Tag Archives: Graphene Flagship

Where are those space elevators? Here are some answers as graphene celebrates a 20th anniversary

In the last week or so I’d been wondering what happened to the space elevators (it’s exactly what it sounds like, an elevator that takes you into space) and then this September 23, 2024 essay by Stephen Lyn (Strathclyde Chancellor’s Fellow, Chemical and Process Engineering, University of Strathclyde) on The Conversation popped up, Note: Links have been removed,

Graphene at 20: still no sign of the promised space elevator, but here’s how this wonder material is quietly changing the world

Twenty years ago [2004] this October , two physicists at the University of Manchester, Andre Geim and Konstantin Novoselov, published a groundbreaking paper on the “electric field effect in atomically thin carbon films”. Their work described the extraordinary electronic properties of graphene, a crystalline form of carbon equivalent to a single layer of graphite, just one atom thick.

Around that time, I started my doctorate at the University of Surrey. Our team specialised in the electronic properties of carbon. Carbon nanotubes were the latest craze, which I was happily following. One day, my professor encouraged a group of us to travel to London to attend a talk by a well-known science communicator from the University of Manchester. This was Andre Geim.

We were not disappointed. He was inspiring for us fresh-faced PhD students, incorporating talk of wacky Friday afternoon experiments with levitating frogs, before getting on to atomically thin carbon. All the same, we were sceptical about this carbon concept. We couldn’t quite believe that a material effectively obtained from pencil lead with sticky tape was really what it claimed to be. But we were wrong.

The work was quickly copied and reproduced by scientists across the globe. New methods for making this material were devised. Incredible claims about its properties made it sound like something out of a Stan Lee comic. Stronger than steel, highly flexible, super-slippery and impermeable to gases. A better electronic conductor than copper and a better thermal conductor than diamond, as well as practically invisible and displaying a host of exotic quantum properties.

Graphene was hailed as a revolutionary material, promising ultra-fast electronics, supercomputers and super-strong materials. More fantastical claims have included space elevators, solar sails, artificial retinas, even invisibility cloaks. [emphasis mine]

Lyn takes us back to earth, from the September 23, 2024 essay,

In terms of public perception, it’s fair to say that graphene has been held to an impossible standard. The popular media can certainly exaggerate science stories for clicks, but academics – including myself – are not immune from over-egging or speculating about their pet projects either. I’d argue this can even be useful, helping to drive new technologies forward. Equally, though, there can be a backlash when progress looks disappointing.

Having said that, disruptive technologies such as cars, television or plastic all required decades of development. Graphene is still a newcomer in the grand scheme of things, so it’s far too early to reach any conclusions about its impact.

Lyn goes on to point out where graphene has made inroads, from the September 23, 2024 essay, Note: Links have been removed

What has quietly occurred is a steady integration of graphene into numerous practical applications. Much of this is thanks to the Graphene Flagship, a major European research initiative coordinated by Chalmers University of Technology in Sweden. This aims to bring graphene and related materials from academic research to real-world commercial applications, and more than 90 products have been developed over the past decade as a result.

These include blended plastics for high-performance sports equipment, more durable racing tyres for bicycles, motorcycle helmets that better distribute impact forces, thermally conductive coatings for motorcycle components, and lubricants for reducing friction and wear between mechanical parts.

Graphene is finding its way into batteries and supercapacitors, enabling faster charging times and longer life spans. Conductive graphene inks are now used to manufacture sensors, wireless tracking tags, heating elements, and electromagnetic shielding for protecting sensitive electronics. Graphene is even used in headphones to improve the sound quality, and as a more efficient means of transmitting heat in air-conditioning units.

Graphene oxide products are being used for desalination, wastewater treatment and purification of drinking water. Meanwhile, a range of graphene materials can be bought off the shelf for use in countless other products, and major corporations including SpaceX, Tesla, Panasonic, Samsung, Sony and Apple are all rumoured or known to be using them to develop new products.

I am thankful for Lyn’s September 23, 2024 essay, which answers my question about space elevators and offers a good update on graphene’s integration and impact on society. If you have an interest in hearing the Sir Andre Geim talk “Random Walk to Graphene,” Lyn has embedded the almost 38 minutes talk in his essay. Finally, h/t to phys.org’s Sept. 23, 2024 news item.

10 years of the European Union’s roll of the dice: €1B or 1billion euros each for the Human Brain Project (HBP) and the Graphene Flagship

Graphene and Human Brain Project win biggest research award in history (& this is the 2000th post)” on January 28, 2013 was how I announced the results of what had been a a European Union (EU) competition that stretched out over several years and many stages as projects were evaluated and fell to the wayside or were allowed onto the next stage. The two finalists received €1B each to be paid out over ten years.

Human Brain Project (HBP)

A September 12, 2023 Human Brain Project (HBP) press release (also on EurekAlert) summarizes the ten year research effort and the achievements,

The EU-funded Human Brain Project (HBP) comes to an end in September and celebrates its successful conclusion today with a scientific symposium at Forschungszentrum Jülich (FZJ). The HBP was one of the first flagship projects and, with 155 cooperating institutions from 19 countries and a total budget of 607 million euros, one of the largest research projects in Europe. Forschungszentrum Jülich, with its world-leading brain research institute and the Jülich Supercomputing Centre, played an important role in the ten-year project.

“Understanding the complexity of the human brain and explaining its functionality are major challenges of brain research today”, says Astrid Lambrecht, Chair of the Board of Directors of Forschungszentrum Jülich. “The instruments of brain research have developed considerably in the last ten years. The Human Brain Project has been instrumental in driving this development – and not only gained new insights for brain research, but also provided important impulses for information technologies.”

HBP researchers have employed highly advanced methods from computing, neuroinformatics and artificial intelligence in a truly integrative approach to understanding the brain as a multi-level system. The project has contributed to a deeper understanding of the complex structure and function of the brain and enabled novel applications in medicine and technological advances.

Among the project’s highlight achievements are a three-dimensional, digital atlas of the human brain with unprecedented detail, personalised virtual models of patient brains with conditions like epilepsy and Parkinson’s, breakthroughs in the field of artificial intelligence, and an open digital research infrastructure – EBRAINS – that will remain an invaluable resource for the entire neuroscience community beyond the end of the HBP.

Researchers at the HBP have presented scientific results in over 3000 publications, as well as advanced medical and technical applications and over 160 freely accessible digital tools for neuroscience research.

“The Human Brain Project has a pioneering role for digital brain research with a unique interdisciplinary approach at the interface of neuroscience, computing and technology,” says Katrin Amunts, Director of the HBP and of the Institute for Neuroscience and Medicine at FZJ. “EBRAINS will continue to power this new way of investigating the brain and foster developments in brain medicine.”

“The impact of what you achieved in digital science goes beyond the neuroscientific community”, said Gustav Kalbe, CNECT, Acting Director of Digital Excellence and Science Infrastructures at the European Commission during the opening of the event. “The infrastructure that the Human Brain Project has established is already seen as a key building block to facilitate cooperation and research across geographical boundaries, but also across communities.”

Further information about the Human Brain Project as well as photos from research can be found here: https://fz-juelich.sciebo.de/s/hWJkNCC1Hi1PdQ5.

Results highlights and event photos in the online press release.

Results overviews:
– “Human Brain Project: Spotlights on major achievements” and “A closer Look on Scientific
Advances”

– “Human Brain Project: An extensive guide to the tools developed”

Examples of results from the Human Brain Project:

As the “Google Maps of the brain” [emphasis mine], the Human Brain Project makes the most comprehensive digital brain atlas to date available to all researchers worldwide. The atlas by Jülich researchers and collaborators combines high-resolution data of neurons, fibre connections, receptors and functional specialisations in the brain, and is designed as a constantly growing system.

13 hospitals in France are currently testing the new “Virtual Epileptic Patient” – a platform developed at the University of Marseille [Aix-Marseille University?] in the Human Brain Project. It creates personalised simulation models of brain dynamics to provide surgeons with predictions for the success of different surgical treatment strategies. The approach was presented this year in the journals Science Translational Medicine and The Lancet Neurology.



SpiNNaker2 is a “neuromorphic” [brainlike] computer developed by the University of Manchester and TU Dresden within the Human Brain Project. The company SpiNNcloud Systems in Dresden is commercialising the approach for AI applications. (Image: Sprind.org)

As an openly accessible digital infrastructure, EBRAINS offers scientists easy access to the best techniques for complex research questions.

[https://www.ebrains.eu/]

There was a Canadian connection at one time; Montréal Neuro at Canada’s McGill University was involved in developing a computational platform for neuroscience (CBRAIN) for HBP according to an announcement in my January 29, 2013 posting. However, there’s no mention of the EU project on the CBRAIN website nor is there mention of a Canadian partner on the EBRAINS website, which seemed the most likely successor to the CBRAIN portion of the HBP project originally mentioned in 2013.

I couldn’t resist “Google maps of the brain.”

In any event, the statement from Astrid Lambrecht offers an interesting contrast to that offered by the leader of the other project.

Graphene Flagship

In fact, the Graphene Flagship has been celebrating its 10th anniversary since last year; see my September 1, 2022 posting titled “Graphene Week (September 5 – 9, 2022) is a celebration of 10 years of the Graphene Flagship.”

The flagship’s lead institution, Chalmers University of Technology in Sweden, issued an August 28, 2023 press release by Lisa Gahnertz (also on the Graphene Flagship website but published September 4, 2023) touting its achievement with an ebullience I am more accustomed to seeing in US news releases,

Chalmers steers Europe’s major graphene venture to success

For the past decade, the Graphene Flagship, the EU’s largest ever research programme, has been coordinated from Chalmers with Jari Kinaret at the helm. As the project reaches the ten-year mark, expectations have been realised, a strong European research field on graphene has been established, and the journey will continue.

‘Have we delivered what we promised?’ asks Graphene Flagship Director Jari Kinaret from his office in the physics department at Chalmers, overlooking the skyline of central Gothenburg.

‘Yes, we have delivered more than anyone had a right to expect,’ [emphasis mine] he says. ‘In our analysis for the conclusion of the project, we read the documents that were written at the start. What we promised then were over a hundred specific things. Some of them were scientific and technological promises, and they have all been fulfilled. Others were for specific applications, and here 60–70 per cent of what was promised has been delivered. We have also delivered applications we did not promise from the start, but these are more difficult to quantify.’

The autumn of 2013 saw the launch of the massive ten-year Science, Technology and Innovation research programme on graphene and other related two-dimensional materials. Joint funding from the European Commission and EU Member States totalled a staggering €1,000 million. A decade later, it is clear that the large-scale initiative has succeeded in its endeavours. According to a report by the research institute WifOR, the Graphene Flagship will have created a total contribution to GDP of €3,800 million and 38,400 new jobs in the 27 EU countries between 2014 and 2030.

Exceeded expectations

‘Per euro invested and compared to other EU projects, the flagship has performed 13 times better than expected in terms of patent applications, and seven times better for scientific publications. We have 17 spin-off companies that have received over €130 million in private funding – people investing their own money is a real example of trust in the fact that the technology works,’ says Jari Kinaret.

He emphasises that the long time span has been crucial in developing the concepts of the various flagship projects.

‘When it comes to new projects, the ability to work on a long timescale is a must and is more important than a large budget. It takes a long time to build trust, both in one another within a team and in the technology on the part of investors, industry and the wider community. The size of the project has also been significant. There has been an ecosystem around the material, with many graphene manufacturers and other organisations involved. It builds robustness, which means you have the courage to invest in the material and develop it.’

From lab to application

In 2010, Andre Geim and Konstantin Novoselov of the University of Manchester won the Nobel Prize in Physics for their pioneering experiments isolating the ultra-light and ultra-thin material graphene. It was the first known 2D material and stunned the world with its ‘exceptional properties originating in the strange world of quantum physics’ according to the Nobel Foundation’s press release. Many potential applications were identified for this electrically conductive, heat-resistant and light-transmitting material. Jari Kinaret’s research team had been exploring the material since 2006, and when Kinaret learned of the European Commission’s call for a ten-year research programme, it prompted him to submit an application. The Graphene Flagship was initiated to ensure that Europe would maintain its leading position in graphene research and innovation, and its coordination and administration fell to Chalmers.

Is it a staggering thought that your initiative became the biggest EU research project of all time?

‘The fact that the three-minute presentation I gave at a meeting in Brussels has grown into an activity in 22 countries, with 170 organisations and 1,300 people involved … You can’t think about things like that because it can easily become overwhelming. Sometimes you just have to go for it,’ says Jari Kinaret.

One of the objectives of the Graphene Flagship was to take the hopes for this material and move them from lab to application. What has happened so far?

‘We are well on track with 100 products priced and on their way to the market. Many of them are business-to-business products that are not something we ordinary consumers are going to buy, but which may affect us indirectly.’

‘It’s important to remember that getting products to the application stage is a complex process. For a researcher, it may take ten working prototypes; for industry, ten million. Everything has to click into place, on a large scale. All components must work identically and in exactly the same way, and be compatible with existing production in manufacturing as you cannot rebuild an entire factory for a new material. In short, it requires reliability, reproducibility and manufacturability.’

Applications in a wide range of areas

Graphene’s extraordinary properties are being used to deliver the next generation of technologies in a wide range of fields, such as sensors for self-driving cars, advanced batteries, new water purification methods and sophisticated instruments for use in neuroscience. When asked if there are any applications that Jani Kinaret himself would like to highlight, he mentions, among other things, the applications that are underway in the automotive industry – such as sensors to detect obstacles for self-driving cars. Thanks to graphene, they will be so cost-effective to produce that it will be possible to make them available in more than just the most expensive car models.

He also highlights the aerospace industry, where a graphene material for removing ice from aircraft and helicopter wings is under development for the Airbus company. Another favourite, which he has followed from basic research to application, is the development of an air cleaner for Lufthansa passenger aircraft, based on a kind of ‘graphene foam’. Because graphene foam is very light, it can be heated extremely quickly. A pulse of electricity lasting one thousandth of a second is enough to raise the temperature to 300 degrees, thus killing micro-organisms and effectively cleaning the air in the aircraft.

He also mentions the Swedish company ABB, which has developed a graphene composite for circuit breakers in switchgear. These circuit breakers are used to protect the electricity network and must be safe to use. The graphene composite replaces the manual lubrication of the circuit breakers, resulting in significant cost savings.

‘We also see graphene being used in medical technology, but its application requires many years of testing and approval by various bodies. For example, graphene technology can more effectively map the brain before neurosurgery, as it provides a more detailed image. Another aspect of graphene is that it is soft and pliable. This means it can be used for electrodes that are implanted in the brain to treat tremors in Parkinson’s patients, without the electrodes causing scarring,’ says Jari Kinaret.

Coordinated by Chalmers

Jari Kinaret sees the fact that the EU chose Chalmers as the coordinating university as a favourable factor for the Graphene Flagship.

‘Hundreds of millions of SEK [Swedish Kroner] have gone into Chalmers research, but what has perhaps been more important is that we have become well-known and visible in certain areas. We also have the 2D-Tech competence centre and the SIO Grafen programme, both funded by Vinnova and coordinated by Chalmers and Chalmers industriteknik respectively. I think it is excellent that Chalmers was selected, as there could have been too much focus on the coordinating organisation if it had been more firmly established in graphene research at the outset.’

What challenges have been encountered during the project?

‘With so many stakeholders involved, we are not always in agreement. But that is a good thing. A management book I once read said that if two parties always agree, then one is redundant. At the start of the project, it was also interesting to see the major cultural differences we had in our communications and that different cultures read different things between the lines; it took time to realise that we should be brutally straightforward in our communications with one another.’

What has it been like to have the coordinating role that you have had?

‘Obviously, I’ve had to worry about things an ordinary physics professor doesn’t have to worry about, like a phone call at four in the morning after the Brexit vote or helping various parties with intellectual property rights. I have read more legal contracts than I thought I would ever have to read as a professor. As a researcher, your approach when you go into a role is narrow and deep, here it was rather all about breadth. I would have liked to have both, but there are only 26 hours in a day,’ jokes Jari Kinaret.

New phase for the project and EU jobs to come

A new assignment now awaits Jari Kinaret outside Chalmers as Chief Executive Officer of the EU initiative KDT JU (Key Digital Technologies Joint Undertaking, soon to become Chips JU), where industry and the public sector interact to drive the development of new electronic components and systems.

The Graphene Flagship may have reached its destination in its current form, but the work started is progressing in a form more akin to a flotilla. About a dozen projects will continue to live on under the auspices of the European Commission’s Horizon Europe programme. Chalmers is going to coordinate a smaller CSA project called GrapheneEU, where CSA stands for ‘Coordination and Support Action’. It will act as a cohesive force between the research and innovation projects that make up the next phase of the flagship, offering them a range of support and services, including communication, innovation and standardisation.

The Graphene Flagship is about to turn ten. If the project had been a ten-year-old child, what kind of child would it have been?

‘It would have been a very diverse organism. Different aspirations are beginning to emerge – perhaps it is adolescence that is approaching. In addition, within the project we have also studied other related 2D materials, and we found that there are 6,000 distinct materials of this type, of which only about 100 have been studied. So, it’s the younger siblings that are starting to arrive now.’

Facts about the Graphene Flagship:

The Graphene Flagship is the first European flagship for future and emerging technologies. It has been coordinated and administered from the Department of Physics at Chalmers, and as the project enters its next phase, GrapheneEU, coordination will continue to be carried out by staff currently working on the flagship led by Chalmers Professor Patrik Johansson.

The project has proved highly successful in developing graphene-based technology in Europe, resulting in 17 new companies, around 100 new products, nearly 500 patent applications and thousands of scientific papers. All in all, the project has exceeded the EU’s targets for utilisation from research projects by a factor of ten. According to the assessment of the EU research programme Horizon 2020, Chalmers’ coordination of the flagship has been identified as one of the key factors behind its success.

Graphene Week will be held at the Svenska Mässan in Gothenburg from 4 to 8 September 2023. Graphene Week is an international conference, which also marks the finale of the ten-year anniversary of the Graphene Flagship. The conference will be jointly led by academia and industry – Professor Patrik Johansson from Chalmers and Dr Anna Andersson from ABB – and is expected to attract over 400 researchers from Sweden, Europe and the rest of the world. The programme includes an exhibition, press conference and media activities, special sessions on innovation, diversity and ethics, and several technical sessions. The full programme is available here.

Read the press release on Graphene Week from 4 to 8 September and the overall results of the Graphene Flagship. …

Ten years and €1B each. Congratulations to the organizers on such massive undertakings. As for whether or not (and how they’ve been successful), I imagine time will tell.

Graphene goes to the moon

The people behind the European Union’s Graphene Flagship programme (if you need a brief explanation, keep scrolling down to the “What is the Graphene Flagship?” subhead) and the United Arab Emirates have got to be very excited about the announcement made in a November 29, 2022 news item on Nanowerk, Note: Canadians too have reason to be excited as of April 3, 2023 when it was announced that Canadian astronaut Jeremy Hansen was selected to be part of the team on NASA’s [US National Aeronautics and Space Administration] Artemis II to orbit the moon (April 3, 2023 CBC news online article by Nicole Mortillaro) ·

Graphene Flagship Partners University of Cambridge (UK) and Université Libre de Bruxelles (ULB, Belgium) paired up with the Mohammed bin Rashid Space Centre (MBRSC, United Arab Emirates), and the European Space Agency (ESA) to test graphene on the Moon. This joint effort sees the involvement of many international partners, such as Airbus Defense and Space, Khalifa University, Massachusetts Institute of Technology, Technische Universität Dortmund, University of Oslo, and Tohoku University.

The Rashid rover is planned to be launched on 30 November 2022 [Note: the launch appears to have occurred on December 11, 2022; keep scrolling for more about that] from Cape Canaveral in Florida and will land on a geologically rich and, as yet, only remotely explored area on the Moon’s nearside – the side that always faces the Earth. During one lunar day, equivalent to approximately 14 days on Earth, Rashid will move on the lunar surface investigating interesting geological features.

A November 29, 2022 Graphene Flagship press release (also on EurekAlert), which originated the news item, provides more details,

The Rashid rover wheels will be used for repeated exposure of different materials to the lunar surface. As part of this Material Adhesion and abrasion Detection experiment, graphene-based composites on the rover wheels will be used to understand if they can protect spacecraft against the harsh conditions on the Moon, and especially against regolith (also known as ‘lunar dust’).

Regolith is made of extremely sharp, tiny and sticky grains and, since the Apollo missions, it has been one of the biggest challenges lunar missions have had to overcome. Regolith is responsible for mechanical and electrostatic damage to equipment, and is therefore also hazardous for astronauts. It clogs spacesuits’ joints, obscures visors, erodes spacesuits and protective layers, and is a potential health hazard.  

University of Cambridge researchers from the Cambridge Graphene Centre produced graphene/polyether ether ketone (PEEK) composites. The interaction of these composites with the Moon regolith (soil) will be investigated. The samples will be monitored via an optical camera, which will record footage throughout the mission. ULB researchers will gather information during the mission and suggest adjustments to the path and orientation of the rover. Images obtained will be used to study the effects of the Moon environment and the regolith abrasive stresses on the samples.

This moon mission comes soon after the ESA announcement of the 2022 class of astronauts, including the Graphene Flagship’s own Meganne Christian, a researcher at Graphene Flagship Partner the Institute of Microelectronics and Microsystems (IMM) at the National Research Council of Italy.

“Being able to follow the Moon rover’s progress in real time will enable us to track how the lunar environment impacts various types of graphene-polymer composites, thereby allowing us to infer which of them is most resilient under such conditions. This will enhance our understanding of how graphene-based composites could be used in the construction of future lunar surface vessels,” says Sara Almaeeni, MBRSC science team lead, who designed Rashid’s communication system.

“New materials such as graphene have the potential to be game changers in space exploration. In combination with the resources available on the Moon, advanced materials will enable radiation protection, electronics shielding and mechanical resistance to the harshness of the Moon’s environment. The Rashid rover will be the first opportunity to gather data on the behavior of graphene composites within a lunar environment,” says Carlo Iorio, Graphene Flagship Space Champion, from ULB.

Leading up to the Moon mission, a variety of inks containing graphene and related materials, such as conducting graphene, insulating hexagonal boron nitride and graphene oxide, semiconducting molybdenum disulfide, prepared by the University of Cambridge and ULB were also tested on the MAterials Science Experiment Rocket 15 (MASER 15) mission, successfully launched on the 23rd of November 2022 from the Esrange Space Center in Sweden. This experiment, named ARLES-2 (Advanced Research on Liquid Evaporation in Space) and supported by European and UK space agencies (ESA, UKSA) included contributions from Graphene Flagship Partners University of Cambridge (UK), University of Pisa (Italy) and Trinity College Dublin (Ireland), with many international collaborators, including Aix-Marseille University (France), Technische Universität Darmstadt (Germany), York University (Canada), Université de Liège (Belgium), University of Edinburgh and Loughborough.

This experiment will provide new information about the printing of GMR inks in weightless conditions, contributing to the development of new addictive manufacturing procedures in space such as 3d printing. Such procedures are key for space exploration, during which replacement components are often needed, and could be manufactured from functional inks.

“Our experiments on graphene and related materials deposition in microgravity pave the way addictive manufacturing in space. The study of the interaction of Moon regolith with graphene composites will address some key challenges brought about by the harsh lunar environment,” says Yarjan Abdul Samad, from the Universities of Cambridge and Khalifa, who prepared the samples and coordinated the interactions with the United Arab Emirates.    

“The Graphene Flagship is spearheading the investigation of graphene and related materials (GRMs) for space applications. In November 2022, we had the first member of the Graphene Flagship appointed to the ESA astronaut class. We saw the launch of a sounding rocket to test printing of a variety of GRMs in zero gravity conditions, and the launch of a lunar rover that will test the interaction of graphene—based composites with the Moon surface. Composites, coatings and foams based on GRMs have been at the core of the Graphene Flagship investigations since its beginning. It is thus quite telling that, leading up to the Flagship’s 10th anniversary, these innovative materials are now to be tested on the lunar surface. This is timely, given the ongoing effort to bring astronauts back to the Moon, with the aim of building lunar settlements. When combined with polymers, GRMs can tailor the mechanical, thermal, electrical properties of then host matrices. These pioneering experiments could pave the way for widespread adoption of GRM-enhanced materials for space exploration,” says Andrea Ferrari, Science and Technology Officer and Chair of the Management Panel of the Graphene Flagship. 

Caption: The MASER15 launch Credit: John-Charles Dupin

A pioneering graphene work and a first for the Arab World

A December 11, 2022 news item on Alarabiya news (and on CNN) describes the ‘graphene’ launch which was also marked the Arab World’s first mission to the moon,

The United Arab Emirates’ Rashid Rover – the Arab world’s first mission to the Moon – was launched on Sunday [December 11, 2022], the Mohammed bin Rashid Space Center (MBRSC) announced on its official Twitter account.

The launch came after it was previously postponed for “pre-flight checkouts.”

The launch of a SpaceX Falcon 9 rocket carrying the UAE’s Rashid rover successfully took off from Cape Canaveral, Florida.

The Rashid rover – built by Emirati engineers from the UAE’s Mohammed bin Rashid Space Center (MBRSC) – is to be sent to regions of the Moon unexplored by humans.

What is the Graphene Flagship?

In 2013, the Graphene Flagship was chosen as one of two FET (Future and Emerging Technologies) funding projects (the other being the Human Brain Project) each receiving €1 billion to be paid out over 10 years. In effect, it’s a science funding programme specifically focused on research, development, and commercialization of graphene (a two-dimensional [it has length and width but no depth] material made of carbon atoms).

You can find out more about the flagship and about graphene here.

Neuromorphic (brainlike) computing and your car (a Mercedes Benz Vision AVTR concept car)

If you’ve ever fantasized about a batmobile of your own, the dream could come true soon,

Mercedes Berz VISION AVTR [downloaded from https://www.mercedes-benz.com/en/innovation/concept-cars/vision-avtr/]

It was the mention of neuromorphic computing in a television ad sometime in September 2022 that sent me on a mission to find out what Mercedes Benz means when they use neuromorphic computing to describe a feature found in their Vision AVTR concept car. First, a little bit about the car (from the Vision AVTR webpage accessed in October 2022),

VISION AVTR – inspired by AVATAR.

The name of the groundbreaking concept vehicle stands not only for the close collaboration in developing the show car together with the AVATAR team but also for ADVANCED VEHICLE TRANSFORMATION. This concept vehicle embodies the vision of Mercedes-Benz designers, engineers and trend researchers for mobility in the distant future.

,,,

Organic battery technology.

The VISION AVTR was designed in line with its innovative electric drive. This is based on a particularly powerful and compact high-voltage battery. For the first time, the revolutionary battery technology is based on graphene-based [emphasis mine] organic cell chemistry and thus completely eliminates rare, toxic and expensive earths such as metals. Electromobility thus becomes independent of fossil resources. An absolute revolution is also the recyclability by composting, which is 100% recyclable due to the materiality. As a result, Mercedes-Benz underlines the high relevance of a future circular economy in the raw materials sector.

Masterpiece of efficiency.

At Mercedes-Benz, the consideration of efficiency goes far beyond the drive concept, because with increasing digitalisation, the performance of the large number of so-called secondary consumers also comes into focus – along with their efficient energy supply, without negatively affecting the drive power of the vehicle itself. Energy consumption per computing operation is already a key target in the development of new computer chips. This trend will continue in the coming years with the growth of sensors and artificial intelligence in the automotive industry. The neuro-inspired approach of the VISION AVTR, including so-called neuromorphic hardware, promises to minimise the energy requirements of sensors, chips and other components to a few watts. [emphasis mine] Their energy supply is provided by the cached current of the integrated solar plates on the back of the VISION AVTR. The 33 multi-directionally movable surface elements act as “bionic flaps”.

Interior and exterior merge.

For the first time, Mercedes-Benz has worked with a completely new design approach in the design of the VISION AVTR. The holistic concept combines the design disciplines interior, exterior and UX [user experience] from the first sketch. Man and human perception are the starting point of a design process from the inside out. The design process begins with the experience of the passengers and consciously focuses on the perception and needs of the passengers. The goal was to create a car that prolongs the perception of its passengers. It was also a matter of creating an immersive experience space in which passengers connect with each other, with the vehicle and the surrounding area [emphasis mine ] in a unique way.

Intuitive control.

The VISION AVTR already responds to the approach of the passengers by visualising the energy and information flow of the environment with digital neurons that flow through the grille through the wheels to the rear area. The first interaction in the interior between man and vehicle happens completely intuitively via the control unit: by placing the hand on the centre console, the interior comes to life and the vehicle recognises the driver by his breathing. This is made visible on the instrument panel and on the user’s hand. The VISION AVTR thus establishes a biometric connection with the driver [emphasis mine] and increases his awareness of the environment. The digital neurons flow from the interior into the exterior and visualise the flow of energy and information. For example, when driving, the neurons flow over the outside of the vehicle. [emphasis mine] When changing direction, the energy flows to the corresponding side of the vehicle.

The vehicle as an immersive experience space.

The visual connection between passengers and the outside world is created by the curved display module, which replaces a conventional dashboard. The outside world around the vehicle and the surrounding area is shown in real-time 3D graphics and at the same time shows what is happening on the road in front of the vehicle. Combined with energy lines, these detailed real-time images bring the interior to life and allow passengers to discover and interact with the environment in a natural way with different views of the outside world. Three wonders of nature – the Huangshan Mountains of China, the 115-metre-high Hyperion Tree found in the United States and the pink salt Lake Hillier from Australia – can be explored in detail. Passengers become aware of various forces of nature that are not normally visible to the human eye, such as magnetic fields, bioenergy or ultraviolet light.

The curved display module in the Mercedes-Benz VISION AVTR – inspired by AVATAR
[downloaded from https://www.mercedes-benz.com/en/innovation/concept-cars/vision-avtr/]

Bionic formal language.

When the boundaries between vehicle and living beings are lifted, Mercedes-Benz combines luxury and sustainability and works to make the vehicles as resource-saving as possible. With the VISION AVTR, the brand is now showing how a vehicle can blend harmoniously into its environment and communicate with it. In the ecosystem of the future, the ultimate luxury is the fusion of human and nature with the help of technology. The VISION AVTR is thus an example of sustainable luxury in the field of design. As soon as you get in, the car becomes an extension of your own body and a tool to discover the environment much as in the film humans can use avatars to extend and expand their abilities.

A few thoughts

The movie, Avatar, was released in 2009 and recently rereleased in movie houses in anticipation of the sequel, Avatar: The Way of Water to be released in December 2022 (Avatar [2009 film] Wikipedia entry). The timing, Avatar and AVTR, is interesting, oui?

Moving onto ‘organic’, which means carbon-based in this instance and, specifically, graphene. Commercialization of graphene is likely top-of-mind for the folks (European Commission) who bet 1B Euros in 2013 with European Union money to fund the Graphene Flagship project. This battery from German company Mercedes Benz must be exciting news for the funders and for people who want to lessen dependency on rare earths. Your battery can be composted safely (according to the advertising).

The other piece of good news, is the neuromorphic computing,

“The neuro-inspired approach of the VISION AVTR, including so-called neuromorphic hardware, promises to minimise the energy requirements of sensors, chips and other components to a few watts.”

On the other hand and keeping in mind the image above (a hand with what looks like an embedded object), it seems a little disconcerting to merge with one’s car, “… passengers connect with each other, with the vehicle and the surrounding area …” which becomes even more disconcerting when this appears in the advertising,

… VISION AVTR thus establishes a biometric connection with the driver … The digital neurons flow from the interior into the exterior and visualise the flow of energy and information. For example, when driving, the neurons flow over the outside of the vehicle.

Are these ‘digital neurons’ flowing around the car like a water current? Also, the car is visualizing? Hmm …

I did manage to find a bit more information about neuromorphic computing although it’s for a different Mercedes Benz concept car (there’s no mention of flowing digital neurons) in a January 18, 2022 article by Sally Ward-Foxton for EE Times (Note: A link has been removed),

The Mercedes Vision EQXX concept car, promoted as “the most efficient Mercedes-Benz ever built,” incorporates neuromorphic computing to help reduce power consumption and extend vehicle range. To that end, BrainChip’s Akida neuromorphic chip enables in-cabin keyword spotting as a more power-efficient way than existing AI-based keyword detection systems.

“Working with California-based artificial intelligence experts BrainChip, Mercedes-Benz engineers developed systems based on BrainChip’s Akida hardware and software,” Mercedes noted in a statement describing the Vision EQXX. “The example in the Vision EQXX is the “Hey Mercedes” hot-word detection. Structured along neuromorphic principles, it is five to ten times more efficient than conventional voice control,” the carmaker claimed.

That represents validation of BrainChip’s technology by one of its early-access customers. BrainChip’s Akida chip accelerates spiking neural networks (SNNs) and convolutional neural networks (via conversion to SNNs). It is not limited to a particular application, and also run [sic] person detection, voice or face recognition SNNs, for example, that Mercedes could also explore.

This January 6, 2022 article by Nitin Dahad for embedded.com describes what were then the latest software innovations in the automotive industry and segues into a description of spiking neural networks (Note: A link has been removed),

The electric vehicle (EV) has clearly become a key topic of discussion, with EV range probably the thing most consumers are probably worried about. To address the range concern, two stories emerged this week – one was Mercedes-Benz’ achieving a 1,000 km range with its VISION EQXX prototype, albeit as a concept car, and General Motors announcing during a CES [Consumer Electronics Show] 2022 keynote its new Chevrolet Silverado EV with 400-mile (640 km) range.

In briefings with companies, I often hear them talk about the software-defined car and the extensive use of software simulation (or we could also call it a digital twin). In the case of both the VISION EQXX and the Silverado EV, software plays a key part. I also spoke to BlackBerry about its IVY platform and how it is laying the groundwork for software-defined vehicles.

Neuromorphic computing for infotainment

This efficiency is not just being applied to enhancing range though. Mercedes-Benz also points out that its infotainment system uses neuromorphic computing to enable the car to take to “take its cue from the way nature thinks”.

Mercedes-Benz VISION EQXXMercedes-Benz VISION EQXX

The hardware runs spiking neural networks, in which data is coded in discrete spikes and energy only consumed when a spike occurs, reducing energy consumption by orders of magnitude. In order to deliver this, the carmaker worked with BrainChip, developing the systems based on its Akida processor. In the VISION EQXX, this technology enables the “Hey Mercedes” hot-word detection five to ten times more efficiently than conventional voice control. Mercedes-Benz said although neuromorphic computing is still in its infancy, systems like these will be available on the market in just a few years. When applied on scale throughout a vehicle, they have the potential to radically reduce the energy needed to run the latest AI technologies.

For anyone curious about BrainChip, you can find out more here.

It took a little longer than I hoped but I’m glad that I found out a little more about neuromorphic computing and one application in the automotive industry.

Graphene Week (September 5 – 9, 2022) is a celebration of 10 years of the Graphene Flagship

Back in 2013 the European Union announced two huge targeted research investments €1B each for the Graphene Flagship and the Human Brain Project to be distributed over 10 years. (I have an overview of the Graphene Flagship’s high points from 2013-15 in my April 22, 2016 posting.)

Now at the ten year mark and its final days, the Graphene Flagship is celebrating 10 years with a Graphene Week (from an August 30, 2022 Graphene Flagship press release on EurekAlert),

Graphene Week is a celebration of 10 years of the Graphene Flagship, a European Commission funded research project worth over €1 billion in funding. Held at BMW Welt — the exhibition space of one of the Graphene Flagship’s industrial partners based in Germany — the conference includes a comprehensive program of speakers, exhibitions, posters and a free pavilion.

The program includes a session on the European Chip Act, a notable point of debate for the continent. The act promises to mobilise more than €43 billion of both public and private investments to alleviate the global chip shortage. Graphene Week will demonstrate the potential of graphene-enabled alternatives to traditional semiconductors with the findings of the 2D-Experimental Pilot Line (2D-EPL).

The 2D-EPL is a €20 million project to integrate 2D materials into silicon wafers. The project has recently completed its first multi-project wafer (MPW) run, producing graphene integrated silicon wafers to academic and industrial customers.

During the conference Max Lemme of AMO GmbH in Germany and Sanna Arpiainen, of VTT Finland will discuss this subject along with the European Commission’s Thomas Skordas, Deputy Director General of DG CNECT and Bert De Colvenaer, Executive Director, KDT Joint Undertaking. Attendees can find the full program here.

The conference covers a large range of topics: from composites and medicine, to electronics and sensors. Beyond fundamental research, the talks by industry experts and European scientists will explore how graphene and related materials are disrupting critical European industries.

Graphene Week is co-chaired by Georg Duesberg from Bundeswehr University Munich and Elmar Bonaccurso, from Airbus Germany. In addition to Airbus, representatives from Lufthansa and other partners from the AEROGrAFT project will be in attendance, showcasing their graphene air filtration application for aircraft.   aircraft. 

Graphene Week will also host its Graphene Innovation Forum, a dedicated space for scientists to meet those in industry. Interactive panel discussions with industrial representatives will dive into future trends of graphene applications. The Innovation forum will feature speakers from both the Graphene Flagship’s large industrial partners including Medica, Lufthansa, Nokia and Airbus and smaller companies including Graphene Flagship spin-offs Emberion, BeDimensional and Qurv.

The Open Forum will collate some of the leading experts of the Graphene Flagship for a panel discussion on the success of graphene research and innovation where the audience is encouraged to ask questions. And the Diversity in Graphene initiative will offer a panel discussion focused on career development and professional use of social media.

The Graphene Flagship welcomes the public to explore the Graphene Pavilion in BMW Welt. The exhibition will showcase applications for graphene for cars, planes, phones and cities, together with product demos and videos. This pavilion will be free and open to the public from 9am on Friday 9 September to 6pm on Sunday 11 September.

“The Graphene Flagship is one of the largest ever EU projects, forming a network of 171 academic and industrial partners from 22 countries,” explained Jari Kinaret, Director of the Graphene Flagship. “In the 17th  edition, Graphene Week provides an opportunity to demonstrate the successes of the project and the ongoing legacy it will have on Europe’s industry. We look forward to welcoming our academic and industrial partners to join us in Munich for this celebration.”

More information on Graphene Week, access to the speaker line up and full scientific program can be found on the Graphene Flagship website. Registration provides access to all scientific sessions, sponsored sessions, access to the exhibition, conference material and more. To register click here.

This is the BMW Welt,

Looks like something out of a science fiction movie, eh?

You can find (Graphene Flagship spinoff companies), Emberion website here, BeDimensional website here, and Qurv Technologies website here.

Impact of graphene flakes (nanoparticles) on neurons

This research suggests that graphene flakes might have an impact on anxiety-related behaviour. If I read the work correctly, the graphene flakes don’t exacerbate anxiety but, instead, may provide relief.

A March 10, 2021 news item on phys.org announces the research into graphene flakes and neurons (rat), Note: Links have been removed,

Effective, specific, with a reversible and non-harmful action: the identikit of the perfect biomaterial seems to correspond to graphene flakes, the subject of a new study carried out by SISSA—International School for Advanced Studies of Trieste, Catalan Institute of Nanoscience and Nanotechnology (ICN2) of Barcelona, and the National Graphene Institute of the University of Manchester, as part of the European Graphene Flagship project. This nanomaterial has demonstrated the ability to interact with the functions of the nervous system in vertebrates in a very specific manner, interrupting the building up of a pathological process that leads to anxiety-related behavior.

“We previously showed that when graphene flakes are delivered to neurons they interfere spontaneously with excitatory synapses by transiently preventing glutamate release from presynaptic terminals,” says Laura Ballerini of SISSA, the leader of the team that carried out the research study “Graphene oxide prevents lateral amygdala dysfunctional synaptic plasticity and reverts long lasting anxiety behavior in rats,” recently published in Biomaterials.

A March 10, 2021 Scuola Internazionale Superiore di Studi Avanzati (SISSA) press release (also on EurekAlert), which originated the news item, provides more detail,

“We investigated whether such a reduction in synaptic activity was sufficient to modify related behaviours, in particular the pathological ones that develop due to a transient and localised hyper-function of excitatory synapses”. This approach would fortify the strategy of selective and transient targeting of synapses to prevent the development of brain pathologies by using the so-called precise medicine treatments.

To test this hypothesis, the team focused on post-traumatic stress disorder (PTSD) and carried out the experiments in two phases, in vivo and in vitro.

“We analysed defensive behaviours caused in rats [emphasis mine] by the presence of a predator, using the exposure to cat odour, to induce an aversive memory” explains Audrey Franceschi Biagioni of SISSA, the first author of the study. “If exposed to the predator odour, the rat has a defensive response, holing up, and this experience is so well-imprinted in the memory, that when the animal is placed in the same context even six days later, the animal remembers the odour of the predator and acts the same protective behaviour. This is a well-known and consolidated model, that we used to reproduce a stress behaviour. Exposure to the predator can modify neuronal connections – a phenomenon that is technically known as plasticity – and increases synaptic activity in a specific area of the amygdala that therefore represented the target of our study to test the effects of the nanomaterial”.

Laura Ballerini adds: “We hypothesised that graphene flakes that we showed to temporarily inhibit excitatory synapses (without causing inflammation, damage to neurons or other side effects) could be injected in the lateral amygdala when the plasticity associated with memory was consolidated. If the nanomaterial was efficient in blocking excitatory synapses, it should inhibit plasticity and decrease the anxiety related response. And this is what happened: the animals that were administered with graphene flakes, after six days, “forgot” the anxiety related responses, rescuing their behaviour”.

The second part of the research was performed in vitro. “In vivo we could observe only behavioural changes and could not evaluate the impact of the graphene flakes on synapses,” explains Giada Cellot, researcher at SISSA and first author of the study together with Audrey Franceschi Biagioni. “In vitro experiments allowed to work on a simplified model, to get insight about the mechanisms through which the graphene flakes can interact with neurons. We used neuronal cultures obtained from the amygdala, the region of the brain where the stress response occurs, and we observed that the effects of nanomaterials were specific for the excitatory synapses and a short exposure to graphene flakes could prevent the pathological plasticity of the synapses”.

Thanks to these findings, graphene flakes have shown their potential as nanotools (biomedical tools composed of nanomaterials) that could act in a specific and reversible way on synaptic activity to interrupt a pathological process and therefore they might be used also to transport drugs or for other applications in the field of precision medicine.

Here’s a link to and a citation for the paper,

Graphene oxide prevents lateral amygdala dysfunctional synaptic plasticity and reverts long lasting anxiety behavior in rats by Audrey Franceschi Biagionia1, Giada Cellot, Elisa Pati, Neus Lozano, Belén Ballesteros, Raffaele Casani, Norberto Cysne Coimbra, Kostas Kostarelos, Laura Ballerini. Biomaterials Volume 271, April 2021, 120749 DOI: https://doi.org/10.1016/j.biomaterials.2021.120749

This paper is open access.

Graphene increases its market penetration in 2025?

It seems that I’m not the only one wondering if the European Union’s gamble (1B Euros paid out over 10 years through a research initiative known as the Graphene Flagship) will pay off. A January 25, 2021 news item on Nanowerk announced a study on that topic (Note: A link has been removed),

What happened to the promised applications of graphene and related materials? Thanks to initiatives like the European Union’s Graphene Flagship and heavy investments by leading industries, graphene manufacturing is mature enough to produce prototypes and some real-life niche applications. Now, researchers at Graphene Flagship partner The Fraunhofer Institute for Systems and Innovation Research (ISI) in Karlsruhe, Germany, have published two papers that roadmap the expected future mass introduction of graphene and related materials in the market.

The January 25, 2021 Graphene Flagship press release (also on EurekAlert), which originated the news item, suggests the gamble will pay off,

Back in 2004, graphene was made by peeling off atomically thin layers from a graphite block. Now, thanks to the advances pioneered by the Graphene Flagship, among others, we can produce high quantities of graphene with a reliable and reproducible quality. Furthermore, the Graphene Flagship has driven the discovery of thousands of layered materials, complementary to graphene in properties and applications, and has spearheaded efforts to standardise the fabrication of graphene to ensure consistency and trustworthiness.

The new publications by Graphene Flagship researchers at Fraunhofer ISI, just issued by IOP Publishing’s journal 2D Materials, review the latest outcomes of the Technology and Innovation Roadmap, a process that explores the different pathways towards industrialisation and commercialisation of graphene and related materials. In particular, these articles summarise the impact that graphene and related materials will have transforming the manufacturing process and triggering the emergence of new value chains.

“Our final goal is seeing graphene and related materials fully integrated in day-to-day products and manufacturing,” says Henning Döscher from Graphene Flagship partner Fraunhofer ISI, who leads the Graphene Flagship Roadmap Team. “We are continuously analysing scientific and technological advances in the field as well as their capacity to fulfil future industrial needs. Our first Graphene Roadmap Brief articles summarise some of the most exciting results,” he adds. “Graphene and related materials add value throughout the value chain, from enhancing and enabling new materials to improving individual components and, eventually, end products.” The most immediate applications of graphene, such as composites, inks and coatings are already commercially available, as highlighted by the Graphene Flagship product gallery. The industry will soon be ready to absorb and implement the latest innovations and start manufacturing batteries, solar panels, electronics, photonic and communication devices and medical technologies.

“The market demand for graphene has almost quadrupled in the last two years,” explains Thomas Reiss from Graphene Flagship partner Fraunhofer ISI, and co-leader of the roadmap endeavour. “By strengthening standards and creating tailored high-quality materials, we expect to go beyond niche products and applications to broad market penetration by 2025,” he adds. “Then, graphene could be incorporated in ubiquitous commodities such as tyres, batteries and electronics.”

The dawning decade seems decisive in the road to market of graphene and related materials. “By 2030 we will see if graphene is really as disruptive as silicon or steel,” says Döscher. “The Graphene Flagship has already shown that graphene is useful for numerous applications,” he adds. “Now, we need to ensure that Europe stays a leader in the field, to ensure we benefit from the economic and societal impact of developing such an innovation.”

Alexander Tzalenchuk, Graphene Flagship Leader for Industrialisation, says: “The publication of the Graphene Flagship Roadmap Briefs is a timely and welcome development for industries innovating with graphene and related materials. Improving trust and confidence in graphene-enabled products is a key prerequisite for industrial uptake. Informed by the market analysis and technology assessment of the Graphene Flagship Roadmap, this further contributes to our agenda providing expert validation of the characteristics of graphene and related materials, graphene-enhanced components, devices and systems, by developing consensus-based and accepted international standards.”

Kari Hjelt, Head of Innovation of the Graphene Flagship, adds: “We see a strong increased interest in graphene by several branches of industry as witnessed by the eleven Spearhead Projects of the Graphene Flagship, all led by industry partners. The first mass applications pave the way to emerging high value-added areas in electronics and biomedical applications. In the near future, we will start to witness the transformative power of graphene in many industries. The updates from the Technology and Innovation Roadmap team sheds light on the road ahead for both research and industrial communities alike.”

It’s hard not to notice that those with the most to gain (Graphene Flagship) are claiming success. That said, the two roadmap briefs are being made freely available and I imagine knowledgeable parties will be happy to offer critiques,

Graphene Roadmap Briefs (No. 1): Innovation interfaces of the Graphene Flagship by Henning Döscher and Thomas Reiß. 2D Materials, Volume 8 DOI: https://iopscience.iop.org/article/10.1088/2053-1583/abddcc Accepted Manuscript online 20 January 2021 • © 2020 IOP Publishing Ltd

Graphene Roadmap Briefs (No. 2): Industrialization status and prospects 2020 by Henning Döscher, Thomas Schmaltz, Christoph Neef, Axel Thielmann, and Thomas Reiß. 2D Materials, Volume 8; DOI: https://iopscience.iop.org/article/10.1088/2053-1583/abddcd Accepted Manuscript online 20 January 2021 • © 2020 IOP Publishing Ltd

Both of these papers are open access.

Human Brain Project: update

The European Union’s Human Brain Project was announced in January 2013. It, along with the Graphene Flagship, had won a multi-year competition for the extraordinary sum of one million euros each to be paid out over a 10-year period. (My January 28, 2013 posting gives the details available at the time.)

At a little more than half-way through the project period, Ed Yong, in his July 22, 2019 article for The Atlantic, offers an update (of sorts),

Ten years ago, a neuroscientist said that within a decade he could simulate a human brain. Spoiler: It didn’t happen.

On July 22, 2009, the neuroscientist Henry Markram walked onstage at the TEDGlobal conference in Oxford, England, and told the audience that he was going to simulate the human brain, in all its staggering complexity, in a computer. His goals were lofty: “It’s perhaps to understand perception, to understand reality, and perhaps to even also understand physical reality.” His timeline was ambitious: “We can do it within 10 years, and if we do succeed, we will send to TED, in 10 years, a hologram to talk to you.” …

It’s been exactly 10 years. He did not succeed.

One could argue that the nature of pioneers is to reach far and talk big, and that it’s churlish to single out any one failed prediction when science is so full of them. (Science writers joke that breakthrough medicines and technologies always seem five to 10 years away, on a rolling window.) But Markram’s claims are worth revisiting for two reasons. First, the stakes were huge: In 2013, the European Commission awarded his initiative—the Human Brain Project (HBP)—a staggering 1 billion euro grant (worth about $1.42 billion at the time). Second, the HBP’s efforts, and the intense backlash to them, exposed important divides in how neuroscientists think about the brain and how it should be studied.

Markram’s goal wasn’t to create a simplified version of the brain, but a gloriously complex facsimile, down to the constituent neurons, the electrical activity coursing along them, and even the genes turning on and off within them. From the outset, the criticism to this approach was very widespread, and to many other neuroscientists, its bottom-up strategy seemed implausible to the point of absurdity. The brain’s intricacies—how neurons connect and cooperate, how memories form, how decisions are made—are more unknown than known, and couldn’t possibly be deciphered in enough detail within a mere decade. It is hard enough to map and model the 302 neurons of the roundworm C. elegans, let alone the 86 billion neurons within our skulls. “People thought it was unrealistic and not even reasonable as a goal,” says the neuroscientist Grace Lindsay, who is writing a book about modeling the brain.
And what was the point? The HBP wasn’t trying to address any particular research question, or test a specific hypothesis about how the brain works. The simulation seemed like an end in itself—an overengineered answer to a nonexistent question, a tool in search of a use. …

Markram seems undeterred. In a recent paper, he and his colleague Xue Fan firmly situated brain simulations within not just neuroscience as a field, but the entire arc of Western philosophy and human civilization. And in an email statement, he told me, “Political resistance (non-scientific) to the project has indeed slowed us down considerably, but it has by no means stopped us nor will it.” He noted the 140 people still working on the Blue Brain Project, a recent set of positive reviews from five external reviewers, and its “exponentially increasing” ability to “build biologically accurate models of larger and larger brain regions.”

No time frame, this time, but there’s no shortage of other people ready to make extravagant claims about the future of neuroscience. In 2014, I attended TED’s main Vancouver conference and watched the opening talk, from the MIT Media Lab founder Nicholas Negroponte. In his closing words, he claimed that in 30 years, “we are going to ingest information. …

I’m happy to see the update. As I recall, there was murmuring almost immediately about the Human Brain Project (HBP). I never got details but it seemed that people were quite actively unhappy about the disbursements. Of course, this kind of uproar is not unusual when great sums of money are involved and the Graphene Flagship also had its rocky moments.

As for Yong’s contribution, I’m glad he’s debunking some of the hype and glory associated with the current drive to colonize the human brain and other efforts (e.g. genetics) which they often claim are the ‘future of medicine’.

To be fair. Yong is focused on the brain simulation aspect of the HBP (and Markram’s efforts in the Blue Brain Project) but there are other HBP efforts, as well, even if brain simulation seems to be the HBP’s main interest.

After reading the article, I looked up Henry Markram’s Wikipedia entry and found this,

In 2013, the European Union funded the Human Brain Project, led by Markram, to the tune of $1.3 billion. Markram claimed that the project would create a simulation of the entire human brain on a supercomputer within a decade, revolutionising the treatment of Alzheimer’s disease and other brain disorders. Less than two years into it, the project was recognised to be mismanaged and its claims overblown, and Markram was asked to step down.[7][8]

On 8 October 2015, the Blue Brain Project published the first digital reconstruction and simulation of the micro-circuitry of a neonatal rat somatosensory cortex.[9]

I also looked up the Human Brain Project and, talking about their other efforts, was reminded that they have a neuromorphic computing platform, SpiNNaker (mentioned here in a January 24, 2019 posting; scroll down about 50% of the way). For anyone unfamiliar with the term, neuromorphic computing/engineering is what scientists call the effort to replicate the human brain’s ability to synthesize and process information in computing processors.

In fact, there was some discussion in 2013 that the Human Brain Project and the Graphene Flagship would have some crossover projects, e.g., trying to make computers more closely resemble human brains in terms of energy use and processing power.

The Human Brain Project’s (HBP) Silicon Brains webpage notes this about their neuromorphic computing platform,

Neuromorphic computing implements aspects of biological neural networks as analogue or digital copies on electronic circuits. The goal of this approach is twofold: Offering a tool for neuroscience to understand the dynamic processes of learning and development in the brain and applying brain inspiration to generic cognitive computing. Key advantages of neuromorphic computing compared to traditional approaches are energy efficiency, execution speed, robustness against local failures and the ability to learn.

Neuromorphic Computing in the HBP

In the HBP the neuromorphic computing Subproject carries out two major activities: Constructing two large-scale, unique neuromorphic machines and prototyping the next generation neuromorphic chips.

The large-scale neuromorphic machines are based on two complementary principles. The many-core SpiNNaker machine located in Manchester [emphasis mine] (UK) connects 1 million ARM processors with a packet-based network optimized for the exchange of neural action potentials (spikes). The BrainScaleS physical model machine located in Heidelberg (Germany) implements analogue electronic models of 4 Million neurons and 1 Billion synapses on 20 silicon wafers. Both machines are integrated into the HBP collaboratory and offer full software support for their configuration, operation and data analysis.

The most prominent feature of the neuromorphic machines is their execution speed. The SpiNNaker system runs at real-time, BrainScaleS is implemented as an accelerated system and operates at 10,000 times real-time. Simulations at conventional supercomputers typical run factors of 1000 slower than biology and cannot access the vastly different timescales involved in learning and development ranging from milliseconds to years.

Recent research in neuroscience and computing has indicated that learning and development are a key aspect for neuroscience and real world applications of cognitive computing. HBP is the only project worldwide addressing this need with dedicated novel hardware architectures.

I’ve highlighted Manchester because that’s a very important city where graphene is concerned. The UK’s National Graphene Institute is housed at the University of Manchester where graphene was first isolated in 2004 by two scientists, Andre Geim and Konstantin (Kostya) Novoselov. (For their effort, they were awarded the Nobel Prize for physics in 2010.)

Getting back to the HBP (and the Graphene Flagship for that matter), the funding should be drying up sometime around 2023 and I wonder if it will be possible to assess the impact.

Human lung enzyme can degrade graphene

Caption: A human lung enzyme can biodegrade graphene. Credit: Fotolia Courtesy: Graphene Flagship

The big European Commission research programme, Grahene Flagship, has announced some new work with widespread implications if graphene is to be used in biomedical implants. From a August 23, 2018 news item on ScienceDaily,

Myeloperoxidase — an enzyme naturally found in our lungs — can biodegrade pristine graphene, according to the latest discovery of Graphene Flagship partners in CNRS, University of Strasbourg (France), Karolinska Institute (Sweden) and University of Castilla-La Mancha (Spain). Among other projects, the Graphene Flagship designs based like flexible biomedical electronic devices that will interfaced with the human body. Such applications require graphene to be biodegradable, so our body can be expelled from the body.

An August 23, 2018 Grapehene Flagship press release (mildly edited version on EurekAlert), which originated the news item, provides more detail,

To test how graphene behaves within the body, researchers analysed how it was broken down with the addition of a common human enzyme – myeloperoxidase or MPO. If a foreign body or bacteria is detected, neutrophils surround it and secrete MPO, thereby destroying the threat. Previous work by Graphene Flagship partners found that MPO could successfully biodegrade graphene oxide.

However, the structure of non-functionalized graphene was thought to be more resistant to degradation. To test this, the team looked at the effects of MPO ex vivo on two graphene forms; single- and few-layer.

Alberto Bianco, researcher at Graphene Flagship Partner CNRS, explains: “We used two forms of graphene, single- and few-layer, prepared by two different methods in water. They were then taken and put in contact with myeloperoxidase in the presence of hydrogen peroxide. This peroxidase was able to degrade and oxidise them. This was really unexpected, because we thought that non-functionalized graphene was more resistant than graphene oxide.”

Rajendra Kurapati, first author on the study and researcher at Graphene Flagship Partner CNRS, remarks how “the results emphasize that highly dispersible graphene could be degraded in the body by the action of neutrophils. This would open the new avenue for developing graphene-based materials.”

With successful ex-vivo testing, in-vivo testing is the next stage. Bengt Fadeel, professor at Graphene Flagship Partner Karolinska Institute believes that “understanding whether graphene is biodegradable or not is important for biomedical and other applications of this material. The fact that cells of the immune system are capable of handling graphene is very promising.”

Prof. Maurizio Prato, the Graphene Flagship leader for its Health and Environment Work Package said that “the enzymatic degradation of graphene is a very important topic, because in principle, graphene dispersed in the atmosphere could produce some harm. Instead, if there are microorganisms able to degrade graphene and related materials, the persistence of these materials in our environment will be strongly decreased. These types of studies are needed.” “What is also needed is to investigate the nature of degradation products,” adds Prato. “Once graphene is digested by enzymes, it could produce harmful derivatives. We need to know the structure of these derivatives and study their impact on health and environment,” he concludes.

Prof. Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship, and chair of its management panel added: “The report of a successful avenue for graphene biodegradation is a very important step forward to ensure the safe use of this material in applications. The Graphene Flagship has put the investigation of the health and environment effects of graphene at the centre of its programme since the start. These results strengthen our innovation and technology roadmap.”

Here’s a link to and a citation for the paper,

Degradation of Single‐Layer and Few‐Layer Graphene by Neutrophil Myeloperoxidase by Dr. Rajendra Kurapati, Dr. Sourav P. Mukherjee, Dr. Cristina Martín, Dr. George Bepete, Prof. Ester Vázquez, Dr. Alain Pénicaud, Prof. Dr. Bengt Fadeel, Dr. Alberto Bianco. Angewandte Chemie https://doi.org/10.1002/anie.201806906 First published: 13 July 2018

This paper is behind a paywall.

Watch a Physics Nobel Laureate make art on February 26, 2019 at Mobile World Congress 19 in Barcelona, Spain

Konstantin (Kostya) Novoselov (Nobel Prize in Physics 2010) strikes out artistically, again. The last time was in 2018 (see my August 13, 2018 posting about Novoselov’s project with artist Mary Griffiths).

This time around, Novoselov and artist, Kate Daudy, will be creating an art piece during a demonstration at the Mobile World Congress 19 (MWC 19) in Barcelona, Spain. From a February 21, 2019 news item on Azonano,

Novoselov is most popular for his revolutionary experiments on graphene, which is lightweight, flexible, stronger than steel, and more conductive when compared to copper. Due to this feat, Professors Andre Geim and Kostya Novoselov grabbed the Nobel Prize in Physics in 2010. Moreover, Novoselov is one of the founding principal researchers of the Graphene Flagship, which is a €1 billion research project funded by the European Commission.

At MWC 2019, Novoselov will join hands with British textile artist Kate Daudy, a collaboration which indicates his usual interest in art projects. During the show, the pair will produce a piece of art using materials printed with embedded graphene. The installation will be named “Everything is Connected,” the slogan of the Graphene Flagship and reflective of the themes at MWC 2019.

The demonstration will be held on Tuesday, February 26th, 2019 at 11:30 CET in the Graphene Pavilion, an area devoted to showcasing inventions accomplished by funding from the Graphene Flagship. Apart from the art demonstration, exhibitors in the Graphene Pavilion will demonstrate 26 modern graphene-based prototypes and devices that will revolutionize the future of telecommunications, mobile phones, home technology, and wearables.

A February 20, 2019 University of Manchester press release, which originated the news item, goes on to describe what might be called the real point of this exercise,

Interactive demonstrations include a selection of health-related wearable technologies, which will be exhibited in the ‘wearables of the future’ area. Prototypes in this zone include graphene-enabled pressure sensing insoles, which have been developed by Graphene Flagship researchers at the University of Cambridge to accurately identify problematic walking patterns in wearers.

Another prototype will demonstrate how graphene can be used to reduce heat in mobile phone batteries, therefore prolong their lifespan. In fact, the material required for this invention is the same that will be used during the art installation demonstration.

Andrea Ferrari, Science and Technology Officer and Chair of the management panel of the Graphene Flagship said: “Graphene and related layered materials have steadily progressed from fundamental to applied research and from the lab to the factory floor. Mobile World Congress is a prime opportunity for the Graphene Flagship to showcase how the European Commission’s investment in research is beginning to create tangible products and advanced prototypes. Outreach is also part of the Graphene Flagship mission and the interplay between graphene, culture and art has been explored by several Flagship initiatives over the years. This unique live exhibition of Kostya is a first for the Flagship and the Mobile World Congress, and I invite everybody to attend.”

More information on the Graphene Pavilion, the prototypes on show and the interactive demonstrations at MWC 2019, can be found on the press@graphene-flagship.euGraphene Flagship website. Alternatively, contact the Graphene Flagship directly on press@graphene-flagship.eu.

The Novoselov/Daudy project sounds as if they’ve drawn inspiration from performance art practices. In any case, it seems like a creative and fun way to engage the audience. For anyone curious about Kate Daudy‘s work,

[downloaded from https://katedaudy.com/]