Monthly Archives: October 2022

Overview of fusion energy scene

It’s funny how you think you know something and then realize you don’t. I’ve been hearing about cold fusion/fusion energy for years but never really understood what the term meant. So, this post includes an explanation, as well as, an overview, and a Cold Fusion Rap to ‘wrap’ it all up. (Sometimes I cannot resist a pun.)

Fusion energy explanation (1)

The Massachusetts Institute of Technology (MIT) has a Climate Portal where fusion energy is explained,

Fusion energy is the source of energy at the center of stars, including our own sun. Stars, like most of the universe, are made up of hydrogen, the simplest and most abundant element in the universe, created during the big bang. The center of a star is so hot and so dense that the immense pressure forces hydrogen atoms together. These atoms are forced together so strongly that they create new atoms entirely—helium atoms—and release a staggering amount of energy in the process. This energy is called fusion energy.

More energy than chemical energy

Fusion energy, like fossil fuels, is a form of stored energy. But fusion can create 20 to 100 million times more energy than the chemical reaction of a fossil fuel. Most of the mass of an atom, 99.9 percent, is contained at an atom’s center—inside of its nucleus. The ratio of this matter to the empty space in an atom is almost exactly the same ratio of how much energy you release when you manipulate the nucleus. In contrast, a chemical reaction, such as burning coal, rearranges the atoms through heat, but doesn’t alter the atoms themselves, so we don’t get as much energy.

Making fusion energy

For scientists, making fusion energy means recreating the conditions of stars, starting with plasma. Plasma is the fourth state of matter, after solids, liquids and gases. Ice is an example of a solid. When heated up, it becomes a liquid. Place that liquid in a pot on the stove, and it becomes a gas (steam). If you take that gas and continue to make it hotter, at around 10,000 degrees Fahrenheit (~6,000 Kelvin), it will change from a gas to the next phase of matter: plasma. Ninety-nine percent of the mass in the universe is in the plasma state, since almost the entire mass of the universe is in super hot stars that exist as plasma.

To make fusion energy, scientists must first build a steel chamber and create a vacuum, like in outer space. The next step is to add hydrogen gas. The gas particles are charged to produce an electric current and then surrounded and contained with an electromagnetic force; the hydrogen is now a plasma. This plasma is then heated to about 100 million degrees and fusion energy is released.

Fusion energy explanation (2)

A Vancouver-based company, General Fusion, offers an explanation of how they have approached making fusion energy a reality,

How It Works: Plasma Injector Technology at General Fusion from General Fusion on Vimeo.

After announcing that a General Fusion demonstration plant would be built in the UK (see June 17, 2021 General Fusion news release), there’s a recent announcement about an agreement with the UK Atomic Energy Authority (UKAEA) to commericialize the technology, from an October 17, 2022 General Fusion news release,

Today [October 17, 2022], General Fusion and the UKAEA kick off projects to advance the commercialization of magnetized target fusion energy as part of an important collaborative agreement. With these unique projects, General Fusion will benefit from the vast experience of the UKAEA’s team. The results will hone the design of General Fusion’s demonstration machine being built at the Culham Campus, part of the thriving UK fusion cluster. Ultimately, the company expects the projects will support its efforts to provide low-cost and low-carbon energy to the electricity grid.

General Fusion’s approach to fusion maximizes the reapplication of existing industrialized technologies, bypassing the need for expensive superconducting magnets, significant new materials, or high-power lasers. The demonstration machine will create fusion conditions in a power-plant-relevant environment, confirming the performance and economics of the company’s technology.

“The leading-edge fusion researchers at UKAEA have proven experience building, commissioning, and successfully operating large fusion machines,” said Greg Twinney, Chief Executive Officer, General Fusion. “Partnering with UKAEA’s incredible team will fast-track work to advance our technology and achieve our mission of delivering affordable commercial fusion power to the world.”

“Fusion energy is one of the greatest scientific and engineering quests of our time,” said Ian Chapman, UKAEA CEO. “This collaboration will enable General Fusion to benefit from the ground-breaking research being done in the UK and supports our shared aims of making fusion part of the world’s future energy mix for generations to come.”

I last wrote about General Fusion in a November 3, 2021 posting about the company’s move (?) to Sea Island, Richmond,

I first wrote about General Fusion in a December 2, 2011 posting titled: Burnaby-based company (Canada) challenges fossil fuel consumption with nuclear fusion. (For those unfamiliar with the Vancouver area, there’s the city of Vancouver and there’s Vancouver Metro, which includes the city of Vancouver and others in the region. Burnaby is part of Metro Vancouver; General Fusion is moving to Sea Island (near Vancouver Airport), in Richmond, which is also in Metro Vancouver.) Kenneth Chan’s October 20, 2021 article for the Daily Hive gives more detail about General Fusion’s new facilities (Note: A link has been removed),

The new facility will span two buildings at 6020 and 6082 Russ Baker Way, near YVR’s [Vancouver Airport] South Terminal. This includes a larger building previously used for aircraft engine maintenance and repair.

The relocation process could start before the end of 2021, allowing the company to more than quadruple its workforce over the coming years. Currently, it employs about 140 people.

The Sea Island [in Richmond] facility will house its corporate offices, primary fusion technology development division, and many of its engineering laboratories. This new facility provides General Fusion with the ability to build a new demonstration prototype to support the commercialization of its magnetized target fusion technology.

As of the date of this posting, I have not been able to confirm the move. The company’s Contact webpage lists an address in Burnaby, BC for its headquarters.

The overview

Alex **Pasternack** in an August 17, 2022 article (The frontrunners in the trillion-dollar race for limitless fusion power), **in Fast Company,** provides an overview of the international race with a very, very strong emphasis on the US scene (Note: Links have been removed),

With energy prices on the rise, along with demands for energy independence and an urgent need for carbon-free power, plans to walk away from nuclear energy are now being revised in Japan, South Korea, and even Germany. Last month, Europe announced green bonds for nuclear, and the U.S., thanks to the Inflation Reduction Act, will soon devote millions to new nuclear designs, incentives for nuclear production and domestic uranium mining, and, after years of paucity in funding, cash for fusion.

The new investment comes as fusion—long considered a pipe dream—has attracted real money from big venture capital and big companies, who are increasingly betting that abundant, cheap, clean nuclear will be a multi-trillion dollar industry. Last year, investors like Bill Gates and Jeff Bezos injected a record $3.4 billion into firms working on the technology, according to Pitchbook. One fusion firm, Seattle-based Helion, raised a record $500 million from Sam Altman and Peter Thiel. That money has certainly supercharged the nuclear sector: The Fusion Industry Association says that at least 33 different companies were now pursuing nuclear fusion, and predicted that fusion would be connected to the energy grid sometime in the 2030s.

… What’s not a joke is that we have about zero years to stop powering our civilization with earth-warming energy. The challenge with fusion is to achieve net energy gain, where the energy produced by a fusion reaction exceeds the energy used to make it. One milestone came quietly this month, when a team of researchers at the National Ignition Facility at Lawrence Livermore National Lab in California announced that an experiment last year had yielded over 1.3 megajoules (MJ) of energy, setting a new world record for energy yield for a nuclear fusion experiment. The experiment also achieved scientific ignition for the first time in history: after applying enough heat using an arsenal of lasers, the plasma became self-heating. (Researchers have since been trying to replicate the result, so far without success.)

On a growing campus an hour outside of Boston, the MIT spinoff Commonwealth Fusion Systems is building their first machine, SPARC, with a goal of producing power by 2025. “You’ll push a button,” CEO and cofounder Bob Mumgaard told the Khosla Ventures CEO Summit this summer, “and for the first time on earth you will make more power out than in from a fusion plasma. That’s about 200 million degrees—you know, cooling towers will have a bunch of steam go out of them—and you let your finger off the button and it will stop, and you push the button again and it will go.” With an explosion in funding from investors including Khosla, Bill Gates, George Soros, Emerson Collective and Google to name a few—they raised $1.8 billion last year alone—CFS hopes to start operating a prototype in 2025.

Like the three-decade-old ITER project in France, set for operation in 2025, Commonwealth and many other companies will try to reach net energy gain using a machine called a tokamak, a bagel-shaped device filled with super-hot plasma, heated to about 150 million degrees, within which hydrogen atoms can fuse and release energy. To control that hot plasma, you need to build a very powerful magnetic field. Commonwealth’s breakthrough was tape—specifically, a high-temperature-superconducting steel tape coated with a compound called yttrium-barium-copper oxide. When a prototype was first made commercially available in 2009, Dennis Whyte, director of MIT’s Plasma Science and Fusion Center, ordered as much as he could. With Mumgaard and a team of students, his lab used coils of the stuff to build a new kind of superconducting magnet, and a prototype reactor named ARC, after Tony Stark’s energy source. Commonwealth was born in 2015.

Southern California-based TAE Technologies has raised a whopping $1.2 billion since it was founded in 1998, and $250 million in its latest round. The round, announced in July, was led by Chevron’s venture arm, Google, and Sumitomo, a Tokyo-based holding company that aims to deploy fusion power in the Asia-Pacific market. TAE’s approach, which involves creating a fusion reaction at incredibly high heat, has a key advantage. Whereas ITER uses the hydrogen isotopes deuterium and tritium, an extremely rare element that must be specially created from lithium—and that produces as a byproduct radioactive-free neutrons—TAE’s linear reactor is completely non-radioactive, because it relies on hydrogen and boron, two abundant, naturally-occurring elements that react to produce only helium.

General Atomics, of San Diego, California, has the largest tokamak in the U.S. Its powerful magnetic chamber, called the DIII-D National Fusion Facility, or just “D-three-D,” now features a Toroidal Field Reversing Switch, which allows for the redirection of 120,000 amps of the current that power the primary magnetic field. It’s the only tokamak in the world that allows researchers to switch directions of the magnetic fields in minutes rather than hours. Another new upgrade, a traveling-wave antenna, allows physicists to inject high-powered “helicon” radio waves into DIII-D plasmas so fusion reactions occur much more powerfully and efficiently.

“We’ve got new tools for flexibility and new tools to help us figure out how to make that fusion plasma just keep going,” Richard Buttery, director of the project, told the San Diego Union-Tribune in January. The company is also behind eight of the magnet modules at the heart of the ITER facility, including its wild Central Solenoid — the world’s most powerful magnet — in a kind of scaled up version of the California machine.

But like an awful lot in fusion, ITER has been hampered by cost overruns and delays, with “first plasma” not expected to occur in 2025 as previously expected due to global pandemic-related disruptions. Some have complained that the money going to ITER has distracted from other more practical energy projects—the latest price tag is $22 billion—and others doubt if the project can ever produce net energy gain.

Based in Canada, General Fusion is backed by Jeff Bezos and building on technology originally developed by the U.S. Navy and explored by Russian scientists for potential use in weapons. Inside the machine, molten metal is spun to create a cavity, and pumped with pistons that push the metal inward to form a sphere. Hydrogen, heated to super-hot temperatures and held in place by a magnetic field, fills the sphere to create the reaction. Heat transferred to the metal can be turned into steam to drive a turbine and generate electricity. As former CEO Christofer Mowry told Fast Company last year, “to re-create a piece of the sun on Earth, as you can imagine, is very, very challenging.” Like many fusion companies, GF depends on modern supercomputers and advanced modeling and computational techniques to understand the science of plasma physics, as well as modern manufacturing technologies and materials.

“That’s really opened the door not just to being able to make fusion work but to make it work in a practical way,” Mowry said. This has been difficult to make work, but with a demonstration center it announced last year in Culham, England, GF isn’t aiming to generate electricity but to gather the data needed to later build a commercial pilot plant that could—and to generate more interest in fusion.

Magneto-Intertial Fusion Technologies, or MIFTI, of Tustin, Calif., founded by researchers from the University of California, Irvine, is developing a reactor that uses what’s known as a Staged Z-Pinch approach. A Z-Pinch design heats, confines, and compresses plasma using an intense, pulsed electrical current to generate a magnetic field that could reduce instabilities in the plasma, allowing fusion to persist for longer periods of time. But only recently have MIFTI’s scientists been able to overcome the instability problems, the company says, thanks to software made available to them at UC-Irvine by the U.S. Air Force. …

Princeton Fusion Systems of Plainsboro, New Jersey, is a small business focused on developing small, clean fusion reactors for both terrestrial and space applications. A spinoff of Princeton Satellite Systems, which specializes in spacecraft control, the company’s Princeton FRC reactor is built upon 15 years of research at the Princeton Plasma Physics Laboratory, funded primarily by the U.S. DOE and NASA, and is designed to eventually provide between 1 and 10 megawatts of power in off-grid locations and in modular power plants, “from remote industrial applications to emergency power after natural disasters to off-world bases on the moon or Mars.” The concept uses radio-frequency electromagnetic fields to generates and sustain a plasma formation called a Field-Reversed Configuration (FRC) inside a strong magnetic bottle. …

Tokamak Energy, a U.K.-based company named after the popular fusion device, announced in July that its ST-40 tokamak reactor had reached the 100 million Celsius threshold for commercially viable nuclear fusion. The achievement was made possible by a proprietary design built on a spherical, rather than donut, shape. This means that the magnets are closer to the plasma stream, allowing for smaller and cheaper magnets to create even stronger magnetic fields. …

Based in Pasadena, California, Helicity Space is developing a propulsion and power technology based on a specialized magneto inertial fusion concept. The system, a spin on what fellow fusion engineer, Seattle-based Helion is doing, appears to use twisted compression coils, like a braided rope, to achieve a known phenomenon called the Magnetic Helicity. … According to ZoomInfo and Linkedin, Helicity has over $4 million in funding and up to 10 employees, all aimed, the company says, at “enabling humanity’s access to the solar system, with a Helicity Drive-powered flight to Mars expected to take two months, without planetary alignment.”

ITER (International Thermonuclear Experimental Reactor), meaning “the way” or “the path” in Latin and mentioned in Pasternak’s article, dates its history with *fusion back to about 1978 when cold fusion was the ‘hot’ topic*. (You can read more here in the ITER Wikipedia entry.)

For more about the various approaches to fusion energy, read Pasternack’s August 17, 2022 article (The frontrunners in the trillion-dollar race for limitless fusion power) provides details. I wish there had been a little more about efforts in Japan and South Korea and other parts of the world. Pasternak’s singular focus on the US with a little of Canada and the UK seemingly thrown into the mix to provide an international flavour seems a little myopic.

Fusion rap

In an August 30, 2022 Baba Brinkman announcement (received via email) which gave an extensive update of Brinkman’s activities, there was this,

And the other new topic, which was surprisingly fun to explore, is cold fusion also known as “Low Energy Nuclear Reactions” which you may or may not have a strong opinion about, but if you do I imagine you probably think the technology is either bunk or destined to save the world.

That makes for an interesting topic to explore in rap songs! And fortunately last month I had the pleasure of performing for the cream of the LENR crop at the 24th International Conference on Cold Fusion, including rap ups and two new songs about the field, one very celebratory (for the insiders), and one cautiously optimistic (as an outreach tool).

You can watch “Cold Fusion Renaissance” and “You Must LENR” [L ow E nergy N uclear R eactions or sometimes L attice E nabled N anoscale R eactions or Cold Fusion or CANR (C hemically A ssisted N uclear R eactions)] for yourself to determine which video is which, and also enjoy this article in Infinite Energy Magazine which chronicles my whole cold fusion rap saga.

Here’s one of the rap videos mentioned in Brinkman’s email,

Enjoy!

*December 13, 2022: Sentence changed from “ITER (International Thermonuclear Experimental Reactor), meaning “the way” or “the path” in Latin and mentioned in Pasternak’s article, dates its history with fusion back to about 1978 when cold fusion was the ‘hot’ topic.” to “ITER (International Thermonuclear Experimental Reactor), meaning “the way” or “the path” in Latin and mentioned in Pasternak’s article, dates its history with fusion back to about 1978 when cold fusion was the ‘hot’ topic.”

** ‘Pasternak’ corrected to ‘Pasternack” and ‘in Fast Company’ added on December 29, 2022

Ionic skin for ‘smart’ skin

An April 28, 2022 University of British Columbia (UBC) news release (also on EurekAlert) announces a step forward in the attempt to create ‘smart’ skin, Note: Links have been removed,

In the quest to build smart skin that mimics the sensing capabilities of natural skin, ionic skins have shown significant advantages. They’re made of flexible, biocompatible hydrogels that use ions to carry an electrical charge. In contrast to smart skins made of plastics and metals, the hydrogels have the softness of natural skin. This offers a more natural feel to the prosthetic arm or robot hand they are mounted on, and makes them comfortable to wear.

These hydrogels can generate voltages when touched, but scientists did not clearly understand how — until a team of researchers at UBC devised a unique experiment, published today in Science.

“How hydrogel sensors work is they produce voltages and currents in reaction to stimuli, such as pressure or touch – what we are calling a piezoionic effect. But we didn’t know exactly how these voltages are produced,” said the study’s lead author Yuta Dobashi, who started the work as part of his master’s in biomedical engineering at UBC.

Working under the supervision of UBC researcher Dr. John Madden, Dobashi devised hydrogel sensors containing salts with positive and negative ions of different sizes. He and collaborators in UBC’s physics and chemistry departments applied magnetic fields to track precisely how the ions moved when pressure was applied to the sensor.

“When pressure is applied to the gel, that pressure spreads out the ions in the liquid at different speeds, creating an electrical signal. Positive ions, which tend to be smaller, move faster than larger, negative ions. This results in an uneven ion distribution which creates an electric field, which is what makes a piezoionic sensor work.”

The researchers say this new knowledge confirms that hydrogels work in a similar way to how humans detect pressure, which is also through moving ions in response to pressure, inspiring potential new applications for ionic skins.

“The obvious application is creating sensors that interact directly with cells and the nervous system, since the voltages, currents and response times are like those across cell membranes,” says Dr. Madden, an electrical and computer engineering professor in UBC’s faculty of applied science. “When we connect our sensor to a nerve, it produces a signal in the nerve. The nerve, in turn, activates muscle contraction.”

“You can imagine a prosthetic arm covered in an ionic skin. The skin senses an object through touch or pressure, conveys that information through the nerves to the brain, and the brain then activates the motors required to lift or hold the object. With further development of the sensor skin and interfaces with nerves, this bionic interface is conceivable.”

Another application is a soft hydrogel sensor worn on the skin that can monitor a patient’s vital signs while being totally unobtrusive and generating its own power.

Dobashi, who’s currently completing his PhD work at the University of Toronto, is keen to continue working on ionic technologies after he graduates.

“We can imagine a future where jelly-like ‘iontronics’ are used for body implants. Artificial joints can be implanted, without fear of rejection inside the human body. Ionic devices can be used as part of artificial knee cartilage, adding a smart sensing element.  A piezoionic gel implant might release drugs based on how much pressure it senses, for example.”

Dr. Madden added that the market for smart skins is estimated at $4.5 billion in 2019 and it continues to grow. “Smart skins can be integrated into clothing or placed directly on the skin, and ionic skins are one of the technologies that can further that growth.”

The research includes contributions from UBC chemistry PhD graduate Yael Petel and Carl Michal, UBC professor of physics, who used the interaction between strong magnetic fields and the nuclear spins of ions to track ion movements within the hydrogels. Cédric Plesse, Giao Nguyen and Frédéric Vidal at CY Cergy Paris University in France helped develop a new theory on how the charge and voltage are generated in the hydrogels.

Interview language(s): English (Dobashi, Madden), French (Plesse, Madden), Japanese (Dobashi)

Here’s a link to and a citation for the paper,

Piezoionic mechanoreceptors: Force-induced current generation in hydrogels by
Yuta Dobashi, Dickson Yao, Yael Petel, Tan Ngoc Nguyen, Mirza Saquib Sarwar, Yacine Thabet, Cliff L. W. Ng, Ettore Scabeni Glitz, Giao Tran Minh Nguyen, Cédric Plesse, Frédéric Vidal, Carl A. Michal and John D. W. Madden. Science • 28 Apr 2022 • Vol 376, Issue 6592 • pp. 502-507 • DOI: 10.1126/science.aaw1974

This paper is behind a paywall.

Detangling carbon nanotubes (CNTs)

An April 27, 2022 news item on ScienceDaily announces research into a solution to a vexing problem associated with the production of carbon nanotubes (CNTs),

Carbon nanotubes that are prone to tangle like spaghetti can use a little special sauce to realize their full potential.

Rice University scientists have come up with just the sauce, an acid-based solvent that simplifies carbon nanotube processing in a way that’s easier to scale up for industrial applications.

The Rice lab of Matteo Pasquali reported in Science Advances on its discovery of a unique combination of acids that helps separate nanotubes in a solution and turn them into films, fibers or other materials with excellent electrical and mechanical properties.

The study co-led by graduate alumnus Robert Headrick and graduate student Steven Williams reports the solvent is compatible with conventional manufacturing processes. That should help it find a place in the production of advanced materials for many applications.

An April 22, 2022 Rice University news release (received via email and also published on April 27, 2022 on EurekAlert), which originated the news item, delves further into how the research has environmental benefits and into its technical aspects (Note Links have been removed),

“There’s a growing realization that it’s probably not a good idea to increase the mining of copper and aluminum and nickel,” said Pasquali, Rice’s A.J. Hartsook Professor and a professor of chemical and biomolecular engineering, chemistry and materials science and nanoengineering. He is also director of the Rice-based Carbon Hub, which promotes the development of advanced carbon materials to benefit the environment.

“But there is this giant opportunity to use hydrocarbons as our ore,” he said. “In that light, we need to broaden as much as possible the range in which we can use carbon materials, especially where it can displace metals with a product that can be manufactured sustainably from a feedstock like hydrocarbons.” Pasquali noted these manufacturing processes produce clean hydrogen as well.

“Carbon is plentiful, we control the supply chains and we know how to get it out in an environmentally responsible way,” he said.

A better way to process carbon will help. The solvent is based on methanesulfonic (MSA), p-toluenesulfonic (pToS)and oleum acids that, when combined, are less corrosive than those currently used to process nanotubes in a solution. Separating nanotubes (which researchers refer to as dissolving) is a necessary step before they can be extruded through a needle or other device where shear forces help turn them into familiar fibers or sheets. 

Oleum and chlorosulfonic acids have long been used to dissolve nanotubes without modifying their structures, but both are highly corrosive. By combining oleum with two weaker acids, the team developed a broadly applicable process that enables new manufacturing for nanotubes products.

“The oleum surrounds each individual nanotube and gives it a very localized positive charge,” said Headrick, now a research scientist at Shell. “That charge makes them repel each other.”

After detangling, the milder acids further separate the nanotubes. They found MSA is best for fiber spinning and roll-to-roll film production, while pToS, a solid that melts at 40 degrees Celsius (104 degrees Fahrenheit), is particularly useful for 3D printing applications because it allows nanotube solutions to be processed at a moderate temperature and then solidified by cooling.

The researchers used these stable liquid crystalline solutions to make things in both modern and traditional ways, 3D printing carbon nanotube aerogels and silk screen printing patterns onto a variety of surfaces, including glass. 

The solutions also enabled roll-to-roll production of transparent films that can be used as electrodes. “Honestly, it was a little surprising how well that worked,” Headrick said. “It came out pretty flawless on the very first try.”

The researchers noted oleum still requires careful handling, but once diluted with the other acids, the solution is much less aggressive to other materials. 

“The acids we’re using are so much gentler that you can use them with common plastics,” Headrick said. “That opens the door to a lot of materials processing and printing techniques that are already in place in manufacturing facilities. 

“It’s also really important for integrating carbon nanotubes into other devices, depositing them as one step in a device-manufacturing process,” he said.

They reported the less-corrosive solutions did not give off harmful fumes and were easier to clean up after production. MSA and pToS can also be recycled after processing nanotubes, lowering their environmental impact and energy and processing costs.

Williams said the next step is to fine-tune the solvent for applications, and to determine how factors like chirality and size affect nanotube processing. “It’s really important that we have high-quality, clean, large diameter tubes,” he said.

Co-authors of the paper are alumna Lauren Taylor and graduate students Oliver Dewey and Cedric Ginestra of Rice; graduate student Crystal Owens and professors Gareth McKinley and A. John Hart at the Massachusetts Institute of Technology; alumna Lucy Liberman, graduate student Asia Matatyaho Ya’akobi and Yeshayahu Talmon, a professor emeritus of chemical engineering, at the Technion-Israel Institute of Technology, Haifa, Israel; and Benji Maruyama, autonomous materials lead in the Materials and Manufacturing Directorate, Air Force Research Laboratory.

Here’s a link to and a citation for the paper,

Versatile acid solvents for pristine carbon nanotube assembly by Robert J. Headrick, Steven M. Williams, Crystal E. Owens, Lauren W. Taylor, Oliver S. Dewey, Cedric J. Ginestra, Lucy Liberman, Asia Matatyaho Ya’akobi, Yeshayahu Talmon, Benji Maruyama, Gareth H. McKinley, A. John Hart, Matteo Pasquali. Science Advances • 27 Apr 2022 • Vol 8, Issue 17 • DOI: 10.1126/sciadv.abm3285

This paper is open access.

Keeping your hands cool and your coffee hot with a cup cozy inspired by squid skin

Researchers in the Department of Chemical and Biomolecular Engineering at the University of California, Irvine have invented a squid-skin inspired material that can wrap around a coffee cup to shield sensitive fingers from heat. They have also created a method for economically mass producing the adaptive fabric, making possible a wide range of uses. Credit: Melissa Sung Courtesy: University of California Irvine

I love that image. Melissa Sung, thank you. Sadly, squid-inspired cup cozies aren’t available yet according to a March 28, 2022 news item on phys.org but researchers are working on it, Note: Links have been removed,

In the future, you may have a squid to thank for your coffee staying hot on a cold day. Drawing inspiration from cephalopod skin, engineers at the University of California, Irvine invented an adaptive composite material that can insulate beverage cups, restaurant to-go bags, parcel boxes and even shipping containers.

The innovation is an infrared-reflecting metallized polymer film developed in the laboratory of Alon Gorodetsky, UCI associate professor of chemical and biomolecular engineering. In a paper published today [March 28, 2022] in Nature Sustainability, Gorodetsky and his team members describe a large-area composite material that regulates heat by means of reconfigurable metal structures that can reversibly separate from one another and come back together under different strain levels.

“The metal islands in our composite material are next to one another when the material is relaxed and become separated when the material is stretched, allowing for control of the reflection and transmission of infrared light or heat dissipation,” said Gorodetsky. “The mechanism is analogous to chromatophore expansion and contraction in a squid’s skin, which alters the reflection and transmission of visible light.”

Chromatophore size changes help squids communicate and camouflage their bodies to evade predators and hide from prey. Gorodetsky said by mimicking this approach, his team has enabled “tunable thermoregulation” in their material, which can lead to improved energy efficiency and protect sensitive fingers from hot surfaces.

A March 28, 2022 University of California at Irvine (UCI) news release (also on EurekAlert), which originated the news item, delves further into this squid-inspired research and its commercialization,

A key breakthrough of this project was the UCI researchers’ development of a cost-effective production method of their composite material at application-relevant quantities. The copper and rubber raw materials start at about a dime per square meter with the costs reduced further by economies of scale, according to the paper. The team’s fabrication technique involves depositing a copper film onto a reusable substrate such as aluminum foil and then spraying multiple polymer layers onto the copper film, all of which can be done in nearly any batch size imaginable.

“The combined manufacturing strategy that we have now perfected in our lab is a real game changer,” said Gorodetsky. “We have been working with cephalopod-inspired adaptive materials and systems for years but previously have only been able to fabricate them over relatively small areas. Now there is finally a path to making this stuff roll-by-roll in a factory.”

The developed strategy and economies of scale should make it possible for the composite material to be used in a wide range of applications, from the coffee cup cozy up to tents, or in any container in which tunable temperature regulation is desired.

The invention will go easy on the environment due its environmental sustainability, said lead author Mohsin Badshah, a former UCI postdoctoral scholar in chemical and biomolecular engineering. “The composite material can be recycled in bulk by removing the copper with vinegar and using established commercial methods to repurpose the remaining stretchable polymer,” he said.

The team conducted universally relatable coffee cup testing in their laboratory on the UCI campus, where they proved they could control the cooling of the coffee. They were able to accurately and theoretically predict and then experimentally confirm the changes in temperature for the beverage-filled cups. The was also able to achieve a 20-fold modulation of infrared radiation transmittance and a 30-fold regulation of thermal fluxes under standardized testing conditions. The stable material even worked well for high levels of mechanical deformation and after repeated mechanical cycling.

“There is an enormous array of applications for this material,” said Gorodetsky. “Think of all the perishable goods that have been delivered to people’s homes during the pandemic. Any package that Amazon or another company sends that needs to be temperature-controlled can use a lining made from our squid-inspired adaptive composite material. Now that we can make large sheets of it at a time, we have something that can benefit many aspects of our lives.”

Joining Gorodetsky and Badshah on this project were Erica Leung, who recently graduated UCI with a Ph.D. in chemical and biomolecular engineering, and Aleksandra Strzelecka and Panyiming Liu, who are current UCI graduate students. The research was funded by the Defense Advanced Research Projects Agency, the Advanced Research Projects Agency – Energy and the Air Force Office of Scientific Research. A provisional patent for the technology and manufacturing process has been applied for.

Here’s a link to and a citation for the paper,

Scalable manufacturing of sustainable packaging materials with tunable thermoregulability by Mohsin Ali Badshah, Erica M. Leung, Panyiming Liu, Aleksandra Anna Strzelecka & Alon A. Gorodetsky. Nature Sustainability (2022) DOI: https://doi.org/10.1038/s41893-022-00847-2 Published: 28 March 2022

This paper is behind a paywall.

2022 Nobel Prize for Physics winners proved the existence of quantum entanglement

In early October 2022, Alain Aspect, John Clauser and Anton Zeilinger were jointly awarded the 2022 Nobel Prize in Physics for work each scientist performed independently of the others.

Here’s more about the scientists and their works from an October 4, 2022 Nobel Prize press release,

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2022 to

Alain Aspect
Institut d’Optique Graduate School – Université Paris-
Saclay and École Polytechnique, Palaiseau, France

John F. Clauser
J.F. Clauser & Assoc., Walnut Creek, CA, USA

Anton Zeilinger
University of Vienna, Austria

“for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science”

Entangled states – from theory to technology

Alain Aspect, John Clauser and Anton Zeilinger have each conducted groundbreaking experiments using entangled quantum states, where two particles behave like a single unit even when they are separated. Their results have cleared the way for new technology based upon quantum information.

The ineffable effects of quantum mechanics are starting to find applications. There is now a large field of research that includes quantum computers, quantum networks and secure quantum encrypted communication.

One key factor in this development is how quantum mechanics allows two or more particles to exist in what is called an entangled state. What happens to one of the particles in an entangled pair determines what happens to the other particle, even if they are far apart.

For a long time, the question was whether the correlation was because the particles in an entangled pair contained hidden variables, instructions that tell them which result they should give in an experiment. In the 1960s, John Stewart Bell developed the mathematical inequality that is named after him. This states that if there are hidden variables, the correlation between the results of a large number of measurements will never exceed a certain value. However, quantum mechanics predicts that a certain type of experiment will violate Bell’s inequality, thus resulting in a stronger correlation than would otherwise be possible.

John Clauser developed John Bell’s ideas, leading to a practical experiment. When he took the measurements, they supported quantum mechanics by clearly violating a Bell inequality. This means that quantum mechanics cannot be replaced by a theory that uses hidden variables.

Some loopholes remained after John Clauser’s experiment. Alain Aspect developed the setup, using it in a way that closed an important loophole. He was able to switch the measurement settings after an entangled pair had left its source, so the setting that existed when they were emitted could not affect the result.

Using refined tools and long series of experiments, Anton Zeilinger started to use entangled quantum states. Among other things, his research group has demonstrated a phenomenon called quantum teleportation, which makes it possible to move a quantum state from one particle to one at a distance.

“It has become increasingly clear that a new kind of quantum technology is emerging. We can see that the laureates’ work with entangled states is of great importance, even beyond the fundamental questions about the interpretation of quantum mechanics,”says Anders Irbäck, Chair of the Nobel Committee for Physics.

There are some practical applications for their work on establishing quantum entanglement as Dr. Nicholas Peters, University of Tennessee and Oak Ridge National Laboratory (ORNL), explains in his October 7, 2022 essay for The Conversation,

Unhackable communications devices, high-precision GPS and high-resolution medical imaging all have something in common. These technologies—some under development and some already on the market all rely on the non-intuitive quantum phenomenon of entanglement.

Two quantum particles, like pairs of atoms or photons, can become entangled. That means a property of one particle is linked to a property of the other, and a change to one particle instantly affects the other particle, regardless of how far apart they are. This correlation is a key resource in quantum information technologies.

For the most part, quantum entanglement is still a subject of physics research, but it’s also a component of commercially available technologies, and it plays a starring role in the emerging quantum information processing industry.

Quantum entanglement is a critical element of quantum information processing, and photonic entanglement of the type pioneered by the Nobel laureates is crucial for transmitting quantum information. Quantum entanglement can be used to build large-scale quantum communications networks.

On a path toward long-distance quantum networks, Jian-Wei Pan, one of Zeilinger’s former students, and colleagues demonstrated entanglement distribution to two locations separated by 764 miles (1,203 km) on Earth via satellite transmission. However, direct transmission rates of quantum information are limited due to loss, meaning too many photons get absorbed by matter in transit so not enough reach the destination.

Entanglement is critical for solving this roadblock, through the nascent technology of quantum repeaters. An important milestone for early quantum repeaters, called entanglement swapping, was demonstrated by Zeilinger and colleagues in 1998. Entanglement swapping links one each of two pairs of entangled photons, thereby entangling the two initially independent photons, which can be far apart from each other.

Perhaps the most well known quantum communications application is Quantum Key Distribution (QKD), which allows someone to securely distribute encryption keys. If those keys are stored properly, they will be secure, even from future powerful, code-breaking quantum computers.

I don’t usually embed videos that are longer than 5 mins. but this one has a good explanation of cryptography (both classical and quantum),

The video host, Physics Girl (website), is also known as Dianna Cowern.

If you have the time, do read Peters’s October 7, 2022 essay, which can also be found as an October 10, 2022 news item on phys.org.

I wonder if there’s going to be a rush to fund and commercialize more quantum physics projects. There’s certainly an upsurge in activity locally and in Canada (I assume the same is true elsewhere) as my July 26, 2022 posting “Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more” makes clear.

AI (artificial intelligence) and art ethics: a debate + a Botto (AI artist) October 2022 exhibition in the Uk

Who is an artist? What is an artist? Can everyone be an artist? These are the kinds of questions you can expect with the rise of artificially intelligent artists/collaborators. Of course, these same questions have been asked many times before the rise of AI (artificial intelligence) agents/programs in the field of visual art. Each time the questions are raised is an opportunity to examine our beliefs from a different perspective. And, not to be forgotten, there are questions about money.

The shock

First, the ‘art’,

The winning work. Colorado State Fair 2022. Screengrab from Discord [downloaded from https://www.artnews.com/art-news/news/colorado-state-fair-ai-generated-artwork-controversy-1234638022/]

Shanti Escalante-De Mattei’s September 1, 2022 article for ArtNews.com provides an overview of the latest AI art controversy (Note: A link has been removed),

The debate around AI art went viral once again when a man won first place at the Colorado State Fair’s art competition in the digital category with a work he made using text-to-image AI generator Midjourney.

Twitter user and digital artist Genel Jumalon tweeted out a screenshot from a Discord channel in which user Sincarnate, aka game designer Jason Allen, celebrated his win at the fair. Jumalon wrote, “Someone entered an art competition with an AI-generated piece and won the first prize. Yeah that’s pretty fucking shitty.”

The comments on the post range from despair and anger as artists, both digital and traditional, worry that their livelihoods might be at stake after years of believing that creative work would be safe from AI-driven automation. [emphasis mine]

Rachel Metz’s September 3, 2022 article for CNN provides more details about how the work was generated (Note: Links have been removed),

Jason M. Allen was almost too nervous to enter his first art competition. Now, his award-winning image is sparking controversy about whether art can be generated by a computer, and what, exactly, it means to be an artist.

In August [2022], Allen, a game designer who lives in Pueblo West, Colorado, won first place in the emerging artist division’s “digital arts/digitally-manipulated photography” category at the Colorado State Fair Fine Arts Competition. His winning image, titled “Théâtre D’opéra Spatial” (French for “Space Opera Theater”), was made with Midjourney — an artificial intelligence system that can produce detailed images when fed written prompts. A $300 prize accompanied his win.

Allen’s winning image looks like a bright, surreal cross between a Renaissance and steampunk painting. It’s one of three such images he entered in the competition. In total, 11 people entered 18 pieces of art in the same category in the emerging artist division.

The definition for the category in which Allen competed states that digital art refers to works that use “digital technology as part of the creative or presentation process.” Allen stated that Midjourney was used to create his image when he entered the contest, he said.

The newness of these tools, how they’re used to produce images, and, in some cases, the gatekeeping for access to some of the most powerful ones has led to debates about whether they can truly make art or assist humans in making art.

This came into sharp focus for Allen not long after his win. Allen had posted excitedly about his win on Midjourney’s Discord server on August 25 [2022], along with pictures of his three entries; it went viral on Twitter days later, with many artists angered by Allen’s win because of his use of AI to create the image, as a story by Vice’s Motherboard reported earlier this week.

“This sucks for the exact same reason we don’t let robots participate in the Olympics,” one Twitter user wrote.

“This is the literal definition of ‘pressed a few buttons to make a digital art piece’,” another Tweeted. “AI artwork is the ‘banana taped to the wall’ of the digital world now.”

Yet while Allen didn’t use a paintbrush to create his winning piece, there was plenty of work involved, he said.

“It’s not like you’re just smashing words together and winning competitions,” he said.

You can feed a phrase like “an oil painting of an angry strawberry” to Midjourney and receive several images from the AI system within seconds, but Allen’s process wasn’t that simple. To get the final three images he entered in the competition, he said, took more than 80 hours.

First, he said, he played around with phrasing that led Midjourney to generate images of women in frilly dresses and space helmets — he was trying to mash up Victorian-style costuming with space themes, he said. Over time, with many slight tweaks to his written prompt (such as to adjust lighting and color harmony), he created 900 iterations of what led to his final three images. He cleaned up those three images in Photoshop, such as by giving one of the female figures in his winning image a head with wavy, dark hair after Midjourney had rendered her headless. Then he ran the images through another software program called Gigapixel AI that can improve resolution and had the images printed on canvas at a local print shop.

Ars Technica has run a number of articles on the subject of Art and AI, Benj Edwards in an August 31, 2022 article seems to have been one of the first to comment on Jason Allen’s win (Note 1: Links have been removed; Note 2: Look at how Edwards identifies Jason Allen as an artist),

A synthetic media artist named Jason Allen entered AI-generated artwork into the Colorado State Fair fine arts competition and announced last week that he won first place in the Digital Arts/Digitally Manipulated Photography category, Vice reported Wednesday [August 31, 2022?] based on a viral tweet.

Allen’s victory prompted lively discussions on Twitter, Reddit, and the Midjourney Discord server about the nature of art and what it means to be an artist. Some commenters think human artistry is doomed thanks to AI and that all artists are destined to be replaced by machines. Others think art will evolve and adapt with new technologies that come along, citing synthesizers in music. It’s a hot debate that Wired covered in July [2022].

It’s worth noting that the invention of the camera in the 1800s prompted similar criticism related to the medium of photography, since the camera seemingly did all the work compared to an artist that labored to craft an artwork by hand with a brush or pencil. Some feared that painters would forever become obsolete with the advent of color photography. In some applications, photography replaced more laborious illustration methods (such as engraving), but human fine art painters are still around today.

Benj Edwards in a September 12, 2022 article for Ars Technica examines how some art communities are responding (Note: Links have been removed),

Confronted with an overwhelming amount of artificial-intelligence-generated artwork flooding in, some online art communities have taken dramatic steps to ban or curb its presence on their sites, including Newgrounds, Inkblot Art, and Fur Affinity, according to Andy Baio of Waxy.org.

Baio, who has been following AI art ethics closely on his blog, first noticed the bans and reported about them on Friday [Sept. 9, 2022?]. …

The arrival of widely available image synthesis models such as Midjourney and Stable Diffusion has provoked an intense online battle between artists who view AI-assisted artwork as a form of theft (more on that below) and artists who enthusiastically embrace the new creative tools.

… a quickly evolving debate about how art communities (and art professionals) can adapt to software that can potentially produce unlimited works of beautiful art at a rate that no human working without the tools could match.

A few weeks ago, some artists began discovering their artwork in the Stable Diffusion data set, and they weren’t happy about it. Charlie Warzel wrote a detailed report about these reactions for The Atlantic last week [September 7, 2022]. With battle lines being drawn firmly in the sand and new AI creativity tools coming out steadily, this debate will likely continue for some time to come.

Filthy lucre becomes more prominent in the conversation

Lizzie O’Leary in a September 12, 2022 article for Fast Company presents a transcript of an interview (from the TBD podcast) she conducted with Drew Harwell, tech reporter covering A.I. for Washington Post) about the ‘Jason Allen’ win,

I’m struck by how quickly these art A.I.s are advancing. DALL-E was released in January of last year and there were some pretty basic images. And then, a year later, DALL-E 2 is using complex, faster methods. Midjourney, the one Jason Allen used, has a feature that allows you to upscale and downscale images. Where is this sudden supply and demand for A.I. art coming from?

You could look back to five years ago when they had these text-to-image generators and the output would be really crude. You could sort of see what the A.I. was trying to get at, but we’ve only really been able to cross that photorealistic uncanny valley in the last year or so. And I think the things that have contributed to that are, one, better data. You’re seeing people invest a lot of money and brainpower and resources into adding more stuff into bigger data sets. We have whole groups that are taking every image they can get on the internet. Billions, billions of images from Pinterest and Amazon and Facebook. You have bigger data sets, so the A.I. is learning more. You also have better computing power, and those are the two ingredients to any good piece of A.I. So now you have A.I. that is not only trained to understand the world a little bit better, but it can now really quickly spit out a very finely detailed generated image.

Is there any way to know, when you look at a piece of A.I. art, what images it referenced to create what it’s doing? Or is it just so vast that you can’t kind of unspool it backward?

When you’re doing an image that’s totally generated out of nowhere, it’s taking bits of information from billions of images. It’s creating it in a much more sophisticated way so that it’s really hard to unspool.

Art generated by A.I. isn’t just a gee-whiz phenomenon, something that wins prizes, or even a fascinating subject for debate—it has valuable commercial uses, too. Some that are a little frightening if you’re, say, a graphic designer.

You’re already starting to see some of these images illustrating news articles, being used as logos for companies, being used in the form of stock art for small businesses and websites. Anything where somebody would’ve gone and paid an illustrator or graphic designer or artist to make something, they can now go to this A.I. and create something in a few seconds that is maybe not perfect, maybe would be beaten by a human in a head-to-head, but is good enough. From a commercial perspective, that’s scary, because we have an industry of people whose whole job is to create images, now running up against A.I.

And the A.I., again, in the last five years, the A.I. has gotten better and better. It’s still not perfect. I don’t think it’ll ever be perfect, whatever that looks like. It processes information in a different, maybe more literal, way than a human. I think human artists will still sort of have the upper hand in being able to imagine things a little more outside of the box. And yet, if you’re just looking for three people in a classroom or a pretty simple logo, you’re going to go to A.I. and you’re going to take potentially a job away from a freelancer whom you would’ve given it to 10 years ago.

I can see a use case here in marketing, in advertising. The A.I. doesn’t need health insurance, it doesn’t need paid vacation days, and I really do wonder about this idea that the A.I. could replace the jobs of visual artists. Do you think that is a legitimate fear, or is that overwrought at this moment?

I think it is a legitimate fear. When something can mirror your skill set, not 100 percent of the way, but enough of the way that it could replace you, that’s an issue. Do these A.I. creators have any kind of moral responsibility to not create it because it could put people out of jobs? I think that’s a debate, but I don’t think they see it that way. They see it like they’re just creating the new generation of digital camera, the new generation of Photoshop. But I think it is worth worrying about because even compared with cameras and Photoshop, the A.I. is a little bit more of the full package and it is so accessible and so hard to match in terms. It’s really going to be up to human artists to find some way to differentiate themselves from the A.I.

This is making me wonder about the humans underneath the data sets that the A.I. is trained on. The criticism is, of course, that these businesses are making money off thousands of artists’ work without their consent or knowledge and it undermines their work. Some people looked at the Stable Diffusion and they didn’t have access to its whole data set, but they found that Thomas Kinkade, the landscape painter, was the most referenced artist in the data set. Is the A.I. just piggybacking? And if it’s not Thomas Kinkade, if it’s someone who’s alive, are they piggybacking on that person’s work without that person getting paid?

Here’s a bit more on the topic of money and art in a September 19, 2022 article by John Herrman for New York Magazine. First, he starts with the literary arts, Note: Links have been removed,

Artificial-intelligence experts are excited about the progress of the past few years. You can tell! They’ve been telling reporters things like “Everything’s in bloom,” “Billions of lives will be affected,” and “I know a person when I talk to it — it doesn’t matter whether they have a brain made of meat in their head.”

We don’t have to take their word for it, though. Recently, AI-powered tools have been making themselves known directly to the public, flooding our social feeds with bizarre and shocking and often very funny machine-generated content. OpenAI’s GPT-3 took simple text prompts — to write a news article about AI or to imagine a rose ceremony from The Bachelor in Middle English — and produced convincing results.

Deepfakes graduated from a looming threat to something an enterprising teenager can put together for a TikTok, and chatbots are occasionally sending their creators into crisis.

More widespread, and probably most evocative of a creative artificial intelligence, is the new crop of image-creation tools, including DALL-E, Imagen, Craiyon, and Midjourney, which all do versions of the same thing. You ask them to render something. Then, with models trained on vast sets of images gathered from around the web and elsewhere, they try — “Bart Simpson in the style of Soviet statuary”; “goldendoodle megafauna in the streets of Chelsea”; “a spaghetti dinner in hell”; “a logo for a carpet-cleaning company, blue and red, round”; “the meaning of life.”

This flood of machine-generated media has already altered the discourse around AI for the better, probably, though it couldn’t have been much worse. In contrast with the glib intra-VC debate about avoiding human enslavement by a future superintelligence, discussions about image-generation technology have been driven by users and artists and focus on labor, intellectual property, AI bias, and the ethics of artistic borrowing and reproduction [emphasis mine]. Early controversies have cut to the chase: Is the guy who entered generated art into a fine-art contest in Colorado (and won!) an asshole? Artists and designers who already feel underappreciated or exploited in their industries — from concept artists in gaming and film and TV to freelance logo designers — are understandably concerned about automation. Some art communities and marketplaces have banned AI-generated images entirely.

Requests are effectively thrown into “a giant swirling whirlpool” of “10,000 graphics cards,” Holz [David Holz, Midjourney founder] said, after which users gradually watch them take shape, gaining sharpness but also changing form as Midjourney refines its work.

This hints at an externality beyond the worlds of art and design. “Almost all the money goes to paying for those machines,” Holz said. New users are given a small number of free image generations before they’re cut off and asked to pay; each request initiates a massive computational task, which means using a lot of electricity.

High compute costs [emphasis mine] — which are largely energy costs — are why other services have been cautious about adding new users. …

Another Midjourney user, Gila von Meissner, is a graphic designer and children’s-book author-illustrator from “the boondocks in north Germany.” Her agent is currently shopping around a book that combines generated images with her own art and characters. Like Pluckebaum [Brian Pluckebaum who works in automotive-semiconductor marketing and designs board games], she brought up the balance of power with publishers. “Picture books pay peanuts,” she said. “Most illustrators struggle financially.” Why not make the work easier and faster? “It’s my character, my edits on the AI backgrounds, my voice, and my story.” A process that took months now takes a week, she said. “Does that make it less original?”

User MoeHong, a graphic designer and typographer for the state of California, has been using Midjourney to make what he called generic illustrations (“backgrounds, people at work, kids at school, etc.”) for government websites, pamphlets, and literature: “I get some of the benefits of using custom art — not that we have a budget for commissions! — without the paying-an-artist part.” He said he has mostly replaced stock art, but he’s not entirely comfortable with the situation. “I have a number of friends who are commercial illustrators, and I’ve been very careful not to show them what I’ve made,” he said. He’s convinced that tools like this could eventually put people in his trade out of work. “But I’m already in my 50s,” he said, “and I hope I’ll be gone by the time that happens.”

Fan club

The last article I’m featuring here is a September 15, 2021 piece by Agnieszka Cichocka for DailyArt, which provides good, brief descriptions of algorithms, generative creative networks, machine learning, artificial neural networks, and more. She is an enthusiast (Note: Links have been removed),

I keep wondering if Leonardo da Vinci, who, in my opinion, was the most forward thinking artist of all time, would have ever imagined that art would one day be created by AI. He worked on numerous ideas and was constantly experimenting, and, although some were failures, he persistently tried new products, helping to move our world forward. Without such people, progress would not be possible. 

Machine Learning

As humans, we learn by acquiring knowledge through observations, senses, experiences, etc. This is similar to computers. Machine learning is a process in which a computer system learns how to perform a task better in two ways—either through exposure to environments that provide punishments and rewards (reinforcement learning) or by training with specific data sets (the system learns automatically and improves from previous experiences). Both methods help the systems improve their accuracy. Machines then use patterns and attempt to make an accurate analysis of things they have not seen before. To give an example, let’s say we feed the computer with thousands of photos of a dog. Consequently, it can learn what a dog looks like based on those. Later, even when faced with a picture it has never seen before, it can tell that the photo shows a dog.

If you want to see some creative machine learning experiments in art, check out ML x ART. This is a website with hundreds of artworks created using AI tools.

Some thoughts

As the saying goes “a picture is worth a thousand words” and, now, It seems that pictures will be made from words or so suggests the example of Jason M. Allen feeding prompts to the AI system Midjourney.

I suspect (as others have suggested) that in the end, artists who use AI systems will be absorbed into the art world in much the same way as artists who use photography, or are considered performance artists and/or conceptual artists, and/or use video have been absorbed. There will be some displacements and discomfort as the questions I opened this posting with (Who is an artist? What is an artist? Can everyone be an artist?) are passionately discussed and considered. Underlying many of these questions is the issue of money.

The impact on people’s livelihoods is cheering or concerning depending on how the AI system is being used. Herrman’s September 19, 2022 article highlights two examples that focus on graphic designers. Gila von Meissner, the illustrator and designer, who uses her own art to illustrate her children’s books in a faster, more cost effective way with an AI system and MoeHong, a graphic designer for the state of California, who uses an AI system to make ‘customized generic art’ for which the state government doesn’t have to pay.

So far, the focus has been on Midjourney and other AI agents that have been created by developers for use by visual artists and writers. What happens when the visual artist or the writer is the developer? A September 12, 2022 article by Brandon Scott Roye for Cool Hunting approaches the question (Note: Links have been removed),

Mario Klingemann and Sasha Stiles on Semi-Autonomous AI Artists

An artist and engineer at the forefront of generating AI artwork, Mario Klingemann and first-generation Kalmyk-American poet, artist and researcher Sasha Stiles both approach AI from a more human, personal angle. Creators of semi-autonomous systems, both Klingemann and Stiles are the minds behind Botto and Technelegy, respectively. They are both artists in their own right, but their creations are too. Within web3, the identity of the “artist” who creates with visuals and the “writer” who creates with words is enjoying a foundational shift and expansion. Many have fashioned themselves a new title as “engineer.”

Based on their primary identities as an artist and poet, Klingemann and Stiles face the conundrum of becoming engineers who design the tools, rather than artists responsible for the final piece. They now have the ability to remove themselves from influencing inputs and outputs.

If you have time, I suggest reading Roye’s September 12, 2022 article as it provides some very interesting ideas although I don’t necessarily agree with them, e.g., “They now have the ability to remove themselves from influencing inputs and outputs.” Anyone who’s following the ethics discussion around AI knows that biases are built into the algorithms whether we like it or not. As for artists and writers calling themselves ‘engineers’, they may get a little resistance from the engineering community.

As users of open source software, Klingemann and Stiles should not have to worry too much about intellectual property. However, it seems copyright for the actual works and patents for the software could raise some interesting issues especially since money is involved.

In a March 10, 2022 article by Shraddha Nair for Stir World, Klingemann claims to have made over $1M from auctions of Botto’s artworks. it’s not clear to me where Botto obtains its library of images for future use (which may signal a potential problem); Stiles’ Technelegy creates poems from prompts using its library of her poems. (For the curious, I have an August 30, 2022 post “Should AI algorithms get patents for their inventions and is anyone talking about copyright for texts written by AI algorithms?” which explores some of the issues around patents.)

Who gets the patent and/or the copyright? Assuming you and I are employing machine learning to train our AI agents separately, could there be an argument that if my version of the AI is different than yours and proves more popular with other content creators/ artists that I should own/share the patent to the software and rights to whatever the software produces?

Getting back to Herrman’s comment about high compute costs and energy, we seem to have an insatiable appetite for energy and that is not only a high cost financially but also environmentally.

Botto exhibition

Here’s more about Klingemann’s artist exhibition by Botto (from an October 6, 2022 announcement received via email),

Mario Klingemann is a pioneering figurehead in the field of AI art,
working deep in the field of Machine Learning. Governed by a community
of 5,000 people, Klingemann developed Botto around an idea of creating
an autonomous entity that is able to be creative and co-creative.
Inspired by Goethe’s artificial man in Faust, Botto is a genderless AI
entity that is guided by an international community and art historical
trends. Botto creates 350 art pieces per week that are presented to its
community. Members of the community give feedback on these art fragments
by voting, expressing their individual preferences on what is
aesthetically pleasing to them. Then collectively the votes are used as
feedback for Botto’s generative algorithm, dictating what direction
Botto should take in its next series of art pieces.

The creative capacity of its algorithm is far beyond the capacities of
an individual to combine and find relationships within all the
information available to the AI. Botto faces similar issues as a human
artist, and it is programmed to self-reflect and ask, “I’ve created
this type of work before. What can I show them that’s different this
week?”

Once a week, Botto auctions the art fragment with the most votes on
SuperRare. All proceeds from the auction go back to the community. The
AI artist auctioned its first three pieces, Asymmetrical Liberation,
Scene Precede, and Trickery Contagion for more than $900,000 dollars,
the most successful AI artist premiere. Today, Botto has produced
upwards of 22 artworks and current sales have generated over $2 million
in total
[emphasis mine].

From March 2022 when Botto had made $1M to October 2022 where it’s made over $2M. It seems Botto is a very financially successful artist.

Botto: A Whole Year of Co-Creation

This exhibition (October 26 – 30, 2022) is being held in London, England at this location:

The Department Store, Brixton 248 Ferndale Road London SW9 8FR United Kingdom

Enjoy!

Physics of a singing saw could lead to applications in sensing, nanoelectronics, photonics, etc.

I’d forgotten how haunting a musical saw can sound,

An April 22, 2022 news item on Nanowerk announces research into the possibilities of a singing saw,

The eerie, ethereal sound of the singing saw has been a part of folk music traditions around the globe, from China to Appalachia, since the proliferation of cheap, flexible steel in the early 19th century. Made from bending a metal hand saw and bowing it like a cello, the instrument reached its heyday on the vaudeville stages of the early 20th century and has seen a resurgence thanks, in part, to social media.

As it turns out, the unique mathematical physics of the singing saw may hold the key to designing high quality resonators for a range of applications.

In a new paper, a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Department of Physics used the singing saw to demonstrate how the geometry of a curved sheet, like curved metal, could be tuned to create high-quality, long-lasting oscillations for applications in sensing, nanoelectronics, photonics and more.

An April 21, 2022 Harvard University John A. Paulson School of Engineering and Applied Sciences (SEAS) news release by Leah Burrows (also on EurekAlert but published on April 22, 2022) delves further into physics of singing saws,

“Our research offers a robust principle to design high-quality resonators independent of scale and material, from macroscopic musical instruments to nanoscale devices, simply through a combination of geometry and topology,” said L Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, of Organismic and Evolutionary Biology, and of Physics and senior author of the study.

While all musical instruments are acoustic resonators of a kind, none work quite like the singing saw.

“How the singing saw sings is based on a surprising effect,” said Petur Bryde, a graduate student at SEAS and co-first author of the paper. “When you strike a flat elastic sheet, such as a sheet of metal, the entire structure vibrates. The energy is quickly lost through the boundary where it is held, resulting in a dull sound that dissipates quickly. The same result is observed if you curve it into a J-shape. But, if you bend the sheet into an S-shape, you can make it vibrate in a very small area, which produces a clear, long-lasting tone.”

The geometry of the curved saw creates what musicians call the sweet spot and what physicists call localized vibrational modes — a confined area on the sheet which resonates without losing energy at the edges.

Importantly, the specific geometry of the S-curve doesn’t matter. It could be an S with a big curve at the top and a small curve at the bottom or visa versa. 

“Musicians and researchers have known about this robust effect of geometry for some time, but the underlying mechanisms have remained a mystery,” said Suraj Shankar, a Harvard Junior Fellow in Physics and SEAS and co-first author of the study.  “We found a mathematical argument that explains how and why this robust effect exists with any shape within this class, so that the details of the shape are unimportant, and the only fact that matters is that there is a reversal of curvature along the saw.”

Shankar, Bryde and Mahadevan found that explanation via an analogy to very different class of physical systems — topological insulators. Most often associated with quantum physics, topological insulators are materials that conduct electricity in their surface or edge but not in the middle and no matter how you cut these materials, they will always conduct on their edges.

“In this work, we drew a mathematical analogy between the acoustics of bent sheets and these quantum and electronic systems,” said Shankar.

By using the mathematics of topological systems, the researchers found that the localized vibrational modes in the sweet spot of singing saw were governed by a topological parameter that can be computed and which relies on nothing more than the existence of two opposite curves in the material. The sweet spot then behaves like an internal “edge” in the saw.

“By using experiments, theoretical and numerical analysis, we showed that the S-curvature in a thin shell can localize topologically-protected modes at the ‘sweet spot’ or inflection line, similar to exotic edge states in topological insulators,” said Bryde. “This phenomenon is material independent, meaning it will appear in steel, glass or even graphene.”

The researchers also found that they could tune the localization of the mode by changing the shape of the S-curve, which is important in applications such as sensing, where you need a resonator that is tuned to very specific frequencies.

Next, the researchers aim to explore localized modes in doubly curved structures, such as bells and other shapes.

Here’s a link to and a citation for the paper,

Geometric control of topological dynamics in a singing saw by Suraj Shankar, Petur Bryde, and L. Mahadevan. The Proceedings of the National Academy of Sciences (PNAS) April 21, 2022 | 119 (17) e2117241119 DOI: https://doi.org/10.1073/pnas.2117241119

This paper is open (free) access.

Clay film keeps your apples fresh

Which apple would you like to eat?

Caption: Extent of decay in apples treated with clay film and cling wrap. Credit: Miharu Eguchi National Institute for Materials Science eguchi.miharu@nims.go.jp

This research into food packaging comes from Japan’s National Institute for Materials in a March 8, 2022 press release (also on EurekAlert but published on April 12, 2022),

An international research team consisting of NIMS, The University of Queensland and National Taiwan University has succeeded in creating a clay film with its gas permeability optimized for long-term storage of fresh produce by adjusting the sizes of the clay nanosheet particles comprising it. The team then uniformly coated the surfaces of various fruits with the film. This treatment kept the fruits’ respiration rates low without completely depriving them of oxygen, preventing them from decaying.

Efforts have been made to develop gas barrier films using clay nanosheets. Although some researchers attempted to improve the film properties of clay nanosheets by adding organic polymers to them, films can also be formed using only clay nanosheets without additives. Only a few studies had previously evaluated the physical properties of clay films composed solely of clay nanosheets.

This international joint research team focused on the gas permeability of clay films and found that a film composed of clay nanosheets with particle sizes in the range of several dozen nanometers (1 nm = one millionth of 1 mm) had relatively high permeability to gas molecules as they can pass through gaps between particles. This gas permeability is equivalent to that of plastic bags with minute pores used to store fresh produce. These bags are able to adequately reduce oxygen supply to fresh fruit, preventing it from ripening too rapidly. The gas permeability similarities between the clay film and the plastic bags inspired the research team to assess the ability of the clay film to preserve the quality of fresh produce for long periods of time.

In this research, the team applied a suspension of clay nanosheets to the surfaces of various fruits (e.g., apples, bananas and oranges) to form uniform films on their surfaces. The team also prepared untreated fruits and fruits covered in cling wrap for comparison. The gas emissions and appearance of these treated and untreated fruits were monitored for several months. As shown in the figure [above], the untreated apples (the first photo from the left) had decayed by the end of the experimental period and the apples covered only in cling wrap (the fourth photo from the left) had also decayed and grown mold. By contrast, the apples coated with the clay film (the two middle photos) did not decay or grew mold, presumably because the film reduced the external oxygen supply needed for ripening and mold growth. In addition, the clay film was confirmed to be in tight contact with the surfaces of the apples it coated, suggesting that it may be able to effectively block the diffusion of ethylene into the air, a phytohormone which plays an important role in inducing fruit ripening.

In addition to its potential ability to restrict the external oxygen supply and ethylene diffusion, the clay film may be able to prevent odor compounds produced by fresh produce from diffusing into the air, possibly making them less attractive to pests. In future research, the team plans to improve the ease of application and strength of the clay film to make it more suitable for preserving the quality of fresh produce during its transportation to the market.

This project was carried out by an international joint research team consisting of Miharu Eguchi (Senior Researcher, Mesoscale Materials Chemistry Group, International Center for Materials Nanoarchitectonics, NIMS) and researchers from The University of Queensland and National Taiwan University. This work was supported in part by  JST-ERATO Yamauchi Materials Space-Tectonics Project.

Here’s a link to and a citation for the paper,

Highly adhesive and disposable inorganic barrier films: made from 2D silicate nanosheets and water by Miharu Eguchi, Muxina Konarova, Nagy L. Torad, Te-An Chang, Dun-Yen Kang, Joe Shapter and Yusuke Yamauchi. J. Mater. Chem. A, 2022,10, 1956-1964 DOI: https://doi.org/10.1039/D1TA08837H First published 02 Dec 2021 Print version published January 28, 2022

This paper is behind a paywall.

Combat yellow fever mosquito with carbon black nanoparticles?

This April 19, 2022 news item on Nanowerk announces mosquito research from Ohio State University (OSU), Note: A link has been removed,

Before being accidentally introduced to the New World by the 16th century slave trade, the yellow fever mosquito was a species native only to Africa. Highly adaptable, it has since become an invasive species in North America, but researchers at The Ohio State University may have found a way to squash the pesky population in its juvenile stages.

Recently published in the journal Insects (“Larvicidal Activity of Carbon Black against the Yellow Fever Mosquito Aedes aegypti”), a new paper describes how mosquitoes have evolved a natural resistance to some chemical insecticides, and offers an alternative called carbon black, a type of carbon-based nanoparticles, or CNPs [when it’s specifically carbon black nanoparticles, it may sometimes be abbreviated to CBNPs; more about that at the end of this post].

An April 18, 2022 OSU news release (also on EurekAlert), which originated the news item, describes the work in more detail,

Study co-author and an associate professor of entomology at Ohio State, Peter Piermarini described CNPs as “microscopic” materials made out of organic elements. The study used a modified version of carbon black called Emperor 1800, which is often used to coat automobiles black. While CNPs are a relatively new scientific development, they have been considered as new tools to control various insect and pest infestations, he said.

“If we can learn more about how carbon black works and how to use it safely, we could design a commercially available nanoparticle that is highly effective against insecticide-resistant mosquitoes,” Piermarini said.

The yellow fever mosquito, or Aedes aegypti, is a species of mosquito known for spreading not just yellow fever, but also diseases like the Zika virus, dengue fever and chikungunya fever. Adults rarely fly more than a few hundred meters from where they emerge, but their abundance leads to steady transmission of diseases – enough to claim tens of thousands of lives every year and hospitalize hundreds of thousands more people.

Because of this, the mosquito is considered to be one of the deadliest animals on the planet. For this study, the researchers’ goal was to figure out how toxic these nanomaterials could be to mosquito larvae, or the immature form of the insect.

Contrary to popular belief, not all mosquitoes set their sights on turning our blood into their latest meal. Male mosquitoes subsist only on flower nectar; it’s the females that will consume both flower nectar and blood in a bid to provide their eggs with enough protein to grow.

When female mosquitoes are ready to lay their eggs, they return to standing pools of water, like lakes or birdbaths, to release them. After they hatch, these larvae will stay in the water for about a week until they reach adulthood, and take wing.

To test whether Emperor 1800 would be effective in stopping that process, researchers worked with two different strains of the yellow fever mosquito inside the lab, one extremely susceptible to typical chemical insecticides, and the other, extremely resistant to them.

By applying the carbon black nanomaterials to the water during the earliest stages of the mosquito’s life cycle and checking in 48 hours later, they were able to determine that CNPs kill mosquito larvae both quickly and efficiently.

“Given the properties of carbon black, it has the most potential for killing larvae because it can be suspended in water,” Piermarini said. Their findings showed that the material seemed to accumulate on the mosquito larvae’s head, abdomen, and even in its gut, meaning that at some point, the larvae were ingesting smaller particles of carbon black.

“Our hypothesis is that these materials may be physically obstructing their ability to perform basic biological functions. It could be blocking their digestion, or might be interfering with their ability to breathe,” said Piermarini.

However, there was one thing that Piermarini found particularly surprising.

When first suspended in water, carbon black appeared equally toxic to larvae of insecticide-resistant and insecticide-susceptible mosquitoes, but the longer the carbon black was suspended in water before treating them. it became more toxic to the insecticide-resistant larvae.

“When you first apply the CNP solution it has similar toxicity against both strains,” Piermarini said. “But when you let the suspension age for a few weeks, it tends to become more potent against the resistant strain of mosquitoes.”

Although they couldn’t determine the reason behind the time-lapsed deaths, the study concluded that these new nanomaterials could be extremely beneficial to controlling the species when applied as a preventive treatment to mosquito breeding grounds.

But before it can be utilized by the public, Piermarini said, carbon black needs to undergo rigorous testing to ensure it won’t harm humans and the environment as a whole.

Co-authors were Erick Martinez Rodriguez, a visiting scholar currently in the Ohio State Entomology Graduate program, Parker Evans, a previous PhD student in the Ohio State Translational Plant Sciences Graduate program, and Megha Kalsi, a previous postdoctoral researcher in entomology. This research was supported by Ohio State’s College of Food, Agricultural, and Environmental Sciences and Vaylenx LLC.

Here’s a link to and a citation for the paper,

Larvicidal Activity of Carbon Black against the Yellow Fever Mosquito Aedes aegypti by Erick J. Martínez Rodríguez, Parker Evans, Megha Kalsi, Noah Rosenblatt, Morgan Stanley, and Peter M. Piermarini. Insects 2022, 13(3), 307 DOI: https://doi.org/10.3390/insects13030307 Published: 20 March 2022

The paper appears to be open access.

The naming of things

The nomenclature for carbon at the nanoscale is a little confusing to me. As best as I can determine all of the elements have multiple names at the nanoscale but it’s only with carbon that subcategories function as categories themselves. For example, fullerenes (C60s), single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and mulit-walled carbon nanotubes (MWCNTs) are subcategories that stand on their own but, sometimes, are referred to as carbon nanoparticles, which is the main category. I checked carbon black nanoparticles online and found a number of instances where it was abbreviated to CBNP and it can also be a CNP since it is found under the carbon nanoparticle category as per this Wikipedia entry.

Study rare physics with electrically tunable graphene devices

An April 7, 2022 news item on Nanowerk announces graphene research that could lead to advances in optoelectronics (Note: Links have been removed),

An international team, co-led by researchers at The University of Manchester’s National Graphene Institute (NGI) in the UK and the Penn State [Pennsylvania State University] College of Engineering in the US, has developed a tunable graphene-based platform that allows for fine control over the interaction between light and matter in the terahertz (THz) spectrum to reveal rare phenomena known as exceptional points.

The team published their results in Science (“Topological engineering of terahertz light using electrically tuneable exceptional point singularities”).

The work could advance optoelectronic technologies to better generate, control and sense light and potentially communications, according to the researchers. They demonstrated a way to control THz waves, which exist at frequencies between those of microwaves and infrared waves. The feat could contribute to the development of ‘beyond-5G’ wireless technology for high-speed communication networks.

An April 8, 2022 University of Manchester press release (also on EurekAlert but published on April 7, 2022) delves further into the research,

Weak and strong interactions

Light and matter can couple, interacting at different levels: weakly, where they might be correlated but do not change each other’s constituents; or strongly, where their interactions can fundamentally change the system. The ability to control how the coupling shifts from weak to strong and back again has been a major challenge to advancing optoelectronic devices — a challenge researchers have now solved.

“We have demonstrated a new class of optoelectronic devices using concepts of topology — a branch of mathematics studying properties of geometric objects,” said co-corresponding author Coskun Kocabas, professor of 2D device materials at The University of Manchester. “Using exceptional point singularities, we show that topological concepts can be used to engineer optoelectronic devices that enable new ways to manipulate terahertz light.”

Kocabas is also affiliated with the Henry Royce Institute for Advanced Materials, headquartered in Manchester.

Exceptional points are spectral singularities — points at which any two spectral values in an open system coalesce. They are, unsurprisingly, exceptionally sensitive and respond to even the smallest changes to the system, revealing curious yet desirable characteristics, according to co-corresponding author Şahin K. Özdemir, associate professor of engineering science and mechanics at Penn State.

“At an exceptional point, the energy landscape of the system is considerably modified, resulting in reduced dimensionality and skewed topology,” said Özdemir, who is also affiliated with the Materials Research Institute, Penn State. “This, in turn, enhances the system’s response to perturbations, modifies the local density of states leading to the enhancement of spontaneous emission rates and leads to a plethora of phenomena. Control of exceptional points, and the physical processes that occur at them, could lead to applications for better sensors, imaging, lasers and much more.”

Platform composition

The platform the researchers developed consists of a graphene-based tunable THz resonator, with a gold-foil gate electrode forming a bottom reflective mirror. Above it, a graphene layer is book-ended with electrodes, forming a tunable top mirror. A non-volatile ionic liquid electrolyte layer sits between the mirrors, enabling control of the top mirror’s reflectivity by changing the applied voltage. In the middle of the device, between the mirrors, are molecules of alpha lactose, a sugar commonly found in milk.  

The system is controlled by two adjusters. One raises the lower mirror to change the length of the cavity — tuning the frequency of resonation to couple the light with the collective vibrational modes of the organic sugar molecules, which serve as a fixed number of oscillators for the system. The other adjuster changes the voltage applied to the top graphene mirror — altering the graphene’s reflective properties to transition the energy loss imbalances to adjust coupling strength. The delicate, fine tuning shifts weakly coupled terahertz light and organic molecules to become strongly coupled and vice versa.

“Exceptional points coincide with the crossover point between the weak and strong coupling regimes of terahertz light with collective molecular vibrations,” Özdemir said.

He noted that these singularity points are typically studied and observed in the coupling of analogous modes or systems, such as two optical modes, electronic modes or acoustic modes.

“This work is one of rare cases where exceptional points are demonstrated to emerge in the coupling of two modes with different physical origins,” Kocabas said. “Due to the topology of the exceptional points, we observed a significant modulation in the magnitude and phase of the terahertz light, which could find applications in next-generation THz communications.”

Unprecedented phase modulation in the THz spectrum

As the researchers apply voltage and adjust the resonance, they drive the system to an exceptional point and beyond. Before, at and beyond the exceptional point, the geometric properties — the topology — of the system change.

One such change is the phase modulation, which describes how a wave changes as it propagates and interacts in the THz field. Controlling the phase and amplitude of THz waves is a technological challenge, the researchers said, but their platform demonstrates unprecedented levels of phase modulation. The researchers moved the system through exceptional points, as well as along loops around exceptional points in different directions, and measured how it responded through the changes. Depending on the system’s topology at the point of measurement, phase modulation could range from zero to four magnitudes larger.

“We can electrically steer the device through an exceptional point, which enables electrical control on reflection topology,” said first author M. Said Ergoktas. “Only by controlling the topology of the system electronically could we achieve these huge modulations.” 

According to the researchers, the topological control of light-matter interactions around an exceptional point enabled by the graphene-based platform has potential applications ranging from topological optoelectronic and quantum devices to topological control of physical and chemical processes.

Contributors include Kaiyuan Wang, Gokhan Bakan, Thomas B. Smith, Alessandro Principi and Kostya S. Novoselov, University of Manchester; Sina Soleymani, graduate student in the Penn State Department of Engineering Science and Mechanics; Sinan Balci, Izmir Institute of Technology, Turkey; Nurbek Kakenov, who conducted work for this paper while at Bilkent University, Turkey.

I love the language in this press release, especially, ‘spectral singularities’. The explanations are more appreciated and help to make this image more than a pretty picture,

Caption: An international team, co-led by researchers at The University of Manchester’s National Graphene Institute (NGI) in the UK and the Penn State College of Engineering in the US, has developed a tunable graphene-based platform that allows for fine control over the interaction between light and matter in the terahertz (THz) spectrum to reveal rare phenomena known as exceptional points. The feat could contribute to the development of beyond-5G wireless technology for high-speed communication networks. Credit: Image Design, Pietro Steiner, The University of Manchester

Here’s a link to and a citation for the paper,

Topological engineering of terahertz light using electrically tunable exceptional point singularities by M. Said Ergoktas, Sina Soleymani, Nurbek Kakenov, Kaiyuan Wang, Thomas B. Smith, Gokhan Bakan, Sinan Balci, Alessandro Principi, Kostya S. Novoselov, Sahin K. Ozdemir, and Coskun Kocabas. Science • 7 Apr 2022 • Vol 376, Issue 6589 • pp. 184-188 • DOI: 10.1126/science.abn6528

This paper is behind a paywall.

Oddly, there is an identical press release dated April 8, 2022 on the Pennsylvania State University website with a byline for By Ashley J. WennersHerron and Alan Beck. Interestingly the first author is from Penn State and the second author is from the University of Manchester.