Advanced Materials, marks the thinnest known cardiac implant to date.

“It’s very exciting to take our e-tattoo technology and use it as an implantable device inside the body,” said Dmitry Kireev, a postdoctoral research associate in the lab of professor Deji Akinwande’s lab at UT Austin who co-led the research. “The fact that is much more compatible with the human body, lightweight, and transparent, makes this a more natural solution for people dealing with heart problems.”

Hitting a beating target

At UT Austin, Akinwande and his team had been developing e-tattoos using graphene for several years, with a variety of functions, including monitoring body signals. Flexible and weightless, their team’s e-tattoos adhere to the skin to continuously monitor the body’s vital signs, including blood pressure and the electrical activity of the brain, heart and muscles.

But, while the e-tattoos work well on the skin’s surface, the researchers needed to find new ways to deploy these devices inside the body — directly onto the surface of the heart.

“The conditions inside the body are very different compared to affixing a device to the skin, so we had to re-imagine how we package our e-tattoo technology,” said Akinwande, a professor in the Chandra Family Department of Electrical and Computer Engineering.  

The researchers developed an entirely new technique to encase the graphene tattoo and adhere it to the surface of a beating heart. …

Here’s a link to and a citation for the paper,

Graphene Biointerface for Cardiac Arrhythmia Diagnosis and Treatment by Zexu Lin, Dmitry Kireev, Ning Liu, Shubham Gupta, Jessica LaPiano, Sofian N. Obaid, Zhiyuan Chen, Deji Akinwande, Igor R. Efimov. Advanced Materials Volume 35, Issue 22 June 1, 2023 2212190 DOI: https://doi.org/10.1002/adma.202212190 First published online: 25 March 2023

This paper is open access.

Mind-controlled robots based on graphene: an Australian research story

As they keep saying these days, ‘it’s not science fiction anymore’.

It’s so fascinating I almost forgot what it’s like to make a video where it can take hours to get a few minutes (the video is a little over 3 mins.) and all the failures are edited out. Plus, I haven’t found any information about training both the human users and the robotic dogs/quadrupeds. Does it take minutes? hours? days? more? Can you work with any old robotic dog /quadruped or does it have to be the one you’ve ‘gotten to know’? Etc. Bottom line: I don’t know if I can take what I see in the video at face value.

A March 20, 2023 news item on Nanowerk announces the work from Australia,

The advanced brain-computer interface [BCI] was developed by Distinguished Professor Chin-Teng Lin and Professor Francesca Iacopi, from the UTS [University of Technology Sydney; Australia] Faculty of Engineering and IT, in collaboration with the Australian Army and Defence Innovation Hub.

As well as defence applications, the technology has significant potential in fields such as advanced manufacturing, aerospace and healthcare – for example allowing people with a disability to control a wheelchair or operate prosthetics.

“The hands-free, voice-free technology works outside laboratory settings, anytime, anywhere. It makes interfaces such as consoles, keyboards, touchscreens and hand-gesture recognition redundant,” said Professor Iacopi.

A March 20, 2023 University of Technology Sydney (UTS) press release, also on EurekAlert but published March 19, 2023, which originated the news item, describes the interface in more detail,

“By using cutting edge graphene material, combined with silicon, we were able to overcome issues of corrosion, durability and skin contact resistance, to develop the wearable dry sensors,” she said.

A new study outlining the technology has just been published in the peer-reviewed journal ACS Applied Nano Materials. It shows that the graphene sensors developed at UTS are very conductive, easy to use and robust.

The hexagon patterned sensors are positioned over the back of the scalp, to detect brainwaves from the visual cortex. The sensors are resilient to harsh conditions so they can be used in extreme operating environments.

The user wears a head-mounted augmented reality lens which displays white flickering squares. By concentrating on a particular square, the brainwaves of the operator are picked up by the biosensor, and a decoder translates the signal into commands.

The technology was recently demonstrated by the Australian Army, where soldiers operated a Ghost Robotics quadruped robot using the brain-machine interface [BMI]. The device allowed hands-free command of the robotic dog with up to 94% accuracy.

“Our technology can issue at least nine commands in two seconds. This means we have nine different kinds of commands and the operator can select one from those nine within that time period,” Professor Lin said.

“We have also explored how to minimise noise from the body and environment to get a clearer signal from an operator’s brain,” he said.

The researchers believe the technology will be of interest to the scientific community, industry and government, and hope to continue making advances in brain-computer interface systems.

Here’s a link to and a citation for the paper,

Noninvasive Sensors for Brain–Machine Interfaces Based on Micropatterned Epitaxial Graphene by Shaikh Nayeem Faisal, Tien-Thong Nguyen Do, Tasauf Torzo, Daniel Leong, Aiswarya Pradeepkumar, Chin-Teng Lin, and Francesca Iacopi. ACS Appl. Nano Mater. 2023, 6, 7, 5440–5447 DOI: https://doi.org/10.1021/acsanm.2c05546 Publication Date: March 16, 2023 Copyright © 2023 The Authors. Published by American Chemical Society

This paper is open access.

Comments

For anyone who’s bothered by this, the terminology is fluid. Sometimes you’ll see brain-computer interface (BCI), sometimes you’ll see human-computer interface, or brain-machine interface (BMI) and, as I’ve now found in the video although I notice the Australians are not hyphenating it, brain-robotic interface (BRI).

You can find Ghost Robotics here, the makers of the robotic ‘dog’.

There seems to be a movement to replace the word ‘soldiers’ with warfighters and, according to this video, military practitioners. I wonder how medical doctors and other practitioners feel about the use of ‘practitioners’ in a military context.

Future firefighters and wearable technology

I imagine this wearable technology would also be useful for the military too. However, the focus for these researchers from China is firefighting. (Given the situation with the Canadian wildfires in June 2023, we have 10x more than the average at this time in the season over the last 10 years, it’s good to see some work focused on safety for firefighters.) From a January 17, 2023 news item on phys.org,

Firefighting may look vastly different in the future thanks to intelligent fire suits and masks developed by multiple research institutions in China.

Researchers published results showing breathable electrodes woven into fabric used in fire suits have proven to be stable at temperatures over 520ºC. At these temperatures, the fabric is found to be essentially non-combustible with high rates of thermal protection time.

Caption: Scientists from multiple institutions address the challenges and limitations of current fire-fighting gear by introducing wearable, breathable sensors and electrodes to better serve firefighters. Credit: Nano Research, Tsinghua University Press

A January 17, 2023 Tsinghua University Press press release on EurekAlert, which originated the news item, provides more technical details,

The results show the efficacy and practicality of Janus graphene/poly(p-phenylene benzobisoxazole), or PBO, woven fabric in making firefighting “smarter” with the main goal being to manufacture products on an industrial scale that are flame-retardant but also intelligent enough to warn the firefighter of increased risks while traversing the flames.

“Conventional firefighting clothing and fire masks can ensure firemen’s safety to a certain extent,” said Wei Fan, professor at the School of Textile Science and Engineering at Xi’an Polytechnic University. “However, the fire scene often changes quickly, sometimes making firefighters trapped in the fire for failing to judge the risks in time. At this situation, firefighters also need to be rescued.”

The key here is the use of Janus graphene/PBO, woven fabrics. While not the first of its kind, the introduction of PBO fibers offers better strength and fire protection than other similar fibers, such as Kevlar. The PBO fibers are first woven into a fabric that is then irradiated using a CO2 infrared laser. From here, the fabric becomes the Janus graphene/PBO hybrid that is the focus of the study.   

The mask also utilizes a top and bottom layer of Janus graphene/PBO with a piezoelectric layer in between that acts as a way to convert mechanical pressures to electricity.

“The mask has a good smoke particle filtration effect, and the filtration efficiency of PM2.5 and PM3.0 reaches 95% and 100%, respectively. Meanwhile, the mask has good wearing comfort as its respiratory resistance (46.8 Pa) is lower than 49 Pa of commercial masks. Besides, the mask is sensitive to the speed and intensity of human breathing, which can dynamically monitor the health of the firemen” said Fan.

Flame-retardant electronics featured in these fire suits are flexible, heat resistant, quick to make and low-cost which makes scaling for industrial production a tangible achievement. This makes it more likely that the future of firefighting suits and masks will be able to effectively use this technology. Quick, effective responses can also reduce economic losses attributed to fires.

“The graphene/PBO woven fabrics-based sensors exhibit good repeatability and stability in human motion monitoring and NO2 gas detection, the main toxic gas in fires, which can be applied to firefighting suits to help firefighters effectively avoiding danger” Fan said. Being able to detect sharp increases in NO2 gas can help firefighters change course in an instant if needed and could be a lifesaving addition to firefighter gear.

Major improvements can be made in the firefighting field to better protect the firefighters by taking advantage of graphene/PBO woven and nonwoven fabrics. Widescale use of this technology can help the researchers reach their ultimate goal of reducing mortality and injury to those who risk their lives fighting fires.

Yu Luo and Yaping Miao of the School of Textile Science and Engineering at Xi’an Polytechnic University contributed equally to this work. Professor Wei Fan is the corresponding author. Yingying Zhang and Huimin Wang of the Department of Chemistry at Tsinghua University, Kai Dong of the Beijing Institute of Nanoenergy and Nanosystems at the Chinese Academy of Sciences, and Lin Hou and Yanyan Xu of Shaanxi Textile Research Institute Co., LTD, Weichun Chen and Yao Zhang of the School of Textile Science and Engineering at Xi’an Polytechnic University contributed to this research. 

This work was supported by the National Natural Science Foundation of China, Textile Vision Basic Research Program of China, Key Research and Development Program of Xianyang Science and Technology Bureau, Key Research and Development Program of Shaanxi Province, Natural Science Foundation of Shaanxi Province, and Scientific Research Project of Shaanxi Provincial Education Department.

Here are two links and a citation for the same paper,

Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field by Yu Luo, Yaping Miao, Huimin Wang, Kai Dong, Lin Hou, Yanyan Xu, Weichun Chen, Yao Zhang, Yingying Zhang & Wei Fan. Nano Research (2023) DOI: https://doi.org/10.1007/s12274-023-5382-y Published12 January 2023

This link leads to a paywall.

Here’s the second link (to SciOpen)

Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. SciOpen Published January 12, 2023

This link leads to an open access journal published by Tsinghua University Press.

Graphene-based nanoelectronics platform, a replacement for silicon?

A December 31, 2022 news item on phys.org describes research into replacing silicon in the field of electronics, Note: Links have been removed,

A pressing quest in the field of nanoelectronics is the search for a material that could replace silicon. Graphene has seemed promising for decades. But its potential has faltered along the way, due to damaging processing methods and the lack of a new electronics paradigm to embrace it. With silicon nearly maxed out in its ability to accommodate faster computing, the next big nanoelectronics platform is needed now more than ever.

Walter de Heer, Regents’ Professor in the School of Physics at the Georgia Institute of Technology [Georgia Tech], has taken a critical step forward in making the case for a successor to silicon. De Heer and his collaborators have developed a new nanoelectronics platform based on graphene—a single sheet of carbon atoms. The technology is compatible with conventional microelectronics manufacturing, a necessity for any viable alternative to silicon.

In the course of their research, published in Nature Communications, the team may have also discovered a new quasiparticle. Their discovery could lead to manufacturing smaller, faster, more efficient and more sustainable computer chips, and has potential implications for quantum and high-performance computing.

A January 3, 2023 Georgia Institute of Technology news release (also on EurekAlert but published December 21, 2022] by Catherine Barzler, which originated the news item, delves further into the work

“Graphene’s power lies in its flat, two-dimensional structure that is held together by the strongest chemical bonds known,” de Heer said. “It was clear from the beginning that graphene can be miniaturized to a far greater extent than silicon — enabling much smaller devices, while operating at higher speeds and producing much less heat. This means that, in principle, more devices can be packed on a single chip of graphene than with silicon.”

In 2001, de Heer proposed an alternative form of electronics based on epitaxial graphene, or epigraphene — a layer of graphene that was found to spontaneously form on top of silicon carbide crystal, a semiconductor used in high power electronics. At the time, researchers found that electric currents flow without resistance along epigraphene’s edges, and that graphene devices could be seamlessly interconnected without metal wires. This combination allows for a form of electronics that relies on the unique light-like properties of graphene electrons.

“Quantum interference has been observed in carbon nanotubes at low temperatures, and we expect to see similar effects in epigraphene ribbons and networks,” de Heer said. “This important feature of graphene is not possible with silicon.”

Building the Platform

To create the new nanoelectronics platform, the researchers created a modified form of epigraphene on a silicon carbide crystal substrate. In collaboration with researchers at the Tianjin International Center for Nanoparticles and Nanosystems at the University of Tianjin, China, they produced unique silicon carbide chips from electronics-grade silicon carbide crystals. The graphene itself was grown at de Heer’s laboratory at Georgia Tech using patented furnaces.

The researchers used electron beam lithography, a method commonly used in microelectronics, to carve the graphene nanostructures and weld their edges to the silicon carbide chips. This process mechanically stabilizes and seals the graphene’s edges, which would otherwise react with oxygen and other gases that might interfere with the motion of the charges along the edge.

Finally, to measure the electronic properties of their graphene platform, the team used a cryogenic apparatus that allows them to record its properties from a near-zero temperature to room temperature.

Observing the Edge State

The electric charges the team observed in the graphene edge state were similar to photons in an optical fiber that can travel over large distances without scattering. They found that the charges traveled for tens of thousands of nanometers along the edge before scattering. Graphene electrons in previous technologies could only travel about 10 nanometers before bumping into small imperfections and scattering in different directions.

“What’s special about the electric charges in the edges is that they stay on the edge and keep on going at the same speed, even if the edges are not perfectly straight,” said Claire Berger, physics professor at Georgia Tech and director of research at the French National Center for Scientific Research in Grenoble, France.

In metals, electric currents are carried by negatively charged electrons. But contrary to the researchers’ expectations, their measurements suggested that the edge currents were not carried by electrons or by holes (a term for positive quasiparticles indicating the absence of an electron). Rather, the currents were carried by a highly unusual quasiparticle that has no charge and no energy, and yet moves without resistance. The components of the hybrid quasiparticle were observed to travel on opposite sides of the graphene’s edges, despite being a single object.

The unique properties indicate that the quasiparticle might be one that physicists have been hoping to exploit for decades — the elusive Majorana fermion predicted by Italian theoretical physicist Ettore Majorana in 1937.

“Developing electronics using this new quasiparticle in seamlessly interconnected graphene networks is game changing,” de Heer said.

It will likely be another five to 10 years before we have the first graphene-based electronics, according to de Heer. But thanks to the team’s new epitaxial graphene platform, technology is closer than ever to crowning graphene as a successor to silicon.

Here’s a link to and a citation for the paper,

An epitaxial graphene platform for zero-energy edge state nanoelectronics by Vladimir S. Prudkovskiy, Yiran Hu, Kaimin Zhang, Yue Hu, Peixuan Ji, Grant Nunn, Jian Zhao, Chenqian Shi, Antonio Tejeda, David Wander, Alessandro De Cecco, Clemens B. Winkelmann, Yuxuan Jiang, Tianhao Zhao, Katsunori Wakabayashi, Zhigang Jiang, Lei Ma, Claire Berger & Walt A. de Heer. Nature Communications volume 13, Article number: 7814 (2022) DOI: https://doi.org/10.1038/s41467-022-34369-4 Published 19 December 2022

This paper is open access.

Graphene goes to the moon

The people behind the European Union’s Graphene Flagship programme (if you need a brief explanation, keep scrolling down to the “What is the Graphene Flagship?” subhead) and the United Arab Emirates have got to be very excited about the announcement made in a November 29, 2022 news item on Nanowerk, Note: Canadians too have reason to be excited as of April 3, 2023 when it was announced that Canadian astronaut Jeremy Hansen was selected to be part of the team on NASA’s [US National Aeronautics and Space Administration] Artemis II to orbit the moon (April 3, 2023 CBC news online article by Nicole Mortillaro) ·

Graphene Flagship Partners University of Cambridge (UK) and Université Libre de Bruxelles (ULB, Belgium) paired up with the Mohammed bin Rashid Space Centre (MBRSC, United Arab Emirates), and the European Space Agency (ESA) to test graphene on the Moon. This joint effort sees the involvement of many international partners, such as Airbus Defense and Space, Khalifa University, Massachusetts Institute of Technology, Technische Universität Dortmund, University of Oslo, and Tohoku University.

The Rashid rover is planned to be launched on 30 November 2022 [Note: the launch appears to have occurred on December 11, 2022; keep scrolling for more about that] from Cape Canaveral in Florida and will land on a geologically rich and, as yet, only remotely explored area on the Moon’s nearside – the side that always faces the Earth. During one lunar day, equivalent to approximately 14 days on Earth, Rashid will move on the lunar surface investigating interesting geological features.

A November 29, 2022 Graphene Flagship press release (also on EurekAlert), which originated the news item, provides more details,

The Rashid rover wheels will be used for repeated exposure of different materials to the lunar surface. As part of this Material Adhesion and abrasion Detection experiment, graphene-based composites on the rover wheels will be used to understand if they can protect spacecraft against the harsh conditions on the Moon, and especially against regolith (also known as ‘lunar dust’).

Regolith is made of extremely sharp, tiny and sticky grains and, since the Apollo missions, it has been one of the biggest challenges lunar missions have had to overcome. Regolith is responsible for mechanical and electrostatic damage to equipment, and is therefore also hazardous for astronauts. It clogs spacesuits’ joints, obscures visors, erodes spacesuits and protective layers, and is a potential health hazard.  

University of Cambridge researchers from the Cambridge Graphene Centre produced graphene/polyether ether ketone (PEEK) composites. The interaction of these composites with the Moon regolith (soil) will be investigated. The samples will be monitored via an optical camera, which will record footage throughout the mission. ULB researchers will gather information during the mission and suggest adjustments to the path and orientation of the rover. Images obtained will be used to study the effects of the Moon environment and the regolith abrasive stresses on the samples.

This moon mission comes soon after the ESA announcement of the 2022 class of astronauts, including the Graphene Flagship’s own Meganne Christian, a researcher at Graphene Flagship Partner the Institute of Microelectronics and Microsystems (IMM) at the National Research Council of Italy.

“Being able to follow the Moon rover’s progress in real time will enable us to track how the lunar environment impacts various types of graphene-polymer composites, thereby allowing us to infer which of them is most resilient under such conditions. This will enhance our understanding of how graphene-based composites could be used in the construction of future lunar surface vessels,” says Sara Almaeeni, MBRSC science team lead, who designed Rashid’s communication system.

“New materials such as graphene have the potential to be game changers in space exploration. In combination with the resources available on the Moon, advanced materials will enable radiation protection, electronics shielding and mechanical resistance to the harshness of the Moon’s environment. The Rashid rover will be the first opportunity to gather data on the behavior of graphene composites within a lunar environment,” says Carlo Iorio, Graphene Flagship Space Champion, from ULB.

Leading up to the Moon mission, a variety of inks containing graphene and related materials, such as conducting graphene, insulating hexagonal boron nitride and graphene oxide, semiconducting molybdenum disulfide, prepared by the University of Cambridge and ULB were also tested on the MAterials Science Experiment Rocket 15 (MASER 15) mission, successfully launched on the 23rd of November 2022 from the Esrange Space Center in Sweden. This experiment, named ARLES-2 (Advanced Research on Liquid Evaporation in Space) and supported by European and UK space agencies (ESA, UKSA) included contributions from Graphene Flagship Partners University of Cambridge (UK), University of Pisa (Italy) and Trinity College Dublin (Ireland), with many international collaborators, including Aix-Marseille University (France), Technische Universität Darmstadt (Germany), York University (Canada), Université de Liège (Belgium), University of Edinburgh and Loughborough.

This experiment will provide new information about the printing of GMR inks in weightless conditions, contributing to the development of new addictive manufacturing procedures in space such as 3d printing. Such procedures are key for space exploration, during which replacement components are often needed, and could be manufactured from functional inks.

“Our experiments on graphene and related materials deposition in microgravity pave the way addictive manufacturing in space. The study of the interaction of Moon regolith with graphene composites will address some key challenges brought about by the harsh lunar environment,” says Yarjan Abdul Samad, from the Universities of Cambridge and Khalifa, who prepared the samples and coordinated the interactions with the United Arab Emirates.    

“The Graphene Flagship is spearheading the investigation of graphene and related materials (GRMs) for space applications. In November 2022, we had the first member of the Graphene Flagship appointed to the ESA astronaut class. We saw the launch of a sounding rocket to test printing of a variety of GRMs in zero gravity conditions, and the launch of a lunar rover that will test the interaction of graphene—based composites with the Moon surface. Composites, coatings and foams based on GRMs have been at the core of the Graphene Flagship investigations since its beginning. It is thus quite telling that, leading up to the Flagship’s 10th anniversary, these innovative materials are now to be tested on the lunar surface. This is timely, given the ongoing effort to bring astronauts back to the Moon, with the aim of building lunar settlements. When combined with polymers, GRMs can tailor the mechanical, thermal, electrical properties of then host matrices. These pioneering experiments could pave the way for widespread adoption of GRM-enhanced materials for space exploration,” says Andrea Ferrari, Science and Technology Officer and Chair of the Management Panel of the Graphene Flagship. 

Caption: The MASER15 launch Credit: John-Charles Dupin

A pioneering graphene work and a first for the Arab World

A December 11, 2022 news item on Alarabiya news (and on CNN) describes the ‘graphene’ launch which was also marked the Arab World’s first mission to the moon,

The United Arab Emirates’ Rashid Rover – the Arab world’s first mission to the Moon – was launched on Sunday [December 11, 2022], the Mohammed bin Rashid Space Center (MBRSC) announced on its official Twitter account.

The launch came after it was previously postponed for “pre-flight checkouts.”

The launch of a SpaceX Falcon 9 rocket carrying the UAE’s Rashid rover successfully took off from Cape Canaveral, Florida.

The Rashid rover – built by Emirati engineers from the UAE’s Mohammed bin Rashid Space Center (MBRSC) – is to be sent to regions of the Moon unexplored by humans.

What is the Graphene Flagship?

In 2013, the Graphene Flagship was chosen as one of two FET (Future and Emerging Technologies) funding projects (the other being the Human Brain Project) each receiving €1 billion to be paid out over 10 years. In effect, it’s a science funding programme specifically focused on research, development, and commercialization of graphene (a two-dimensional [it has length and width but no depth] material made of carbon atoms).

You can find out more about the flagship and about graphene here.