Category Archives: public perceptions

Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?

I started writing this in the aftermath of the 2021 Canadian federal budget when most of the action (so far) occurred but if you keep going to the end of this post you’ll find updates for Precision Nanosystems and AcCellera and a few extra bits. Also, you may want to check out my August 20, 2021 posting (Getting erased from the mRNA/COVID-19 story) about Ian MacLachlan and some of the ‘rough and tumble’ of the biotechnology scene in BC/Canada. Now, onto my analysis of the life sciences public relations campaign in British Columbia.

Gordon Hoekstra’s May 7, 2021 article (also in print on May 8, 2021) about the British Columbia (mostly in Vancouver) biotechnology scene in the Vancouver Sun is the starting point for this story.

His entry (whether the reporter realizes it or not) into a communications (or public relations) campaign spanning federal, provincial, and municipal jurisdictions is well written and quite informative. While it’s tempting to attribute the whole thing to a single evil genius or mastermind in answer to the question posed in the head, the ‘campaign’ is likely a targeted effort by one or more groups and individuals enhanced with a little luck.

Federal and provincial money for life sciences and technology

The Business Council of British Columbia’s April 22, 2021 Federal & B.C. Budgets 2021 Analysis (PDF), notes this in its Highlights section,

•Another priority reflected in both budgets is boosting innovation and accelerating the growth of technology-producing companies. The federal budget [April 19, 2021] is spending billions more to support the life sciences and bio-manufacturing industry, clean technologies, the development of electric vehicles, the aerospace sector, quantum computing, AI, genomics, and digital technologies, among others.

•B.C.’s budget [April 20, 2021] also provides funding to spur innovation, support the technology sector and grow locally-based companies. In this area the main item is the new InBC Investment Corporation [emphasis mine], first announced last summer. Endowed with $500 million financed via an agency loan, the Corporation will establish a fund to invest in growing and “anchoring” high-growth [emphasis mine] B.C. businesses.

Their in-depth analysis does not provide more detail about the life sciences investments in the 2021 Canadian federal budget or the 2021 BC provincial budget.

My May 4, 2021 posting details many of the Canadian federal investments in life sciences and other technology areas of interest. The 2021 BC budget announcement is so vague, it didn’t merit much more than this mention until now.

InBC Investment Corporation (BC’s contribution)

InBC Investment Corporation was set up on or about April 27, 2021 as three news ‘references’ (brief summaries with a link) suggest: InBC Investment Corp. Act, InBC Announcement, $500-million investment fund paves way for StrongerBC.

While the corporation does not have a specific mandate to fund the biotechnology sector, given the current enthusiasm, it’s easy to believe they might be more inclined to fund them than not, regardless of any expertise they or may not have specifically in that field.

Of most interest to me was InBC’s Board of Directors, which I tracked down to a BC Ministry of Jobs, Economic Recovery and Innovation May 6, 2021 news release,

InBC Investment Corp. now has a full board of directors with backgrounds in finance, economics, impact investing and business to provide strategic guidance and accountability for the new Crown corporation.

InBC will support startups [emphasis mine], help promising companies scale up and work with a “triple bottom line” mandate that considers people, the planet and profits, to position British Columbia as a front-runner in the post-pandemic economy.

Christine Bergeron, president and chief executive officer of Vancity, will serve as the new board chair of InBC Investment Corp. The nine-member board of directors is made up of both public and private sector members who are responsible for oversight of the corporation, including its mission, policies and goals.

The InBC board members were selected through a comprehensive process, guided by the principles of the Crown Agencies and Board Resourcing Office. Candidates with a variety of relevant backgrounds were considered to form a strong board consisting of seven women and two men. The members appointed represent diversity as well as appropriate areas of expertise.

The following people were selected as members on the board of directors:

  • Christine Bergeron, president and CEO, Vancity
  • Kevin Campbell, managing director of investment banking, board of directors, Haywood Securities
  • Ingrid Leong, VP finance for JH Investments and chief investment officer, Houssian Foundation
  • Glen Lougheed, serial tech entrepreneur and angel investor
  • Suzanne Trottier, vice-president of Indigenous trust services, First Nations Bank Trust
  • Carole James, former minister of finance and deputy premier, Government of British Columbia
  • Iglika Ivanova, senior economist, public interest researcher, BC Office of the Canadian Centre for Policy Alternatives
  • Bobbi Plecas, deputy minister, B.C.’s Ministry of Jobs, Economic Recovery and Innovation
  • Heather Wood, deputy minister, B.C.’s Ministry of Finance

Legislation to provide the governance framework for InBC was introduced by the legislative assembly on April 27, 2021.

Board experience at growing a startup?

This group of people doesn’t seem to have a shred of experience with startups. Glen Lougheed’s “serial tech entrepreneur and angel investor” description means nothing to me and the description he provides in his LinkedIn profile doesn’t clear up matters,

I am a product and business development professional with an entrepreneurial attitude and strong technical skills. I have been building companies both mine and others since I was a teenager.

Having looked up the two companies for which he is currently acting as Chief Executive Officer, Lougheed’s interest appears to be focused on the use of ‘big data’ in marketing and communications campaigns.

Perhaps startup experience isn’t necessary since the board has been appointed to do this (from the BC Ministry of Jobs, Economic Recovery and Innovation May 6, 2021 news release; click on the Backgrounder),

Responsibilities of the InBC Investment Corp. board of directors

The board of directors will be responsible for oversight of the management of the affairs of the corporation. This includes:

  • selecting and approving the chief executive officer and chief innovation officer and monitoring performance and accountabilities;
  • reviewing and approving annual corporate financial statements;
  • oversight of policies that relate to InBC’s mandate and holding the executive to account for its accountabilities with respect to InBC’s mandate;
  • oversight of InBC’s operations; and
  • selection and appointment of InBC’s auditor.

Relationships

So, we have two government civil servants, Wood (Deputy Minister of B.C.’s Ministry of Finance) and Plecas (Deputy Minister of B.C.’s Ministry of Jobs, Economic Recovery and Innovation), and James, a BC Minister of Finance, who left the job several months ago. Then we have Lougheed, recently resigned (May 2021) as special advisor on innovation and technology to the BC Minister of Jobs, Economic Recovery and Innovation.

It would seem almost half of this new board is or has been affiliated with the government and, likely, know each other.

I expect there are more relationships to be found but my interest is in the overall picture as it pertains to the biotechnology scene. This board (except possibly for Lougheed) does not seem to have any experience in the biotechnology sector or growing any sort of startup business in any technology field.

Presumably, the new chief executive officer (CEO) and new chief innovation officer (CIO) will have some of the necessary experience. Still, biotechnology isn’t the same as digital technology, an area where the BC technology community is quite strong. (The Canadian federal government’s Digital Technology Supercluster is headquartered in BC.)

I imagine the politics around who gets hired as CEO and as CIO will be quite interesting.

See the ‘Updates and extras’ at the end of this posting for more mention of this ‘secretive’ government corporation.

The BC biotech gorillas

AbCellera was BC’s biggest biotech story in 2020/21 (see my Avo Media, Science Telephone, and a Canadian COVID-19 billionaire scientist post from December 30, 2020 for more. Do check out the subsection titled “Avo Media …” for a look at an unexpectedly interlaced relationship). Note: The AbCellera COVID-19 treatment is not a vaccine or a vaccine delivery system.

It was a bit surprising that Acuitas Therapeutics didn’t get more attention although Hoekstra seems to have addressed that shortcoming in his May 7, 2021 article by using Thomas Madden and Acuitas as the hook for the story,

By early 2020, concern was mounting about a new, deadly coronavirus first detected in Wuhan, China.

The World Health Organization had declared the coronavirus outbreak a global health emergency just days before. There had been more than 400 deaths and more than 20,000 cases, most of those in China.

But the virus was spreading around the world. Deaths had occurred in Hong Kong and the Philippines, and the virus had been detected in the U.S. and Canada.

By early January of 2020, scientists in China had already sequenced the virus’s genome and made it public, allowing scientists to begin the research for a vaccine.

Scientists expected that could take years.

But, as a second case was confirmed in B.C. in early February, Thomas Madden, a world-renowned expert in nanotechnology who heads Vancouver-based biotech company Acuitas Therapeutics, flew to Germany. [emphases mine]

Acuitas was in the business of creating lipid nanoparticles, microscopic biological vehicles that could deliver drugs [emphasis mine] — for example, to specifically target cancers in the body.

Scientists are already beginning to say it’s likely that a booster vaccine will be needed [emphasis mine] next year to deal with the virus variants.

Madden, the head of Acuitas, says it makes absolute sense to use the new biotechnology, for example, the use of messenger RNA vaccines, to prepare and fight future pandemics.

Says Madden [emphasis mine]: “The technology in terms of what it’s able to do is absolutely phenomenal. It’s just taken us 40 years to get here.”

So, Hoekstra reminds us of the international nature and urgency of the crisis, then, introduces Acuitas as a vital and local player in solutions deployed internationally, and, finally, brings us back to Acuitas after providing an overview of the BC biotech scene and the federal and provincial government’s latest moves,

AbCellera Biologics is more of a supporting player, along with a number of other companies, in Hoekstra’s story,

Sandwiched in the middle, you’ll find what I think is the point of the story,

LifeSciences BC and the provincial government’s commitments

From Hoekstra’s May 7, 2021 article,

The importance of the biotech sector in providing protection against pandemics has caught the attention of the federal and B.C. governments. It has also been noticed by the private markets.

In its budget [April 19, 2021] earlier this month [sic], the federal government promised more than $2 billion in the next seven years to support “promising” life sciences and bio-manufacturing firms, research, training, education and vaccine candidates.

Some companies, including Precision NanoSystems, have already got federal funding. The Vancouver company received $18.2 million last year to help develop its self-replicating mRNA vaccine and another $25 million in early 2021 to assist building a $50-million facility to produce the vaccine.

Last fall, Symvivo received $2.8 million from the National Research Council to help develop its oral COVID-19 vaccine.

AbCellera has also received a pledge of $175.6 million to help build an accredited manufacturing facility in Vancouver [emphasis mine] to produce antibody treatments.

AbCellera expects to double its 230-person workforce over the next two years as it expands its Vancouver campus.

When AbCellera became a publicly traded company late last year, it raised more than $500 million and had a recent market capitalization, the value of its stock, of about $8.5 billion.

When the B.C. government delivered its throne speech recently, the contribution of the province’s life sciences sector in the fight against the COVID-19 pandemic was highlighted, with Precision NanoSystems, AbCellera and StarFish Medical getting mentions. “Their work will not only help bring us out of the pandemic, it will position our province for success in the years ahead,” said B.C.’s Lt. Gov. Jane Austen in delivering the throne speech.

When the budget was released the following week [April 20, 2021], B.C. Finance Minister Selina Robinson said a new three-year, $500-million strategic investment fund would help support and scale up tech firms.

Despite their successes, B.C. biotech firms have faced challenges.

SaNOtize had to go to the U.K. to get support for clinical trials and AbCellera has been disappointed that despite Health Canada emergency approval of its COVID-19 treatment, provinces have been reluctant to use Bamlanivimab.

Hansen, AbCellera’s CEO and a former University of B.C. professor with a PhD in applied physics and biotechnology, said he believes that biotech is the most important frontier of technology.

In the past, while great science was launched from B.C.’s universities, not as great a job was done on turning that science into innovation, jobs [emphasis mine] and the capacity to bring new products to market, possibly because of a lack of entrepreneurship and polices to make it more attractive to companies to grow and thrive here and move here, notes Hansen.

Hurlburt [Wendy Hurlburt], the LifeSciences B.C. CEO, says that policies, including tax structure and patenting [emphasis mine], that encourages innovation companies are needed to support the biotech sector.

But, adds Hansen: “Here in Vancouver, I feel like we’re turning the corner. There’s probably never been a time when Vancouver’s biotech sector [emphasis mine] was stronger. And the future looks very good.”

Not only is the province involved but so is the City of Vancouver (more about that in a bit).

It’s not all about the cash

Hoekstra’s May 7, 2021 article helped answer a question I had in the title of another posting, January 22, 2021: Why is Precision Nanosystems Inc. in the local (Vancouver, Canada) newspaper? (See the ‘Updates and extras’ at the end of this posting for more to the answer.)

This campaign has been building for a while. In the “Is it magic or how does the federal budget get developed? subsection of my May 4, 2021 posting on the 2021 Canadian federal budget I speculated a little bit,

I believe most of the priorities are set by power players behind the scenes. We glimpsed some of the dynamics courtesy of the WE Charity scandal 2020/21 and the SNC-Lavalin scandal in 2019.

Access to special meetings and encounters are not likely to be given to any member of the ‘great unwashed’ but we do get to see the briefs that are submitted in anticipation of a new budget. These briefs and meetings with witnesses are available on the Parliament of Canada website (Standing Committee on Finance (FINA) webpage for pre-budget consultations.

AbCellera submitted a brief dated August 7, 2020 (PDF) detailing how they would like to see the Income Tax Act amended. It’s not always about getting cash, although that’s very important. In this brief, the company wants “… improved access to the enhanced Scientific Research & Experimental Development tax credit.”

There are many aspects to these campaigns including the federal Income Tax Act and, in this case, municipal involvement.

Vancouver (city government) and the biotech sector

About five weeks prior to the 2021 Canadian federal budget and BC provincial budget announcements, there was some news from the City of Vancouver (from a March 10, 2021 article by Kenneth Chan for dailyhive.com), Note: Links have been removed,

Major expansion plans are abound for AbCellera over the next few years to the extent that the Vancouver-based biotechnology company is now looking to build a massive purpose-built office and medical laboratory campus in Mount Pleasant (Vancouver neighbourhood).

It would be a redevelopment of the entire city block …

… earlier today, Vancouver City Council unanimously approved a rezoning enquiry allowing city staff to work with the proponent and accept a formal application for review.

This special additional pre-application step is required due to the temporary ban [emphasis mine] on most types of rezonings within the Broadway Plan’s planning area, until the plan is finalized at the end of 2021.

But city staff are willing to make this a rare exception due to the economic opportunity [emphasis mine] presented by the proposal and the healthcare-related aspects.

“The reasons for advancing this quickly are they are rapidly growing and would like to stay in Vancouver, and we would like them to… We’re very glad to have this company in Vancouver and want to provide them with a permanent home, but in order to scale up, the timeframe to produce their therapy [for viruses] is really time sensitive,” Gil Kelley, the chief urban planner of the City of Vancouver, told city council during today’s [March 10, 2021] meeting.

….

Roughly 10 days after the 2021 budgets are announced, there’s this from Kenneth Chan’s April 29,2021 article on dailyhive.com,

Plans for AbCellera Biologics’ major footprint expansion in Vancouver’s Mount Pleasant Industrial Area are moving forward quickly.

Based on the application submitted this week, the Vancouver-based biotechnology company is proposing to redevelop 110 West 4th Avenue …

It will be designated as the rapidly growing company’s global headquarters.

… city staff are providing AbCellera with the highly rare, expedited stream of combining the rezoning and development application processes into one.

By the middle of this decade, AbCellera will have four locations in the area, including its current 21,000 sq ft office at 2215 Yukon Street and a new 44,000 sq ft office nearing completion at 2131 Manitoba Street, just south of its future main hub.

“We’re building state-of-the-art facilities in Vancouver to accelerate the development of new antibody therapies with biotech and pharma partners from around the world,” said Carl Hansen, CEO and president of AbCellera, in a statement.

AbCellera has gained significant international attention over the past year after it co-developed the first authorized COVID-19 antibody therapy for emergency use in high-risk patients in Canada and the United States.

In late 2020, the company closed a successful initial public offering, bringing in $556 million after selling nearly 28 million shares, far exceeding its original goal of raising $250 million. It was the largest-ever IPO [initial public offering] by a Canadian biotech company.

“We see this new site as a creative hub for engineers, software developers, data scientists, biologists and bioinformaticians to collaborate, innovate, and push the frontiers of technology.” [said Veronique Lecault, the COO of AbCellera]

Additionally, AbCellera is also planning to build a clinical-grade, antibody manufacturing facility in Metro Vancouver, funded in part by the $176-million investment it received from the federal government in Spring 2020 [see May 3, 2020 AbCellera news release].

Not cash but AbCellera did get an expedited process for rezoning and I imagine there will be more special treatment as this progresses. (See the ‘Updates and extras’ at the end of this posting for news about the expedited process.)

It’s likely there are other companies in the BC’s life science sector that are eyeing this development with great interest and high hopes for themselves.

What it takes

COVID-19 seems to have galvanized interest and support almost everywhere in the world for life sciences.

I don’t believe that anyone in the life sciences planned for or rejoiced at news of this pandemic. However, the Canadian biotech sector has been working for decades to establish itself as an important economic resource. and, sadly, COVID-19 has been a timely development.

All those years of lobbying, also known as, government relations, marketing, investor relations, public relations and more served as preparation for what looks like a concerted effort and it has paid off in BC at the federal level, provincial level, and municipal level (at least one).

The campaigns continue. Here’s Wendy Hurlburt, president and CEO of LifeSciences BC in a May 14, 2021 Conversations That Matter Vancouver Sun podcast with Stuart McNish. Note: Hurlburt makes an odd comment at about the 7 min. 30 secs. mark regarding insulin and patents.

Her dismay over lost opportunities regarding the insulin patent is right in line with Canada’s current patent mania. See my May 13, 2021 posting, Not a pretty picture: Canada and a patent rights waiver for COVID-19 vaccines. As far as I’m aware, Canada’s stance has not changed. Interestingly, Hoekstra’s article doesn’t mention COVID-19 patent waivers.

By contrast, here’s what Frederick Banting (one of the discoverers) had to say about his patent, (from the Banting House Insulin Patents webpage),

About the sale of the patent of insulin for $1 Banting reportedly said, “Insulin belongs to the world, not to me.”

… On January 23rd, 1923 Banting, [Charles] Best, and [James] Collip were awarded the American patents for insulin which they sold to the University of Toronto for $1.00 each.

Hurlburt goes on to express dismay over taxes and notes that some companies may leave for other jurisdictions, which means we will lose ‘innovation’. This is a very common ploy coming from any of the technology sectors and can be dated back at least 30 years.

Unmentioned is the dream/business model that so many Canadian tech entrepreneurs have: grow the company, sell it for a lot of money, and retire, preferably before the age of 40.

Getting back to my point, the current situation is not attributable to one individual or to one company’s efforts or to one life science nonprofit or to one federal Network Centre for Excellence (NanoMedicines Innovation Network [NMIN] located at the University of British Columbia).

Note: I have more about the NMIN and Acuitas Therapeutics in a November 12, 2021 posting and there’s more about NMIN’s 7th annual conference and a very high profile guest in a September 11, 2020 posting.

Strategy at the federal, provincial, and local governments, with an eye to the international scene, has been augmented by luck and opportunism.

Updates and extras

Where updates are concerned I have one for Precision Nanosystems and one for AbCellera. I have extras with regard to Moderna and Canada and, BC’s special fund, inBC Investment Corporation. For anyone who’s curious about Banting and the high cost of insulin, I have a couple of links to further reading.

Precision Nanosystems

From an August 11, 2021 article by Kenneth Chan (Note: Links have been removed),

A homegrown pharmaceutical company has announced plans to significantly scale its operations with the opening of a new production facility in Vancouver’s False Creek Flats.

The new Evolution Block building will contain PNI’s new global headquarters and a new genetic medicine Good Manufacturing Practice (GMP) biomanufacturing centre, which would allow the company to expand its capabilities to include the clinical manufacturing of RNA vaccines and therapeutics.

Federal funding totalling $25.1 million for PNI was first announced in February 2021 towards covering part of the development costs of such a facility, as part of the federal government’s new strategy to better ensure Canada has the domestic capacity to secure its own COVID-19 vaccines and prepare the country for future pandemics. It is estimated the vaccine production capacity of the new facility will be 240 million doses annually.

PNI’s location in the False Creek Flats is strategic, given the close proximity to the new St. Paul’s Hospital campus and the growing concentration of tech and healthcare-based industrial businesses.

AbCellera

From a June 22, 2021 article by Kenneth Chan (Note: Links have been removed),

The rapidly growing Vancouver-based biotechnology company announced this morning their 130,000 sq ft Good Manufacturing Practices (GMP) facility will be located on a two-acre site at the 900 block of Evans Avenue, replacing the Urban Beach volleyball courts just next to the City of Vancouver’s Evans maintenance centre and the Regional Recycling Vancouver Bottle Depot.

GMP is partially funded by the $175 million in federal funding received by the company last year to support research into coronavirus treatment.

GMP adds to AbCellera’s major plans to build a new headquarters in close proximity at 110-150 West 4th Avenue in the Mount Pleasant Industrial Area — a city block-sized campus with a total of 380,000 sq ft of laboratory and office space for research and corporate uses.

Both campus buildings are being reviewed under the City of Vancouver’s rare streamlined, expedited process [emphasis mine] of combining the rezoning and development permit applications. AbCellera formally announced its campus plans in April 2021.

AbCellera gained significant international attention last year when it developed the world’s first monoclonal antibody therapy for COVID-19 to be authorized for emergency use in high-risk patients in Canada and the United States. According to the company, over 400,000 doses of its bamlanivimab drug have been administered around the world, and it is estimated to have kept more than 22,000 people out of hospital — saving at least 11,000 lives.

In late 2020, the company closed a successful initial public offering, bringing in $556 million after selling nearly 28 million shares, far exceeding its original goal of raising $250 million. It was the largest-ever IPO by a Canadian biotech company.

Moderna and Canada

It seems like yesterday that Derek Rossi (co-founder of Moderna) was talking about Canada’s need for a biotechnology hub. (see this June 17, 2021 article by Barbara Shecter for the Financial Post). Interestingly, there’s been an announcement of a memorandum of understanding (these things are announced all the time and don’t necessarily result in anything) between Moderna and the government of Canada according to an August 10, 2021 item on the Canadian Broadcasting Corporation (CBC) news website,

Massachusetts-based drug maker Moderna will build an mRNA vaccine manufacturing plant in Canada within the next two years, CEO Stephane Bancel said Tuesday [August 10, 2021; Note the timing, the writ for the next federal election was dropped on August 15, 2021].

The company has signed a memorandum of understanding with the federal government that will result in Canada becoming the home of Moderna’s first foreign operation. It’s not clear yet how much money Canada has offered to Moderna [emphasis mine] for the project.

Canada, whose life sciences industry has been decimated over the last three decades, wants in on the action. Prime Minister Justin Trudeau has promised to rebuild the industry, and the recent budget included a $2.2 billion, seven-year investment to grow the life science and biotech sectors.

Almost half of that targets companies that want to expand or set up vaccine and drug production in Canada. None of the COVID-19 vaccines to date have been made in Canada, leaving the country entirely reliant on imports to fill vaccine orders. As a result, Canada was slower out of the gate on immunizations than some of its counterparts with domestic production, and likely had to pay more per dose for some vaccines as well.

The location of the new facility hasn’t been finalized, but Bancel said the availability of an educated workforce will be the main deciding factor. He said the design is done and they’ll need to start hiring very soon so training can begin.

it’s not exactly a hub but who knows what the future will bring? I imagine there’s going to be some serious wrangling behind the scenes as the provinces battle to be the location for the facility. Note that Innovation Minister François-Philippe Champagne who made the announcement with Bancel in Montréal represents a federal riding in Québec. (BTW, Bancel is from France and seems to have spent much of his adult life in the US.) Of course anything can happen and I’m sure the BC contingent will make themselves felt but it would seem that Quebec is the front runner for now, assuming this memorandum of understanding leads to a facility. Given that we are in the midst of a federal election, it seems more probable than it might otherwise.

inBC Investment Corporation

Bob Mackin’s August 13, 2021 article for theBreaker.news sheds some light on how that corporation was formed so very quickly and more,

The B.C. NDP government rejigged the B.C. Immigrant Investor Fund last year, but refused to release the business case when it was rebranded as inBC Investment Corp. in late April [2021].

theBreaker.news requested the business case for the $500 million fund, which is overseen by a board of NDP patronage appointees, on May 6 [2021].

The 123-page document below is heavily censored — meaning the NDP cabinet is refusing to tell British Columbians the projected operating costs (including board expenses, salary and benefits, office space, operating and administration), full-time equivalents, and cash flows for the newest Crown corporation. inBC bills itself as a triple-bottom line organization, meaning it intends to invest on the basis of social, environmental and economic values.

When its enabling legislation was tabled, the NDP took steps to exempt inBC from the freedom of information law.

Thank you, Mr. Mackin.

More on Banting, insulin and patents

Caitlyn McClure’s 2016 article (Insulin’s Inventor Sold the Patent for $1. Then Drug Companies Got Hold of It.) for other98.com is a brief and pithy explanation for why insulin costs so much. Alanna Mitchell’s August 13, 2019 article for Maclean’s magazine investigates ‘insulin tourism’ and offers more detail as to how this situation has come about.

One last reminder, my August 20, 2021 posting (Getting erased from the mRNA/COVID-19 story) about Ian MacLachlan provides insight into how competitive and rough the bitotechnology scene can be here in BC/Canada.

Five country survey of reactions to food genome editing

Weirdly and even though most of this paper’s authors are from the University of British Columbia (UBC; Canada), only one press release was issued and that was by the lead author’s (Gesa Busch) home institution, the University of Göttingen (Germany).

I’m glad Busch, the other authors, and the work are getting some attention (if not as much as I think they should).

From a July 9, 2021 University of Göttingen press release (also on EurekAlert but published on July 12, 2021),

A research team from the University of Göttingen and the University of British Columbia (Canada) has investigated how people in five different countries react to various usages of genome editing in agriculture. The researchers looked at which uses are accepted and how the risks and benefits of the new breeding technologies are rated by people. The results show only minor differences between the countries studied – Germany, Italy, Canada, Austria and the USA. In all countries, making changes to the genome is more likely to be deemed acceptable when used in crops rather than in livestock. The study was published in Agriculture and Human Values.

Relatively new breeding technologies, such as CRISPR [clustered regularly interspaced short palindromic repeats) gene editing, have enabled a range of new opportunities for plant and animal breeding. In the EU, the technology falls under genetic engineering legislation and is therefore subject to rigorous restrictions. However, the use of gene technologies remains controversial. Between June and November 2019, the research team collected views on this topic via online surveys from around 3,700 people from five countries. Five different applications of gene editing were evaluated: three relate to disease resistance in people, plants, or animals; and two relate to achieving either better quality of produce or a larger quantity of product from cattle.

“We were able to observe that the purpose of the gene modification plays a major role in how it is rated,” says first author Dr Gesa Busch from the University of Göttingen. “If the technology is used to make animals resistant to disease, approval is greater than if the technology is used to increase the output from animals.” Overall, however, the respondents reacted very differently to the uses of the new breeding methods. Four different groups can be identified: strong supporters, supporters, neutrals, and opponents of the technology. The opponents (24 per cent) identify high risks and calls for a ban of the technology, regardless of possible benefits. The strong supporters (21 per cent) see few risks and many advantages. The supporters (26 per cent) see many advantages but also risks. Whereas those who were neutral (29 per cent) show no strong opinion on the subject.

This study was made possible through funding from the Free University of Bozen-Bolzano and Genome BC.

Here’s a link to and a citation for the paper,

Citizen views on genome editing: effects of species and purpose by Gesa Busch, Erin Ryan, Marina A. G. von Keyserlingk & Daniel M. Weary. Agriculture and Human Values (2021) Published: DOI: https://doi.org/10.1007/s10460-021-10235-9

This paper is open access.

Methodology

I have one quick comment about the methodology. It can be difficult to get a sample that breaks down along demographic lines that is close to or identical to national statistics. That said, it was striking to me that every country was under represented in the ’60 years+ ‘ category. In Canada, it was by 10 percentage points (roughly). For other countries the point spread was significantly wider. In Italy, it was a 30 percentage point spread (roughly).

I found the data in the Supplementary Materials yesterday (July 13, 2021). When I looked this morning, that information was no longer there but you will find what appears to be the questionnaire. I wonder if this removal is temporary or permanent and, if permanent, I wonder why it was removed.

Participants for the Canadian portion of the survey were supplied by Dynata, a US-based market research company. Here’s the company’s Wikipedia entry and its website.

Information about how participants were recruited was also missing this morning (July 14, 2021).

Genome British Columbia (Genome BC)

I was a little surprised when I couldn’t find any information about the program or the project on the Genome BC website as the organization is listed as a funder.

There is a ‘Genomics and Society’ tab (seems promising, eh?) on the homepage where you can find the answer to this question: What is GE³LS Research?,

GE3LS research is interdisciplinary, conducted by researchers across many disciplines within social science and humanities, including economics, environment, law, business, communications, and public policy.

There’s also a GE3LS Research in BC page titled Project Search; I had no luck there either.

It all seems a bit mysterious to me and, just in case anything else disappears off the web, here’s a July 13, 2021 news item about the research on phys.org as backup to what I have here.

Comedy club performances show how robots and humans connect via humor

Caption: Naomi Fitter and Jon the Robot. Credit: Johanna Carson, OSU College of Engineering

Robot comedian is not my first thought on seeing that image; ventriloquist’s dummy is what came to mind. However, it’s not the first time I’ve been wrong about something. A May 19, 2020 news item on ScienceDaily reveals the truth about Jon, a comedian in robot form,

Standup comedian Jon the Robot likes to tell his audiences that he does lots of auditions but has a hard time getting bookings.

“They always think I’m too robotic,” he deadpans.

If raucous laughter follows, he comes back with, “Please tell the booking agents how funny that joke was.”

If it doesn’t, he follows up with, “Sorry about that. I think I got caught in a loop. Please tell the booking agents that you like me … that you like me … that you like me … that you like me.”

Jon the Robot, with assistance from Oregon State University researcher Naomi Fitter, recently wrapped up a 32-show tour of comedy clubs in greater Los Angeles and in Oregon, generating guffaws and more importantly data that scientists and engineers can use to help robots and people relate more effectively with one another via humor.

A May 18, 2020 Oregon State University (OSU) news release (also on EurekAlert), which originated the news item, delves furthers into this intriguing research,

“Social robots and autonomous social agents are becoming more and more ingrained in our everyday lives,” said Fitter, assistant professor of robotics in the OSU College of Engineering. “Lots of them tell jokes to engage users – most people understand that humor, especially nuanced humor, is essential to relationship building. But it’s challenging to develop entertaining jokes for robots that are funny beyond the novelty level.”

Live comedy performances are a way for robots to learn “in the wild” which jokes and which deliveries work and which ones don’t, Fitter said, just like human comedians do.

Two studies comprised the comedy tour, which included assistance from a team of Southern California comedians in coming up with material true to, and appropriate for, a robot comedian.

The first study, consisting of 22 performances in the Los Angeles area, demonstrated that audiences found a robot comic with good timing – giving the audience the right amounts of time to react, etc. – to be significantly more funny than one without good timing.

The second study, based on 10 routines in Oregon, determined that an “adaptive performance” – delivering post-joke “tags” that acknowledge an audience’s reaction to the joke – wasn’t necessarily funnier overall, but the adaptations almost always improved the audience’s perception of individual jokes. In the second study, all performances featured appropriate timing.

“In bad-timing mode, the robot always waited a full five seconds after each joke, regardless of audience response,” Fitter said. “In appropriate-timing mode, the robot used timing strategies to pause for laughter and continue when it subsided, just like an effective human comedian would. Overall, joke response ratings were higher when the jokes were delivered with appropriate timing.”

The number of performances, given to audiences of 10 to 20, provide enough data to identify significant differences between distinct modes of robot comedy performance, and the research helped to answer key questions about comedic social interaction, Fitter said.

“Audience size, social context, cultural context, the microphone-holding human presence and the novelty of a robot comedian may have influenced crowd responses,” Fitter said. “The current software does not account for differences in laughter profiles, but future work can account for these differences using a baseline response measurement. The only sensing we used to evaluate joke success was audio readings. Future work might benefit from incorporating additional types of sensing.”

Still, the studies have key implications for artificial intelligence efforts to understand group responses to dynamic, entertaining social robots in real-world environments, she said.

“Also, possible advances in comedy from this work could include improved techniques for isolating and studying the effects of comedic techniques and better strategies to help comedians assess the success of a joke or routine,” she said. “The findings will guide our next steps toward giving autonomous social agents improved humor capabilities.”

The studies were published by the Association for Computing Machinery [ACM]/Institute of Electrical and Electronics Engineering’s [IEEE] International Conference on Human-Robot Interaction [HRI].

Here’s another link to the two studies published in a single paper, which were first presented at the 2020 International Conference on Human-Robot Interaction [HRI]. along with a citation for the title of the published presentation,

Comedians in Cafes Getting Data: Evaluating Timing and Adaptivity in Real-World Robot Comedy Performance by John Vilk and Naomi T Fitter. HRI ’20: Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot InteractionMarch 2020 Pages 223–231 DOI: https://doi.org/10.1145/3319502.3374780

The paper is open access and the researchers have embedded an mp4 file which includes parts of the performances. Enjoy!

The Broad Institute gives us another reason to love CRISPR

More and more, this resembles a public relations campaign. First, CRISPR (clustered regularly interspersed short palindromic repeats) gene editing is going to be helpful with COVID-19 and now it can help us to deal with conservation issues. (See my May 26, 2020 posting about the latest CRISPR doings as of May 7, 2020; included is a brief description of the patent dispute between Broad Institute and UC Berkeley and musings about a public relations campaign.)

A May 21, 2020 news item on ScienceDaily announces how CRISPR could be useful for conservation,

The gene-editing technology CRISPR has been used for a variety of agricultural and public health purposes — from growing disease-resistant crops to, more recently, a diagnostic test for the virus that causes COVID-19. Now a study involving fish that look nearly identical to the endangered Delta smelt finds that CRISPR can be a conservation and resource management tool, as well. The researchers think its ability to rapidly detect and differentiate among species could revolutionize environmental monitoring.

Caption: Longfin smelt can be difficult to differentiate from endangered Delta smelt. Here, a longfin smelt is swabbed for genetic identification through a CRISPR tool called SHERLOCK. Credit: Alisha Goodbla/UC Davis

A May 21, 2020 University of California at Davis (UC Davis) news release (also on EurekAlert) by Kat Kerlin, which originated the news item, provides more detail (Note: A link has been removed),

The study, published in the journal Molecular Ecology Resources, was led by scientists at the University of California, Davis, and the California Department of Water Resources in collaboration with MIT Broad Institute [emphasis mine].

As a proof of concept, it found that the CRISPR-based detection platform SHERLOCK (Specific High-sensitivity Enzymatic Reporter Unlocking) [emphasis mine] was able to genetically distinguish threatened fish species from similar-looking nonnative species in nearly real time, with no need to extract DNA.

“CRISPR can do a lot more than edit genomes,” said co-author Andrea Schreier, an adjunct assistant professor in the UC Davis animal science department. “It can be used for some really cool ecological applications, and we’re just now exploring that.”

WHEN GETTING IT WRONG IS A BIG DEAL

The scientists focused on three fish species of management concern in the San Francisco Estuary: the U.S. threatened and California endangered Delta smelt, the California threatened longfin smelt and the nonnative wakasagi. These three species are notoriously difficult to visually identify, particularly in their younger stages.

Hundreds of thousands of Delta smelt once lived in the Sacramento-San Joaquin Delta before the population crashed in the 1980s. Only a few thousand are estimated to remain in the wild.

“When you’re trying to identify an endangered species, getting it wrong is a big deal,” said lead author Melinda Baerwald, a project scientist at UC Davis at the time the study was conceived and currently an environmental program manager with California Department of Water Resources.

For example, state and federal water pumping projects have to reduce water exports if enough endangered species, like Delta smelt or winter-run chinook salmon, get sucked into the pumps. Rapid identification makes real-time decision making about water operations feasible.

FROM HOURS TO MINUTES

Typically to accurately identify the species, researchers rub a swab over the fish to collect a mucus sample or take a fin clip for a tissue sample. Then they drive or ship it to a lab for a genetic identification test and await the results. Not counting travel time, that can take, at best, about four hours.

SHERLOCK shortens this process from hours to minutes. Researchers can identify the species within about 20 minutes, at remote locations, noninvasively, with no specialized lab equipment. Instead, they use either a handheld fluorescence reader or a flow strip that works much like a pregnancy test — a band on the strip shows if the target species is present.

“Anyone working anywhere could use this tool to quickly come up with a species identification,” Schreier said.

OTHER CRYPTIC CRITTERS

While the three fish species were the only animals tested for this study, the researchers expect the method could be used for other species, though more research is needed to confirm. If so, this sort of onsite, real-time capability may be useful for confirming species at crime scenes, in the animal trade at border crossings, for monitoring poaching, and for other animal and human health applications.

“There are a lot of cryptic species we can’t accurately identify with our naked eye,” Baerwald said. “Our partners at MIT are really interested in pathogen detection for humans. We’re interested in pathogen detection for animals as well as using the tool for other conservation issues.”

Here’s a link to and a citation for the paper,

Rapid and accurate species identification for ecological studies and monitoring using CRISPR‐based SHERLOCK by Melinda R. Baerwald, Alisha M. Goodbla, Raman P. Nagarajan, Jonathan S. Gootenberg, Omar O. Abudayyeh, Feng Zhang, Andrea D. Schreier. Molecular Ecology Resources https://doi.org/10.1111/1755-0998.13186 First published: 12 May 2020

This paper is behind a paywall.

The business of CRISPR

SHERLOCK™, is a trademark for what Sherlock Biosciences calls one of its engineering biology platforms. From the Sherlock Biosciences Technology webpage,

What is SHERLOCK™?

SHERLOCK is an evolution of CRISPR technology, which others use to make precise edits in genetic code. SHERLOCK can detect the unique genetic fingerprints of virtually any DNA or RNA sequence in any organism or pathogen. Developed by our founders and licensed exclusively from the Broad Institute, SHERLOCK is a method for single molecule detection of nucleic acid targets and stands for Specific High Sensitivity Enzymatic Reporter unLOCKing. It works by amplifying genetic sequences and programming a CRISPR molecule to detect the presence of a specific genetic signature in a sample, which can also be quantified. When it finds those signatures, the CRISPR enzyme is activated and releases a robust signal. This signal can be adapted to work on a simple paper strip test, in laboratory equipment, or to provide an electrochemical readout that can be read with a mobile phone.

However, things get a little more confusing when you look at the Broad Institute’s Developing Diagnostics and Treatments webpage,

Ensuring the SHERLOCK diagnostic platform is easily accessible, especially in the developing world, where the need for inexpensive, reliable, field-based diagnostics is the most urgent

SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) is a CRISPR-based diagnostic tool that is rapid, inexpensive, and highly sensitive, with the potential to have a transformative effect on research and global public health. The SHERLOCK platform can detect viruses, bacteria, or other targets in clinical samples such as urine or blood, and reveal results on a paper strip — without the need for extensive specialized equipment. This technology could potentially be used to aid the response to infectious disease outbreaks, monitor antibiotic resistance, detect cancer, and more. SHERLOCK tools are freely available [emphasis mine] for academic research worldwide, and the Broad Institute’s licensing framework [emphasis mine] ensures that the SHERLOCK diagnostic platform is easily accessible in the developing world, where inexpensive, reliable, field-based diagnostics are urgently needed.

Here’s what I suspect. as stated, the Broad Institute has free SHERLOCK licenses for academic institutions and not-for-profit organizations but Sherlock Biosciences, a Broad Institute spinoff company, is for-profit and has trademarked SHERLOCK for commercial purposes.

Final thoughts

This looks like a relatively subtle campaign to influence public perceptions. Genetic modification or genetic engineering as exemplified by the CRISPR gene editing technique is a force for the good of all. It will help us in our hour of need (COVID-19 pandemic) and it can help us save various species and better manage our resources.

This contrasts greatly with the publicity generated by the CRISPR twins situation where a scientist claimed to have successfully edited the germline for twins, Lulu and Nana. This was done despite a voluntary, worldwide moratorium on germline editing of viable embryos. (Search the terms [either here or on a standard search engine] ‘CRISPR twins’, ‘Lulu and Nana’, and/or ‘He Jiankui’ for details about the scandal.

In addition to presenting CRISPR as beneficial in the short term rather than the distant future, this publicity also subtly positions the Broad Institute as CRISPR’s owner.

Or, maybe I’m wrong. Regardless, I’m watching.