Tag Archives: Massachusetts Institute of Technology (MIT)

mRNA, COVID-19 vaccines, treating genetic diseases before birth, and the scientist who started it all

This post was going to be about new research into fetal therapeutics and mRNA.But, since I’ve been very intrigued by the therapeutic agent, mRNA, which has been a big part of the COVID-19 vaccine story; this seemed like a good opportunity to dive a little more deeply into that topic at the same time.

It’s called messenger ribonucleic acid (mRNA) and until seeing this video I had only the foggiest idea of how it works, which is troubling since at least two COVID-19 vaccines are based on this ‘new’ technology. From a November 10, 2020 article by Damian Garde for STAT,

Garde’s article offers detail about mRNA along with fascinating insight into how science and entreneurship works.

mRNA—it’s in the details, plus, the loneliness of pioneer researchers, a demotion, and squabbles

Garde’s November 10, 2020 article provides some explanation about how mRNA vaccines work and it takes a look at what can happen to pioneering scientists (Note: A link has been removed),

For decades, scientists have dreamed about the seemingly endless possibilities of custom-made messenger RNA, or mRNA.

Researchers understood its role as a recipe book for the body’s trillions of cells, but their efforts to expand the menu have come in fits and starts. The concept: By making precise tweaks to synthetic mRNA and injecting people with it, any cell in the body could be transformed into an on-demand drug factory. [emphasis mine]

But turning scientific promise into medical reality has been more difficult than many assumed. Although relatively easy and quick to produce compared to traditional vaccine-making, no mRNA vaccine or drug has ever won approval [until 2021].

Whether mRNA vaccines succeed or not, their path from a gleam in a scientist’s eye to the brink of government approval has been a tale of personal perseverance, eureka moments in the lab, soaring expectations — and an unprecedented flow of cash into the biotech industry.

Before messenger RNA was a multibillion-dollar idea, it was a scientific backwater. And for the Hungarian-born scientist behind a key mRNA discovery, it was a career dead-end.

Katalin Karikó spent the 1990s collecting rejections. Her work, attempting to harness the power of mRNA to fight disease, was too far-fetched for government grants, corporate funding, and even support from her own colleagues.

It all made sense on paper. In the natural world, the body relies on millions of tiny proteins to keep itself alive and healthy, and it uses mRNA to tell cells which proteins to make. If you could design your own mRNA, you could, in theory, hijack that process and create any protein you might desire — antibodies to vaccinate against infection, enzymes to reverse a rare disease, or growth agents to mend damaged heart tissue.

In 1990, researchers at the University of Wisconsin managed to make it work in mice. Karikó wanted to go further.

The problem, she knew, was that synthetic RNA was notoriously vulnerable to the body’s natural defenses, meaning it would likely be destroyed before reaching its target cells. And, worse, the resulting biological havoc might stir up an immune response that could make the therapy a health risk for some patients.

It was a real obstacle, and still may be, but Karikó was convinced it was one she could work around. Few shared her confidence.

“Every night I was working: grant, grant, grant,” Karikó remembered, referring to her efforts to obtain funding. “And it came back always no, no, no.”

By 1995, after six years on the faculty at the University of Pennsylvania, Karikó got demoted. She had been on the path to full professorship, but with no money coming in to support her work on mRNA, her bosses saw no point in pressing on.

She was back to the lower rungs of the scientific academy.

“Usually, at that point, people just say goodbye and leave because it’s so horrible,” Karikó said.

There’s no opportune time for demotion, but 1995 had already been uncommonly difficult. Karikó had recently endured a cancer scare, and her husband was stuck in Hungary sorting out a visa issue. Now the work to which she’d devoted countless hours was slipping through her fingers.

“I thought of going somewhere else, or doing something else,” Karikó said. “I also thought maybe I’m not good enough, not smart enough. I tried to imagine: Everything is here, and I just have to do better experiments.”

In time, those better experiments came together. After a decade of trial and error, Karikó and her longtime collaborator at Penn — Drew Weissman, an immunologist with a medical degree and Ph.D. from Boston University — discovered a remedy for mRNA’s Achilles’ heel.

The stumbling block, as Karikó’s many grant rejections pointed out, was that injecting synthetic mRNA typically led to that vexing immune response; the body sensed a chemical intruder, and went to war. The solution, Karikó and Weissman discovered, was the biological equivalent of swapping out a tire.

Every strand of mRNA is made up of four molecular building blocks called nucleosides. But in its altered, synthetic form, one of those building blocks, like a misaligned wheel on a car, was throwing everything off by signaling the immune system. So Karikó and Weissman simply subbed it out for a slightly tweaked version, creating a hybrid mRNA that could sneak its way into cells without alerting the body’s defenses.

“That was a key discovery,” said Norbert Pardi, an assistant professor of medicine at Penn and frequent collaborator. “Karikó and Weissman figured out that if you incorporate modified nucleosides into mRNA, you can kill two birds with one stone.”

That discovery, described in a series of scientific papers starting in 2005, largely flew under the radar at first, said Weissman, but it offered absolution to the mRNA researchers who had kept the faith during the technology’s lean years. And it was the starter pistol for the vaccine sprint to come.

Entrepreneurs rush in

Garde’s November 10, 2020 article shifts focus from Karikó, Weissman, and specifics about mRNA to the beginnings of what might be called an entrepreneurial gold rush although it starts sedately,

Derrick Rossi [emphasis mine], a native of Toronto who rooted for the Maple Leafs and sported a soul patch, was a 39-year-old postdoctoral fellow in stem cell biology at Stanford University in 2005 when he read the first paper. Not only did he recognize it as groundbreaking, he now says Karikó and Weissman deserve the Nobel Prize in chemistry.

“If anyone asks me whom to vote for some day down the line, I would put them front and center,” he said. “That fundamental discovery is going to go into medicines that help the world.”

But Rossi didn’t have vaccines on his mind when he set out to build on their findings in 2007 as a new assistant professor at Harvard Medical School running his own lab.

He wondered whether modified messenger RNA might hold the key to obtaining something else researchers desperately wanted: a new source of embryonic stem cells [emphasis mine].

In a feat of biological alchemy, embryonic stem cells can turn into any type of cell in the body. That gives them the potential to treat a dizzying array of conditions, from Parkinson’s disease to spinal cord injuries.

But using those cells for research had created an ethical firestorm because they are harvested from discarded embryos.

Rossi thought he might be able to sidestep the controversy. He would use modified messenger molecules to reprogram adult cells so that they acted like embryonic stem cells.

He asked a postdoctoral fellow in his lab to explore the idea. In 2009, after more than a year of work, the postdoc waved Rossi over to a microscope. Rossi peered through the lens and saw something extraordinary: a plate full of the very cells he had hoped to create.

Rossi excitedly informed his colleague Timothy Springer, another professor at Harvard Medical School and a biotech entrepreneur. Recognizing the commercial potential, Springer contacted Robert Langer, the prolific inventor and biomedical engineering professor at the Massachusetts Institute of Technology.

On a May afternoon in 2010, Rossi and Springer visited Langer at his laboratory in Cambridge. What happened at the two-hour meeting and in the days that followed has become the stuff of legend — and an ego-bruising squabble.

Langer is a towering figure in biotechnology and an expert on drug-delivery technology. At least 400 drug and medical device companies have licensed his patents. His office walls display many of his 250 major awards, including the Charles Stark Draper Prize, considered the equivalent of the Nobel Prize for engineers.

As he listened to Rossi describe his use of modified mRNA, Langer recalled, he realized the young professor had discovered something far bigger than a novel way to create stem cells. Cloaking mRNA so it could slip into cells to produce proteins had a staggering number of applications, Langer thought, and might even save millions of lives.

“I think you can do a lot better than that,” Langer recalled telling Rossi, referring to stem cells. “I think you could make new drugs, new vaccines — everything.”

Within several months, Rossi, Langer, Afeyan [Noubar Afeyan, venture capitalist, founded and runs Flagship Ventures], and another physician-researcher at Harvard formed the firm Moderna — a new word combining modified and RNA.

Springer was the first investor to pledge money, Rossi said. In a 2012 Moderna news release, Afeyan said the firm’s “promise rivals that of the earliest biotechnology companies over 30 years ago — adding an entirely new drug category to the pharmaceutical arsenal.”

But although Moderna has made each of the founders hundreds of millions of dollars — even before the company had produced a single product — Rossi’s account is marked by bitterness. In interviews with the [Boston] Globe in October [2020], he accused Langer and Afeyan of propagating a condescending myth that he didn’t understand his discovery’s full potential until they pointed it out to him.

Garde goes on to explain how BioNTech came into the mRNA picture and contrasts the two companies’ approaches to biotechnology as a business. It seems BioNTech has not cashed in the same way as has Moderna. (For some insight into who’s making money from COVID-19 check out Giacomo Tognini’s December 23, 2020 article (Meet The 50 Doctors, Scientists And Healthcare Entrepreneurs Who Became Pandemic Billionaires In 2020) for Forbes.)

Garde ends his November 10, 2020 article on a mildly cautionary note,

“You have all these odd clinical and pathological changes caused by this novel bat coronavirus [emphasis mine], and you’re about to meet it with all of these vaccines with which you have no experience,” said Paul Offit, an infectious disease expert at Children’s Hospital of Philadelphia and an authority on vaccines.

What happened to Katalin Karikó?

Matthew Rosza’s January 25, 2021 article about Karikó and her pioneering work features an answer to my question and some advice,

“I want young people to feel — if my example, because I was demoted, rejected, terminated, I was even subject for deportation one point — [that] if they just pursue their thing, my example helps them to wear rejection as a badge,” Karikó, who today is a senior vice president at BioNTech RNA Pharmaceuticals, told Salon last month when discussing her story. “‘Okay, well, I was rejected. I know. Katalin was rejected and still [succeeded] at the end.’ So if it helps them, then it helps them.”

Despite her demotion, Karikó continued with her work and, along with a fellow immunologist named Dr. Drew Weissman, penned a series of influential articles starting in 2005. These articles argued that mRNA vaccines would not be neutralized by the human immune system as long as there were specific modifications to nucleosides, a compound commonly found in RNA.

By 2013, Karikó’s work had sufficiently impressed experts that she left the University of Pennsylvania for BioNTech RNA Pharmaceuticals.

Karikó tells Salon that the experience taught her one important lesson: In life there will be people who, for various reasons, will try to hold you back, and you can’t let them get you down.

“People that are in power, they can help you or block you,” Karikó told Salon. “And sometimes people select to make your life miserable. And now they cannot be happy with me because now they know that, ‘Oh, you know, we had the confrontation and…’ But I don’t spend too much time on these things.”

Before moving onto the genetic research which prompted this posting, I have an answer to the following questions:

Could an mRNA vaccine affect your DNA (deoxyribonucleic acid) and how do mRNA vaccines differ from the traditional ones?

No, DNA is not affected by the COVID-19 mRNA vaccines, according to a January 5, 2021 article by Jason Murdock for Newsweek,

The type of vaccines used against COVID-19 do not interact with or alter human genetic code, also known as DNA, scientists say.

In traditional vaccines, a piece of a virus, known as an “antigen,” would be injected into the body to force the immune system to make antibodies to fight off future infection. But mRNA-based methods do not use a live virus, and cannot give someone COVID.

Instead, mRNA vaccines give cells the instructions to make a “spike” protein also found on the surface of the virus that causes COVID. The body kickstarts its immune response by creating the antibodies needed to combat those specific virus proteins.

Once the spike protein is created, the cell breaks down the instructions provided by the mRNA molecule, leaving the human immune system prepared to combat infection. The mRNA vaccines are not a medicine—nor a cure—but a preventative measure.

Gavi, a vaccine alliance partnered with the World Health Organization (WHO), has said that mRNA instructions will become degraded in approximately 72 hours.

It says mRNA strands are “chemical intermediaries” between DNA in our chromosomes and the “cellular machinery that produces the proteins we need to function.”

But crucially, while mRNA vaccines will give the human body the blueprints on how to assemble proteins, the alliance said in a fact-sheet last month that “mRNA isn’t the same as DNA, and it can’t combine with our DNA to change our genetic code.”

It explained: “Some viruses like HIV can integrate their genetic material into the DNA of their hosts, but this isn’t true of all viruses… mRNA vaccines don’t carry these enzymes, so there is no risk of the genetic material they contain altering our DNA.”

The [US] Centers for Disease Control and Prevention (CDC) says on its website that mRNA vaccines that are rolling out don’t “interact with our DNA in any way,” and “mRNA never enters the nucleus of the cell, which is where our DNA (genetic material) is kept.”

Therapeutic fetal mRNA treatment

Rossi’s work on mRNA and embryonic stem cells bears a relationship of sorts to this work focusing on prebirth therapeutics. (From a January 13, 2021 news item on Nanowerk), Note: A link has been removed,

Researchers at Children’s Hospital of Philadelphia and the School of Engineering and Applied Science at the University of Pennsylvania have identified ionizable lipid nanoparticles that could be used to deliver mRNA as part of fetal therapy.

The proof-of-concept study, published in Science Advances (“Ionizable Lipid Nanoparticles for In Utero mRNA Delivery”), engineered and screened a number of lipid nanoparticle formulations for targeting mouse fetal organs and has laid the groundwork for testing potential therapies to treat genetic diseases before birth.

A January 13, 2021 Children’s Hospital of Philadelphia (CHOP) news release (also on EurekAlert), which originated the news item, delves further into the research,

“This is an important first step in identifying nonviral mediated approaches for delivering cutting-edge therapies before birth,” said co-senior author William H. Peranteau, MD, an attending surgeon in the Division of General, Thoracic and Fetal Surgery and the Adzick-McCausland Distinguished Chair in Fetal and Pediatric Surgery at CHOP. “These lipid nanoparticles may provide a platform for in utero mRNA delivery, which would be used in therapies like fetal protein replacement and gene editing.”

Recent advances in DNA sequencing technology and prenatal diagnostics have made it possible to diagnose many genetic diseases before birth. Some of these diseases are treated by protein or enzyme replacement therapies after birth, but by then, some of the damaging effects of the disease have taken hold. Thus, applying therapies while the patient is still in the womb has the potential to be more effective for some conditions. The small fetal size allows for maximal therapeutic dosing, and the immature fetal immune system may be more tolerant of replacement therapy.

Of the potential vehicles for introducing therapeutic protein replacement, mRNA is distinct from other nucleic acids, such as DNA, because it does not need to enter the nucleus and can use the body’s own machinery to produce the desired proteins. Currently, the common methods of nucleic acid delivery include viral vectors and nonviral approaches. Although viral vectors may be well-suited to gene therapy, they come with the potential risk of unwanted integration of the transgene or parts of the viral vector in the recipient genome. Thus, there is an important need to develop safe and effective nonviral nucleic acid delivery technologies to treat prenatal diseases.

In order to identify potential nonviral delivery systems for therapeutic mRNA, the researchers engineered a library of lipid nanoparticles, small particles less than 100 nanometers in size that effectively enter cells in mouse fetal recipients. Each lipid nanoparticle formulation was used to encapsulate mRNA, which was administered to mouse fetuses. The researchers found that several of the lipid nanoparticles enabled functional mRNA delivery to fetal livers and that some of those lipid nanoparticles also delivered mRNA to the fetal lungs and intestines. They also assessed the lipid nanoparticles for toxicity and found them to be as safe or safer than existing formulations.

Having identified the lipid nanoparticles that were able to accumulate within fetal livers, lungs, and intestines with the highest efficiency and safety, the researchers also tested therapeutic potential of those designs by using them to deliver erythropoietin (EPO) mRNA, as the EPO protein is easily trackable. They found that EPO mRNA delivery to liver cells in mouse fetuses resulted in elevated levels of EPO protein in the fetal circulation, providing a model for protein replacement therapy via the liver using these lipid nanoparticles.

“A central challenge in the field of gene therapy is the delivery of nucleic acids to target cells and tissues, without causing side effects in healthy tissue. This is difficult to achieve in adult animals and humans, which have been studied extensively. Much less is known in terms of what is required to achieve in utero nucleic acid delivery,” said Mitchell. “We are very excited by the initial results of our lipid nanoparticle technology to deliver mRNA in utero in safe and effective manner, which could open new avenues for lipid nanoparticles and mRNA therapeutics to treat diseases before birth.”

Here’s a link to and a citation for the paper,

Ionizable lipid nanoparticles for in utero mRNA delivery by Rachel S. Riley, Meghana V. Kashyap, Margaret M. Billingsley, Brandon White, Mohamad-Gabriel Alameh, Sourav K. Bose, Philip W. Zoltick, Hiaying Li, Rui Zhang, Andrew Y. Cheng, Drew Weissman, William H. Peranteau, Michael J. Mitchell. Science Advances 13 Jan 2021: Vol. 7, no. 3, eaba1028 DOI: 10.1126/sciadv.aba1028

This paper appears to be open access. BTW, I noticed Drew Weissman’s name as one of the paper’s authors and remembered him as one of the first to recognize Karikó’s pioneering work. I imagine that when he co-authored papers with Karikó he was risking his reputation.

Funny how a despised field of research has sparked a ‘gold rush’ for research and for riches, yes?.

Stretching diamonds to improve electronic devices

On the last day of 2020, City University of Hong Kong (CityU) announced a technique for stretching diamonds that could result in a new generation of electronic devices. A December 31, 2020 news item on ScienceDaily makes the announcement,

Diamond is the hardest material in nature. It also has great potential as an excellent electronic material. A research team has demonstrated for the first time the large, uniform tensile elastic straining of microfabricated diamond arrays through the nanomechanical approach. Their findings have shown the potential of strained diamonds as prime candidates for advanced functional devices in microelectronics, photonics, and quantum information technologies.

A December 31, 2020 CityU press release on EurekAlert , which originated the news item, delves further into the research,

The research was co-led by Dr Lu Yang, Associate Professor in the Department of Mechanical Engineering (MNE) at CityU and researchers from Massachusetts Institute of Technology (MIT) and Harbin Institute of Technology (HIT). Their findings have been recently published in the prestigious scientific journal Science, titled “Achieving large uniform tensile elasticity in microfabricated diamond“.

“This is the first time showing the extremely large, uniform elasticity of diamond by tensile experiments. Our findings demonstrate the possibility of developing electronic devices through ‘deep elastic strain engineering’ of microfabricated diamond structures,” said Dr Lu.

Diamond: “Mount Everest” of electronic materials

Well known for its hardness, industrial applications of diamonds are usually cutting, drilling, or grinding. But diamond is also considered as a high-performance electronic and photonic material due to its ultra-high thermal conductivity, exceptional electric charge carrier mobility, high breakdown strength and ultra-wide bandgap. Bandgap is a key property in semi-conductor, and wide bandgap allows operation of high-power or high-frequency devices. “That’s why diamond can be considered as ‘Mount Everest’ of electronic materials, possessing all these excellent properties,” Dr Lu said.

However, the large bandgap and tight crystal structure of diamond make it difficult to “dope”, a common way to modulate the semi-conductors’ electronic properties during production, hence hampering the diamond’s industrial application in electronic and optoelectronic devices. A potential alternative is by “strain engineering”, that is to apply very large lattice strain, to change the electronic band structure and associated functional properties. But it was considered as “impossible” for diamond due to its extremely high hardness.

Then in 2018, Dr Lu and his collaborators discovered that, surprisingly, nanoscale diamond can be elastically bent with unexpected large local strain. This discovery suggests the change of physical properties in diamond through elastic strain engineering can be possible. Based on this, the latest study showed how this phenomenon can be utilized for developing functional diamond devices.

Uniform tensile straining across the sample

The team firstly microfabricated single-crystalline diamond samples from a solid diamond single crystals. The samples were in bridge-like shape – about one micrometre long and 300 nanometres wide, with both ends wider for gripping (See image: Tensile straining of diamond bridges). The diamond bridges were then uniaxially stretched in a well-controlled manner within an electron microscope. Under cycles of continuous and controllable loading-unloading of quantitative tensile tests, the diamond bridges demonstrated a highly uniform, large elastic deformation of about 7.5% strain across the whole gauge section of the specimen, rather than deforming at a localized area in bending. And they recovered their original shape after unloading.

By further optimizing the sample geometry using the American Society for Testing and Materials (ASTM) standard, they achieved a maximum uniform tensile strain of up to 9.7%, which even surpassed the maximum local value in the 2018 study, and was close to the theoretical elastic limit of diamond. More importantly, to demonstrate the strained diamond device concept, the team also realized elastic straining of microfabricated diamond arrays.

Tuning the bandgap by elastic strains

The team then performed density functional theory (DFT) calculations to estimate the impact of elastic straining from 0 to 12% on the diamond’s electronic properties. The simulation results indicated that the bandgap of diamond generally decreased as the tensile strain increased, with the largest bandgap reduction rate down from about 5 eV to 3 eV at around 9% strain along a specific crystalline orientation. The team performed an electron energy-loss spectroscopy analysis on a pre-strained diamond sample and verified this bandgap decreasing trend.

Their calculation results also showed that, interestingly, the bandgap could change from indirect to direct with the tensile strains larger than 9% along another crystalline orientation. Direct bandgap in semi-conductor means an electron can directly emit a photon, allowing many optoelectronic applications with higher efficiency.

These findings are an early step in achieving deep elastic strain engineering of microfabricated diamonds. By nanomechanical approach, the team demonstrated that the diamond’s band structure can be changed, and more importantly, these changes can be continuous and reversible, allowing different applications, from micro/nanoelectromechanical systems (MEMS/NEMS), strain-engineered transistors, to novel optoelectronic and quantum technologies. “I believe a new era for diamond is ahead of us,” said Dr Lu.

Here’s an illustration provided by the researchers,

Caption: Stretching of microfabricated diamonds pave ways for applications in next-generation microelectronics.. Credit: Dang Chaoqun / City University of Hong Kong

Here’s a link to and a citation for the paper,

Achieving large uniform tensile elasticity in microfabricated diamond by Chaoqun Dang, Jyh-Pin Chou, Bing Dai, Chang-Ti Chou, Yang Yang, Rong Fan, Weitong Lin, Fanling Meng, Alice Hu, Jiaqi Zhu, Jiecai Han, Andrew M. Minor, Ju Li, Yang Lu. Science 01 Jan 2021: Vol. 371, Issue 6524, pp. 76-78 DOI: 10.1126/science.abc4174

This paper is behind a paywall.

Reading a virus like a book

Teaching grammar and syntax to artificial intelligence (AI) algorithms (specifically natural language processing (NLP) algorithms) has helped researchers understand and predict viral mutations more speedily. This facility is especially useful at a time when the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus seems to be mutating into more easily transmissible variants.

Will Douglas Heaven’s Jan. 14, 2021 article for the Massachusetts Institute of Technology’s MIT Technology Review describes the work that links AI, grammar, and mutating viruses (Note: Links have been removed),

Galileo once observed that nature is written in math. Biology might be written in words. Natural-language processing (NLP) algorithms are now able to generate protein sequences and predict virus mutations, including key changes that help the coronavirus evade the immune system.

The key insight making this possible is that many properties of biological systems can be interpreted in terms of words and sentences. “We’re learning the language of evolution,” says Bonnie Berger, a computational biologist at the Massachusetts Institute of Technology [MIT].

In the last few years, a handful of researchers—including teams from geneticist George Church’s [Professor of Health Sciences and Technology at Harvard University and MIT, etc.] lab and Salesforce [emphasis mine]—have shown that protein sequences and genetic codes can be modeled using NLP techniques.

In a study published in Science today, Berger and her colleagues pull several of these strands together and use NLP to predict mutations that allow viruses to avoid being detected by antibodies in the human immune system, a process known as viral immune escape. The basic idea is that the interpretation of a virus by an immune system is analogous to the interpretation of a sentence by a human.

Berger’s team uses two different linguistic concepts: grammar and semantics (or meaning). The genetic or evolutionary fitness of a virus—characteristics such as how good it is at infecting a host—can be interpreted in terms of grammatical correctness. A successful, infectious virus is grammatically correct; an unsuccessful one is not.

Similarly, mutations of a virus can be interpreted in terms of semantics. Mutations that make a virus appear different to things in its environment—such as changes in its surface proteins that make it invisible to certain antibodies—have altered its meaning. Viruses with different mutations can have different meanings, and a virus with a different meaning may need different antibodies to read it.

Instead of millions of sentences, they trained the NLP model on thousands of genetic sequences taken from three different viruses: 45,000 unique sequences for a strain of influenza, 60,000 for a strain of HIV, and between 3,000 and 4,000 for a strain of Sars-Cov-2, the virus that causes covid-19. “There’s less data for the coronavirus because there’s been less surveillance,” says Brian Hie, a graduate student at MIT, who built the models.

The overall aim of the approach is to identify mutations that might let a virus escape an immune system without making it less infectious—that is, mutations that change a virus’s meaning without making it grammatically incorrect.

But it’s also just the beginning. Treating genetic mutations as changes in meaning could be applied in different ways across biology. “A good analogy can go a long way,” says Bryson [Bryan Bryson, a biologist at MIT].

If you have time, I recommend reading Heaven’s Jan. 14, 2021 article in its entirety as it’s well written with clear explanations. As for the article’s mentions of George Church and Salesforce, the former could be expected while the latter is not (by me, I speak for no one else).

I find it fascinating that a company which describes itself (from What is Salesforce?) as providing “… customer relationship management, or CRM. It gives all your departments — including marketing, sales, commerce, and service — a shared view of your customers … ” seems to be conducting investigations into one (or more?) areas of biology.

For those who’d like to dive into the science as described in Heaven’s article, here’s a link to and a citation for the paper,

Learning the language of viral evolution and escape by Brian Hie, Ellen D. Zhong, Bonnie Berger, Bryan Bryson. Science 15 Jan 2021: Vol. 371, Issue 6526, pp. 284-288 DOI: 10.1126/science.abd7331

This paper appears to be open access (or it is, at least for now).

There is also a preprint version available on bioRxiv, which is an open access repository.

Technical University of Munich: embedded ethics approach for AI (artificial intelligence) and storing a tv series in synthetic DNA

I stumbled across two news bits of interest from the Technical University of Munich in one day (Sept. 1, 2020, I think). The topics: artificial intelligence (AI) and synthetic DNA (deoxyribonucleic acid).

Embedded ethics and artificial intelligence (AI)

An August 27, 2020 Technical University of Munich (TUM) press release (also on EurekAlert but published Sept. 1, 2020) features information about a proposal to embed ethicists in with AI development teams,

The increasing use of AI (artificial intelligence) in the development of new medical technologies demands greater attention to ethical aspects. An interdisciplinary team at the Technical University of Munich (TUM) advocates the integration of ethics from the very beginning of the development process of new technologies. Alena Buyx, Professor of Ethics in Medicine and Health Technologies, explains the embedded ethics approach.

Professor Buyx, the discussions surrounding a greater emphasis on ethics in AI research have greatly intensified in recent years, to the point where one might speak of “ethics hype” …

Prof. Buyx: … and many committees in Germany and around the world such as the German Ethics Council or the EU Commission High-Level Expert Group on Artificial Intelligence have responded. They are all in agreement: We need more ethics in the development of AI-based health technologies. But how do things look in practice for engineers and designers? Concrete solutions are still few and far between. In a joint pilot project with two Integrative Research Centers at TUM, the Munich School of Robotics and Machine Intelligence (MSRM) with its director, Prof. Sami Haddadin, and the Munich Center for Technology in Society (MCTS), with Prof. Ruth Müller, we want to try out the embedded ethics approach. We published the proposal in Nature Machine Intelligence at the end of July [2020].

What exactly is meant by the “embedded ethics approach”?

Prof.Buyx: The idea is to make ethics an integral part of the research process by integrating ethicists into the AI development team from day one. For example, they attend team meetings on a regular basis and create a sort of “ethical awareness” for certain issues. They also raise and analyze specific ethical and social issues.

Is there an example of this concept in practice?

Prof. Buyx: The Geriatronics Research Center, a flagship project of the MSRM in Garmisch-Partenkirchen, is developing robot assistants to enable people to live independently in old age. The center’s initiatives will include the construction of model apartments designed to try out residential concepts where seniors share their living space with robots. At a joint meeting with the participating engineers, it was noted that the idea of using an open concept layout everywhere in the units – with few doors or individual rooms – would give the robots considerable range of motion. With the seniors, however, this living concept could prove upsetting because they are used to having private spaces. At the outset, the engineers had not given explicit consideration to this aspect.

Prof.Buyx: The approach sounds promising. But how can we avoid “embedded ethics” from turning into an “ethics washing” exercise, offering companies a comforting sense of “being on the safe side” when developing new AI technologies?

That’s not something we can be certain of avoiding. The key is mutual openness and a willingness to listen, with the goal of finding a common language – and subsequently being prepared to effectively implement the ethical aspects. At TUM we are ideally positioned to achieve this. Prof. Sami Haddadin, the director of the MSRM, is also a member of the EU High-Level Group of Artificial Intelligence. In his research, he is guided by the concept of human centered engineering. Consequently, he has supported the idea of embedded ethics from the very beginning. But one thing is certain: Embedded ethics alone will not suddenly make AI “turn ethical”. Ultimately, that will require laws, codes of conduct and possibly state incentives.

Here’s a link to and a citation for the paper espousing the embedded ethics for AI development approach,

An embedded ethics approach for AI development by Stuart McLennan, Amelia Fiske, Leo Anthony Celi, Ruth Müller, Jan Harder, Konstantin Ritt, Sami Haddadin & Alena Buyx. Nature Machine Intelligence (2020) DOI: https://doi.org/10.1038/s42256-020-0214-1 Published 31 July 2020

This paper is behind a paywall.

Religion, ethics and and AI

For some reason embedded ethics and AI got me to thinking about Pope Francis and other religious leaders.

The Roman Catholic Church and AI

There was a recent announcement that the Roman Catholic Church will be working with MicroSoft and IBM on AI and ethics (from a February 28, 2020 article by Jen Copestake for British Broadcasting Corporation (BBC) news online (Note: A link has been removed),

Leaders from the two tech giants met senior church officials in Rome, and agreed to collaborate on “human-centred” ways of designing AI.

Microsoft president Brad Smith admitted some people may “think of us as strange bedfellows” at the signing event.

“But I think the world needs people from different places to come together,” he said.

The call was supported by Pope Francis, in his first detailed remarks about the impact of artificial intelligence on humanity.

The Rome Call for Ethics [sic] was co-signed by Mr Smith, IBM executive vice-president John Kelly and president of the Pontifical Academy for Life Archbishop Vincenzo Paglia.

It puts humans at the centre of new technologies, asking for AI to be designed with a focus on the good of the environment and “our common and shared home and of its human inhabitants”.

Framing the current era as a “renAIssance”, the speakers said the invention of artificial intelligence would be as significant to human development as the invention of the printing press or combustion engine.

UN Food and Agricultural Organization director Qu Dongyu and Italy’s technology minister Paola Pisano were also co-signatories.

Hannah Brockhaus’s February 28, 2020 article for the Catholic News Agency provides some details missing from the BBC report and I found it quite helpful when trying to understand the various pieces that make up this initiative,

The Pontifical Academy for Life signed Friday [February 28, 2020], alongside presidents of IBM and Microsoft, a call for ethical and responsible use of artificial intelligence technologies.

According to the document, “the sponsors of the call express their desire to work together, in this context and at a national and international level, to promote ‘algor-ethics.’”

“Algor-ethics,” according to the text, is the ethical use of artificial intelligence according to the principles of transparency, inclusion, responsibility, impartiality, reliability, security, and privacy.

The signing of the “Rome Call for AI Ethics [PDF]” took place as part of the 2020 assembly of the Pontifical Academy for Life, which was held Feb. 26-28 [2020] on the theme of artificial intelligence.

One part of the assembly was dedicated to private meetings of the academics of the Pontifical Academy for Life. The second was a workshop on AI and ethics that drew 356 participants from 41 countries.

On the morning of Feb. 28 [2020], a public event took place called “renAIssance. For a Humanistic Artificial Intelligence” and included the signing of the AI document by Microsoft President Brad Smith, and IBM Executive Vice-president John Kelly III.

The Director General of FAO, Dongyu Qu, and politician Paola Pisano, representing the Italian government, also signed.

The president of the European Parliament, David Sassoli, was also present Feb. 28.

Pope Francis canceled his scheduled appearance at the event due to feeling unwell. His prepared remarks were read by Archbishop Vincenzo Paglia, president of the Academy for Life.

You can find Pope Francis’s comments about the document here (if you’re not comfortable reading Italian, hopefully, the English translation which follows directly afterward will be helpful). The Pope’s AI initiative has a dedicated website, Rome Call for AI ethics, and while most of the material dates from the February 2020 announcement, they are keeping up a blog. It has two entries, one dated in May 2020 and another in September 2020.

Buddhism and AI

The Dalai Lama is well known for having an interest in science and having hosted scientists for various dialogues. So, I was able to track down a November 10, 2016 article by Ariel Conn for the futureoflife.org website, which features his insights on the matter,

The question of what it means and what it takes to feel needed is an important problem for ethicists and philosophers, but it may be just as important for AI researchers to consider. The Dalai Lama argues that lack of meaning and purpose in one’s work increases frustration and dissatisfaction among even those who are gainfully employed.

“The problem,” says the Dalai Lama, “is … the growing number of people who feel they are no longer useful, no longer needed, no longer one with their societies. … Feeling superfluous is a blow to the human spirit. It leads to social isolation and emotional pain, and creates the conditions for negative emotions to take root.”

If feeling needed and feeling useful are necessary for happiness, then AI researchers may face a conundrum. Many researchers hope that job loss due to artificial intelligence and automation could, in the end, provide people with more leisure time to pursue enjoyable activities. But if the key to happiness is feeling useful and needed, then a society without work could be just as emotionally challenging as today’s career-based societies, and possibly worse.

I also found a talk on the topic by The Venerable Tenzin Priyadarshi, first here’s a description from his bio at the Dalai Lama Center for Ethics and Transformative Values webspace on the Massachusetts Institute of Technology (MIT) website,

… an innovative thinker, philosopher, educator and a polymath monk. He is Director of the Ethics Initiative at the MIT Media Lab and President & CEO of The Dalai Lama Center for Ethics and Transformative Values at the Massachusetts Institute of Technology. Venerable Tenzin’s unusual background encompasses entering a Buddhist monastery at the age of ten and receiving graduate education at Harvard University with degrees ranging from Philosophy to Physics to International Relations. He is a Tribeca Disruptive Fellow and a Fellow at the Center for Advanced Study in Behavioral Sciences at Stanford University. Venerable Tenzin serves on the boards of a number of academic, humanitarian, and religious organizations. He is the recipient of several recognitions and awards and received Harvard’s Distinguished Alumni Honors for his visionary contributions to humanity.

He gave the 2018 Roger W. Heyns Lecture in Religion and Society at Stanford University on the topic, “Religious and Ethical Dimensions of Artificial Intelligence.” The video runs over one hour but he is a sprightly speaker (in comparison to other Buddhist speakers I’ve listened to over the years).

Judaism, Islam, and other Abrahamic faiths examine AI and ethics

I was delighted to find this January 30, 2020 Artificial Intelligence: Implications for Ethics and Religion event as it brought together a range of thinkers from various faiths and disciplines,

New technologies are transforming our world every day, and the pace of change is only accelerating.  In coming years, human beings will create machines capable of out-thinking us and potentially taking on such uniquely-human traits as empathy, ethical reasoning, perhaps even consciousness.  This will have profound implications for virtually every human activity, as well as the meaning we impart to life and creation themselves.  This conference will provide an introduction for non-specialists to Artificial Intelligence (AI):

What is it?  What can it do and be used for?  And what will be its implications for choice and free will; economics and worklife; surveillance economies and surveillance states; the changing nature of facts and truth; and the comparative intelligence and capabilities of humans and machines in the future? 

Leading practitioners, ethicists and theologians will provide cross-disciplinary and cross-denominational perspectives on such challenges as technology addiction, inherent biases and resulting inequalities, the ethics of creating destructive technologies and of turning decision-making over to machines from self-driving cars to “autonomous weapons” systems in warfare, and how we should treat the suffering of “feeling” machines.  The conference ultimately will address how we think about our place in the universe and what this means for both religious thought and theological institutions themselves.

UTS [Union Theological Seminary] is the oldest independent seminary in the United States and has long been known as a bastion of progressive Christian scholarship.  JTS [Jewish Theological Seminary] is one of the academic and spiritual centers of Conservative Judaism and a major center for academic scholarship in Jewish studies. The Riverside Church is an interdenominational, interracial, international, open, welcoming, and affirming church and congregation that has served as a focal point of global and national activism for peace and social justice since its inception and continues to serve God through word and public witness. The annual Greater Good Gathering, the following week at Columbia University’s School of International & Public Affairs, focuses on how technology is changing society, politics and the economy – part of a growing nationwide effort to advance conversations promoting the “greater good.”

They have embedded a video of the event (it runs a little over seven hours) on the January 30, 2020 Artificial Intelligence: Implications for Ethics and Religion event page. For anyone who finds that a daunting amount of information, you may want to check out the speaker list for ideas about who might be writing and thinking on this topic.

As for Islam, I did track down this November 29, 2018 article by Shahino Mah Abdullah, a fellow at the Institute of Advanced Islamic Studies (IAIS) Malaysia,

As the global community continues to work together on the ethics of AI, there are still vast opportunities to offer ethical inputs, including the ethical principles based on Islamic teachings.

This is in line with Islam’s encouragement for its believers to convey beneficial messages, including to share its ethical principles with society.

In Islam, ethics or akhlak (virtuous character traits) in Arabic, is sometimes employed interchangeably in the Arabic language with adab, which means the manner, attitude, behaviour, and etiquette of putting things in their proper places. Islamic ethics cover all the legal concepts ranging from syariah (Islamic law), fiqh ( jurisprudence), qanun (ordinance), and ‘urf (customary practices).

Adopting and applying moral values based on the Islamic ethical concept or applied Islamic ethics could be a way to address various issues in today’s societies.

At the same time, this approach is in line with the higher objectives of syariah (maqasid alsyariah) that is aimed at conserving human benefit by the protection of human values, including faith (hifz al-din), life (hifz alnafs), lineage (hifz al-nasl), intellect (hifz al-‘aql), and property (hifz al-mal). This approach could be very helpful to address contemporary issues, including those related to the rise of AI and intelligent robots.

..

Part of the difficulty with tracking down more about AI, ethics, and various religions is linguistic. I simply don’t have the language skills to search for the commentaries and, even in English, I may not have the best or most appropriate search terms.

Television (TV) episodes stored on DNA?

According to a Sept. 1, 2020 news item on Nanowerk, the first episode of a tv series, ‘Biohackers’ has been stored on synthetic DNA (deoxyribonucleic acid) by a researcher at TUM and colleagues at another institution,

The first episode of the newly released series “Biohackers” was stored in the form of synthetic DNA. This was made possible by the research of Prof. Reinhard Heckel of the Technical University of Munich (TUM) and his colleague Prof. Robert Grass of ETH Zürich.

They have developed a method that permits the stable storage of large quantities of data on DNA for over 1000 years.

A Sept. 1, 2020 TUM press release, which originated the news item, proceeds with more detail in an interview format,

Prof. Heckel, Biohackers is about a medical student seeking revenge on a professor with a dark past – and the manipulation of DNA with biotechnology tools. You were commissioned to store the series on DNA. How does that work?

First, I should mention that what we’re talking about is artificially generated – in other words, synthetic – DNA. DNA consists of four building blocks: the nucleotides adenine (A), thymine (T), guanine (G) and cytosine (C). Computer data, meanwhile, are coded as zeros and ones. The first episode of Biohackers consists of a sequence of around 600 million zeros and ones. To code the sequence 01 01 11 00 in DNA, for example, we decide which number combinations will correspond to which letters. For example: 00 is A, 01 is C, 10 is G and 11 is T. Our example then produces the DNA sequence CCTA. Using this principle of DNA data storage, we have stored the first episode of the series on DNA.

And to view the series – is it just a matter of “reverse translation” of the letters?

In a very simplified sense, you can visualize it like that. When writing, storing and reading the DNA, however, errors occur. If these errors are not corrected, the data stored on the DNA will be lost. To solve the problem, I have developed an algorithm based on channel coding. This method involves correcting errors that take place during information transfers. The underlying idea is to add redundancy to the data. Think of language: When we read or hear a word with missing or incorrect letters, the computing power of our brain is still capable of understanding the word. The algorithm follows the same principle: It encodes the data with sufficient redundancy to ensure that even highly inaccurate data can be restored later.

Channel coding is used in many fields, including in telecommunications. What challenges did you face when developing your solution?

The first challenge was to create an algorithm specifically geared to the errors that occur in DNA. The second one was to make the algorithm so efficient that the largest possible quantities of data can be stored on the smallest possible quantity of DNA, so that only the absolutely necessary amount of redundancy is added. We demonstrated that our algorithm is optimized in that sense.

DNA data storage is very expensive because of the complexity of DNA production as well as the reading process. What makes DNA an attractive storage medium despite these challenges?

First, DNA has a very high information density. This permits the storage of enormous data volumes in a minimal space. In the case of the TV series, we stored “only” 100 megabytes on a picogram – or a billionth of a gram of DNA. Theoretically, however, it would be possible to store up to 200 exabytes on one gram of DNA. And DNA lasts a long time. By comparison: If you never turned on your PC or wrote data to the hard disk it contains, the data would disappear after a couple of years. By contrast, DNA can remain stable for many thousands of years if it is packed right.

And the method you have developed also makes the DNA strands durable – practically indestructible.

My colleague Robert Grass was the first to develop a process for the “stable packing” of DNA strands by encapsulating them in nanometer-scale spheres made of silica glass. This ensures that the DNA is protected against mechanical influences. In a joint paper in 2015, we presented the first robust DNA data storage concept with our algorithm and the encapsulation process developed by Prof. Grass. Since then we have continuously improved our method. In our most recent publication in Nature Protocols of January 2020, we passed on what we have learned.

What are your next steps? Does data storage on DNA have a future?

We’re working on a way to make DNA data storage cheaper and faster. “Biohackers” was a milestone en route to commercialization. But we still have a long way to go. If this technology proves successful, big things will be possible. Entire libraries, all movies, photos, music and knowledge of every kind – provided it can be represented in the form of data – could be stored on DNA and would thus be available to humanity for eternity.

Here’s a link to and a citation for the paper,

Reading and writing digital data in DNA by Linda C. Meiser, Philipp L. Antkowiak, Julian Koch, Weida D. Chen, A. Xavier Kohll, Wendelin J. Stark, Reinhard Heckel & Robert N. Grass. Nature Protocols volume 15, pages86–101(2020) Issue Date: January 2020 DOI: https://doi.org/10.1038/s41596-019-0244-5 Published [online] 29 November 2019

This paper is behind a paywall.

As for ‘Biohackers’, it’s a German science fiction television series and you can find out more about it here on the Internet Movie Database.

New capacitor for better wearable electronics?

Supercapacitors are a predictable source of scientific interest and excitement. The latest entry in the ‘supercapacitor stakes’ is from a Russian/Finnish/US team according to a June 11, 2020 Skoltech (Skolkovo Institute of Science and Technology) press release (also on EurekAlert),

Researchers from Skoltech [Russia], Aalto University [Finland] and Massachusetts Institute of Technology [MIT; US] have designed a high-performance, low-cost, environmentally friendly, and stretchable supercapacitor that can potentially be used in wearable electronics. The paper was published in the Journal of Energy Storage.

Supercapacitors, with their high power density, fast charge-discharge rates, long cycle life, and cost-effectiveness, are a promising power source for everything from mobile and wearable electronics to electric vehicles. However, combining high energy density, safety, and eco-friendliness in one supercapacitor suitable for small devices has been rather challenging.

“Usually, organic solvents are used to increase the energy density. These are hazardous, not environmentally friendly, and they reduce the power density compared to aqueous electrolytes with higher conductivity,” says Professor Tanja Kallio from Aalto University, a co-author of the paper.

The researchers proposed a new design for a “green” and simple-to-fabricate supercapacitor. It consists of a solid-state material based on nitrogen-doped graphene flake electrodes distributed in the NaCl-containing hydrogel electrolyte. This structure is sandwiched between two single-walled carbon nanotube film current collectors, which provides stretchability. Hydrogel in the supercapacitor design enables compact packing and high energy density and allows them to use the environmentally friendly electrolyte.

The scientists managed to improve the volumetric capacitive performance, high energy density and power density for the prototype over analogous supercapacitors described in previous research. “We fabricated a prototype with unchanged performance under the 50% strain after a thousand stretching cycles. To ensure lower cost and better environmental performance, we used a NaCl-based electrolyte. Still the fabrication cost can be lowered down by implementation of 3D printing or other advanced fabrication techniques,” concluded Skoltech professor Albert Nasibulin.

Here’s a link to and a citation for the paper,

Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes by Evgeniia Gilshtein, Cristina Flox, Farhan S.M. Ali, Bahareh Mehrabimatin, Fedor S.Fedorov, Shaoting Lin, Xuanhe Zhao, Albert G. Nasibulin, Tanja Kallio. Journal of Energy Storage Volume 30, August 2020, 101505 DOI: https://doi.org/10.1016/j.est.2020.101505

This paper is behind a paywall.

I’m trying to remember if I’ve ever before seen a material that combines graphene and single-walled carbon nanotubes (SWCNTs). Anyway, here’s an image the researchers are using illustrate their work,

Caption: This is an outline of the new supercapacitor. Credit: Pavel Odinev / Skoltech

Living with a mind-controlled prosthetic

This could be described as the second half of an October 10, 2014 post (Mind-controlled prostheses ready for real world activities). Five and a half years later, Sweden’s Chalmers University of Technology has announced mind-controlled prosthetics in daily use that feature the sense of touch. From an April 30, 2020 Chalmers University of Technology press release (also on EurekAlert but published April 29, 2020) by Johanna Wilde,

For the first time, people with arm amputations can experience sensations of touch in a mind-controlled arm prosthesis that they use in everyday life. A study in the New England Journal of Medicine reports on three Swedish patients who have lived, for several years, with this new technology – one of the world’s most integrated interfaces between human and machine.

See the film: “The most natural robotic prosthesis in the world” [Should you not have Swedish language skills, you can click on the subtitle option in the video’s settings field]

The advance is unique: the patients have used a mind-controlled prosthesis in their everyday life for up to seven years. For the last few years, they have also lived with a new function – sensations of touch in the prosthetic hand. This is a new concept for artificial limbs, which are called neuromusculoskeletal prostheses – as they are connected to the user’s nerves, muscles, and skeleton.

The research was led by Max Ortiz Catalan, Associate Professor at Chalmers University of Technology, in collaboration with Sahlgrenska University Hospital, University of Gothenburg, and Integrum AB, all in Gothenburg, Sweden. Researchers at Medical University of Vienna in Austria and the Massachusetts Institute of Technology in the USA were also involved.

“Our study shows that a prosthetic hand, attached to the bone and controlled by electrodes implanted in nerves and muscles, can operate much more precisely than conventional prosthetic hands. We further improved the use of the prosthesis by integrating tactile sensory feedback that the patients use to mediate how hard to grab or squeeze an object. Over time, the ability of the patients to discern smaller changes in the intensity of sensations has improved,” says Max Ortiz Catalan.

“The most important contribution of this study was to demonstrate that this new type of prosthesis is a clinically viable replacement for a lost arm. No matter how sophisticated a neural interface becomes, it can only deliver real benefit to patients if the connection between the patient and the prosthesis is safe and reliable in the long term. Our results are the product of many years of work, and now we can finally present the first bionic arm prosthesis that can be reliably controlled using implanted electrodes, while also conveying sensations to the user in everyday life”, continues Max Ortiz Catalan.

Since receiving their prostheses, the patients have used them daily in all their professional and personal activities.

The new concept of a neuromusculoskeletal prosthesis is unique in that it delivers several different features which have not been presented together in any other prosthetic technology in the world:

[1] It has a direct connection to a person’s nerves, muscles, and skeleton.

[2] It is mind-controlled and delivers sensations that are perceived by the user as arising from the missing hand.

[3] It is self-contained; all electronics needed are contained within the prosthesis, so patients do not need to carry additional equipment or batteries.

[4] It is safe and stable in the long term; the technology has been used without interruption by patients during their everyday activities, without supervision from the researchers, and it is not restricted to confined or controlled environments.

The newest part of the technology, the sensation of touch, is possible through stimulation of the nerves that used to be connected to the biological hand before the amputation. Force sensors located in the thumb of the prosthesis measure contact and pressure applied to an object while grasping. This information is transmitted to the patients’ nerves leading to their brains. Patients can thus feel when they are touching an object, its characteristics, and how hard they are pressing it, which is crucial for imitating a biological hand.

“Currently, the sensors are not the obstacle for restoring sensation,” says Max Ortiz Catalan. “The challenge is creating neural interfaces that can seamlessly transmit large amounts of artificially collected information to the nervous system, in a way that the user can experience sensations naturally and effortlessly.”
The implantation of this new technology took place at Sahlgrenska University Hospital, led by Professor Rickard Brånemark and Doctor Paolo Sassu. Over a million people worldwide suffer from limb loss, and the end goal for the research team, in collaboration with Integrum AB, is to develop a widely available product suitable for as many of these people as possible.

“Right now, patients in Sweden are participating in the clinical validation of this new prosthetic technology for arm amputation,” says Max Ortiz Catalan. “We expect this system to become available outside Sweden within a couple of years, and we are also making considerable progress with a similar technology for leg prostheses, which we plan to implant in a first patient later this year.”

More about: How the technology works:

The implant system for the arm prosthesis is called e-OPRA and is based on the OPRA implant system created by Integrum AB. The implant system anchors the prosthesis to the skeleton in the stump of the amputated limb, through a process called osseointegration (osseo = bone). Electrodes are implanted in muscles and nerves inside the amputation stump, and the e-OPRA system sends signals in both directions between the prosthesis and the brain, just like in a biological arm.

The prosthesis is mind-controlled, via the electrical muscle and nerve signals sent through the arm stump and captured by the electrodes. The signals are passed into the implant, which goes through the skin and connects to the prosthesis. The signals are then interpreted by an embedded control system developed by the researchers. The control system is small enough to fit inside the prosthesis and it processes the signals using sophisticated artificial intelligence algorithms, resulting in control signals for the prosthetic hand’s movements.

The touch sensations arise from force sensors in the prosthetic thumb. The signals from the sensors are converted by the control system in the prosthesis into electrical signals which are sent to stimulate a nerve in the arm stump. The nerve leads to the brain, which then perceives the pressure levels against the hand.

The neuromusculoskeletal implant can connect to any commercially available arm prosthesis, allowing them to operate more effectively.

More about: How the artificial sensation is experienced:

People who lose an arm or leg often experience phantom sensations, as if the missing body part remains although not physically present. When the force sensors in the prosthetic thumb react, the patients in the study feel that the sensation comes from their phantom hand. Precisely where on the phantom hand varies between patients, depending on which nerves in the stump receive the signals. The lowest level of pressure can be compared to touching the skin with the tip of a pencil. As the pressure increases, the feeling becomes stronger and increasingly ‘electric’.

I have read elsewhere that one of the most difficult aspects of dealing with a prosthetic is the loss of touch. This has to be exciting news for a lot of people. Here’s a link to and a citation for the paper,

Self-Contained Neuromusculoskeletal Arm Prostheses by Max Ortiz-Catalan, Enzo Mastinu, Paolo Sassu, Oskar Aszmann, and Rickard Brånemark. N Engl J Med 2020; 382:1732-1738 DOI: 10.1056/NEJMoa1917537 Published: April 30, 2020

This paper is behind a paywall.

MIT Media Lab releases new educational site for kids K-12: it’s all about artificial intelligence (AI)

Mark Wilson announces a timely new online programme from the Massachusetts Institute of Technology (MIT) in his April 9, 2020 article for Fast Company (Note: Links have been removed).

Not every child will grow up to attend MIT, but that doesn’t mean they can’t get a jump start on its curriculum. In response to the COVID-19 pandemic, which has forced millions of students to learn from home, MIT Media Lab associate professor Cynthia Breazeal has released [April 7, 2020] a website for K-12 students to learn about one of the most important topics in STEM [science, technology, engineering, and mathematics]: artificial intelligence.

The site provides 60 activities, lesson plans, and links to interactive AI experiments that MIT and companies like Google have developed in the past. Projects include coding robots to doodle, developing an image classifier (a tool that can identify images), writing speculative fiction to tackle the murky ethics of AI, and developing a chatbot (your grade schooler cannot possibly be worse at that task than I was). Everything is free, but schools are supposed to license lesson plans from MIT before adopting them.

Various associated MIT groups are covering a wide range of topics including the already mentioned AI ethics, as well as, cyber security and privacy issues, creativity, and more. Here’s a little something from a programme for the Girl Scouts of America, which focused on data privacy and tech policy,

The Girl Scouts awarded the Brownie (7-9) and Junior (9-11) troops with Cybersecurity badges at the end of the full event. 
Credit: Daniella DiPaola [downloaded from https://www.media.mit.edu/posts/data-privacy-policy-to-practice-with-the-girl-scouts/]

You can find MIT’s AI education website here. While the focus is largely on children, it seems they are inviting adults to participate as well. At least that’s what I infer from what one of the groups associated with this AI education website, the LifeLong Kindergarten group states on their webpage,

The Lifelong Kindergarten group develops new technologies and activities that, in the spirit of the blocks and finger paint of kindergarten, engage people in creative learning experiences. Our ultimate goal is to foster a world full of playfully creative people, who are constantly inventing new possibilities for themselves and their communities.

The website is a little challenging with regard to navigation but perhaps these links to the Research Projects page will help you get started quickly or, for those who like to investigate a little further before jumping in, this News page (which is a blog) might prove helpful.

That’s it for today. I wish everyone a peaceful long weekend while we all observe as joyfully and carefully as possible our various religious and seasonal traditions. From my tradition to yours, Joyeuses Pâques!