Monthly Archives: October 2016

Dr. Frankenstein and competitive exclusion

A promotional photo of Boris Karloff as Frankenstein's monster, using Jack Pierce's makeup design. Credit:: Universal Studios

A promotional photo of Boris Karloff as Frankenstein’s monster, using Jack Pierce’s makeup design. Credit:: Universal Studios

An Oct. 28, 2016 news item on phys.org provides some new insight into the ‘Frankenstein story’ and its perspective on science,

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley’s 1818 novel, “Frankenstein.” Widely considered the first work of science fiction for exploring the destructive consequences of scientific and moral transgressions, a new study published in BioScience argues that the horror of Mary Shelley’s gothic novel is rooted in a fundamental principle of biology.

The co-authors point to a pivotal scene when the Creature encounters Victor Frankenstein and requests a female companion to mitigate his loneliness. The Creature distinguishes his dietary needs from those of humans and expresses a willingness to inhabit the “wilds of South America,” suggesting distinct ecological requirements. Frankenstein concedes to this reasoning given that humans would have few competitive interactions with a pair of isolated creatures, but he then reverses his decision after considering the creatures’ reproductive potential and the probability of human extinction, a concept termed competitive exclusion. In essence, Frankenstein was saving humankind.

An Oct. 28, 2016 Dartmouth College news release (also on EurekAlert) by Amy Olson, which originated the news item, describes the co-authors and the research in more detail (Note: Links have been removed),

A study co-authored by Dartmouth’s Nathaniel Dominy casts a new light on the story of Frankenstein’s monster, who lives on in the public imagination in stories, in movies, and of course, on Halloween.

Mary Shelley’s gothic novel is rooted in a fundamental principle of biology, and its horror lies in the specter of the extinction of the human race, say Dominy, a professor of anthropology, and his coauthor, Justin Yeakel.

“The principle of competitive exclusion was not formally defined until the 1930s,” says Dominy. “Given Shelley’s early command of this foundational concept, we used computational tools developed by ecologists to explore if, and how quickly, an expanding population of creatures would drive humans to extinction.”

The authors developed a mathematical model based on human population densities in 1816, finding that the competitive advantages of creatures varied under different circumstances. The worst-case scenario for humans was a growing population of creatures in South America, as it was a region with fewer humans and therefore less competition for resources.

“We calculated that a founding population of two creatures could drive us to extinction in as little as 4,000 years,” says Dominy. Although the study is merely a thought experiment, it casts new light on the underlying horror of the novel: the extinction of the human race. It also has real-word implications for how we understand the biology of invasive species.

“To date, most scholars have focused on Mary Shelley’s knowledge of then-prevailing views on alchemy, physiology, and resurrection; however, the genius of Mary Shelley lies in how she combined and repackaged existing scientific debates to invent the genre of science fiction,” says Justin D. Yeakel, an Omidyar fellow at the Santa Fe Institute and an assistant professor in the School of Natural Sciences at the University of California, Merced.

“Our study adds to Mary Shelley’s legacy, by showing that her science fiction accurately anticipated fundamental concepts in ecology and evolution by many decades,” he says.

Here’s a link to and a citation for the paper,

Frankenstein and the Horrors of Competitive Exclusion by Nathaniel J. Dominy and Justin D. Yeakel.  BioScience (2016) doi: 10.1093/biosci/biw133 First published online: October 28, 2016

This paper is behind a paywall.

Brain and machine as one (machine/flesh)

The essay on brains and machines becoming intertwined is making the rounds. First stop on my tour was its Oct. 4, 2016 appearance on the Mail & Guardian, then there was its Oct. 3, 2016 appearance on The Conversation, and finally (moving forward in time) there was its Oct. 4, 2016 appearance on the World Economic Forum website as part of their Final Frontier series.

The essay was written by Richard Jones of Sheffield University (mentioned here many times before but most recently in a Sept. 4, 2014 posting). His book ‘Soft Machines’ provided me with an important and eminently readable introduction to nanotechnology. He is a professor of physics at the University of Sheffield and here’s more from his essay (Oct. 3, 2016 on The Conversation) about brains and machines (Note: Links have been removed),

Imagine a condition that leaves you fully conscious, but unable to move or communicate, as some victims of severe strokes or other neurological damage experience. This is locked-in syndrome, when the outward connections from the brain to the rest of the world are severed. Technology is beginning to promise ways of remaking these connections, but is it our ingenuity or the brain’s that is making it happen?

Ever since an 18th-century biologist called Luigi Galvani made a dead frog twitch we have known that there is a connection between electricity and the operation of the nervous system. We now know that the signals in neurons in the brain are propagated as pulses of electrical potential, whose effects can be detected by electrodes in close proximity. So in principle, we should be able to build an outward neural interface system – that is to say, a device that turns thought into action.

In fact, we already have the first outward neural interface system to be tested in humans. It is called BrainGate and consists of an array of micro-electrodes, implanted into the part of the brain concerned with controlling arm movements. Signals from the micro-electrodes are decoded and used to control the movement of a cursor on a screen, or the motion of a robotic arm.

A crucial feature of these systems is the need for some kind of feedback. A patient must be able to see the effect of their willed patterns of thought on the movement of the cursor. What’s remarkable is the ability of the brain to adapt to these artificial systems, learning to control them better.

You can find out more about BrainGate in my May 17, 2012 posting which also features a video of a woman controlling a mechanical arm so she can drink from a cup coffee by herself for the first time in 15 years.

Jones goes on to describe the cochlear implants (although there’s no mention of the controversy; not everyone believes they’re a good idea) and retinal implants that are currently available. Jones notes this (Note Links have been removed),

The key message of all this is that brain interfaces now are a reality and that the current versions will undoubtedly be improved. In the near future, for many deaf and blind people, for people with severe disabilities – including, perhaps, locked-in syndrome – there are very real prospects that some of their lost capabilities might be at least partially restored.

Until then, our current neural interface systems are very crude. One problem is size; the micro-electrodes in use now, with diameters of tens of microns, may seem tiny, but they are still coarse compared to the sub-micron dimensions of individual nerve fibres. And there is a problem of scale. The BrainGate system, for example, consists of 100 micro-electrodes in a square array; compare that to the many tens of billions of neurons in the brain. The fact these devices work at all is perhaps more a testament to the adaptability of the human brain than to our technological prowess.

Scale models

So the challenge is to build neural interfaces on scales that better match the structures of biology. Here, we move into the world of nanotechnology. There has been much work in the laboratory to make nano-electronic structures small enough to read out the activity of a single neuron. In the 1990s, Peter Fromherz, at the Max Planck Institute for Biochemistry, was a pioneer of using silicon field effect transistors, similar to those used in commercial microprocessors, to interact with cultured neurons. In 2006, Charles Lieber’s group at Harvard succeeded in using transistors made from single carbon nanotubes – whiskers of carbon just one nanometer in diameter – to measure the propagation of single nerve pulses along the nerve fibres.

But these successes have been achieved, not in whole organisms, but in cultured nerve cells which are typically on something like the surface of a silicon wafer. It’s going to be a challenge to extend these methods into three dimensions, to interface with a living brain. Perhaps the most promising direction will be to create a 3D “scaffold” incorporating nano-electronics, and then to persuade growing nerve cells to infiltrate it to create what would in effect be cyborg tissue – living cells and inorganic electronics intimately mixed.

I have featured Charles Lieber and his work here in two recent posts: ‘Bionic’ cardiac patch with nanoelectric scaffolds and living cells on July 11, 2016 and Long-term brain mapping with injectable electronics on Sept. 22, 2016.

For anyone interested in more about the controversy regarding cochlear implants, there’s this page on the Brown University (US) website. You might also want to check out Gregor Wolbring (professor at the University of Calgary) who has written extensively on the concept of ableism (links to his work can be found at the end of this post). I have excerpted from an Aug. 30, 2011 post the portion where Gregor defines ‘ableism’,

From Gregor’s June 17, 2011 posting on the FedCan blog,

The term ableism evolved from the disabled people rights movements in the United States and Britain during the 1960s and 1970s.  It questions and highlights the prejudice and discrimination experienced by persons whose body structure and ability functioning were labelled as ‘impaired’ as sub species-typical. Ableism of this flavor is a set of beliefs, processes and practices, which favors species-typical normative body structure based abilities. It labels ‘sub-normative’ species-typical biological structures as ‘deficient’, as not able to perform as expected.

The disabled people rights discourse and disability studies scholars question the assumption of deficiency intrinsic to ‘below the norm’ labeled body abilities and the favoritism for normative species-typical body abilities. The discourse around deafness and Deaf Culture would be one example where many hearing people expect the ability to hear. This expectation leads them to see deafness as a deficiency to be treated through medical means. In contrast, many Deaf people see hearing as an irrelevant ability and do not perceive themselves as ill and in need of gaining the ability to hear. Within the disabled people rights framework ableism was set up as a term to be used like sexism and racism to highlight unjust and inequitable treatment.

Ableism is, however, much more pervasive.

You can find out more about Gregor and his work here: http://www.crds.org/research/faculty/Gregor_Wolbring2.shtml or here:
https://www.facebook.com/GregorWolbring.

‘Seamless’ bioeletronics made possible with protein bridge

For some years now I’ve been tagging certain posts with ‘machine/flesh’ as more bioelectronic devices are being invented for use as implants of various kinds.

Researchers at the University of Washington (state) have found a means of making bioelectronics implants a more comfortable fit in the body according to an Oct. 4, 2016 news item on phys.org,

Life has always played by its own set of molecular rules. From the biochemistry behind the first cells, evolution has constructed wonders like hard bone, rough bark and plant enzymes that harvest light to make food.

But our tools for manipulating life—to treat disease, repair damaged tissue and replace lost limbs—come from the nonliving realm: metals, plastics and the like. Though these save and preserve lives, our synthetic treatments are rooted in a chemical language ill-suited to our organic elegance. Implanted electrodes scar, wires overheat and our bodies struggle against ill-fitting pumps, pipes or valves.

A solution lies in bridging this gap where artificial meets biological—harnessing biological rules to exchange information between the biochemistry of our bodies and the chemistry of our devices. In a paper published Sept. 22 [2016] in Scientific Reports, engineers at the University of Washington unveiled peptides—small proteins which carry out countless essential tasks in our cells—that can provide just such a link.

An Oct. 3, 2016 University of Washington (state) news release (also on EurekAlert), which originated the news item, expands on the theme,

The team, led by UW professor Mehmet Sarikaya in the Departments of Materials Science & Engineering, shows how a genetically engineered peptide can assemble into nanowires atop 2-D, solid surfaces that are just a single layer of atoms thick. These nanowire assemblages are critical because the peptides relay information across the bio/nano interface through molecular recognition — the same principles that underlie biochemical interactions such as an antibody binding to its specific antigen or protein binding to DNA.

Since this communication is two-way, with peptides understanding the “language” of technology and vice versa, their approach essentially enables a coherent bioelectronic interface.

“Bridging this divide would be the key to building the genetically engineered biomolecular solid-state devices of the future,” said Sarikaya, who is also a professor of chemical engineering and oral health sciences.

His team in the UW Genetically Engineered Materials Science and Engineering Center studies how to coopt the chemistry of life to synthesize materials with technologically significant physical, electronic and photonic properties. To Sarikaya, the biochemical “language” of life is a logical emulation.

“Nature must constantly make materials to do many of the same tasks we seek,” he said.

The UW team wants to find genetically engineered peptides with specific chemical and structural properties. They sought out a peptide that could interact with materials such as gold, titanium and even a mineral in bone and teeth. These could all form the basis of future biomedical and electro-optical devices. Their ideal peptide should also change the physical properties of synthetic materials and respond to that change. That way, it would transmit “information” from the synthetic material to other biomolecules — bridging the chemical divide between biology and technology.

In exploring the properties of 80 genetically selected peptides — which are not found in nature but have the same chemical components of all proteins — they discovered that one, GrBP5, showed promising interactions with the semimetal graphene. They then tested GrBP5’s interactions with several 2-D nanomaterials which, Sarikaya said, “could serve as the metals or semiconductors of the future.”

“We needed to know the specific molecular interactions between this peptide and these inorganic solid surfaces,” he added.

Their experiments revealed that GrBP5 spontaneously organized into ordered nanowire patterns on graphene. With a few mutations, GrBP5 also altered the electrical conductivity of a graphene-based device, the first step toward transmitting electrical information from graphene to cells via peptides.

In parallel, Sarikaya’s team modified GrBP5 to produce similar results on a semiconductor material — molybdenum disulfide — by converting a chemical signal to an optical signal. They also computationally predicted how different arrangements of GrBP5 nanowires would affect the electrical conduction or optical signal of each material, showing additional potential within GrBP5’s physical properties.

“In a way, we’re at the flood gates,” said Sarikaya. “Now we need to explore the basic properties of this bridge and how we can modify it to permit the flow of ‘information’ from electronic and photonic devices to biological systems.”

Here’s a link to and a citation for the paper,

Bioelectronic interfaces by spontaneously organized peptides on 2D atomic single layer materials by Yuhei Hayamizu, Christopher R. So, Sefa Dag, Tamon S. Page, David Starkebaum, & Mehmet Sarikaya. Scientific Reports 6, Article number: 33778 (2016) doi:10.1038/srep33778 Published online: 22 September 2016

This paper is open access.

This image illustrates the GrBP5 nanowires,

A top view image of GrBP5 nanowires on a 2-D surface of molybdenum disulfide.Mehmet Sarikaya/Scientific Reports

A top view image of GrBP5 nanowires on a 2-D surface of molybdenum disulfide.Mehmet Sarikaya/Scientific Reports

Glucose-sensing contact lens invented by US and Korean researchers

Blood tests for glucose levels may one day be a feature of the past according to an Oct. 3, 2016 news item on ScienceDaily,

Blood testing is the standard option for checking glucose levels, but a new technology could allow non-invasive testing via a contact lens that samples glucose levels in tears.

“There’s no noninvasive method to do this,” said Wei-Chuan Shih, a researcher with the University of Houston [UH] who worked with colleagues at UH and in Korea to develop the project, described in the high-impact journal Advanced Materials. “It always requires a blood draw. This is unfortunately the state of the art.”

A Sept. 27, 2016 UH news release (also on EurekAlert) by Jeannie Kever, which originated the news item, describes the proposed technology,

… glucose is a good target for optical sensing, and especially for what is known as surface-enhanced Raman scattering spectroscopy [also known as surface-enhanced Raman scattering or surface-enhanced Raman spectroscopy, and SERS], said Shih, an associate professor of electrical and computer engineering whose lab, the NanoBioPhotonics Group, works on optical biosensing enabled by nanoplasmonics.

This is an alternative approach, in contrast to a Raman spectroscopy-based noninvasive glucose sensor Shih developed as a Ph.D. student at the Massachusetts Institute of Technology. He holds two patents for technologies related to directly probing skin tissue using laser light to extract information about glucose concentrations.

The paper describes the development of a tiny device, built from multiple layers of gold nanowires stacked on top of a gold film and produced using solvent-assisted nanotransfer printing, which optimized the use of surface-enhanced Raman scattering to take advantage of the technique’s ability to detect small molecular samples.

Surface-enhanced Raman scattering – named for Indian physicist C.V. Raman [Raman scattering; SERS history begins in 1973 according to its Wikipedia entry], who discovered the effect in 1928 – uses information about how light interacts with a material to determine properties of the molecules that make up the material.

The device enhances the sensing properties of the technique by creating “hot spots,” or narrow gaps within the nanostructure which intensified the Raman signal, the researchers said.

Researchers created the glucose sensing contact lens to demonstrate the versatility of the technology. The contact lens concept isn’t unheard of – Google has submitted a patent for a multi-sensor contact lens, which the company says can also detect glucose levels in tears – but the researchers say this technology would also have a number of other applications.

“It should be noted that glucose is present not only in the blood but also in tears, and thus accurate monitoring of the glucose level in human tears by employing a contact-lens-type sensor can be an alternative approach for noninvasive glucose monitoring,” the researchers wrote.

“Everyone knows tears have a lot to mine,” Shih said. “The question is, whether you have a detector that is capable of mining it, and how significant is it for real diagnostics.”

In addition to Shih, authors on the paper include Yeon Sik Jung, Jae Won Jeong and Kwang-Min Baek, all with the Korea Advanced Institute of Science and Technology; Seung Yong Lee of the Korea Institute of Science and Technology, and Md Masud Parvez Arnob of UH.

Although non-invasive glucose sensing is just one potential application of the technology, Shih said it provided a good way to prove the technology. “It’s one of the grand challenges to be solved,” he said. “It’s a needle in a haystack challenge.”

Scientists know that glucose is present in tears, but Shih said how tear glucose levels correlate with blood glucose levels hasn’t been established. The more important finding, he said, is that the structure is an effective mechanism for using surface-enhanced Raman scattering spectroscopy.

Although traditional nanofabrication techniques rely on a hard substrate – usually glass or a silicon wafer – Shih said researchers wanted a flexible nanostructure, which would be more suited to wearable electronics. The layered nanoarray was produced on a hard substrate but lifted off and printed onto a soft contact, he said.

Here’s a link to and a citation for the paper,

Wafer Scale Phase-Engineered 1T- and 2H-MoSe2/Mo Core–Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction by Yindong Qu, Henry Medina, Sheng-Wen Wang, Yi-Chung Wang, Chia-Wei Chen, Teng-Yu Su, Arumugam Manikandan, Kuangye Wang, Yu-Chuan Shih, Je-Wei Chang, Hao-Chung Kuo, Chi-Yung Lee, Shih-Yuan Lu, Guozhen Shen, Zhiming M. Wang, and Yu-Lun Chueh. Advanced Materials DOI: 10.1002/adma.201602697 Version of Record online: 26 SEP 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Mimicking rain and sun to test plastic for nanoparticle release

One of Canada’s nanotechnology experts once informed a House of Commons Committee on Health that nanoparticles encased in plastic (he was talking about cell phones) weren’t likely to harm you except in two circumstances (when workers were using them in the manufacturing process and when the product was being disposed of). Apparently, under some circumstances, that isn’t true any more. From a Sept. 30, 2016 news item on Nanowerk,

If the 1967 film “The Graduate” were remade today, Mr. McGuire’s famous advice to young Benjamin Braddock would probably be updated to “Plastics … with nanoparticles.” These days, the mechanical, electrical and durability properties of polymers—the class of materials that includes plastics—are often enhanced by adding miniature particles (smaller than 100 nanometers or billionths of a meter) made of elements such as silicon or silver. But could those nanoparticles be released into the environment after the polymers are exposed to years of sun and water—and if so, what might be the health and ecological consequences?

A Sept. 30, 2016 US National Institute of Standards and Technology (NIST) news release, which originated the news item, describes how the research was conducted and its results (Note: Links have been removed),

In a recently published paper (link is external), researchers from the National Institute of Standards and Technology (NIST) describe how they subjected a commercial nanoparticle-infused coating to NIST-developed methods for accelerating the effects of weathering from ultraviolet (UV) radiation and simulated washings of rainwater. Their results indicate that humidity and exposure time are contributing factors for nanoparticle release, findings that may be useful in designing future studies to determine potential impacts.

In their recent experiment, the researchers exposed multiple samples of a commercially available polyurethane coating containing silicon dioxide nanoparticles to intense UV radiation for 100 days inside the NIST SPHERE (Simulated Photodegradation via High-Energy Radiant Exposure), a hollow, 2-meter (7-foot) diameter black aluminum chamber lined with highly UV reflective material that bears a casual resemblance to the Death Star in the film “Star Wars.” For this study, one day in the SPHERE was equivalent to 10 to 15 days outdoors. All samples were weathered at a constant temperature of 50 degrees Celsius (122 degrees Fahrenheit) with one group done in extremely dry conditions (approximately 0 percent humidity) and the other in humid conditions (75 percent humidity).

To determine if any nanoparticles were released from the polymer coating during UV exposure, the researchers used a technique they created and dubbed “NIST simulated rain.” Filtered water was converted into tiny droplets, sprayed under pressure onto the individual samples, and then the runoff—with any loose nanoparticles—was collected in a bottle. This procedure was conducted at the beginning of the UV exposure, at every two weeks during the weathering run and at the end. All of the runoff fluids were then analyzed by NIST chemists for the presence of silicon and in what amounts. Additionally, the weathered coatings were examined with atomic force microscopy (AFM) and scanning electron microscopy (SEM) to reveal surface changes resulting from UV exposure.

Both sets of coating samples—those weathered in very low humidity and the others in very humid conditions—degraded but released only small amounts of nanoparticles. The researchers found that more silicon was recovered from the samples weathered in humid conditions and that nanoparticle release increased as the UV exposure time increased. Microscopic examination showed that deformations in the coating surface became more numerous with longer exposure time, and that nanoparticles left behind after the coating degraded often bound together in clusters.

“These data, and the data from future experiments of this type, are valuable for developing computer models to predict the long-term release of nanoparticles from commercial coatings used outdoors, and in turn, help manufacturers, regulatory officials and others assess any health and environmental impacts from them,” said NIST research chemist Deborah Jacobs, lead author on the study published in the Journal of Coatings Technology and Research (link is external).

Here’s a link to and a citation for the paper,

Surface degradation and nanoparticle release of a commercial nanosilica/polyurethane coating under UV exposure by Deborah S. Jacobs, Sin-Ru Huang, Yu-Lun Cheng, Savelas A. Rabb, Justin M. Gorham, Peter J. Krommenhoek, Lee L. Yu, Tinh Nguyen, Lipiin Sung. J Coat Technol Res (2016) 13: 735. doi:10.1007/s11998-016-9796-2 First published online 13 July 2016

This paper is behind a paywall.

For anyone interested in the details about the House of Commons nano story I told at the start of this post, here’s the June 23, 2010 posting where I summarized the hearing on nanotechnology. If you scroll down about 50% of the way, you’ll find Dr. Nils Petersen’s (then director of Canada’s National Institute of Nanotechnology) comments about nanoparticles being encased. The topic had been nanosunscreens and he was describing the conditions under which he believed nanoparticles could be dangerous.

A new memristor circuit

Apparently engineers at the University of Massachusetts at Amherst have developed a new kind of memristor. A Sept. 29, 2016 news item on Nanowerk makes the announcement (Note: A link has been removed),

Engineers at the University of Massachusetts Amherst are leading a research team that is developing a new type of nanodevice for computer microprocessors that can mimic the functioning of a biological synapse—the place where a signal passes from one nerve cell to another in the body. The work is featured in the advance online publication of Nature Materials (“Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing”).

Such neuromorphic computing in which microprocessors are configured more like human brains is one of the most promising transformative computing technologies currently under study.

While it doesn’t sound different from any other memristor, that’s misleading. Do read on. A Sept. 27, 2016 University of Massachusetts at Amherst news release, which originated the news item, provides more detail about the researchers and the work,

J. Joshua Yang and Qiangfei Xia are professors in the electrical and computer engineering department in the UMass Amherst College of Engineering. Yang describes the research as part of collaborative work on a new type of memristive device.

Memristive devices are electrical resistance switches that can alter their resistance based on the history of applied voltage and current. These devices can store and process information and offer several key performance characteristics that exceed conventional integrated circuit technology.

“Memristors have become a leading candidate to enable neuromorphic computing by reproducing the functions in biological synapses and neurons in a neural network system, while providing advantages in energy and size,” the researchers say.

Neuromorphic computing—meaning microprocessors configured more like human brains than like traditional computer chips—is one of the most promising transformative computing technologies currently under intensive study. Xia says, “This work opens a new avenue of neuromorphic computing hardware based on memristors.”

They say that most previous work in this field with memristors has not implemented diffusive dynamics without using large standard technology found in integrated circuits commonly used in microprocessors, microcontrollers, static random access memory and other digital logic circuits.

The researchers say they proposed and demonstrated a bio-inspired solution to the diffusive dynamics that is fundamentally different from the standard technology for integrated circuits while sharing great similarities with synapses. They say, “Specifically, we developed a diffusive-type memristor where diffusion of atoms offers a similar dynamics [?] and the needed time-scales as its bio-counterpart, leading to a more faithful emulation of actual synapses, i.e., a true synaptic emulator.”

The researchers say, “The results here provide an encouraging pathway toward synaptic emulation using diffusive memristors for neuromorphic computing.”

Here’s a link to and a citation for the paper,

Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing by Zhongrui Wang, Saumil Joshi, Sergey E. Savel’ev, Hao Jiang, Rivu Midya, Peng Lin, Miao Hu, Ning Ge, John Paul Strachan, Zhiyong Li, Qing Wu, Mark Barnell, Geng-Lin Li, Huolin L. Xin, R. Stanley Williams [emphasis mine], Qiangfei Xia, & J. Joshua Yang. Nature Materials (2016) doi:10.1038/nmat4756 Published online 26 September 2016

This paper is behind a paywall.

I’ve emphasized R. Stanley Williams’ name as he was the lead researcher on the HP Labs team that proved Leon Chua’s 1971 theory about the memristor and exerted engineering control of the memristor in 2008. (Bernard Widrow, in the 1960s,  predicted and proved the existence of something he termed a ‘memistor’. Chua arrived at his ‘memristor’ theory independently.)

Austin Silver in a Sept. 29, 2016 posting on The Human OS blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) delves into this latest memristor research (Note: Links have been removed),

In research published in Nature Materials on 26 September [2016], Yang and his team mimicked a crucial underlying component of how synaptic connections get stronger or weaker: the flow of calcium.

The movement of calcium into or out of the neuronal membrane, neuroscientists have found, directly affects the connection. Chemical processes move the calcium in and out— triggering a long-term change in the synapses’ strength. 2015 research in ACS NanoLetters and Advanced Functional Materials discovered that types of memristors can simulate some of the calcium behavior, but not all.

In the new research, Yang combined two types of memristors in series to create an artificial synapse. The hybrid device more closely mimics biological synapse behavior—the calcium flow in particular, Yang says.

The new memristor used–called a diffusive memristor because atoms in the resistive material move even without an applied voltage when the device is in the high resistance state—was a dielectic film sandwiched between Pt [platinum] or Au [gold] electrodes. The film contained Ag [silver] nanoparticles, which would play the role of calcium in the experiments.

By tracking the movement of the silver nanoparticles inside the diffusive memristor, the researchers noticed a striking similarity to how calcium functions in biological systems.

A voltage pulse to the hybrid device drove silver into the gap between the diffusive memristor’s two electrodes–creating a filament bridge. After the pulse died away, the filament started to break and the silver moved back— resistance increased.

Like the case with calcium, a force made silver go in and a force made silver go out.

To complete the artificial synapse, the researchers connected the diffusive memristor in series to another type of memristor that had been studied before.

When presented with a sequence of voltage pulses with particular timing, the artificial synapse showed the kind of long-term strengthening behavior a real synapse would, according to the researchers. “We think it is sort of a real emulation, rather than simulation because they have the physical similarity,” Yang says.

I was glad to find some additional technical detail about this new memristor and to find the Human OS blog, which is new to me and according to its home page is a “biomedical blog, featuring the wearable sensors, big data analytics, and implanted devices that enable new ventures in personalized medicine.”

Stronger more robust nanofibers for everything from bulletproof vests to cellular scaffolds (tissue engineering)

This work on a new technique for producing nanofibers comes from Harvard University’s School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering (also at Harvard University). From an Oct. 10, 2016 news item on phys.org,

Fibrous materials—known for their toughness, durability and pliability—are used in everything from bulletproof vests to tires, filtration systems and cellular scaffolds for tissue engineering and regenerative medicine.

The properties of these materials are such that the smaller the fibers are, the stronger and tougher they become. But making certain fibers very small has been an engineering challenge.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard have developed a new method to make and collect nanofibers and control their size and morphology. This could lead to stronger, more durable bulletproof vests and armor and more robust cellular scaffolding for tissue repair.

An Oct. 7, 2016 Harvard University press release by Leah Burrows, which originated the news item, describes the research in more detail (Note: A link has been removed),

Nanofibers are smaller than one micrometer in diameter.  Most nanofiber production platforms rely on dissolving polymers in a solution, which then evaporates as the fiber forms.

Rotary Jet-Spinning (RJS), the technique developed by Kit Parker’s Disease Biophysics Group, works likes a cotton candy machine. Parker is Tarr Family Professor of Bioengineering and Applied Physics at SEAS and a Core Member of the Wyss Institute. A liquid polymer solution is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. As the solution leaves the reservoir, the solvent evaporates and the polymers solidify and elongate into small, thin fibers.

“This advance is important because it allows us to manufacture ballistic protection that is much lighter, more flexible and more functional than what is available today,” said Parker, who in addition to his Harvard role is a lieutenant colonel in the United States Army Reserve and was motivated by his own combat experiences in Afghanistan. “Not only could it save lives but for the warfighter, it also could help reduce the repetitive injury motions that soldiers, sailors, marines and airmen have suffered over the last 15 years of the war on terror.”

“Rotary Jet-Spinning is great for most polymer fibers you want to make,” said Grant Gonzalez, a graduate student at SEAS and first author of the paper.  “However, some fibers require a solvent that doesn’t evaporate easily. Para-aramid, the polymer used in Kevlar® for example, is dissolved in sulfuric acid, which doesn’t evaporate off. The solution just splashes against the walls of the device without forming fibers.”

Nanofibers are smaller than one micrometer in diameter.  Most nanofiber production platforms rely on dissolving polymers in a solution, which then evaporates as the fiber forms.

Rotary Jet-Spinning (RJS), the technique developed by Kit Parker’s Disease Biophysics Group, works likes a cotton candy machine. Parker is Tarr Family Professor of Bioengineering and Applied Physics at SEAS and a Core Member of the Wyss Institute. A liquid polymer solution is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. As the solution leaves the reservoir, the solvent evaporates and the polymers solidify and elongate into small, thin fibers.

“This advance is important because it allows us to manufacture ballistic protection that is much lighter, more flexible and more functional than what is available today,” said Parker, who in addition to his Harvard role is a lieutenant colonel in the United States Army Reserve and was motivated by his own combat experiences in Afghanistan. “Not only could it save lives but for the warfighter, it also could help reduce the repetitive injury motions that soldiers, sailors, marines and airmen have suffered over the last 15 years of the war on terror.”

“Rotary Jet-Spinning is great for most polymer fibers you want to make,” said Grant Gonzalez, a graduate student at SEAS and first author of the paper.  “However, some fibers require a solvent that doesn’t evaporate easily. Para-aramid, the polymer used in Kevlar® for example, is dissolved in sulfuric acid, which doesn’t evaporate off. The solution just splashes against the walls of the device without forming fibers.”

Other methods, such as electrospinning, which uses an electric field to pull the polymer into a thin fiber, also have poor results with Kevlar and other polymers such as alginate used for tissue scaffolding and DNA.

The Harvard team overcame these challenges by developing a wet-spinning platform, which uses the same principles as the RJS system but relies on precipitation rather than evaporation to separate the solvent from the polymer.

In this system, called immersion Rotary Jet-Spinning (iRJS), when the polymer solution shoots out of the reservoir, it first passes through an area of open air, where the polymers elongate and the chains align. Then the solution hits a liquid bath that removes the solvent and precipitates the polymers to form solid fibers. Since the bath is also spinning — like water in a salad spinner — the nanofibers follow the stream of the vortex and wrap around a rotating collector at the base of the device.

Using this system, the team produced Nylon, DNA, alginate and ballistic resistant para-aramid nanofibers. The team could tune the fiber’s diameter by changing the solution concentration, the rotational speed and the distance the polymer traveled from the reservoir to the bath.

“By being able to modulate fiber strength, we can create a cellular scaffold that can mimic skeleton muscle and native tissues,” said Gonzalez.  “This platform could enable us to create a wound dressing out of alginate material or seed and mature cells on scaffolding for tissue engineering.”

Because the fibers were collected by a spinning vortex, the system also produced well-aligned sheets of nanofibers, which is important for scaffolding and ballistic resistant materials.

This is the ‘candy floss’ technique at work,

Rotary Jet-Spinning (RJS) works likes a cotton candy machine. A liquid polymer solution is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. As the solution leaves the reservoir, the solvent evaporates and the polymers solidify and elongate into small, thin fibers. Courtesy: Harvard University

Rotary Jet-Spinning (RJS) works likes a cotton candy machine. A liquid polymer solution is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. As the solution leaves the reservoir, the solvent evaporates and the polymers solidify and elongate into small, thin fibers. Courtesy: Harvard University

Here’s a link to and a citation for the paper,

Production of Synthetic, Para-Aramid and Biopolymer Nanofibers by Immersion Rotary Jet-Spinning by Grant M. Gonzalez, Luke A. MacQueen, Johan U. Lind, Stacey A. Fitzgibbons, Christophe O. Chantre, Isabelle Huggler, Holly M. Golecki, Josue A. Goss, Kevin Kit Parker. Macromolecular Materials and Engineering DOI: 10.1002/mame.201600365 Version of Record online: 7 OCT 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Concrete proof that materials at the nanoscale behave differently than materials at any other scale

I hadn’t realized this still needed to be proved but it’s always good to have your misconceptions adjusted. Here’s more about the work from the University of Cambridge in a Sept. 30, 2016 news item on phys.org,

Scientists have long suspected that the way materials behave on the nanoscale – that is when particles have dimensions of about 1–100 nanometres – is different from how they behave on any other scale. A new paper in the journal Chemical Science provides concrete proof that this is the case.

The laws of thermodynamics govern the behaviour of materials in the macro world, while quantum mechanics describes behaviour of particles at the other extreme, in the world of single atoms and electrons.

A Sept. 29, 2016 University of Cambridge press release, which originated the news item, hones in on the peculiarities of the nanoscale,

In the middle, on the order of around 10–100,000 molecules, something different is going on. Because it’s such a tiny scale, the particles have a really big surface-area-to-volume ratio. This means the energetics of what goes on at the surface become very important, much as they do on the atomic scale, where quantum mechanics is often applied.

Classical thermodynamics breaks down. But because there are so many particles, and there are many interactions between them, the quantum model doesn’t quite work either.

And because there are so many particles doing different things at the same time, it’s difficult to simulate all their interactions using a computer. It’s also hard to gather much experimental information, because we haven’t yet developed the capacity to measure behaviour on such a tiny scale.

This conundrum becomes particularly acute when we’re trying to understand crystallisation, the process by which particles, randomly distributed in a solution, can form highly ordered crystal structures, given the right conditions.

Chemists don’t really understand how this works. How do around 1018 molecules, moving around in solution at random, come together to form a micro- to millimetre size ordered crystal? Most remarkable perhaps is the fact that in most cases every crystal is ordered in the same way every time the crystal is formed.

However, it turns out that different conditions can sometimes yield different crystal structures. These are known as polymorphs, and they’re important in many branches of science including medicine – a drug can behave differently in the body depending on which polymorph it’s crystallised in.

What we do know so far about the process, at least according to one widely accepted model, is that particles in solution can come together to form a nucleus, and once a critical mass is reached we see crystal growth. The structure of the nucleus determines the structure of the final crystal, that is, which polymorph we get.

What we have not known until now is what determines the structure of the nucleus in the first place, and that happens on the nanoscale.

In this paper, the authors have used mechanochemistry – that is milling and grinding – to obtain nanosized particles, small enough that surface effects become significant. In other words, the chemistry of the nanoworld – which structures are the most stable at this scale, and what conditions affect their stability, has been studied for the first time with carefully controlled experiments.

And by changing the milling conditions, for example by adding a small amount of solvent, the authors have been able to control which polymorph is the most stable. Professor Jeremy Sanders of the University of Cambridge’s Department of Chemistry, who led the work, said “It is exciting that these simple experiments, when carried out with great care, can unexpectedly open a new door to understanding the fundamental question of how surface effects can control the stability of nanocrystals.”

Joel Bernstein, Global Distinguished Professor of Chemistry at NYU Abu Dhabi, and an expert in crystal growth and structure, explains: “The authors have elegantly shown how to experimentally measure and simulate situations where you have two possible nuclei, say A and B, and determine that A is more stable. And they can also show what conditions are necessary in order for these stabilities to invert, and for B to become more stable than A.”

“This is really news, because you can’t make those predictions using classical thermodynamics, and nor is this the quantum effect. But by doing these experiments, the authors have started to gain an understanding of how things do behave on this size regime, and how we can predict and thus control it. The elegant part of the experiment is that they have been able to nucleate A and B selectively and reversibly.”

One of the key words of chemical synthesis is ‘control’. Chemists are always trying to control the properties of materials, whether that’s to make a better dye or plastic, or a drug that’s more effective in the body. So if we can learn to control how molecules in a solution come together to form solids, we can gain a great deal. This work is a significant first step in gaining that control.

Nicely written!

Here’s a link to and a citation for the paper,

Solvation and surface effects on polymorph stabilities at the nanoscale by A. M. Belenguer, G. I. Lampronti, A. J. Cruz-Cabeza, C. A. Hunter, and J. K. M. Sanders. Chem. Sci., 2016, Advance Article DOI: 10.1039/C6SC03457H First published online 02 Sep 2016

This paper is open access.

Given that the news release mentions crystals, this lovely image illustrates the press release,

 Snow Crystal Landscape Credit: Peter Gorges

Snow Crystal Landscape Credit: Peter Gorges

Nanotechnology at the University of McGill (Montréal, Canada) and other Canadian universities

On the occasion of the McGill University’s new minor program in nanotechnology, I decided to find other Canadian university nanotechnology programs.

First, here’s more about the McGill program from an Oct. 25, 2016 article by Miguel Principe for The McGill Tribune (Note: Links have been removed),

McGill’s Faculty of Engineering launched a new minor program this year that explores into the world of nanotechnology. It’s a relatively young field that focuses on nanomaterials—materials that have one dimension measuring 100 nanometres or less. …

“Nanomaterials are going to be very prominent in our everyday lives,” Assistant Professor Nathalie Tufenkji, of McGill’s Department of Chemical Engineering, said.  “We’re incorporating these materials into our everyday consumer products […] we’re putting these materials on our skin, […] in our paints, and electronics that we are contacting everyday.”

The new engineering minor program aims to introduce undergraduates to techniques in nanomaterial characterization and detection, as well as nanomaterial synthesis and processing. These concepts will be covered in courses such as Nanoscience and Nanotechnology, Supramolecular Chemistry, and Design and Manufacture of Microdevices.

Tufenkji, along with Professor Peter Grutter in the Department of Physics were instrumental in organizing this program. The minor is interdepartmental and includes courses in physics and engineering.

“Of course there’s a flipside on how do we best develop nanotechnology to […] take advantage of its promise,” Tufenkji said. “One of the questions […] is what are the potential impacts on our health and environment of nanomaterials?”

Tufenkji believes it is important that Canada has scientists and engineers that are educated in emerging scientific concepts and cutting-edge technology. Giving undergraduate students exposure to nanotechnology research early in their studies is a good stepping stone for further investigation into the evolving field.

The most comprehensive list of nanotechnology degree programs in Canada (16 programs) is at Nanowerk (Note: Links have been removed and you may find some repetition),

Carleton University – BSc Chemistry with a concentration in Nanotechnology
This concentration allows students to study atoms and molecules used to create computer chips and other devices that are the size of a few nanometres – thousands of times smaller than current technology permits. Such discoveries will be useful in a number of fields, including aerospace, medicine, and electronics.

Carleton University – BSc Nanoscience
At Carleton, you will examine nanoscience through the disciplines of physical chemistry and electrical engineering to understand the physical, chemical and electronic characteristics of matter in this size regime. The combination of these two areas of study will equip you to fully understand nanoscience in photonic, electronic, energy and communication technologies. The focus of the program will be on materials – their use in electronic devices, their scalability and control of their properties.

McGill University – Bachelor of Engineering, Minor Nanotechnology
Through courses already offered in the Faculties of Science, Engineering, and Medicine, depending on the courses completed, undergraduate students will acquire knowledge in areas related to nanotechnology.

Northern Alberta Institute of Technology – Nanotechnology Systems Diploma Program
The two year program will provide graduates with the skills to operate systems and equipment associated with Canada’s emerging nanotechnology industry and lead to a Diploma in Nanotechnology Systems.

University of Alberta – BSc Computer Engineering with Nanoscale System Design Option
This options provides an introduction to the processes involved in the fabrication of nanoscale integrated circuits and to the computer aided design (CAD) tools necessary for the engineering of large scale system on a chip. By selecting this option, students will learn about fault tolerance in nanoscale systems and gain an understanding of quantum phenomena in systems design.

University of Alberta – BSc Electrical Engineering with Nanoengineering Option
This option provides an introduction to the principles of electronics, electromagnetics and photonics as they apply at the nanoscale level. By selecting this option, students will learn about the process involved in the fabrication of nanoscale structures and become familiar with the computer aided design (CAD) tools necessary for analyzing phenomena at these very high levels of miniaturization.

University of Alberta – BSc Engineering Physics with Nanoengineering Option
The Nanoengineering Option provides broad skills suitable for entry to the nanotechnology professions, combining core Electrical Engineering and Physics courses with additional instruction in biochemistry and chemistry, and specialized instruction in nanoelectronics, nanobioengineering, and nanofabrication.

University of Alberta – BSc Materials Engineering with Nano and Functional Materials Option
Students entering this option will be exposed to the exciting and emerging field of nano and functional materials. Subject areas covered include electronic, optical and magnetic materials, nanomaterials and their applications, nanostructured molecular sieves, nano and functional materials processing and fabrication. Employment opportunities exist in several sectors of Canadian industry, such as microelectronic/optoelectronic device fabrication, MEMS processing and fuel cell development.

University of Calgary – B.Sc. Concentration in Nanoscience
Starting Fall 2008/Winter 2009, students can enroll in the only process learning driven Nanoscience program in North America. Courses offered are a B.Sc. Minor in Nanoscience and a B.Sc. Concentration in Nanoscience.

University of Calgary – B.Sc. Minor in Nanoscience
Starting Fall 2008/Winter 2009, students can enroll in the only process learning driven Nanoscience program in North America. Courses offered are a B.Sc. Minor in Nanoscience and a B.Sc. Concentration in Nanoscience.

University of Guelph – Nanoscience B.Sc. Program
At Guelph we have created a unique approach to nanoscience studies. Fundamental science course are combined with specially designed courses in nanoscience covering material that would previously only be found in graduate programs.

University of Toronto – BASc in Engineering Science (Nanoengineering Option)
This option transcends the traditional boundaries between physics, chemistry, and biology. Starting with a foundation in materials engineering and augmented by research from the leading-edge of nanoengineering, students receive an education that is at the forefront of this constantly evolving area.

University of Waterloo – Bachelor of Applied Science Nanotechnology Engineering
The Nanotechnology Engineering honours degree program is designed to provide a practical education in key areas of nanotechnology, including the fundamental chemistry, physics, and engineering of nanostructures or nanosystems, as well as the theories and techniques used to model, design, fabricate, or characterize them. Great emphasis is placed on training with modern instrumentation techniques as used in the research and development of these emerging technologies.

University of Waterloo – Master of Applied Science Nanotechnology
The interdisciplinary research programs, jointly offered by three departments in the Faculty of Science and four in the Faculty of Engineering, provide students with a stimulating educational environment that spans from basic research through to application. The goal of the collaborative programs is to allow students to gain perspectives on nanotechnology from a wide community of scholars within and outside their disciplines in both course and thesis work. The MASc and MSc degree collaborative programs provide a strong foundation in the emerging areas of nano-science or nano-engineering in preparation for the workforce or for further graduate study and research leading to a doctoral degree.

University of Waterloo – Master of Science Nanotechnology
The interdisciplinary research programs, jointly offered by three departments in the Faculty of Science and four in the Faculty of Engineering, provide students with a stimulating educational environment that spans from basic research through to application. The goal of the collaborative programs is to allow students to gain perspectives on nanotechnology from a wide community of scholars within and outside their disciplines in both course and thesis work. The MASc and MSc degree collaborative programs provide a strong foundation in the emerging areas of nano-science or nano-engineering in preparation for the workforce or for further graduate study and research leading to a doctoral degree.

University of Waterloo – Ph.D. Program in Nanotechnology
The objective of the PhD program is to prepare students for careers in academia, industrial R&D and government research labs. Students from Science and Engineering will work side-by-side in world class laboratory facilities namely, the Giga-to-Nano Electronics Lab (G2N), Waterloo Advanced Technology Lab (WatLAB) and the new 225,000 gross sq. ft. Quantum-Nano Center expected to be completed in early 2011.

The Wikipedia entry for Nanotechnology education lists a few Canadian university programs that seem to have been missed, as well as a few previously seen in the Nanowerk list (Note: Links have been removed),

  • University of Alberta – B.Sc in Engineering Physics with Nanoengineering option
  • University of Toronto – B.A.Sc in Engineering Science with Nanoengineering option
  • University of Waterloo – B.A.Sc in Nanotechnology Engineering
    • Waterloo Institute for Nanotechnology -B.Sc, B.A.Sc, master’s, Ph.D, Post Doctorate
  • McMaster University – B.Sc in Engineering Physics with Nanotechnology option
  • University of British Columbia – B.A.Sc in Electrical Engineering with Nanotechnology & Microsystems option
  • Carleton University – B.Sc in Chemistry with Concentration in Nanotechnology
  • University of Calgary – B.Sc Minor in Nanoscience, B.Sc Concentration in Nanoscience
  • University of Guelph – B.Sc in Nanoscience

So, there you have it.