Tag Archives: Massachusetts Institute of Technology (MIT)

Overview of fusion energy scene

It’s funny how you think you know something and then realize you don’t. I’ve been hearing about cold fusion/fusion energy for years but never really understood what the term meant. So, this post includes an explanation, as well as, an overview, and a Cold Fusion Rap to ‘wrap’ it all up. (Sometimes I cannot resist a pun.)

Fusion energy explanation (1)

The Massachusetts Institute of Technology (MIT) has a Climate Portal where fusion energy is explained,

Fusion energy is the source of energy at the center of stars, including our own sun. Stars, like most of the universe, are made up of hydrogen, the simplest and most abundant element in the universe, created during the big bang. The center of a star is so hot and so dense that the immense pressure forces hydrogen atoms together. These atoms are forced together so strongly that they create new atoms entirely—helium atoms—and release a staggering amount of energy in the process. This energy is called fusion energy.

More energy than chemical energy

Fusion energy, like fossil fuels, is a form of stored energy. But fusion can create 20 to 100 million times more energy than the chemical reaction of a fossil fuel. Most of the mass of an atom, 99.9 percent, is contained at an atom’s center—inside of its nucleus. The ratio of this matter to the empty space in an atom is almost exactly the same ratio of how much energy you release when you manipulate the nucleus. In contrast, a chemical reaction, such as burning coal, rearranges the atoms through heat, but doesn’t alter the atoms themselves, so we don’t get as much energy.

Making fusion energy

For scientists, making fusion energy means recreating the conditions of stars, starting with plasma. Plasma is the fourth state of matter, after solids, liquids and gases. Ice is an example of a solid. When heated up, it becomes a liquid. Place that liquid in a pot on the stove, and it becomes a gas (steam). If you take that gas and continue to make it hotter, at around 10,000 degrees Fahrenheit (~6,000 Kelvin), it will change from a gas to the next phase of matter: plasma. Ninety-nine percent of the mass in the universe is in the plasma state, since almost the entire mass of the universe is in super hot stars that exist as plasma.

To make fusion energy, scientists must first build a steel chamber and create a vacuum, like in outer space. The next step is to add hydrogen gas. The gas particles are charged to produce an electric current and then surrounded and contained with an electromagnetic force; the hydrogen is now a plasma. This plasma is then heated to about 100 million degrees and fusion energy is released.

Fusion energy explanation (2)

A Vancouver-based company, General Fusion, offers an explanation of how they have approached making fusion energy a reality,

How It Works: Plasma Injector Technology at General Fusion from General Fusion on Vimeo.

After announcing that a General Fusion demonstration plant would be built in the UK (see June 17, 2021 General Fusion news release), there’s a recent announcement about an agreement with the UK Atomic Energy Authority (UKAEA) to commericialize the technology, from an October 17, 2022 General Fusion news release,

Today [October 17, 2022], General Fusion and the UKAEA kick off projects to advance the commercialization of magnetized target fusion energy as part of an important collaborative agreement. With these unique projects, General Fusion will benefit from the vast experience of the UKAEA’s team. The results will hone the design of General Fusion’s demonstration machine being built at the Culham Campus, part of the thriving UK fusion cluster. Ultimately, the company expects the projects will support its efforts to provide low-cost and low-carbon energy to the electricity grid.

General Fusion’s approach to fusion maximizes the reapplication of existing industrialized technologies, bypassing the need for expensive superconducting magnets, significant new materials, or high-power lasers. The demonstration machine will create fusion conditions in a power-plant-relevant environment, confirming the performance and economics of the company’s technology.

“The leading-edge fusion researchers at UKAEA have proven experience building, commissioning, and successfully operating large fusion machines,” said Greg Twinney, Chief Executive Officer, General Fusion. “Partnering with UKAEA’s incredible team will fast-track work to advance our technology and achieve our mission of delivering affordable commercial fusion power to the world.”

“Fusion energy is one of the greatest scientific and engineering quests of our time,” said Ian Chapman, UKAEA CEO. “This collaboration will enable General Fusion to benefit from the ground-breaking research being done in the UK and supports our shared aims of making fusion part of the world’s future energy mix for generations to come.”

I last wrote about General Fusion in a November 3, 2021 posting about the company’s move (?) to Sea Island, Richmond,

I first wrote about General Fusion in a December 2, 2011 posting titled: Burnaby-based company (Canada) challenges fossil fuel consumption with nuclear fusion. (For those unfamiliar with the Vancouver area, there’s the city of Vancouver and there’s Vancouver Metro, which includes the city of Vancouver and others in the region. Burnaby is part of Metro Vancouver; General Fusion is moving to Sea Island (near Vancouver Airport), in Richmond, which is also in Metro Vancouver.) Kenneth Chan’s October 20, 2021 article for the Daily Hive gives more detail about General Fusion’s new facilities (Note: A link has been removed),

The new facility will span two buildings at 6020 and 6082 Russ Baker Way, near YVR’s [Vancouver Airport] South Terminal. This includes a larger building previously used for aircraft engine maintenance and repair.

The relocation process could start before the end of 2021, allowing the company to more than quadruple its workforce over the coming years. Currently, it employs about 140 people.

The Sea Island [in Richmond] facility will house its corporate offices, primary fusion technology development division, and many of its engineering laboratories. This new facility provides General Fusion with the ability to build a new demonstration prototype to support the commercialization of its magnetized target fusion technology.

As of the date of this posting, I have not been able to confirm the move. The company’s Contact webpage lists an address in Burnaby, BC for its headquarters.

The overview

Alex Pasternak in an August 17, 2022 article (The frontrunners in the trillion-dollar race for limitless fusion power) provides an overview of the international race with a very, very strong emphasis on the US scene (Note: Links have been removed),

With energy prices on the rise, along with demands for energy independence and an urgent need for carbon-free power, plans to walk away from nuclear energy are now being revised in Japan, South Korea, and even Germany. Last month, Europe announced green bonds for nuclear, and the U.S., thanks to the Inflation Reduction Act, will soon devote millions to new nuclear designs, incentives for nuclear production and domestic uranium mining, and, after years of paucity in funding, cash for fusion.

The new investment comes as fusion—long considered a pipe dream—has attracted real money from big venture capital and big companies, who are increasingly betting that abundant, cheap, clean nuclear will be a multi-trillion dollar industry. Last year, investors like Bill Gates and Jeff Bezos injected a record $3.4 billion into firms working on the technology, according to Pitchbook. One fusion firm, Seattle-based Helion, raised a record $500 million from Sam Altman and Peter Thiel. That money has certainly supercharged the nuclear sector: The Fusion Industry Association says that at least 33 different companies were now pursuing nuclear fusion, and predicted that fusion would be connected to the energy grid sometime in the 2030s.

… What’s not a joke is that we have about zero years to stop powering our civilization with earth-warming energy. The challenge with fusion is to achieve net energy gain, where the energy produced by a fusion reaction exceeds the energy used to make it. One milestone came quietly this month, when a team of researchers at the National Ignition Facility at Lawrence Livermore National Lab in California announced that an experiment last year had yielded over 1.3 megajoules (MJ) of energy, setting a new world record for energy yield for a nuclear fusion experiment. The experiment also achieved scientific ignition for the first time in history: after applying enough heat using an arsenal of lasers, the plasma became self-heating. (Researchers have since been trying to replicate the result, so far without success.)

On a growing campus an hour outside of Boston, the MIT spinoff Commonwealth Fusion Systems is building their first machine, SPARC, with a goal of producing power by 2025. “You’ll push a button,” CEO and cofounder Bob Mumgaard told the Khosla Ventures CEO Summit this summer, “and for the first time on earth you will make more power out than in from a fusion plasma. That’s about 200 million degrees—you know, cooling towers will have a bunch of steam go out of them—and you let your finger off the button and it will stop, and you push the button again and it will go.” With an explosion in funding from investors including Khosla, Bill Gates, George Soros, Emerson Collective and Google to name a few—they raised $1.8 billion last year alone—CFS hopes to start operating a prototype in 2025.

Like the three-decade-old ITER project in France, set for operation in 2025, Commonwealth and many other companies will try to reach net energy gain using a machine called a tokamak, a bagel-shaped device filled with super-hot plasma, heated to about 150 million degrees, within which hydrogen atoms can fuse and release energy. To control that hot plasma, you need to build a very powerful magnetic field. Commonwealth’s breakthrough was tape—specifically, a high-temperature-superconducting steel tape coated with a compound called yttrium-barium-copper oxide. When a prototype was first made commercially available in 2009, Dennis Whyte, director of MIT’s Plasma Science and Fusion Center, ordered as much as he could. With Mumgaard and a team of students, his lab used coils of the stuff to build a new kind of superconducting magnet, and a prototype reactor named ARC, after Tony Stark’s energy source. Commonwealth was born in 2015.

Southern California-based TAE Technologies has raised a whopping $1.2 billion since it was founded in 1998, and $250 million in its latest round. The round, announced in July, was led by Chevron’s venture arm, Google, and Sumitomo, a Tokyo-based holding company that aims to deploy fusion power in the Asia-Pacific market. TAE’s approach, which involves creating a fusion reaction at incredibly high heat, has a key advantage. Whereas ITER uses the hydrogen isotopes deuterium and tritium, an extremely rare element that must be specially created from lithium—and that produces as a byproduct radioactive-free neutrons—TAE’s linear reactor is completely non-radioactive, because it relies on hydrogen and boron, two abundant, naturally-occurring elements that react to produce only helium.

General Atomics, of San Diego, California, has the largest tokamak in the U.S. Its powerful magnetic chamber, called the DIII-D National Fusion Facility, or just “D-three-D,” now features a Toroidal Field Reversing Switch, which allows for the redirection of 120,000 amps of the current that power the primary magnetic field. It’s the only tokamak in the world that allows researchers to switch directions of the magnetic fields in minutes rather than hours. Another new upgrade, a traveling-wave antenna, allows physicists to inject high-powered “helicon” radio waves into DIII-D plasmas so fusion reactions occur much more powerfully and efficiently.

“We’ve got new tools for flexibility and new tools to help us figure out how to make that fusion plasma just keep going,” Richard Buttery, director of the project, told the San Diego Union-Tribune in January. The company is also behind eight of the magnet modules at the heart of the ITER facility, including its wild Central Solenoid — the world’s most powerful magnet — in a kind of scaled up version of the California machine.

But like an awful lot in fusion, ITER has been hampered by cost overruns and delays, with “first plasma” not expected to occur in 2025 as previously expected due to global pandemic-related disruptions. Some have complained that the money going to ITER has distracted from other more practical energy projects—the latest price tag is $22 billion—and others doubt if the project can ever produce net energy gain.

Based in Canada, General Fusion is backed by Jeff Bezos and building on technology originally developed by the U.S. Navy and explored by Russian scientists for potential use in weapons. Inside the machine, molten metal is spun to create a cavity, and pumped with pistons that push the metal inward to form a sphere. Hydrogen, heated to super-hot temperatures and held in place by a magnetic field, fills the sphere to create the reaction. Heat transferred to the metal can be turned into steam to drive a turbine and generate electricity. As former CEO Christofer Mowry told Fast Company last year, “to re-create a piece of the sun on Earth, as you can imagine, is very, very challenging.” Like many fusion companies, GF depends on modern supercomputers and advanced modeling and computational techniques to understand the science of plasma physics, as well as modern manufacturing technologies and materials.

“That’s really opened the door not just to being able to make fusion work but to make it work in a practical way,” Mowry said. This has been difficult to make work, but with a demonstration center it announced last year in Culham, England, GF isn’t aiming to generate electricity but to gather the data needed to later build a commercial pilot plant that could—and to generate more interest in fusion.

Magneto-Intertial Fusion Technologies, or MIFTI, of Tustin, Calif., founded by researchers from the University of California, Irvine, is developing a reactor that uses what’s known as a Staged Z-Pinch approach. A Z-Pinch design heats, confines, and compresses plasma using an intense, pulsed electrical current to generate a magnetic field that could reduce instabilities in the plasma, allowing fusion to persist for longer periods of time. But only recently have MIFTI’s scientists been able to overcome the instability problems, the company says, thanks to software made available to them at UC-Irvine by the U.S. Air Force. …

Princeton Fusion Systems of Plainsboro, New Jersey, is a small business focused on developing small, clean fusion reactors for both terrestrial and space applications. A spinoff of Princeton Satellite Systems, which specializes in spacecraft control, the company’s Princeton FRC reactor is built upon 15 years of research at the Princeton Plasma Physics Laboratory, funded primarily by the U.S. DOE and NASA, and is designed to eventually provide between 1 and 10 megawatts of power in off-grid locations and in modular power plants, “from remote industrial applications to emergency power after natural disasters to off-world bases on the moon or Mars.” The concept uses radio-frequency electromagnetic fields to generates and sustain a plasma formation called a Field-Reversed Configuration (FRC) inside a strong magnetic bottle. …

Tokamak Energy, a U.K.-based company named after the popular fusion device, announced in July that its ST-40 tokamak reactor had reached the 100 million Celsius threshold for commercially viable nuclear fusion. The achievement was made possible by a proprietary design built on a spherical, rather than donut, shape. This means that the magnets are closer to the plasma stream, allowing for smaller and cheaper magnets to create even stronger magnetic fields. …

Based in Pasadena, California, Helicity Space is developing a propulsion and power technology based on a specialized magneto inertial fusion concept. The system, a spin on what fellow fusion engineer, Seattle-based Helion is doing, appears to use twisted compression coils, like a braided rope, to achieve a known phenomenon called the Magnetic Helicity. … According to ZoomInfo and Linkedin, Helicity has over $4 million in funding and up to 10 employees, all aimed, the company says, at “enabling humanity’s access to the solar system, with a Helicity Drive-powered flight to Mars expected to take two months, without planetary alignment.”

ITER (International Thermonuclear Experimental Reactor), meaning “the way” or “the path” in Latin and mentioned in Pasternak’s article, dates its history with cold fusion back to about 1978. (You can read more here in the ITER Wikipedia entry.)

For more about the various approaches to fusion energy, read Pasternak’s August 17, 2022 article (The frontrunners in the trillion-dollar race for limitless fusion power) provides details. I wish there had been a little more about efforts in Japan and South Korea and other parts of the world. Pasternak’s singular focus on the US with a little of Canada and the UK seemingly thrown into the mix to provide an international flavour seems a little myopic.

Fusion rap

In an August 30, 2022 Baba Brinkman announcement (received via email) which gave an extensive update of Brinkman’s activities, there was this,

And the other new topic, which was surprisingly fun to explore, is cold fusion also known as “Low Energy Nuclear Reactions” which you may or may not have a strong opinion about, but if you do I imagine you probably think the technology is either bunk or destined to save the world.

That makes for an interesting topic to explore in rap songs! And fortunately last month I had the pleasure of performing for the cream of the LENR crop at the 24th International Conference on Cold Fusion, including rap ups and two new songs about the field, one very celebratory (for the insiders), and one cautiously optimistic (as an outreach tool).

You can watch “Cold Fusion Renaissance” and “You Must LENR” [L ow E nergy N uclear R eactions or sometimes L attice E nabled N anoscale R eactions or Cold Fusion or CANR (C hemically A ssisted N uclear R eactions)] for yourself to determine which video is which, and also enjoy this article in Infinite Energy Magazine which chronicles my whole cold fusion rap saga.

Here’s one of the rap videos mentioned in Brinkman’s email,

Enjoy!

Detangling carbon nanotubes (CNTs)

An April 27, 2022 news item on ScienceDaily announces research into a solution to a vexing problem associated with the production of carbon nanotubes (CNTs),

Carbon nanotubes that are prone to tangle like spaghetti can use a little special sauce to realize their full potential.

Rice University scientists have come up with just the sauce, an acid-based solvent that simplifies carbon nanotube processing in a way that’s easier to scale up for industrial applications.

The Rice lab of Matteo Pasquali reported in Science Advances on its discovery of a unique combination of acids that helps separate nanotubes in a solution and turn them into films, fibers or other materials with excellent electrical and mechanical properties.

The study co-led by graduate alumnus Robert Headrick and graduate student Steven Williams reports the solvent is compatible with conventional manufacturing processes. That should help it find a place in the production of advanced materials for many applications.

An April 22, 2022 Rice University news release (received via email and also published on April 27, 2022 on EurekAlert), which originated the news item, delves further into how the research has environmental benefits and into its technical aspects (Note Links have been removed),

“There’s a growing realization that it’s probably not a good idea to increase the mining of copper and aluminum and nickel,” said Pasquali, Rice’s A.J. Hartsook Professor and a professor of chemical and biomolecular engineering, chemistry and materials science and nanoengineering. He is also director of the Rice-based Carbon Hub, which promotes the development of advanced carbon materials to benefit the environment.

“But there is this giant opportunity to use hydrocarbons as our ore,” he said. “In that light, we need to broaden as much as possible the range in which we can use carbon materials, especially where it can displace metals with a product that can be manufactured sustainably from a feedstock like hydrocarbons.” Pasquali noted these manufacturing processes produce clean hydrogen as well.

“Carbon is plentiful, we control the supply chains and we know how to get it out in an environmentally responsible way,” he said.

A better way to process carbon will help. The solvent is based on methanesulfonic (MSA), p-toluenesulfonic (pToS)and oleum acids that, when combined, are less corrosive than those currently used to process nanotubes in a solution. Separating nanotubes (which researchers refer to as dissolving) is a necessary step before they can be extruded through a needle or other device where shear forces help turn them into familiar fibers or sheets. 

Oleum and chlorosulfonic acids have long been used to dissolve nanotubes without modifying their structures, but both are highly corrosive. By combining oleum with two weaker acids, the team developed a broadly applicable process that enables new manufacturing for nanotubes products.

“The oleum surrounds each individual nanotube and gives it a very localized positive charge,” said Headrick, now a research scientist at Shell. “That charge makes them repel each other.”

After detangling, the milder acids further separate the nanotubes. They found MSA is best for fiber spinning and roll-to-roll film production, while pToS, a solid that melts at 40 degrees Celsius (104 degrees Fahrenheit), is particularly useful for 3D printing applications because it allows nanotube solutions to be processed at a moderate temperature and then solidified by cooling.

The researchers used these stable liquid crystalline solutions to make things in both modern and traditional ways, 3D printing carbon nanotube aerogels and silk screen printing patterns onto a variety of surfaces, including glass. 

The solutions also enabled roll-to-roll production of transparent films that can be used as electrodes. “Honestly, it was a little surprising how well that worked,” Headrick said. “It came out pretty flawless on the very first try.”

The researchers noted oleum still requires careful handling, but once diluted with the other acids, the solution is much less aggressive to other materials. 

“The acids we’re using are so much gentler that you can use them with common plastics,” Headrick said. “That opens the door to a lot of materials processing and printing techniques that are already in place in manufacturing facilities. 

“It’s also really important for integrating carbon nanotubes into other devices, depositing them as one step in a device-manufacturing process,” he said.

They reported the less-corrosive solutions did not give off harmful fumes and were easier to clean up after production. MSA and pToS can also be recycled after processing nanotubes, lowering their environmental impact and energy and processing costs.

Williams said the next step is to fine-tune the solvent for applications, and to determine how factors like chirality and size affect nanotube processing. “It’s really important that we have high-quality, clean, large diameter tubes,” he said.

Co-authors of the paper are alumna Lauren Taylor and graduate students Oliver Dewey and Cedric Ginestra of Rice; graduate student Crystal Owens and professors Gareth McKinley and A. John Hart at the Massachusetts Institute of Technology; alumna Lucy Liberman, graduate student Asia Matatyaho Ya’akobi and Yeshayahu Talmon, a professor emeritus of chemical engineering, at the Technion-Israel Institute of Technology, Haifa, Israel; and Benji Maruyama, autonomous materials lead in the Materials and Manufacturing Directorate, Air Force Research Laboratory.

Here’s a link to and a citation for the paper,

Versatile acid solvents for pristine carbon nanotube assembly by Robert J. Headrick, Steven M. Williams, Crystal E. Owens, Lauren W. Taylor, Oliver S. Dewey, Cedric J. Ginestra, Lucy Liberman, Asia Matatyaho Ya’akobi, Yeshayahu Talmon, Benji Maruyama, Gareth H. McKinley, A. John Hart, Matteo Pasquali. Science Advances • 27 Apr 2022 • Vol 8, Issue 17 • DOI: 10.1126/sciadv.abm3285

This paper is open access.

We have math neurons and singing neurons?

According to the two items I have here, the answer is: yes, we have neurons that are specific to math and to the sound of singing.

Math neurons

A February 14, 2022 news item on ScienceDaily explains how specific the math neurons are,

The brain has neurons that fire specifically during certain mathematical operations. This is shown by a recent study conducted by the Universities of Tübingen and Bonn [both in Germany]. The findings indicate that some of the neurons detected are active exclusively during additions, while others are active during subtractions. They do not care whether the calculation instruction is written down as a word or a symbol. The results have now been published in the journal Current Biology.

Using ultrafine electrodes – implanted in the temporal lobes of epilepsy patients, researchers can visualize the activity of brain regions. © Photo: Christian Burkert/Volkswagen-Stiftung/University of Bonn

A February 14, 2022 University of Bonn press release (also on EurekAlert), which originated the news item, delves further,

Most elementary school children probably already know that three apples plus two apples add up to five apples. However, what happens in the brain during such calculations is still largely unknown. The current study by the Universities of Bonn and Tübingen now sheds light on this issue.

The researchers benefited from a special feature of the Department of Epileptology at the University Hospital Bonn. It specializes in surgical procedures on the brains of people with epilepsy. In some patients, seizures always originate from the same area of the brain. In order to precisely localize this defective area, the doctors implant several electrodes into the patients. The probes can be used to precisely determine the origin of the spasm. In addition, the activity of individual neurons can be measured via the wiring.

Some neurons fire only when summing up

Five women and four men participated in the current study. They had electrodes implanted in the so-called temporal lobe of the brain to record the activity of nerve cells. Meanwhile, the participants had to perform simple arithmetic tasks. “We found that different neurons fired during additions than during subtractions,” explains Prof. Florian Mormann from the Department of Epileptology at the University Hospital Bonn.

It was not the case that some neurons responded only to a “+” sign and others only to a “-” sign: “Even when we replaced the mathematical symbols with words, the effect remained the same,” explains Esther Kutter, who is doing her doctorate in Prof. Mormann’s research group. “For example, when subjects were asked to calculate ‘5 and 3’, their addition neurons sprang back into action; whereas for ‘7 less 4,’ their subtraction neurons did.”

This shows that the cells discovered actually encode a mathematical instruction for action. The brain activity thus showed with great accuracy what kind of tasks the test subjects were currently calculating: The researchers fed the cells’ activity patterns into a self-learning computer program. At the same time, they told the software whether the subjects were currently calculating a sum or a difference. When the algorithm was confronted with new activity data after this training phase, it was able to accurately identify during which computational operation it had been recorded.

Prof. Andreas Nieder from the University of Tübingen supervised the study together with Prof. Mormann. “We know from experiments with monkeys that neurons specific to certain computational rules also exist in their brains,” he says. “In humans, however, there is hardly any data in this regard.” During their analysis, the two working groups came across an interesting phenomenon: One of the brain regions studied was the so-called parahippocampal cortex. There, too, the researchers found nerve cells that fired specifically during addition or subtraction. However, when summing up, different addition neurons became alternately active during one and the same arithmetic task. Figuratively speaking, it is as if the plus key on the calculator were constantly changing its location. It was the same with subtraction. Researchers also refer to this as “dynamic coding.”

“This study marks an important step towards a better understanding of one of our most important symbolic abilities, namely calculating with numbers,” stresses Mormann. The two teams from Bonn and Tübingen now want to investigate exactly what role the nerve cells found play in this.

Funding:

The study was funded by the German Research Foundation (DFG) and the Volkswagen Foundation.

Here’s a link to and a citation for the paper,

Neuronal codes for arithmetic rule processing in the human brain by Esther F. Kutter, Jan Boström, Christian E. Elger, Andreas Nieder, Florian Mormann. Current Biology, 2022; DOI: 10.1016/j.cub.2022.01.054 Published February 14, 2022

This paper appears to be open access.

Neurons for the sounds of singing

This work from the Massachusetts Institute of Technology (MIT) according to a February 22, 2022 news item on ScienceDaily,

For the first time, MIT neuroscientists have identified a population of neurons in the human brain that lights up when we hear singing, but not other types of music.

Pretty nifty, eh? As is the news release headline with its nod to a classic Hollywood musical and song, from a February 22, 2022 MIT news release (also on EurekAlert),

Singing in the brain

These neurons, found in the auditory cortex, appear to respond to the specific combination of voice and music, but not to either regular speech or instrumental music. Exactly what they are doing is unknown and will require more work to uncover, the researchers say.

“The work provides evidence for relatively fine-grained segregation of function within the auditory cortex, in a way that aligns with an intuitive distinction within music,” says Sam Norman-Haignere, a former MIT postdoc who is now an assistant professor of neuroscience at the University of Rochester Medical Center.

The work builds on a 2015 study in which the same research team used functional magnetic resonance imaging (fMRI) to identify a population of neurons in the brain’s auditory cortex that responds specifically to music. In the new work, the researchers used recordings of electrical activity taken at the surface of the brain, which gave them much more precise information than fMRI.

“There’s one population of neurons that responds to singing, and then very nearby is another population of neurons that responds broadly to lots of music. At the scale of fMRI, they’re so close that you can’t disentangle them, but with intracranial recordings, we get additional resolution, and that’s what we believe allowed us to pick them apart,” says Norman-Haignere.

Norman-Haignere is the lead author of the study, which appears today in the journal Current Biology. Josh McDermott, an associate professor of brain and cognitive sciences, and Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience, both members of MIT’s McGovern Institute for Brain Research and Center for Brains, Minds and Machines (CBMM), are the senior authors of the study.

Neural recordings

In their 2015 study, the researchers used fMRI to scan the brains of participants as they listened to a collection of 165 sounds, including different types of speech and music, as well as everyday sounds such as finger tapping or a dog barking. For that study, the researchers devised a novel method of analyzing the fMRI data, which allowed them to identify six neural populations with different response patterns, including the music-selective population and another population that responds selectively to speech.

In the new study, the researchers hoped to obtain higher-resolution data using a technique known as electrocorticography (ECoG), which allows electrical activity to be recorded by electrodes placed inside the skull. This offers a much more precise picture of electrical activity in the brain compared to fMRI, which measures blood flow in the brain as a proxy of neuron activity.

“With most of the methods in human cognitive neuroscience, you can’t see the neural representations,” Kanwisher says. “Most of the kind of data we can collect can tell us that here’s a piece of brain that does something, but that’s pretty limited. We want to know what’s represented in there.”

Electrocorticography cannot be typically be performed in humans because it is an invasive procedure, but it is often used to monitor patients with epilepsy who are about to undergo surgery to treat their seizures. Patients are monitored over several days so that doctors can determine where their seizures are originating before operating. During that time, if patients agree, they can participate in studies that involve measuring their brain activity while performing certain tasks. For this study, the MIT team was able to gather data from 15 participants over several years.

For those participants, the researchers played the same set of 165 sounds that they used in the earlier fMRI study. The location of each patient’s electrodes was determined by their surgeons, so some did not pick up any responses to auditory input, but many did. Using a novel statistical analysis that they developed, the researchers were able to infer the types of neural populations that produced the data that were recorded by each electrode.

“When we applied this method to this data set, this neural response pattern popped out that only responded to singing,” Norman-Haignere says. “This was a finding we really didn’t expect, so it very much justifies the whole point of the approach, which is to reveal potentially novel things you might not think to look for.”

That song-specific population of neurons had very weak responses to either speech or instrumental music, and therefore is distinct from the music- and speech-selective populations identified in their 2015 study.

Music in the brain

In the second part of their study, the researchers devised a mathematical method to combine the data from the intracranial recordings with the fMRI data from their 2015 study. Because fMRI can cover a much larger portion of the brain, this allowed them to determine more precisely the locations of the neural populations that respond to singing.

“This way of combining ECoG and fMRI is a significant methodological advance,” McDermott says. “A lot of people have been doing ECoG over the past 10 or 15 years, but it’s always been limited by this issue of the sparsity of the recordings. Sam is really the first person who figured out how to combine the improved resolution of the electrode recordings with fMRI data to get better localization of the overall responses.”

The song-specific hotspot that they found is located at the top of the temporal lobe, near regions that are selective for language and music. That location suggests that the song-specific population may be responding to features such as the perceived pitch, or the interaction between words and perceived pitch, before sending information to other parts of the brain for further processing, the researchers say.

The researchers now hope to learn more about what aspects of singing drive the responses of these neurons. They are also working with MIT Professor Rebecca Saxe’s lab to study whether infants have music-selective areas, in hopes of learning more about when and how these brain regions develop.

Here’s a link to and a citation for the paper,

A neural population selective for song in human auditory cortex by Sam V. Norman-Haignere, Jenelle Feather, Dana Boebinger, Peter Brunner, Anthony Ritaccio, Josh H. Mcdermott, Gerwin Schalk, Nancy Kanwisher. Current Biology, 2022 DOI: 10.1016/j.cub.2022.01.069 Published February 22, 2022.

This paper appears to be open access.

I couldn’t resist,

Massachusetts Institute of Technology (MIT) researchers achieve highest fraction of CNCs in a composite to date

Cellulose nanocrystals (CNCs), always of interest to me, are featured in research announced in a February 11, 2022 news item on Nanowerk,

The strongest part of a tree lies not in its trunk or its sprawling roots, but in the walls of its microscopic cells.

A single wood cell wall is constructed from fibers of cellulose — nature’s most abundant polymer, and the main structural component of all plants and algae. Within each fiber are reinforcing cellulose nanocrystals, or CNCs, which are chains of organic polymers arranged in nearly perfect crystal patterns. At the nanoscale, CNCs are stronger and stiffer than Kevlar. If the crystals could be worked into materials in significant fractions, CNCs could be a route to stronger, more sustainable, naturally derived plastics.

Now, an MIT team has engineered a composite made mostly from cellulose nanocrystals mixed with a bit of synthetic polymer. The organic crystals take up about 60 to 90 percent of the material — the highest fraction of CNCs achieved in a composite to date.

A February 10, 2022 MIT news release (also on EurekAlert), which originated the news item, delves further into the research (Note: A link has been removed),

The researchers found the cellulose-based composite is stronger and tougher than some types of bone, and harder than typical aluminum alloys. The material has a brick-and-mortar microstructure that resembles nacre, the hard inner shell lining of some molluscs.

The team hit on a recipe for the CNC-based composite that they could fabricate using both 3D printing and conventional casting. They printed and cast the composite into penny-sized pieces of film that they used to test the material’s strength and hardness. They also machined the composite into the shape of a tooth to show that the material might one day be used to make cellulose-based dental implants — and for that matter, any plastic products — that are stronger, tougher, and more sustainable.

“By creating composites with CNCs at high loading, we can give polymer-based materials mechanical properties they never had before,” says A. John Hart, professor of mechanical engineering. “If we can replace some petroleum-based plastic with naturally-derived cellulose, that’s arguably better for the planet as well.”

Hart and his team, including Abhinav Rao PhD ’18, Thibaut Divoux, and Crystal Owens SM ’17, have published their results today in the journal Cellulose.

Gel bonds

Each year, more than 10 billion tons of cellulose is synthesized from the bark, wood, or leaves of plants. Most of this cellulose is used to manufacture paper and textiles, while a portion of it is processed into powder for use in food thickeners and cosmetics.

In recent years, scientists have explored uses for cellulose nanocrystals, which can be extracted from cellulose fibers via acid hydrolysis. The exceptionally strong crystals could be used as natural reinforcements in polymer-based materials. But researchers have only been able to incorporate low fractions of CNCs, as the crystals have tended to clump and only weakly bond with polymer molecules.

Hart and his colleagues looked to develop a composite with a high fraction of CNCs, that they could shape into strong, durable forms. They started by mixing a solution of synthetic polymer with commercially available CNC powder. The team determined the ratio of CNC and polymer that would turn the solution into a gel, with a consistency that could either be fed through the nozzle of a 3-D printer or poured into a mold to be cast. They used an ultrasonic probe to break up any clumps of cellulose in the gel, making it more likely for the dispersed cellulose to form strong bonds with polymer molecules.

They fed some of the gel through a 3-D printer and poured the rest into a mold to be cast. They then let the printed samples dry. In the process, the material shrank, leaving behind a solid composite composed mainly of cellulose nanocrystals.

“We basically deconstructed wood, and reconstructed it,” Rao says. “We took the best components of wood, which is cellulose nanocrystals, and reconstructed them to achieve a new composite material.”

Tough cracks

Interestingly, when the team examined the composite’s structure under a microscope, they observed that grains of cellulose settled into a brick-and-mortar pattern, similar to the architecture of nacre. In nacre, this zig-zagging microstructure stops a crack from running straight through the material. The researchers found this to also be the case with their new cellulose composite.

They tested the material’s resistance to cracks, using tools to initiate first nano- and then micro-scale cracks. They found that, across multiple scales, the composite’s arrangement of cellulose grains prevented the cracks from splitting the material. This resistance to plastic deformation gives the composite a hardness and stiffness at the boundary between conventional plastics and metals.

Going forward, the team is looking for ways to minimize the shrinkage of gels as they dry. While shrinkage isn’t much of a problem when printing small objects, anything bigger could buckle or crack as the composite dries.

“If you could avoid shrinkage, you could keep scaling up, maybe to the meter scale,” Rao says. “Then, if we were to dream big, we could replace a significant fraction of plastics,with cellulose composites.”

This research was supported, in part, by the Proctor and Gamble Corporation, and by the National Defense Science and Engineering Graduate Fellowship.

Here’s a link to and a citation for the paper,

Printable, castable, nanocrystalline cellulose-epoxy composites exhibiting hierarchical nacre-like toughening by Abhinav Rao, Thibaut Divoux, Crystal E. Owens & A. John Hart. Cellulose (2022) DOI: https://doi.org/10.1007/s10570-021-04384-7 Published: 10 February 2022

This paper is behind a paywall.

Use Gene Editing to Make Better Babies (a February 17, 2022 livestreamed debate from 05:00 PM − 06:30 PM EST)

I have high hopes for this debate on gene edited babies. Intelligence Squared US convenes good debates. (I watched their ‘de-extinction’ debate back in 2019, which coincidentally, featured George Church, one of the debaters in this event.) Not ‘good’ in that I necessarily agree or am interested in the topics but good as in thoughtful. Here’s more from the organization’s mission on their What is IQ2US? webpage,

A nonpartisan, nonprofit organization, Intelligence Squared U.S. addresses a fundamental problem in America: the extreme polarization of our nation and our politics.

Our mission is to restore critical thinking, facts, reason, and civility to American public discourse.

More about the upcoming debate can be found on the Use Gene Editing to Make Better Babies event page,

Use Gene Editing to Make Better Babies
Hosted By John Donvan

Thursday, February 17, 2022
05:00 PM − 06:30 PM EST

A genetic disease runs in your family. Your doctor tells you that, should you wish to have a child, that child is likely to also carry the disease. But a new gene-editing technology could change your fate. It could ensure that your baby is — and remains — healthy. Even more, it could potentially make sure your grandchildren are also free of the disease. What do you do? Now, imagine it’s not a rare genetic disorder, but general illness, or eye color, or cognitive ability, or athleticism. Do you opt into this new world of genetically edited humans? And what if it’s not just you. What your friends, neighbors, and colleagues are also embracing this genetic revolution? Right now, science doesn’t give you that choice. But huge advancements in CRISPR [clustered regularly interspaced short palindromic repeats] technology are making human gene editing a reality. In fact, in 2018, a Chinese scientist announced the first genetically modified babies; twin girls made to resist HIV, smallpox, and malaria. The promise of this technology is clear. But gene editing is not without its perils. Its critics say the technology is destined to exacerbate inequality, pressure all parents (and nations) into editing their children to stay competitive, and meddling with the most basic aspect of our humanity. In this context, we ask the question: Should we use gene editing to make better babies?

Main Points

The use of gene editing allows for couples to have children when they might otherwise have that option unavailable for them. It also allows for less to be left to chance during the pregnancy.

Gene editing will allow for babies to be born with reduced or eliminated chances of inheriting and passing on genes linked to diseases. We have a moral imperative to use technology that will improve the quality of life.

It is only a matter of time before gene editing becomes a widespread technology, potentially used by competitors and rivals on the international stage. If we have the technology, we should use it to our advantage to remain competitive.

The use of gene editing to create “better” outcomes in children will inherently create social stratification based on any gene editing, likely reflecting existing socioeconomic status. Additionally, the term ‘better’ is arbitrary and potentially short-sighted and dangerous.

Currently, there exist reasonable alternatives to gene editing for every condition for which gene editing can be used. 

The technology is still developing, and the long-term effects of any gene-editing could be potentially dangerous with consequences echoing throughout the gene environment. 

A February 8, 2022 Intelligence Squared U.S. news release about the upcoming debate (received via email) provides details about the debaters,

FOR THE MOTION – BIOS

* George Church, Geneticist & Founder, Personal Genome Project 
George Church is one of the nation’s leading geneticists and scholars. He is a professor of genetics at Harvard Medical School and MIT. In 1984, he developed the first direct genomic sequencing method, which resulted in the first genome sequence. He also helped initiate the Human Genome Project in 1984 and the Personal Genome Project in 2005. Church also serves as the director of the National Institutes of Health Center of Excellence in Genomic Science.  

* Amy Webb, Futurist & Author, “The Genesis Machine”  
Amy Webb is an award-winning author and futurist. She is the founder and CEO of the Future Today Institute and was named one of five women changing the world by Forbes. Her new book, “The Genesis Machine,” explores the future of synthetic biology, including human gene editing. Webb is a professor of strategic foresight at New York University’s Stern School of Business and has been elected a life member of the Council on Foreign Relations.  

AGAINST THE MOTION – BIOS

* Marcy Darnovsky, Policy Advocate & Executive Director, Center for Genetics and Society 
Marcy Darnovsky is a policy advocate and one of the most prominent voices on the politics of human biotechnology. As executive director of the Center for Genetics and Society, Darnovsky is focused on the social justice and public interest implications of gene editing. This work is informed by her background as an organizer and advocate in a range of environmental and progressive political movements.    

* Françoise Baylis, Philosopher & Author, “Altered Inheritance”  
Françoise Baylis is a philosopher whose innovative work in bioethics, at the intersection of policy and practice, has stretched the very boundaries of the field. She is the author of “Altered Inheritance: CRISPR and the Ethics of Human Genome Editing,” which explores the scientific, ethical, and political implications of human genome editing. Baylis is a research professor at Dalhousie University and a fellow of the Canadian Academy of Health Sciences. In 2017, she was awarded the Canadian Bioethics Society Lifetime Achievement Award. 

Getting back to the Use Gene Editing to Make Better Babies event page, there are a few options,

Request a Ticket

Have a question? Ask us

There’s also an option to Vote For or Against the Motion but you’ll have to go to the Use Gene Editing to Make Better Babies event page.

Two of the debaters have been mentioned on this blog before, George Church and Françoise Baylis. There are several references to Church including this mention with regard to Dr. He Jiankui and his CRISPR twins (July 28, 2020 posting). Françoise Baylis features in four 2019 postings with the most recent being this October 17, 2019 piece.

For anyone curious about the ‘de-extinction’ debate, it was described here in a January 18, 2019 posting prior to the event.

Soft, inflatable, and potentially low-cost neuroprosthetic hand?

An August 16, 2021 news item on ScienceDaily describes a new type of neuroprosthetic,

For the more than 5 million people in the world who have undergone an upper-limb amputation, prosthetics have come a long way. Beyond traditional mannequin-like appendages, there is a growing number of commercial neuroprosthetics — highly articulated bionic limbs, engineered to sense a user’s residual muscle signals and robotically mimic their intended motions.

But this high-tech dexterity comes at a price. Neuroprosthetics can cost tens of thousands of dollars and are built around metal skeletons, with electrical motors that can be heavy and rigid.

Now engineers at MIT [Massachusetts Institute of Technology] and Shanghai Jiao Tong University have designed a soft, lightweight, and potentially low-cost neuroprosthetic hand. Amputees who tested the artificial limb performed daily activities, such as zipping a suitcase, pouring a carton of juice, and petting a cat, just as well as — and in some cases better than — those with more rigid neuroprosthetics.

Here’s a video demonstration,

An August 16, 2021 MIT news news release (also on EurekAlert), which originated the news item, provides more detail,

The researchers found the prosthetic, designed with a system for tactile feedback, restored some primitive sensation in a volunteer’s residual limb. The new design is also surprisingly durable, quickly recovering after being struck with a hammer or run over with a car.

The smart hand is soft and elastic, and weighs about half a pound. Its components total around $500 — a fraction of the weight and material cost associated with more rigid smart limbs.

“This is not a product yet, but the performance is already similar or superior to existing neuroprosthetics, which we’re excited about,” says Xuanhe Zhao, professor of mechanical engineering and of civil and environmental engineering at MIT. “There’s huge potential to make this soft prosthetic very low cost, for low-income families who have suffered from amputation.”

Zhao and his colleagues have published their work today [August 16, 2021] in Nature Biomedical Engineering. Co-authors include MIT postdoc Shaoting Lin, along with Guoying Gu, Xiangyang Zhu, and collaborators at Shanghai Jiao Tong University in China.

Big Hero hand

The team’s pliable new design bears an uncanny resemblance to a certain inflatable robot in the animated film “Big Hero 6.” Like the squishy android, the team’s artificial hand is made from soft, stretchy material — in this case, the commercial elastomer EcoFlex. The prosthetic comprises five balloon-like fingers, each embedded with segments of fiber, similar to articulated bones in actual fingers. The bendy digits are connected to a 3-D-printed “palm,” shaped like a human hand.

Rather than controlling each finger using mounted electrical motors, as most neuroprosthetics do, the researchers used a simple pneumatic system to precisely inflate fingers and bend them in specific positions. This system, including a small pump and valves, can be worn at the waist, significantly reducing the prosthetic’s weight.

Lin developed a computer model to relate a finger’s desired position to the corresponding pressure a pump would have to apply to achieve that position. Using this model, the team developed a controller that directs the pneumatic system to inflate the fingers, in positions that mimic five common grasps, including pinching two and three fingers together, making a balled-up fist, and cupping the palm.

The pneumatic system receives signals from EMG sensors — electromyography sensors that measure electrical signals generated by motor neurons to control muscles. The sensors are fitted at the prosthetic’s opening, where it attaches to a user’s limb. In this arrangement, the sensors can pick up signals from a residual limb, such as when an amputee imagines making a fist.

The team then used an existing algorithm that “decodes” muscle signals and relates them to common grasp types. They used this algorithm to program the controller for their pneumatic system. When an amputee imagines, for instance, holding a wine glass, the sensors pick up the residual muscle signals, which the controller then translates into corresponding pressures. The pump then applies those pressures to inflate each finger and produce the amputee’s intended grasp.

Going a step further in their design, the researchers looked to enable tactile feedback — a feature that is not incorporated in most commercial neuroprosthetics. To do this, they stitched to each fingertip a pressure sensor, which when touched or squeezed produces an electrical signal proportional to the sensed pressure. Each sensor is wired to a specific location on an amputee’s residual limb, so the user can “feel” when the prosthetic’s thumb is pressed, for example, versus the forefinger.

Good grip

To test the inflatable hand, the researchers enlisted two volunteers, each with upper-limb amputations. Once outfitted with the neuroprosthetic, the volunteers learned to use it by repeatedly contracting the muscles in their arm while imagining making five common grasps.

After completing this 15-minute training, the volunteers were asked to perform a number of standardized tests to demonstrate manual strength and dexterity. These tasks included stacking checkers, turning pages, writing with a pen, lifting heavy balls, and picking up fragile objects like strawberries and bread. They repeated the same tests using a more rigid, commercially available bionic hand and found that the inflatable prosthetic was as good, or even better, at most tasks, compared to its rigid counterpart.

One volunteer was also able to intuitively use the soft prosthetic in daily activities, for instance to eat food like crackers, cake, and apples, and to handle objects and tools, such as laptops, bottles, hammers, and pliers. This volunteer could also safely manipulate the squishy prosthetic, for instance to shake someone’s hand, touch a flower, and pet a cat.

In a particularly exciting exercise, the researchers blindfolded the volunteer and found he could discern which prosthetic finger they poked and brushed. He was also able to “feel” bottles of different sizes that were placed in the prosthetic hand, and lifted them in response. The team sees these experiments as a promising sign that amputees can regain a form of sensation and real-time control with the inflatable hand.

The team has filed a patent on the design, through MIT, and is working to improve its sensing and range of motion.

“We now have four grasp types. There can be more,” Zhao says. “This design can be improved, with better decoding technology, higher-density myoelectric arrays, and a more compact pump that could be worn on the wrist. We also want to customize the design for mass production, so we can translate soft robotic technology to benefit society.”

Here’s a link to and a citation for the paper,

A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback by Guoying Gu, Ningbin Zhang, Haipeng Xu, Shaoting Lin, Yang Yu, Guohong Chai, Lisen Ge, Houle Yang, Qiwen Shao, Xinjun Sheng, Xiangyang Zhu, Xuanhe Zhao. Nature Biomedical Engineering (2021) DOI: https://doi.org/10.1038/s41551-021-00767-0 Published: 16 August 2021

This paper is behind a paywall.

Tough colour and the flower beetle

The flower beetle Torynorrhina flammea. [downloaded from https://www.nanowerk.com/nanotechnology-news2/newsid=58269.php]

That is one gorgeous beetle and a June 17, 2021 news item on Nanowerk reveals that it features in a structural colour story (i.e, how structures rather than pigments create colour),

The unique mechanical and optical properties found in the exoskeleton of a humble Asian beetle has the potential to offer a fascinating new insight into how to develop new, effective bio-inspired technologies.

Pioneering new research by a team of international scientists, including Professor Pete Vukusic from the University of Exeter, has revealed a distinctive, and previously unknown property within the carapace of the flower beetle – a member of the scarab beetle family.

The study showed that the beetle has small micropillars within the carapace – or the upper section of the exoskeleton – that give the insect both strength and flexibility to withstand damage very effectively.

Crucially, these micropillars are incorporated into highly regular layering in the exoskeleton that concurrently give the beetle an intensely bright metallic colour appearance.

A June 18, 2021 University of Exeter press release (also on EurekAlert but published June 17, 2021), delves further into the researchers’ new insights,

For this new study, the scientists used sophisticated modelling techniques to determine which of the two functions – very high mechanical strength or conspicuously bright colour – were more important to the survival of the beetle.

They found that although these micropillars do create a highly enhanced toughness of the beetle shell, they were most beneficial for optimising the scattering of coloured light that generates its conspicuous appearance.

The research is published this week in the leading journal, Proceedings of the National Academy of Sciences, PNAS.

Professor Vukusic, one of three leads of the research along with Professor Li at Virginia Tech and Professor Kolle at MIT [Massachusetts Institute of Technology], said: “The astonishing insights generated by this research have only been possible through close collaborative work between Virginia Tech, MIT, Harvard and Exeter, in labs that trailblaze the fields of materials, mechanics and optics. Our follow-up venture to make use of these bio-inspired principles will be an even more exciting journey.”.

The seeds of the pioneering research were sown more than 16 years ago as part of a short project created by Professor Vukusic in the Exeter undergraduate Physics labs. Those early tests and measurements, made by enthusiastic undergraduate students, revealed the possibility of intriguing multifunctionality.

The original students examined the form and structure of beetles’ carapce to try to understand the simple origin of their colour. They noticed for the first time, however, the presence of strength-inducing micropillars.

Professor Vukusic ultimately carried these initial findings to collaborators Professor Ling Li at Virginia Tech and Professor Mathias Kolle at Harvard and then MIT who specialise in the materials sciences and applied optics. Using much more sophisticated measurement and modelling techniques, the combined research team were also to confirm the unique role played by the micropillars in enhancing the beetles’ strength and toughness without compromising its intense metallic colour.

The results from the study could also help inspire a new generation of bio-inspired materials, as well as the more traditional evolutionary research.

By understanding which of the functions provides the greater benefit to these beetles, scientists can develop new techniques to replicate and reproduce the exoskeleton structure, while ensuring that it has brilliant colour appearance with highly effective strength and toughness.

Professor Vukusic added: “Such natural systems as these never fail to impress with the way in which they perform, be it optical, mechanical or in another area of function. The way in which their optical or mechanical properties appear highly tolerant of all manner of imperfections too, continues to offer lessons to us about scientific and technological avenues we absolutely should explore. There is exciting science ahead of us on this journey.”

Here’s a link to and a citation for the paper,

Microstructural design for mechanical–optical multifunctionality in the exoskeleton of the flower beetle Torynorrhina flammea by Zian Jia, Matheus C. Fernandes, Zhifei Deng, Ting Yang, Qiuting Zhang, Alfie Lethbridge, Jie Yin, Jae-Hwang Lee, Lin Han, James C. Weaver, Katia Bertoldi, Joanna Aizenberg, Mathias Kolle, Pete Vukusic, and Ling Li. PNAS June 22, 2021 118 (25) e2101017118; DOI: https://doi.org/10.1073/pnas.2101017118

This paper is behind a paywall.

Carbon nanotubes can scavenge energy from environment to generate electricity

A June 7, 2021 news item on phys.org announces research into a new method for generating electricity (Note: A link has been removed),

MIT [Massachusetts Institute of Technology] engineers have discovered a new way of generating electricity using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.

The liquid, an organic solvent, draws electrons out of the particles, generating a current that could be used to drive chemical reactions or to power micro- or nanoscale robots, the researchers say.

“This mechanism is new, and this way of generating energy is completely new,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “This technology is intriguing because all you have to do is flow a solvent through a bed of these particles. This allows you to do electrochemistry, but with no wires.”

A June 7, 2021 MIT news release (also on EurekAlert), which generated the news item, delves further into the research,

In a new study describing this phenomenon, the researchers showed that they could use this electric current to drive a reaction known as alcohol oxidation — an organic chemical reaction that is important in the chemical industry.

Strano is the senior author of the paper, which appears today [June 7, 2021] in Nature Communications. The lead authors of the study are MIT graduate student Albert Tianxiang Liu and former MIT researcher Yuichiro Kunai. Other authors include former graduate student Anton Cottrill, postdocs Amir Kaplan and Hyunah Kim, graduate student Ge Zhang, and recent MIT graduates Rafid Mollah and Yannick Eatmon.

Unique properties

The new discovery grew out of Strano’s research on carbon nanotubes — hollow tubes made of a lattice of carbon atoms, which have unique electrical properties. In 2010, Strano demonstrated, for the first time, that carbon nanotubes can generate “thermopower waves.” When a carbon nanotube is coated with layer of fuel, moving pulses of heat, or thermopower waves, travel along the tube, creating an electrical current.

That work led Strano and his students to uncover a related feature of carbon nanotubes. They found that when part of a nanotube is coated with a Teflon-like polymer, it creates an asymmetry that makes it possible for electrons to flow from the coated to the uncoated part of the tube, generating an electrical current. Those electrons can be drawn out by submerging the particles in a solvent that is hungry for electrons.

To harness this special capability, the researchers created electricity-generating particles by grinding up carbon nanotubes and forming them into a sheet of paper-like material. One side of each sheet was coated with a Teflon-like polymer, and the researchers then cut out small particles, which can be any shape or size. For this study, they made particles that were 250 microns by 250 microns.

When these particles are submerged in an organic solvent such as acetonitrile, the solvent adheres to the uncoated surface of the particles and begins pulling electrons out of them.

“The solvent takes electrons away, and the system tries to equilibrate by moving electrons,” Strano says. “There’s no sophisticated battery chemistry inside. It’s just a particle and you put it into solvent and it starts generating an electric field.”

Particle power

The current version of the particles can generate about 0.7 volts of electricity per particle. In this study, the researchers also showed that they can form arrays of hundreds of particles in a small test tube. This “packed bed” reactor generates enough energy to power a chemical reaction called an alcohol oxidation, in which an alcohol is converted to an aldehyde or a ketone. Usually, this reaction is not performed using electrochemistry because it would require too much external current.

“Because the packed bed reactor is compact, it has more flexibility in terms of applications than a large electrochemical reactor,” Zhang says. “The particles can be made very small, and they don’t require any external wires in order to drive the electrochemical reaction.”

In future work, Strano hopes to use this kind of energy generation to build polymers using only carbon dioxide as a starting material. In a related project, he has already created polymers that can regenerate themselves using carbon dioxide as a building material, in a process powered by solar energy. This work is inspired by carbon fixation, the set of chemical reactions that plants use to build sugars from carbon dioxide, using energy from the sun.

In the longer term, this approach could also be used to power micro- or nanoscale robots. Strano’s lab has already begun building robots at that scale, which could one day be used as diagnostic or environmental sensors. The idea of being able to scavenge energy from the environment to power these kinds of robots is appealing, he says.

“It means you don’t have to put the energy storage on board,” he says. “What we like about this mechanism is that you can take the energy, at least in part, from the environment.”

Here’s a link to and a citation for the paper,

Solvent-induced electrochemistry at an electrically asymmetric carbon Janus particle by Albert Tianxiang Liu, Yuichiro Kunai, Anton L. Cottrill, Amir Kaplan, Ge Zhang, Hyunah Kim, Rafid S. Mollah, Yannick L. Eatmon & Michael S. Strano. Nature Communications volume 12, Article number: 3415 (2021) DOI: https://doi.org/10.1038/s41467-021-23038-7Published 07 June 2021

This paper is open access.

Follow up to the Charles M. Lieber affair and US government efforts to prosecute nanotech scientists

Rebecca Trager in a March 5, 2021 news article for Chemistry World highlights support for Charles M. Lieber (Harvard professor and chair of the chemistry department) from his colleagues (Note: Links have been removed),

More than a year after the chair of Harvard University’s chemistry department was arrested for allegedly hiding his receipt of millions of dollars in research funding from China from his university and the US government, dozens of prominent researchers – including many Nobel Prize winners – are coming to Charles Lieber’s defence. They are calling the US Department of Justice (DOJ) case against him ‘unjust’ and urging the agency to drop it.

Following his January 2020 arrest, Lieber was placed on ‘indefinite’ paid administrative leave. The nanoscience pioneer was indicted in June [2020] on charges of making false statements to federal authorities regarding his participation in China’s Thousand Talents plan – the country’s programme to attract, recruit and cultivate high-level scientific talent from abroad. Lieber faces up to five years in prison and a fine of $250,000 (£179,000) if convicted.

A 1 March [2021] open letter, drafted and coordinated by Harvard chemist Stuart Schreiber, co-founder of the Broad Institute, and professor emeritus Elias Corey, winner of the 1990 chemistry Nobel prize, says Lieber became the target of a ‘tragically misguided government campaign’. The letter refers to Lieber as ‘one of the great scientist of his generation’ and warns such government actions are discouraging US scientists from collaborating with peers in other countries, particularly China. The open letter also notes that Lieber is fighting to salvage his reputation while suffering from incurable lymphoma.

Ferguson goes on to contrast Lieber’s treatment by Harvard to another embattled colleague’s treatment by his home institution (Note: Links have been removed),

Harvard’s treatment of Lieber stands in contrast to how the Massachusetts Institute of Technology (MIT) handled the more recent case of nanotechnologist Gang Chen, who was arrested in January [2021] for failing to report his ties to the Chinese government. MIT agreed to cover his legal fees, and more than 100 faculty members signed a letter to their university’s president that picked apart the DOJ’s allegations against Chen.

I have more details about the case against Lieber (as it was presented at the time) in a January 28, 2020 posting.

As for Professor Chen, I found this MIT statement dated January 14, 2021 (the date of his arrest) and this January 14, 2021 statement from The United States District Attorney’s Office District of Massachusetts.