Tag Archives: quantum mechanics

You need a quantum mechanic for an atom-sized machine

This news comes from the National University of Singapore’s Centre for Quantum Technologies according to a May 4, 2020 news item on Nanowerk (Note: A link has been removed),

Here’s a new chapter in the story of the miniaturisation of machines: researchers in a laboratory in Singapore have shown that a single atom can function as either an engine or a fridge. Such a device could be engineered into future computers and fuel cells to control energy flows.

“Think about how your computer or laptop has a lot of things inside it that heat up. Today you cool that with a fan that blows air. In nanomachines or quantum computers, small devices that do cooling could be something useful,” says Dario Poletti from the Singapore University of Technology and Design (SUTD).

This work gives new insight into the mechanics of such devices. The work is a collaboration involving researchers at the Centre for Quantum Technologies (CQT) and Department of Physics at the National University of Singapore (NUS), SUTD and at the University of Augsburg in Germany. The results were published in the peer-reviewed journal npj Quantum Information (“Single-atom energy-conversion device with a quantum load”).

The researchers have included an exceptionally pretty illustration with the press release,

Caption: Experiments with a single-atom device help researchers understand what quantum effects come into play when machinery shrinks to the atomic scale. Credit: Aki Honda / Centre for Quantum Technologies, National University of Singapore

A May 4, 2020 National University of Singapore press release (also on EurekAlert), which originated the news item, delves further into the work,

Engines and refrigerators are both machines described by thermodynamics, a branch of science that tells us how energy moves within a system and how we can extract useful work. A classical engine turns energy into useful work. A refrigerator does work to transfer heat, reducing the local temperature. They are, in some sense, opposites.

People have made small heat engines before using a single atom, a single molecule and defects in diamond. A key difference about this device is that it shows quantumness in its action. “We want to understand how we can build thermodynamic devices with just a few atoms. The physics is not well understood so our work is important to know what is possible,” says Manas Mukherjee, a Principal Investigator at CQT, NUS, who led the experimental work.

The researchers studied the thermodynamics of a single barium atom. They devised a scheme in which lasers move one of the atom’s electrons between two energy levels as part of a cycle, causing some energy to be pushed into the atom’s vibrations. Like a car engine consumes petrol to both move pistons and charge up its battery, the atom uses energy from lasers as fuel to increase its vibrating motion. The atom’s vibrations act like a battery, storing energy that can be extracted later. Rearrange the cycle and the atom acts like a fridge, removing energy from the vibrations.

In either mode of operation, quantum effects show up in correlations between the atom’s electronic states and vibrations. “At this scale, the energy transfer between the engine and the load is a bit fuzzy. It is no longer possible to simply do work on the load, you are bound to transfer some heat,” says Poletti. He worked out the theory with collaborators Jiangbin Gong at NUS Physics and Peter Hänggi in Augsburg. The fuzziness makes the process less efficient, but the experimentalists could still make it work.

Mukherjee and colleagues Noah Van Horne, Dahyun Yum and Tarun Dutta used a barium atom from which an electron (a negative charge) is removed. This makes the atom positively charged, so it can be more easily held still inside a metal chamber by electrical fields. All other air is removed from around it. The atom is then zapped with lasers to move it through a four-stage cycle.

The researchers measured the atom’s vibration after applying 2 to 15 cycles. They repeated a given number of cycles up to 150 times, measuring on average how much vibrational energy was present at the end. They could see the vibrational energy increasing when the atom was zapped with an engine cycle, and decreasing when the zaps followed the fridge cycle.

Understanding the atom-sized machine involved both complicated calculations and observations. The team needed to track two thermodynamic quantities known as ergotropy, which is the energy that can be converted to useful work, and entropy, which is related to disorder in the system. Both ergotropy and entropy increase as the atom-machine runs. There’s still a simple way of looking at it, says first author and PhD student Van Horne, “Loosely speaking, we’ve designed a little machine that creates entropy as it is filled up with free energy, much like kids when they are given too much sugar.”

Here’s a link to and a citation for the paper,

Single-atom energy-conversion device with a quantum load by Noah Van Horne, Dahyun Yum, Tarun Dutta, Peter Hänggi, Jiangbin Gong, Dario Poletti & Manas Mukherjee. npj Quantum Information volume 6, Article number: 37 (2020) Published: 01 May 2020

This paper is open access.

A mathematical sculptor, a live webcast (May 6, 2020) with theoretical cosmologist and author Katie Mack, & uniting quantum theory with Einstein’s Theory of General Relativity in a drawing

I’ve bookended information about the talk with physicist Katie Mack at Canada’s Perimeter Institute on May 6, 2020 with two items on visual art and mathematics and the sciences.

Mathematical sculpting

Robert Fathauer’s Three-Fold Hyperbolic Form exhibits negative curvature, a concept in geometry and topology that describes a surface curving in two directions at every point. Hemp crochet by Marla Peterson. Image courtesy of Robert Fathauer. [downloaded from https://www.pnas.org/content/114/26/6643.full]

You’ll find this image and a few more in a fascinating 2017 paper (see link and citation below) about mathematical sculpture,

Ferguson [Helaman Ferguson], who holds a doctorate in mathematics, never chose between art and science: now nearly 77 years old, he’s a mathematical sculptor. Working in stone and bronze, Ferguson creates sculptures, often placed on college campuses, that turn deep mathematical ideas into solid objects that anyone—seasoned professors, curious children, wayward mathophobes—can experience for themselves.

Mathematics has an intrinsic aesthetic—proofs are often described as “beautiful” or “elegant”—that can be difficult for mathematicians to communicate to outsiders, says Ferguson. “It isn’t something you can tell somebody about on the street,” he says. “But if I hand them a sculpture, they’re immediately relating to it.” Sculpture, he says, can tell a story about math in an accessible language.

Here’s a link to and a citation for the paper,

Science and Culture: Armed with a knack for patterns and symmetry, mathematical sculptors create compelling forms by Stephen Ornes. PNAS [Proceedings of the National Academy of Sciences] June 27, 2017 114 (26) 6643-6645; https://doi.org/10.1073/pnas.1706987114

This paper appears to be open access.

Live webcast: theoretical cosmologist & science communicator Katie Mack

The live webcast will take place at 4 pm PT (1600 hours) on Wednesday, May 6, 2020. Here’s more about Katie Mack and the webcast from the event webpage (click through to the event page to get to the webcast) on the Perimeter Institute of Theoretical Physics (PI) website,

In a special live webcast on May 6 [2020] at 7 pm ET [4 pm PT], theoretical cosmologist and science communicator Katie Mack — known to her many Twitter followers as @astrokatie — will answer questions about her favourite subject: the end of the universe.

Mack, who holds a Simons Emmy Noether Visiting Fellowship at Perimeter, will give viewers a sneak peek at her upcoming book, The End of Everything (Astrophysically Speaking). She will then participate in a live “ask me anything” session, answering questions submitted via social media using the hashtag #piLIVE.

Mack is an Assistant Professor at North Carolina State University whose research investigates dark matter, vacuum decay, and the epoch of reionization. Mack is a popular science communicator on social media, and has contributed to Scientific American, Slate, Sky & Telescope, Time, and Cosmos.

PI is located in Waterloo, Ontario, Canada.

Uniting quantum theory with Einstein’s Theory of General Relativity with a drawing about light

The article by Stephon Alexander was originally published March 16, 2017 for Nautilus. My excerpts are from a getpocket.com selection,

LIGHT IN THE GARDEN: This drawing by the Oakes brothers, Irwin Gardens at the Getty in Winter, inspired the author to think anew about quantum mechanics and general relativity. The meticulous drawing, done on curved paper, allows viewers to reflect on the act of perception. Credit: Ryan and Trevor Oakes [downloaded from http://nautil.us/issue/46/balance/what-this-drawing-taught-me-about-four_dimensional-spacetime]

My aim as a theoretical physicist is to unite quantum theory with Einstein’s Theory of General Relativity. While there are a few proposals for this unification, such as string theory and loop quantum gravity, many roadblocks to a complete unification remain.

Einstein’s theory tells us the gravitational force is a direct manifestation of space and time bending. The sun bends the fabric of space, much like a sleeping person bends a mattress. Planetary orbits, including Earth’s, are motion along the contours of the bent space created by the sun. This theory provides some critical insights into the nature of light.

… one summer, I had the most unexpected breakthrough. Beth Jacobs, a member of the New York Academy of Sciences’ Board of Governors, invited me and some friends to her New York City apartment to meet the Oakes twins, artists who have gained attention in recent years for their drawings as well as the innovative technique and inventions they deploy to create them. An Oakes work, Irwin Gardens at the Getty in Winter (2011), an intricate drawing of the famous gardens designed by Robert Irwin at The Getty Museum in Los Angeles, was displayed on the balcony of Jacobs’ apartment overlooking Central Park, with the backdrop of the New York City skyline lit with a warm orange sky moments before sunset.

As I gazed at the drawing, I could feel the artists challenging me to reconsider the nature of light. I began to realize I should consider not only the physics of light, but also how light information is perceived by observers, when theorizing and conceiving new principles to unify quantum mechanics and general relativity. …

Ryan and Trevor Oakes, 35, have been exploring the impact and intersection of visual perception and the physics of light since they were kids. After attending The Cooper Union for the Advancement of Science and Art in New York City, and years of experimentation and inventing new techniques, the twins exploited the notion that light information is better described when originating from a spherical surface.

Fascinating stuff. BTW, you can find the original article here on Nautilus.

Quantum supremacy

This supremacy, refers to an engineering milestone and a October 23, 2019 news item on ScienceDaily announces the milestone has been reached,

Researchers in UC [University of California] Santa Barbara/Google scientist John Martinis’ group have made good on their claim to quantum supremacy. Using 53 entangled quantum bits (“qubits”), their Sycamore computer has taken on — and solved — a problem considered intractable for classical computers.

An October 23, 2019 UC Santa Barbara news release (also on EurekAlert) by Sonia Fernandez, which originated the news item, delves further into the work,

“A computation that would take 10,000 years on a classical supercomputer took 200 seconds on our quantum computer,” said Brooks Foxen, a graduate student researcher in the Martinis Group. “It is likely that the classical simulation time, currently estimated at 10,000 years, will be reduced by improved classical hardware and algorithms, but, since we are currently 1.5 trillion times faster, we feel comfortable laying claim to this achievement.”

The feat is outlined in a paper in the journal Nature.

The milestone comes after roughly two decades of quantum computing research conducted by Martinis and his group, from the development of a single superconducting qubit to systems including architectures of 72 and, with Sycamore, 54 qubits (one didn’t perform) that take advantage of the both awe-inspiring and bizarre properties of quantum mechanics.

“The algorithm was chosen to emphasize the strengths of the quantum computer by leveraging the natural dynamics of the device,” said Ben Chiaro, another graduate student researcher in the Martinis Group. That is, the researchers wanted to test the computer’s ability to hold and rapidly manipulate a vast amount of complex, unstructured data.

“We basically wanted to produce an entangled state involving all of our qubits as quickly as we can,” Foxen said, “and so we settled on a sequence of operations that produced a complicated superposition state that, when measured, returns bitstring with a probability determined by the specific sequence of operations used to prepare that particular superposition. The exercise, which was to verify that the circuit’s output correspond to the equence used to prepare the state, sampled the quantum circuit a million times in just a few minutes, exploring all possibilities — before the system could lose its quantum coherence.

‘A complex superposition state’

“We performed a fixed set of operations that entangles 53 qubits into a complex superposition state,” Chiaro explained. “This superposition state encodes the probability distribution. For the quantum computer, preparing this superposition state is accomplished by applying a sequence of tens of control pulses to each qubit in a matter of microseconds. We can prepare and then sample from this distribution by measuring the qubits a million times in 200 seconds.”

“For classical computers, it is much more difficult to compute the outcome of these operations because it requires computing the probability of being in any one of the 2^53 possible states, where the 53 comes from the number of qubits — the exponential scaling is why people are interested in quantum computing to begin with,” Foxen said. “This is done by matrix multiplication, which is expensive for classical computers as the matrices become large.”

According to the new paper, the researchers used a method called cross-entropy benchmarking to compare the quantum circuit’s output (a “bitstring”) to its “corresponding ideal probability computed via simulation on a classical computer” to ascertain that the quantum computer was working correctly.

“We made a lot of design choices in the development of our processor that are really advantageous,” said Chiaro. Among these advantages, he said, are the ability to experimentally tune the parameters of the individual qubits as well as their interactions.

While the experiment was chosen as a proof-of-concept for the computer, the research has resulted in a very real and valuable tool: a certified random number generator. Useful in a variety of fields, random numbers can ensure that encrypted keys can’t be guessed, or that a sample from a larger population is truly representative, leading to optimal solutions for complex problems and more robust machine learning applications. The speed with which the quantum circuit can produce its randomized bit string is so great that there is no time to analyze and “cheat” the system.

“Quantum mechanical states do things that go beyond our day-to-day experience and so have the potential to provide capabilities and application that would otherwise be unattainable,” commented Joe Incandela, UC Santa Barbara’s vice chancellor for research. “The team has demonstrated the ability to reliably create and repeatedly sample complicated quantum states involving 53 entangled elements to carry out an exercise that would take millennia to do with a classical supercomputer. This is a major accomplishment. We are at the threshold of a new era of knowledge acquisition.”

Looking ahead

With an achievement like “quantum supremacy,” it’s tempting to think that the UC Santa Barbara/Google researchers will plant their flag and rest easy. But for Foxen, Chiaro, Martinis and the rest of the UCSB/Google AI Quantum group, this is just the beginning.

“It’s kind of a continuous improvement mindset,” Foxen said. “There are always projects in the works.” In the near term, further improvements to these “noisy” qubits may enable the simulation of interesting phenomena in quantum mechanics, such as thermalization, or the vast amount of possibility in the realms of materials and chemistry.

In the long term, however, the scientists are always looking to improve coherence times, or, at the other end, to detect and fix errors, which would take many additional qubits per qubit being checked. These efforts have been running parallel to the design and build of the quantum computer itself, and ensure the researchers have a lot of work before hitting their next milestone.

“It’s been an honor and a pleasure to be associated with this team,” Chiaro said. “It’s a great collection of strong technical contributors with great leadership and the whole team really synergizes well.”

Here’s a link to and a citation for the paper,

Quantum supremacy using a programmable superconducting processor by Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven & John M. Martinis. Nature volume 574, pages505–510 (2019) DOI: https://doi.org/10.1038/s41586-019-1666-5 Issue Date 24 October 2019

This paper appears to be open access.

Quantum back action and devil’s play

I always appreciate a reference to James Clerk Maxwell’s demon thought experiment (you can find out about it in the Maxwell’s demon Wikipedia entry). This time it comes from physicist  Kater Murch in a July 23, 2018 Washington University in st. Louis (WUSTL) news release (published July 25, 2018 on EurekAlert) written by Brandie Jefferson (offering a good explanation of the thought experiment and more),

Thermodynamics is one of the most human of scientific enterprises, according to Kater Murch, associate professor of physics in Arts & Sciences at Washington University in St. Louis.

“It has to do with our fascination of fire and our laziness,” he said. “How can we get fire” — or heat — “to do work for us?”

Now, Murch and colleagues have taken that most human enterprise down to the intangible quantum scale — that of ultra low temperatures and microscopic systems — and discovered that, as in the macroscopic world, it is possible to use information to extract work.

There is a catch, though: Some information may be lost in the process.

“We’ve experimentally confirmed the connection between information in the classical case and the quantum case,” Murch said, “and we’re seeing this new effect of information loss.”

The results were published in the July 20 [2018] issue of Physical Review Letters.

The international team included Eric Lutz of the University of Stuttgart; J. J. Alonzo of the University of Erlangen-Nuremberg; Alessandro Romito of Lancaster University; and Mahdi Naghiloo, a Washington University graduate research assistant in physics.

That we can get energy from information on a macroscopic scale was most famously illustrated in a thought experiment known as Maxwell’s Demon. [emphasis mine] The “demon” presides over a box filled with molecules. The box is divided in half by a wall with a door. If the demon knows the speed and direction of all of the molecules, it can open the door when a fast-moving molecule is moving from the left half of the box to the right side, allowing it to pass. It can do the same for slow particles moving in the opposite direction, opening the door when a slow-moving molecule is approaching from the right, headed left. ­

After a while, all of the quickly-moving molecules are on the right side of the box. Faster motion corresponds to higher temperature. In this way, the demon has created a temperature imbalance, where one side of the box is hotter. That temperature imbalance can be turned into work — to push on a piston as in a steam engine, for instance. At first the thought experiment seemed to show that it was possible create a temperature difference without doing any work, and since temperature differences allow you to extract work, one could build a perpetual motion machine — a violation of the second law of thermodynamics.

“Eventually, scientists realized that there’s something about the information that the demon has about the molecules,” Murch said. “It has a physical quality like heat and work and energy.”

His team wanted to know if it would be possible to use information to extract work in this way on a quantum scale, too, but not by sorting fast and slow molecules. If a particle is in an excited state, they could extract work by moving it to a ground state. (If it was in a ground state, they wouldn’t do anything and wouldn’t expend any work).

But they wanted to know what would happen if the quantum particles were in an excited state and a ground state at the same time, analogous to being fast and slow at the same time. In quantum physics, this is known as a superposition.

“Can you get work from information about a superposition of energy states?” Murch asked. “That’s what we wanted to find out.”

There’s a problem, though. On a quantum scale, getting information about particles can be a bit … tricky.

“Every time you measure the system, it changes that system,” Murch said. And if they measured the particle to find out exactly what state it was in, it would revert to one of two states: excited, or ground.

This effect is called quantum backaction. To get around it, when looking at the system, researchers (who were the “demons”) didn’t take a long, hard look at their particle. Instead, they took what was called a “weak observation.” It still influenced the state of the superposition, but not enough to move it all the way to an excited state or a ground state; it was still in a superposition of energy states. This observation was enough, though, to allow the researchers track with fairly high accuracy, exactly what superposition the particle was in — and this is important, because the way the work is extracted from the particle depends on what superposition state it is in.

To get information, even using the weak observation method, the researchers still had to take a peek at the particle, which meant they needed light. So they sent some photons in, and observed the photons that came back.

“But the demon misses some photons,” Murch said. “It only gets about half. The other half are lost.” But — and this is the key — even though the researchers didn’t see the other half of the photons, those photons still interacted with the system, which means they still had an effect on it. The researchers had no way of knowing what that effect was.

They took a weak measurement and got some information, but because of quantum backaction, they might end up knowing less than they did before the measurement. On the balance, that’s negative information.

And that’s weird.

“Do the rules of thermodynamics for a macroscopic, classical world still apply when we talk about quantum superposition?” Murch asked. “We found that yes, they hold, except there’s this weird thing. The information can be negative.

“I think this research highlights how difficult it is to build a quantum computer,” Murch said.

“For a normal computer, it just gets hot and we need to cool it. In the quantum computer you are always at risk of losing information.”

Here’s a link to and a citation for the paper,

Information Gain and Loss for a Quantum Maxwell’s Demon by M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, and K. W. Murch. Phys. Rev. Lett. 121, 030604 (Vol. 121, Iss. 3 — 20 July 2018) DOI:https://doi.org/10.1103/PhysRevLett.121.030604 Published 17 July 2018

© 2018 American Physical Society

This paper is behind a paywall.

Quantum entanglement in near-macroscopic objects

Researchers at Finland’s Aalto University seem excited in an April 25, 2018 news item on phys.org,

Perhaps the strangest prediction of quantum theory is entanglement, a phenomenon whereby two distant objects become intertwined in a manner that defies both classical physics and a common-sense understanding of reality. In 1935, Albert Einstein expressed his concern over this concept, referring to it as “spooky action at a distance.”

Today, entanglement is considered a cornerstone of quantum mechanics, and it is the key resource for a host of potentially transformative quantum technologies. Entanglement is, however, extremely fragile, and it has previously been observed only in microscopic systems such as light or atoms, and recently in superconducting electric circuits.

In work recently published in Nature, a team led by Prof. Mika Sillanpää at Aalto University in Finland has shown that entanglement of massive objects can be generated and detected.

The researchers managed to bring the motions of two individual vibrating drumheads—fabricated from metallic aluminium on a silicon chip—into an entangled quantum state. The macroscopic objects in the experiment are truly massive compared to the atomic scale—the circular drumheads have a diametre similar to the width of a thin human hair.

An April 20,2018 Aalto University press release (also on EurekAlert), which originated the news item, provides more detail,

‘The vibrating bodies are made to interact via a superconducting microwave circuit. The electromagnetic fields in the circuit carry away any thermal disturbances, leaving behind only the quantum mechanical vibrations’, says Professor Sillanpää, describing the experimental setup.

Eliminating all forms of external noise is crucial for the experiments, which is why they have to be conducted at extremely low temperatures near absolute zero, at –273 °C. Remarkably, the experimental approach allows the unusual state of entanglement to persist for long periods of time, in this case up to half an hour. In comparison, measurements on elementary particles have witnessed entanglement to last only tiny fractions of a second.

‘These measurements are challenging but extremely fascinating. In the future, we will attempt to teleport the mechanical vibrations. In quantum teleportation, properties of physical bodies can be transmitted across arbitrary distances using the channel of “spooky action at a distance”. We are still pretty far from Star Trek, though,’ says Dr. Caspar Ockeloen-Korppi, the lead author on the work, who also performed the measurements.

The results demonstrate that it is now possible to have control over the most delicate properties of objects whose size approaches the scale of our daily lives. The achievement opens doors for new kinds of quantum technologies, where the entangled drumheads could be used as routers or sensors. The finding also enables new studies of fundamental physics in, for example, the poorly understood interplay of gravity and quantum mechanics.

The team also included scientists from the University of New South Wales in Australia, the University of Chicago in the USA, and the University of Jyväskylä in Finland, whose theoretical innovations paved the way for the laboratory experiment.

An illustration has been made available,

An illustration of the 15-micrometre-wide drumheads prepared on silicon chips used in the experiment. The drumheads vibrate at a high ultrasound frequency, and the peculiar quantum state predicted by Einstein was created from the vibrations. Image: Aalto University / Petja Hyttinen & Olli Hanhirova, ARKH Architects.

Here’s a link to and a citation for the paper,

Stabilized entanglement of massive mechanical oscillators by C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley & M. A. Sillanpää. Nature volume 556, pages478–482 (2018) doi:10.1038/s41586-018-0038-x Published online: 25 April 2018

This paper is behind a paywall.

Curiosity collides with the quantum and with the Science Writers and Communicators of Canada in Vancouver (Canada)

There are a couple of events coming up in April and an opportunity to submit your work for inclusion in a Curiosity Collider event or two. There’s also a Science Writers and Communicators conference being held from April 12 – 15, 2018. All of this is happening in Vancouver, Canada.

Curiosity Collider events, etc.

Colliding with the Quantum

From a March 23, 2018 announcement (received via email) from CuriosityCollider.org,

MOA [Museum of Anthropology] Night Shift: Quantum Futures

In the quantum realm, what is observable and what is not? What happens when we mix art and science? 

Join us at UBC Museum of Anthropology on the evening of April 5 [2018] and immerse yourself in quantum physics through dance, spoken word, projection sculpture, virtual reality, and hands-on activities.

This event is curated by Curiosity Collider Art-Science Foundation with collaborations from UBC Physics & Astronomy and Stewart Blusson Quantum Matter Institute.

Let us know you are coming on Facebook | See list of participating artists/scientists

For anyone who needs directions, clicking on this UBC Museum of Anthropology link for Getting Here should help.

I wanted a few more details about the event and found them on Curiosity Collider’s Night Shift webpage,

Doors/Bar/Art & Science Activities 6 pm | Live Show 7:30 pm | Entry with museum admission ($10; free for UBC students & staff, Indigenous peoples, children under 6, and MOA Members)| Family Friendly

This event is curated by Curiosity Collider Creative Managing Director Char Hoyt.

The artwork gathered together for this event is a delightful blending of some of the most famous theories in Quantum Mechanics with both traditional and new artistic practices. When science is filtered through a creative expression it can both inspire and reveal new ways of seeing and understanding the concepts within. Our performers have crafted thoughtful experiences through dance, spoken word, sound, and light, that express the weirdness of the quantum realm and how it is reflected in our daily lives. We have also worked closely with scientists to develop hands-on activities that embody the same principles to create experiences that engage your creativity in understanding the quantum world. We encourage you to interact with the artists and scientists and let their work guide you through the quantum realm.

Participating artists and scientists

Most of these folks are associated with the Quantum Matter Institute.

Call for submissions

From a March 23, 2018 announcement (received via email) from CuriosityCollider.org,

Call for Submissions:
Women in STEM Exhibition

Interstitial: Science Innovations by Canadian Women is a two-week exhibition (June 1-14) and events showcasing work by female artists featuring women in STEM. We are looking for one more 2D artist/illustrator to join the exhibition and will accept existing work. Deadline April 6. To submit, visit our website.

This exhibition is funded by the Westcoast Women in Engineering, Science and Technology (WWEST) and eng-cite.

#Sciart & #Scicomm at Science World on April 12, 2018 (a Science Writers and Communicators of Canada [SWCC] reception)

From a March 23, 2018 announcement (received via email) from CuriosityCollider.org,

#Sciart & #Scicomm at Science World

On April 12, Curiosity Collider is bringing art+science to the Science Writers and Communications of Canada Annual Conference here in Vancouver. The public evening event will include performances and activities by Curiosity Collider, Science Slam, Beaker Head (Alberta) [sic], and SFU (Simon Fraser University) Faculty of Applied Science. We will also be hosting a silent auction to showcase local #sciart and support future art+science project, including our annual exhibition SPARK!

Get your tickets now! | Let us know you are coming on Facebook

I found more information about this event at something called allevents.in/vancouver,

SciComm Social with SWCC and STAN

Science Writers and Communicators of Canada (SWCC) and Science Technology Awareness Network (STAN) are hosting their annual conferences in Vancouver in April. This joint reception event featuring #scicomm and #sciart is free for conference delegates and also open to the public … . [emphasis mine]

Friends, family, and fans of science communication & communicators welcome!

This evening event will include performances and activities from:
* Beakerhead – Power Point Karaoke, hosted by Banff SciComm/Beakerhead alumni: A deck of slides is provided. Brave participants, who have never seen the slides before, improvise the talk. Hilarity ensues, egged on by an enthusiastic audience.
* Curiosity Collider – #sciart silent auction, stage performances, and art installation
* SFU Applied Sciences – interactive technology exhibits
* Science Slam Canada – Whether it’s a talk, a poem, a song, a dance, or something completely unexpected, the possibilities are endless. Our only two rules? Five minute slams, and no slideshows allowed!

Get your tickets – available until April 10! This is a 19+ event. Performances starting at 7:30, doors at 7 pm.

Weirdly, no mention is made of the cost. Tickets are $25. for anyone who’s not attending the conference and you can register for and purchase your ticket here. As for location, this event is being held at Science World at Telus World of Science (known locally as Science World), here’s where you find directions for how to get to Science World.

Science Writers and Communicators Conference in Vancouver from April 12 – 15, 2018

Before getting to the costs here a couple of peeks at the programme. First, there’s a March 25, 2018 posting on the SWCC blog by Ashley EM Miller about one of the conference sessions,

Art can be a way to engage the public with science through the the simple fact that novelty sparks curiosity. Artists in the emerging field of sci-art utilize science concepts, methods, principles and information within their practice. Their art, along with the work of science illustrators, can facilitate a deeper emotional connection to science, particularly in those who don’t regularly pay attention or feel welcome.

However, using artwork in science communication is not as simple as inserting a picture into a body of text and referencing the artist in MLA style.

For those coming from the sciences, citing your sources, as laborious as that may be, is a given. While that is fine for incorporating  information, that isn’t always adequate for artwork. In the art world, artists know how to ask other artists to use their work. If a scientist or science communicator does not have an “in” with the art community, they may not know where to find legal information about using art.


Anyone interested in using artwork in their science communication practice, should attend the upcoming SWCC conference’s professional development session “On Copyright, Ethics and Attribution: Interdisciplinary Collaborations Between Artists and Scientists”. The panel discussion will be moderated by Theresa Liao of Curiosity Collider and Sarah Louadi of Voirelia, both of whom are intimately familiar with combining art and science in their respective organizations. Sarah and Theresa will lead a much-needed conversation about the benefits and best practices of partnerships between artists and science communicators.


The session boasts a well-rounded panel. Attendees will gain insights on aspects of the art world with panelists Kate Campbell, a science illustrator, and Steven J. Barnes, a psychologist and artist. Legal and ethical considerations will be provided by Lawrence Chan, an intellectual property lawyer, and April Britski, the National Executive Director of Canadian Artists’ Representation/Le Front des artistes canadiens (CARFAC). For those unfamiliar, CARFAC is a federal organization that acts as a voice for visual artists in Canada and outlines minimum fee guidelines among other things.

Science communicators and bloggers will certainly benefit from the session, particularly early-career freelancers. When working independently, there are no organizational policies and procedures in place for you to follow. It means that you have to check everything yourself, and this session will give you a crash course of what to look for in artist collaborations, what to ask and how to ask it. Even researchers will benefit from the discussion, by learning about the opportunities for working with science illustrators and about what to expect.


On Copyright, Ethics and Attribution: Interdisciplinary Collaborations Between Artists and Scientists”. will take place at 3:15 pm on Saturday April 14th as part of the conference’s concurrent Professional Development sessions. …

There’s a programme schedule for the 2018 conference here and it includes both an “At a glance’ version and a more fulsome description of the various sessions such as these,

THURSDAY APRIL 12

Act your Science – Interactive Improvisation Training

10:00 am – 12:00 pm Innovation Lab

Come and share a taste of a communication program developed by Jeff Dunn, in collaboration with SWCC, the Loose Moose Theatre in Calgary and the University of Calgary. The goal of this presentation is to provide a taste of how improvisation can be used to improve communication skills in science fields. This hands-on exercise will help participants build capacity to communicate science to various audiences by learning how to fail gracefully in public (to help reduce presentation anxiety), how to connect with your audience and how to recognize and use status in personal interactions.

The full program is 10hrs of training, in this shorter session, we will sample the program in a fun interactive environment. Be prepared to release your inner thespian. Space is limited to 20 people

Jeff Dunn has been a research scientist in brain and imaging for over 30 years. He has a strong interest in mentoring science trainees to broaden their career skills and has recently been developing programs to improve science communication. One class, gaining traction, is “Act your Science”, a custom designed course using improvisation to improving science communication skills for science trainees. He is an alumni of the Banff Science Communication program where he first experienced improvisation training for science. He has held a Canada Research Chair and has Directed the Experimental Imaging Centre at the University of Calgary since 2004. He has over 150 science publications in diverse journals ranging from Polar Biology to the Journal of Neurotrauma. He has supervised scores of graduate students and taught on subjects including MRI, optical imaging and brain physiology at altitude. His imaging research currently includes multiple sclerosis, brain cancer and concussion.

Video Booth: How I SciComm – go ahead and tell all, we want to know! 

 Available 10:am – 2:30pm: Exploration Lab

A camera team will be on hand to help you record and upload your 1 minute video about who you are, and how you do your science communications. Here are some questions for you to think about:

1. Who are you?

2. How do you do your science communications?

3. What’s your favourite science trivia? What’s something cool you learned when researching a storyWhat’s your favourite jargon? What’s a word you had to memorizing pronunciation or spelling for a story

A Community of Innovators: 50 Years of TRIUMF

2:30 -3:30 pm  Science Theatre

 

Ask TRIUMF’s spirited founders and emeriti about the humble beginnings of Canada’s particle accelerator centre and you will invariably hear: “This used to be just a big pile of dirt.” You could imagine TRIUMF’s founding members five decades ago standing at the edge of the empty lot nestled between the forest and the sea, contemplating possibilities. But not even TRIUMF’s founders could have imagined the twists and turns of the lab’s 50-year journey, nor the impact that the lab would have on the people of Canada and the world.

Today, on that same 12.8-acre plot of land, TRIUMF houses world-leading research and technology, and fuels Canada’s collective imagination for the future of particle and nuclear physics and accelerator science. Join TRIUMF’s Director Jonathan Bagger and colleagues for an exploration of TRIUMF’s origins, impacts, and possibilities – a story of collaboration that over five decades celebrates a multifaceted community and growing family of 20 Canadian member universities and partners from around the world. www.triumf50.com  @TRIUMFlab

FRIDAY, APRIL 13 

Frontiers in SciComm Policy & Practice

Canada 2067 – Building a national vision for STEM learning

10:30 Room 1900

Canada 2067 is an ambitious initiative to develop a national vision and goals for youth learning in science, technology, engineering and math (STEM). Significant and scalable changes in education can be achieved by aligning efforts towards shared goals that support all children and youth in Canada.  A draft framework has been developed that builds on research into global policy, broad-based public input, five youth summits, consultation with millennials and a national leadership conference. It calls for action by diverse stakeholders including students, educators, parents, community organizations, industry and all levels of governments.  In this workshop, participants will learn about the initiative and discuss the inherent challenges of catalyzing education change in Canada. Participants will also review the framework and provide feedback that will be incorporated into the final version of the Canada 2067 framework. Input into the design of phase 2 will also be encouraged.

Bonnie Schmidt, C.M., Ph.D.

Founder and President, Let’s Talk Science

Dr. Bonnie Schmidt is the founder and president of Let’s Talk Science, a national charitable organization that helps Canadian youth prepare for future careers and citizenship roles by supporting their engagement in science, technology, engineering and math (STEM). Annually, Let’s Talk Science is accessed by more than 40% of schools in over 1,700 communities, impacting nearly 1 million youth. More than 3,500 volunteers at 45 post-secondary sites form our world-class outreach network. Bonnie currently serves as Chair of the National Leadership Taskforce on Education & Skills for the Information and Communications Technology Council (ICTC) and is on the Board of Governors of the University of Ontario Institute of Technology (UOIT). She was named a Member of the Order of Canada in 2015 and has received an Honorary Doctorate (Ryerson University), the Purvis Memorial Award (Chemical Institute of Canada), Community Service Award (Life Sciences Ontario), and a Queen’s Diamond Jubilee Award. @BMSchmidt

Infographics: Worth a Thousand Words with Kate Broadly and Sonya Odsen

1:15 Room 1520

Infographics have become a popular way to present results to non-specialist audiences, and they are a very effective tool for sharing science on social platforms. Infographics are more likely to be shared online, where they increase engagement with scientific content on platforms like Twitter.

No art skills? No problem! This session will guide you through the process of creating your own infographic, from crafting your story to telling that story visually, and will include strategies to design effective visuals without having to draw (unless you want to!). Topics will include developing your key messages, making your visuals functional rather than decorative, tips for giving your visuals a professional edge, and the best software options for each artistic skill level. Our goal is to empower you to create a visually-pleasing infographic regardless of your art or drawing experience. At the end of this active session, you will have a draft of your own unique infographic ready to be made digital.

The skills you develop during this session will be readily transferable to other visual media, such as talks, posters, or even creating visuals for blog posts.

Kate Broadley

Sonya Odsen

Kate Broadley and Sonya Odsen are Science Communicators with Fuse Consulting. Located in Edmonton, Alberta, Fuse is dedicated to communicating cutting-edge research to different audiences in creative and innovative ways. Their ultimate goal is to bring knowledge to life and empower audiences to apply that knowledge in policy, conservation, research, and their day-to-day lives. Every day, Kate and Sonya tackle complex topics and transform them for specific audiences through writing and design. Infographics are one of their favourite tools for conveying information in fun and accessible ways. Their past and current design projects include interpretive signage for Nature Conservancy Canada, twitter-optimized visual abstracts for the Applied Conservation Ecology lab at the University of Alberta, and a series of science-inspired holiday cards. You can see examples of their work at http://www.fuseconsulting.ca/see-our-work/. Kate and Sonya are also ecologists by training, each holding an M.Sc. from the University of Alberta.

Should this excite your interest,  get going as registration ends March 29, 2018. Here are the rates and the registration link is at the end,

Everyone is Welcome

RATES

Early Bird Registration

SWCC Members: $300

Non-members: $400

Regular Registration 

SWCC Members: $400

  Non-members: $500

Student Rates

SWCC student members: $150

Non-member students: $200

Beakerhead Course: $500

(includes day rate + course fee)

Day Rate: $150

Victoria Half Day Rate: $75

Snorkel Safari: snorkeler $120

Snorkel Safari: ride along $90

Social Evening, April 12

  TELUS Science World, 7:00-10:00pm additional single event tickets: $25.00 (limited)

DATES

EARLY BIRD REGISTRATION OPENS: MONDAY, FEBRUARY 5, 2018

EARLY BIRD REGISTRATION CLOSES: FRIDAY MARCH 9, 2018

REGISTRATION FINAL DEADLINE: THURSDAY MARCH 29, 2018

Conference Dates

April 12, TELUS Science World with STAN

April 13 & 14, SFU Harbour Centre

April 15, Vancouver tours & Victoria day Royal BC Museum

Travel and Accommodation information is available here

Register Here

Have fun!

Entanglement and biological systems

I think it was about five years ago thatI wrote a paper on something I called ‘cognitive entanglement’ (mentioned in my July 20,2012 posting) so the latest from Northwestern University (Chicago, Illinois, US) reignited my interest in entanglement. A December 5, 2017 news item on ScienceDaily describes the latest ‘entanglement’ research,

Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University’s Prem Kumar adds further evidence that the answer might be yes.

Kumar and his team have, for the first time, created quantum entanglement from a biological system. This finding could advance scientists’ fundamental understanding of biology and potentially open doors to exploit biological tools to enable new functions by harnessing quantum mechanics.

A December 5, 2017 Northwestern University news release (also on EurekAlert), which originated the news item, provides more detail,

“Can we apply quantum tools to learn about biology?” said Kumar, professor of electrical engineering and computer science in Northwestern’s McCormick School of Engineering and of physics and astronomy in the Weinberg College of Arts and Sciences. “People have asked this question for many, many years — dating back to the dawn of quantum mechanics. The reason we are interested in these new quantum states is because they allow applications that are otherwise impossible.”

Partially supported by the [US] Defense Advanced Research Projects Agency [DARPA], the research was published Dec. 5 [2017] in Nature Communications.

Quantum entanglement is one of quantum mechanics’ most mystifying phenomena. When two particles — such as atoms, photons, or electrons — are entangled, they experience an inexplicable link that is maintained even if the particles are on opposite sides of the universe. While entangled, the particles’ behavior is tied one another. If one particle is found spinning in one direction, for example, then the other particle instantaneously changes its spin in a corresponding manner dictated by the entanglement. Researchers, including Kumar, have been interested in harnessing quantum entanglement for several applications, including quantum communications. Because the particles can communicate without wires or cables, they could be used to send secure messages or help build an extremely fast “quantum Internet.”

“Researchers have been trying to entangle a larger and larger set of atoms or photons to develop substrates on which to design and build a quantum machine,” Kumar said. “My laboratory is asking if we can build these machines on a biological substrate.”

In the study, Kumar’s team used green fluorescent proteins, which are responsible for bioluminescence and commonly used in biomedical research. The team attempted to entangle the photons generated from the fluorescing molecules within the algae’s barrel-shaped protein structure by exposing them to spontaneous four-wave mixing, a process in which multiple wavelengths interact with one another to produce new wavelengths.

Through a series of these experiments, Kumar and his team successfully demonstrated a type of entanglement, called polarization entanglement, between photon pairs. The same feature used to make glasses for viewing 3D movies, polarization is the orientation of oscillations in light waves. A wave can oscillate vertically, horizontally, or at different angles. In Kumar’s entangled pairs, the photons’ polarizations are entangled, meaning that the oscillation directions of light waves are linked. Kumar also noticed that the barrel-shaped structure surrounding the fluorescing molecules protected the entanglement from being disrupted.

“When I measured the vertical polarization of one particle, we knew it would be the same in the other,” he said. “If we measured the horizontal polarization of one particle, we could predict the horizontal polarization in the other particle. We created an entangled state that correlated in all possibilities simultaneously.”

Now that they have demonstrated that it’s possible to create quantum entanglement from biological particles, next Kumar and his team plan to make a biological substrate of entangled particles, which could be used to build a quantum machine. Then, they will seek to understand if a biological substrate works more efficiently than a synthetic one.

Here’s an image accompanying the news release,

Featured in the cuvette on the left, green fluorescent proteins responsible for bioluninescence in jellyfish. Courtesy: Northwestern University

Here’s a link to and a citation for the paper,

Generation of photonic entanglement in green fluorescent proteins by Siyuan Shi, Prem Kumar & Kim Fook Lee. Nature Communications 8, Article number: 1934 (2017) doi:10.1038/s41467-017-02027-9 Published online: 05 December 2017

This paper is open access.

Alberta adds a newish quantum nanotechnology research hub to the Canada’s quantum computing research scene

One of the winners in Canada’s 2017 federal budget announcement of the Pan-Canadian Artificial Intelligence Strategy was Edmonton, Alberta. It’s a fact which sometimes goes unnoticed while Canadians marvel at the wonderfulness found in Toronto and Montréal where it seems new initiatives and monies are being announced on a weekly basis (I exaggerate) for their AI (artificial intelligence) efforts.

Alberta’s quantum nanotechnology hub (graduate programme)

Intriguingly, it seems that Edmonton has higher aims than (an almost unnoticed) leadership in AI. Physicists at the University of Alberta have announced hopes to be just as successful as their AI brethren in a Nov. 27, 2017 article by Juris Graney for the Edmonton Journal,

Physicists at the University of Alberta [U of A] are hoping to emulate the success of their artificial intelligence studying counterparts in establishing the city and the province as the nucleus of quantum nanotechnology research in Canada and North America.

Google’s artificial intelligence research division DeepMind announced in July [2017] it had chosen Edmonton as its first international AI research lab, based on a long-running partnership with the U of A’s 10-person AI lab.

Retaining the brightest minds in the AI and machine-learning fields while enticing a global tech leader to Alberta was heralded as a coup for the province and the university.

It is something U of A physics professor John Davis believes the university’s new graduate program, Quanta, can help achieve in the world of quantum nanotechnology.

The field of quantum mechanics had long been a realm of theoretical science based on the theory that atomic and subatomic material like photons or electrons behave both as particles and waves.

“When you get right down to it, everything has both behaviours (particle and wave) and we can pick and choose certain scenarios which one of those properties we want to use,” he said.

But, Davis said, physicists and scientists are “now at the point where we understand quantum physics and are developing quantum technology to take to the marketplace.”

“Quantum computing used to be realm of science fiction, but now we’ve figured it out, it’s now a matter of engineering,” he said.

Quantum computing labs are being bought by large tech companies such as Google, IBM and Microsoft because they realize they are only a few years away from having this power, he said.

Those making the groundbreaking developments may want to commercialize their finds and take the technology to market and that is where Quanta comes in.

East vs. West—Again?

Ivan Semeniuk in his article, Quantum Supremacy, ignores any quantum research effort not located in either Waterloo, Ontario or metro Vancouver, British Columbia to describe a struggle between the East and the West (a standard Canadian trope). From Semeniuk’s Oct. 17, 2017 quantum article [link follows the excerpts] for the Globe and Mail’s October 2017 issue of the Report on Business (ROB),

 Lazaridis [Mike], of course, has experienced lost advantage first-hand. As co-founder and former co-CEO of Research in Motion (RIM, now called Blackberry), he made the smartphone an indispensable feature of the modern world, only to watch rivals such as Apple and Samsung wrest away Blackberry’s dominance. Now, at 56, he is engaged in a high-stakes race that will determine who will lead the next technology revolution. In the rolling heartland of southwestern Ontario, he is laying the foundation for what he envisions as a new Silicon Valley—a commercial hub based on the promise of quantum technology.

Semeniuk skips over the story of how Blackberry lost its advantage. I came onto that story late in the game when Blackberry was already in serious trouble due to a failure to recognize that the field they helped to create was moving in a new direction. If memory serves, they were trying to keep their technology wholly proprietary which meant that developers couldn’t easily create apps to extend the phone’s features. Blackberry also fought a legal battle in the US with a patent troll draining company resources and energy in proved to be a futile effort.

Since then Lazaridis has invested heavily in quantum research. He gave the University of Waterloo a serious chunk of money as they named their Quantum Nano Centre (QNC) after him and his wife, Ophelia (you can read all about it in my Sept. 25, 2012 posting about the then new centre). The best details for Lazaridis’ investments in Canada’s quantum technology are to be found on the Quantum Valley Investments, About QVI, History webpage,

History-bannerHistory has repeatedly demonstrated the power of research in physics to transform society.  As a student of history and a believer in the power of physics, Mike Lazaridis set out in 2000 to make real his bold vision to establish the Region of Waterloo as a world leading centre for physics research.  That is, a place where the best researchers in the world would come to do cutting-edge research and to collaborate with each other and in so doing, achieve transformative discoveries that would lead to the commercialization of breakthrough  technologies.

Establishing a World Class Centre in Quantum Research:

The first step in this regard was the establishment of the Perimeter Institute for Theoretical Physics.  Perimeter was established in 2000 as an independent theoretical physics research institute.  Mike started Perimeter with an initial pledge of $100 million (which at the time was approximately one third of his net worth).  Since that time, Mike and his family have donated a total of more than $170 million to the Perimeter Institute.  In addition to this unprecedented monetary support, Mike also devotes his time and influence to help lead and support the organization in everything from the raising of funds with government and private donors to helping to attract the top researchers from around the globe to it.  Mike’s efforts helped Perimeter achieve and grow its position as one of a handful of leading centres globally for theoretical research in fundamental physics.

Stephen HawkingPerimeter is located in a Governor-General award winning designed building in Waterloo.  Success in recruiting and resulting space requirements led to an expansion of the Perimeter facility.  A uniquely designed addition, which has been described as space-ship-like, was opened in 2011 as the Stephen Hawking Centre in recognition of one of the most famous physicists alive today who holds the position of Distinguished Visiting Research Chair at Perimeter and is a strong friend and supporter of the organization.

Recognizing the need for collaboration between theorists and experimentalists, in 2002, Mike applied his passion and his financial resources toward the establishment of The Institute for Quantum Computing at the University of Waterloo.  IQC was established as an experimental research institute focusing on quantum information.  Mike established IQC with an initial donation of $33.3 million.  Since that time, Mike and his family have donated a total of more than $120 million to the University of Waterloo for IQC and other related science initiatives.  As in the case of the Perimeter Institute, Mike devotes considerable time and influence to help lead and support IQC in fundraising and recruiting efforts.  Mike’s efforts have helped IQC become one of the top experimental physics research institutes in the world.

Quantum ComputingMike and Doug Fregin have been close friends since grade 5.  They are also co-founders of BlackBerry (formerly Research In Motion Limited).  Doug shares Mike’s passion for physics and supported Mike’s efforts at the Perimeter Institute with an initial gift of $10 million.  Since that time Doug has donated a total of $30 million to Perimeter Institute.  Separately, Doug helped establish the Waterloo Institute for Nanotechnology at the University of Waterloo with total gifts for $29 million.  As suggested by its name, WIN is devoted to research in the area of nanotechnology.  It has established as an area of primary focus the intersection of nanotechnology and quantum physics.

With a donation of $50 million from Mike which was matched by both the Government of Canada and the province of Ontario as well as a donation of $10 million from Doug, the University of Waterloo built the Mike & Ophelia Lazaridis Quantum-Nano Centre, a state of the art laboratory located on the main campus of the University of Waterloo that rivals the best facilities in the world.  QNC was opened in September 2012 and houses researchers from both IQC and WIN.

Leading the Establishment of Commercialization Culture for Quantum Technologies in Canada:

In the Research LabFor many years, theorists have been able to demonstrate the transformative powers of quantum mechanics on paper.  That said, converting these theories to experimentally demonstrable discoveries has, putting it mildly, been a challenge.  Many naysayers have suggested that achieving these discoveries was not possible and even the believers suggested that it could likely take decades to achieve these discoveries.  Recently, a buzz has been developing globally as experimentalists have been able to achieve demonstrable success with respect to Quantum Information based discoveries.  Local experimentalists are very much playing a leading role in this regard.  It is believed by many that breakthrough discoveries that will lead to commercialization opportunities may be achieved in the next few years and certainly within the next decade.

Recognizing the unique challenges for the commercialization of quantum technologies (including risk associated with uncertainty of success, complexity of the underlying science and high capital / equipment costs) Mike and Doug have chosen to once again lead by example.  The Quantum Valley Investment Fund will provide commercialization funding, expertise and support for researchers that develop breakthroughs in Quantum Information Science that can reasonably lead to new commercializable technologies and applications.  Their goal in establishing this Fund is to lead in the development of a commercialization infrastructure and culture for Quantum discoveries in Canada and thereby enable such discoveries to remain here.

Semeniuk goes on to set the stage for Waterloo/Lazaridis vs. Vancouver (from Semeniuk’s 2017 ROB article),

… as happened with Blackberry, the world is once again catching up. While Canada’s funding of quantum technology ranks among the top five in the world, the European Union, China, and the US are all accelerating their investments in the field. Tech giants such as Google [also known as Alphabet], Microsoft and IBM are ramping up programs to develop companies and other technologies based on quantum principles. Meanwhile, even as Lazaridis works to establish Waterloo as the country’s quantum hub, a Vancouver-area company has emerged to challenge that claim. The two camps—one methodically focused on the long game, the other keen to stake an early commercial lead—have sparked an East-West rivalry that many observers of the Canadian quantum scene are at a loss to explain.

Is it possible that some of the rivalry might be due to an influential individual who has invested heavily in a ‘quantum valley’ and has a history of trying to ‘own’ a technology?

Getting back to D-Wave Systems, the Vancouver company, I have written about them a number of times (particularly in 2015; for the full list: input D-Wave into the blog search engine). This June 26, 2015 posting includes a reference to an article in The Economist magazine about D-Wave’s commercial opportunities while the bulk of the posting is focused on a technical breakthrough.

Semeniuk offers an overview of the D-Wave Systems story,

D-Wave was born in 1999, the same year Lazaridis began to fund quantum science in Waterloo. From the start, D-Wave had a more immediate goal: to develop a new computer technology to bring to market. “We didn’t have money or facilities,” says Geordie Rose, a physics PhD who co0founded the company and served in various executive roles. …

The group soon concluded that the kind of machine most scientists were pursing based on so-called gate-model architecture was decades away from being realized—if ever. …

Instead, D-Wave pursued another idea, based on a principle dubbed “quantum annealing.” This approach seemed more likely to produce a working system, even if the application that would run on it were more limited. “The only thing we cared about was building the machine,” says Rose. “Nobody else was trying to solve the same problem.”

D-Wave debuted its first prototype at an event in California in February 2007 running it through a few basic problems such as solving a Sudoku puzzle and finding the optimal seating plan for a wedding reception. … “They just assumed we were hucksters,” says Hilton [Jeremy Hilton, D.Wave senior vice-president of systems]. Federico Spedalieri, a computer scientist at the University of Southern California’s [USC} Information Sciences Institute who has worked with D-Wave’s system, says the limited information the company provided about the machine’s operation provoked outright hostility. “I think that played against them a lot in the following years,” he says.

It seems Lazaridis is not the only one who likes to hold company information tightly.

Back to Semeniuk and D-Wave,

Today [October 2017], the Los Alamos National Laboratory owns a D-Wave machine, which costs about $15million. Others pay to access D-Wave systems remotely. This year , for example, Volkswagen fed data from thousands of Beijing taxis into a machine located in Burnaby [one of the municipalities that make up metro Vancouver] to study ways to optimize traffic flow.

But the application for which D-Wave has the hights hope is artificial intelligence. Any AI program hings on the on the “training” through which a computer acquires automated competence, and the 2000Q [a D-Wave computer] appears well suited to this task. …

Yet, for all the buzz D-Wave has generated, with several research teams outside Canada investigating its quantum annealing approach, the company has elicited little interest from the Waterloo hub. As a result, what might seem like a natural development—the Institute for Quantum Computing acquiring access to a D-Wave machine to explore and potentially improve its value—has not occurred. …

I am particularly interested in this comment as it concerns public funding (from Semeniuk’s article),

Vern Brownell, a former Goldman Sachs executive who became CEO of D-Wave in 2009, calls the lack of collaboration with Waterloo’s research community “ridiculous,” adding that his company’s efforts to establish closer ties have proven futile, “I’ll be blunt: I don’t think our relationship is good enough,” he says. Brownell also point out that, while  hundreds of millions in public funds have flowed into Waterloo’s ecosystem, little funding is available for  Canadian scientists wishing to make the most of D-Wave’s hardware—despite the fact that it remains unclear which core quantum technology will prove the most profitable.

There’s a lot more to Semeniuk’s article but this is the last excerpt,

The world isn’t waiting for Canada’s quantum rivals to forge a united front. Google, Microsoft, IBM, and Intel are racing to develop a gate-model quantum computer—the sector’s ultimate goal. (Google’s researchers have said they will unveil a significant development early next year.) With the U.K., Australia and Japan pouring money into quantum, Canada, an early leader, is under pressure to keep up. The federal government is currently developing  a strategy for supporting the country’s evolving quantum sector and, ultimately, getting a return on its approximately $1-billion investment over the past decade [emphasis mine].

I wonder where the “approximately $1-billion … ” figure came from. I ask because some years ago MP Peter Julian asked the government for information about how much Canadian federal money had been invested in nanotechnology. The government replied with sheets of paper (a pile approximately 2 inches high) that had funding disbursements from various ministries. Each ministry had its own method with different categories for listing disbursements and the titles for the research projects were not necessarily informative for anyone outside a narrow specialty. (Peter Julian’s assistant had kindly sent me a copy of the response they had received.) The bottom line is that it would have been close to impossible to determine the amount of federal funding devoted to nanotechnology using that data. So, where did the $1-billion figure come from?

In any event, it will be interesting to see how the Council of Canadian Academies assesses the ‘quantum’ situation in its more academically inclined, “The State of Science and Technology and Industrial Research and Development in Canada,” when it’s released later this year (2018).

Finally, you can find Semeniuk’s October 2017 article here but be aware it’s behind a paywall.

Whither we goest?

Despite any doubts one might have about Lazaridis’ approach to research and technology, his tremendous investment and support cannot be denied. Without him, Canada’s quantum research efforts would be substantially less significant. As for the ‘cowboys’ in Vancouver, it takes a certain temperament to found a start-up company and it seems the D-Wave folks have more in common with Lazaridis than they might like to admit. As for the Quanta graduate  programme, it’s early days yet and no one should ever count out Alberta.

Meanwhile, one can continue to hope that a more thoughtful approach to regional collaboration will be adopted so Canada can continue to blaze trails in the field of quantum research.

Why are jokes funny? There may be a quantum explanation

Some years ago a friend who’d attended a conference on humour told me I really shouldn’t talk about humour until I had a degree on the topic. I decided the best way to deal with that piece of advice was to avoid all mention of any theories about humour to that friend. I’m happy to say the strategy has worked well although this latest research may allow me to broach the topic once again. From a March 17, 2017 Frontiers (publishing) news release on EurekAlert (Note: A link has been removed),

Why was 6 afraid of 7? Because 789. Whether this pun makes you giggle or groan in pain, your reaction is a consequence of the ambiguity of the joke. Thus far, models have not been able to fully account for the complexity of humor or exactly why we find puns and jokes funny, but a research article recently published in Frontiers in Physics suggests a novel approach: quantum theory.

By the way, it took me forever to get the joke. I always blame these things on the fact that I learned French before English (although my English is now my strongest language). So, for anyone who may immediately grasp the pun: Why was 6 afraid of 7? Because 78 (ate) 9.

This news release was posted by Anna Sigurdsson on March 22, 2017 on the Frontiers blog,

Aiming to answer the question of what kind of formal theory is needed to model the cognitive representation of a joke, researchers suggest that a quantum theory approach might be a contender. In their paper, they outline a quantum inspired model of humor, hoping that this new approach may succeed at a more nuanced modeling of the cognition of humor than previous attempts and lead to the development of a full-fledged, formal quantum theory model of humor. This initial model was tested in a study where participants rated the funniness of verbal puns, as well as the funniness of variants of these jokes (e.g. the punchline on its own, the set-up on its own). The results indicate that apart from the delivery of information, something else is happening on a cognitive level that makes the joke as a whole funny whereas its deconstructed components are not, and which makes a quantum approach appropriate to study this phenomenon.

For decades, researchers from a range of different fields have tried to explain the phenomenon of humor and what happens on a cognitive level in the moment when we “get the joke”. Even within the field of psychology, the topic of humor has been studied using many different approaches, and although the last two decades have seen an upswing of the application of quantum models to the study of psychological phenomena, this is the first time that a quantum theory approach has been suggested as a way to better understand the complexity of humor.

Previous computational models of humor have suggested that the funny element of a joke may be explained by a word’s ability to hold two different meanings (bisociation), and the existence of multiple, but incompatible, ways of interpreting a statement or situation (incongruity). During the build-up of the joke, we interpret the situation one way, and once the punch line comes, there is a shift in our understanding of the situation, which gives it a new meaning and creates the comical effect.

However, the authors argue that it is not the shift of meaning, but rather our ability to perceive both meanings simultaneously, that makes a pun funny. This is where a quantum approach might be able to account for the complexity of humor in a way that earlier models cannot. “Quantum formalisms are highly useful for describing cognitive states that entail this form of ambiguity,” says Dr. Liane Gabora from the University of British Columbia, corresponding author of the paper. “Funniness is not a pre-existing ‘element of reality’ that can be measured; it emerges from an interaction between the underlying nature of the joke, the cognitive state of the listener, and other social and environmental factors. This makes the quantum formalism an excellent candidate for modeling humor,” says Dr. Liane Gabora.

Although much work and testing remains before the completion of a formal quantum theory model of humor to explain the cognitive aspects of reacting to a pun, these first findings provide an exciting first step and opens for the possibility of a more nuanced modeling of humor. “The cognitive process of “getting” a joke is a difficult process to model, and we consider the work in this paper to be an early first step toward an eventually more comprehensive theory of humor that includes predictive models. We believe that the approach promises an exciting step toward a formal theory of humor, and that future research will build upon this modest beginning,” concludes Dr. Liane Gabora.

Here’s a link to and a citation for the paper,

Toward a Quantum Theory of Humor by Liane Gabora and Kirsty Kitto. Front. Phys., 26 January 2017 | https://doi.org/10.3389/fphy.2016.00053

This paper has been published in an open access journal. In viewing the acknowledgements at the end of the paper I found what I found to be a surprising funding agency,

This work was supported by a grant (62R06523) from the Natural Sciences and Engineering Research Council of Canada. We are grateful to Samantha Thomson who assisted with the development of the questionnaire and the collection of the data for the study reported here.

While I’m at this, I might as well mention that Kirsty Katto is from the Queensland University of Technology (QUT) in Australia and, for those unfamiliar with the geography, the University of British Columbia is the the Canada’s province of British Columbia.

Mapping 23,000 atoms in a nanoparticle

Identification of the precise 3-D coordinates of iron, shown in red, and platinum atoms in an iron-platinum nanoparticle.. Courtesy of Colin Ophus and Florian Nickel/Berkeley Lab

The image of the iron-platinum nanoparticle (referenced in the headline) reminds of foetal ultrasound images. A Feb. 1, 2017 news item on ScienceDaily tells us more,

In the world of the very tiny, perfection is rare: virtually all materials have defects on the atomic level. These imperfections — missing atoms, atoms of one type swapped for another, and misaligned atoms — can uniquely determine a material’s properties and function. Now, UCLA [University of California at Los Angeles] physicists and collaborators have mapped the coordinates of more than 23,000 individual atoms in a tiny iron-platinum nanoparticle to reveal the material’s defects.

The results demonstrate that the positions of tens of thousands of atoms can be precisely identified and then fed into quantum mechanics calculations to correlate imperfections and defects with material properties at the single-atom level.

A Feb. 1, 2017 UCLA news release, which originated the news item, provides more detail about the work,

Jianwei “John” Miao, a UCLA professor of physics and astronomy and a member of UCLA’s California NanoSystems Institute, led the international team in mapping the atomic-level details of the bimetallic nanoparticle, more than a trillion of which could fit within a grain of sand.

“No one has seen this kind of three-dimensional structural complexity with such detail before,” said Miao, who is also a deputy director of the Science and Technology Center on Real-Time Functional Imaging. This new National Science Foundation-funded consortium consists of scientists at UCLA and five other colleges and universities who are using high-resolution imaging to address questions in the physical sciences, life sciences and engineering.

Miao and his team focused on an iron-platinum alloy, a very promising material for next-generation magnetic storage media and permanent magnet applications.

By taking multiple images of the iron-platinum nanoparticle with an advanced electron microscope at Lawrence Berkeley National Laboratory and using powerful reconstruction algorithms developed at UCLA, the researchers determined the precise three-dimensional arrangement of atoms in the nanoparticle.

“For the first time, we can see individual atoms and chemical composition in three dimensions. Everything we look at, it’s new,” Miao said.

The team identified and located more than 6,500 iron and 16,600 platinum atoms and showed how the atoms are arranged in nine grains, each of which contains different ratios of iron and platinum atoms. Miao and his colleagues showed that atoms closer to the interior of the grains are more regularly arranged than those near the surfaces. They also observed that the interfaces between grains, called grain boundaries, are more disordered.

“Understanding the three-dimensional structures of grain boundaries is a major challenge in materials science because they strongly influence the properties of materials,” Miao said. “Now we are able to address this challenge by precisely mapping out the three-dimensional atomic positions at the grain boundaries for the first time.”

The researchers then used the three-dimensional coordinates of the atoms as inputs into quantum mechanics calculations to determine the magnetic properties of the iron-platinum nanoparticle. They observed abrupt changes in magnetic properties at the grain boundaries.

“This work makes significant advances in characterization capabilities and expands our fundamental understanding of structure-property relationships, which is expected to find broad applications in physics, chemistry, materials science, nanoscience and nanotechnology,” Miao said.

In the future, as the researchers continue to determine the three-dimensional atomic coordinates of more materials, they plan to establish an online databank for the physical sciences, analogous to protein databanks for the biological and life sciences. “Researchers can use this databank to study material properties truly on the single-atom level,” Miao said.

Miao and his team also look forward to applying their method called GENFIRE (GENeralized Fourier Iterative Reconstruction) to biological and medical applications. “Our three-dimensional reconstruction algorithm might be useful for imaging like CT scans,” Miao said. Compared with conventional reconstruction methods, GENFIRE requires fewer images to compile an accurate three-dimensional structure.

That means that radiation-sensitive objects can be imaged with lower doses of radiation.

The US Dept. of Energy (DOE) Lawrence Berkeley National Laboratory issued their own Feb. 1, 2017 news release (also on EurekAlert) about the work with a focus on how their equipment made this breakthrough possible (it repeats a little of the info. from the UCLA news release),

Scientists used one of the world’s most powerful electron microscopes to map the precise location and chemical type of 23,000 atoms in an extremely small particle made of iron and platinum.

The 3-D reconstruction reveals the arrangement of atoms in unprecedented detail, enabling the scientists to measure chemical order and disorder in individual grains, which sheds light on the material’s properties at the single-atom level. Insights gained from the particle’s structure could lead to new ways to improve its magnetic performance for use in high-density, next-generation hard drives.

What’s more, the technique used to create the reconstruction, atomic electron tomography (which is like an incredibly high-resolution CT scan), lays the foundation for precisely mapping the atomic composition of other useful nanoparticles. This could reveal how to optimize the particles for more efficient catalysts, stronger materials, and disease-detecting fluorescent tags.

Microscopy data was obtained and analyzed by scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) at the Molecular Foundry, in collaboration with Foundry users from UCLA, Oak Ridge National Laboratory, and the United Kingdom’s University of Birmingham. …

Atoms are the building blocks of matter, and the patterns in which they’re arranged dictate a material’s properties. These patterns can also be exploited to greatly improve a material’s function, which is why scientists are eager to determine the 3-D structure of nanoparticles at the smallest scale possible.

“Our research is a big step in this direction. We can now take a snapshot that shows the positions of all the atoms in a nanoparticle at a specific point in its growth. This will help us learn how nanoparticles grow atom by atom, and it sets the stage for a materials-design approach starting from the smallest building blocks,” says Mary Scott, who conducted the research while she was a Foundry user, and who is now a staff scientist. Scott and fellow Foundry scientists Peter Ercius and Colin Ophus developed the method in close collaboration with Jianwei Miao, a UCLA professor of physics and astronomy.

Their nanoparticle reconstruction builds on an achievement they reported last year in which they measured the coordinates of more than 3,000 atoms in a tungsten needle to a precision of 19 trillionths of a meter (19 picometers), which is many times smaller than a hydrogen atom. Now, they’ve taken the same precision, added the ability to distinguish different elements, and scaled up the reconstruction to include tens of thousands of atoms.

Importantly, their method maps the position of each atom in a single, unique nanoparticle. In contrast, X-ray crystallography and cryo-electron microscopy plot the average position of atoms from many identical samples. These methods make assumptions about the arrangement of atoms, which isn’t a good fit for nanoparticles because no two are alike.

“We need to determine the location and type of each atom to truly understand how a nanoparticle functions at the atomic scale,” says Ercius.

A TEAM approach

The scientists’ latest accomplishment hinged on the use of one of the highest-resolution transmission electron microscopes in the world, called TEAM I. It’s located at the National Center for Electron Microscopy, which is a Molecular Foundry facility. The microscope scans a sample with a focused beam of electrons, and then measures how the electrons interact with the atoms in the sample. It also has a piezo-controlled stage that positions samples with unmatched stability and position-control accuracy.

The researchers began growing an iron-platinum nanoparticle from its constituent elements, and then stopped the particle’s growth before it was fully formed. They placed the “partially baked” particle in the TEAM I stage, obtained a 2-D projection of its atomic structure, rotated it a few degrees, obtained another projection, and so on. Each 2-D projection provides a little more information about the full 3-D structure of the nanoparticle.

They sent the projections to Miao at UCLA, who used a sophisticated computer algorithm to convert the 2-D projections into a 3-D reconstruction of the particle. The individual atomic coordinates and chemical types were then traced from the 3-D density based on the knowledge that iron atoms are lighter than platinum atoms. The resulting atomic structure contains 6,569 iron atoms and 16,627 platinum atoms, with each atom’s coordinates precisely plotted to less than the width of a hydrogen atom.

Translating the data into scientific insights

Interesting features emerged at this extreme scale after Molecular Foundry scientists used code they developed to analyze the atomic structure. For example, the analysis revealed chemical order and disorder in interlocking grains, in which the iron and platinum atoms are arranged in different patterns. This has large implications for how the particle grew and its real-world magnetic properties. The analysis also revealed single-atom defects and the width of disordered boundaries between grains, which was not previously possible in complex 3-D boundaries.

“The important materials science problem we are tackling is how this material transforms from a highly randomized structure, what we call a chemically-disordered structure, into a regular highly-ordered structure with the desired magnetic properties,” says Ophus.

To explore how the various arrangements of atoms affect the nanoparticle’s magnetic properties, scientists from DOE’s Oak Ridge National Laboratory ran computer calculations on the Titan supercomputer at ORNL–using the coordinates and chemical type of each atom–to simulate the nanoparticle’s behavior in a magnetic field. This allowed the scientists to see patterns of atoms that are very magnetic, which is ideal for hard drives. They also saw patterns with poor magnetic properties that could sap a hard drive’s performance.

“This could help scientists learn how to steer the growth of iron-platinum nanoparticles so they develop more highly magnetic patterns of atoms,” says Ercius.

Adds Scott, “More broadly, the imaging technique will shed light on the nucleation and growth of ordered phases within nanoparticles, which isn’t fully theoretically understood but is critically important to several scientific disciplines and technologies.”

The folks at the Berkeley Lab have created a video (notice where the still image from the beginning of this post appears),

The Oak Ridge National Laboratory (ORNL), not wanting to be left out, has been mentioned in a Feb. 3, 2017 news item on ScienceDaily,

… researchers working with magnetic nanoparticles at the University of California, Los Angeles (UCLA), and the US Department of Energy’s (DOE’s) Lawrence Berkeley National Laboratory (Berkeley Lab) approached computational scientists at DOE’s Oak Ridge National Laboratory (ORNL) to help solve a unique problem: to model magnetism at the atomic level using experimental data from a real nanoparticle.

“These types of calculations have been done for ideal particles with ideal crystal structures but not for real particles,” said Markus Eisenbach, a computational scientist at the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility located at ORNL.

A Feb. 2, 2017 ORNL news release on EurekAlert, which originated the news item, elucidates further on how their team added to the research,

Eisenbach develops quantum mechanical electronic structure simulations that predict magnetic properties in materials. Working with Paul Kent, a computational materials scientist at ORNL’s Center for Nanophase Materials Sciences, the team collaborated with researchers at UCLA and Berkeley Lab’s Molecular Foundry to combine world-class experimental data with world-class computing to do something new–simulate magnetism atom by atom in a real nanoparticle.

Using the new data from the research teams on the West Coast, Eisenbach and Kent were able to precisely model the measured atomic structure, including defects, from a unique iron-platinum (FePt) nanoparticle and simulate its magnetic properties on the 27-petaflop Titan supercomputer at the OLCF.

Electronic structure codes take atomic and chemical structure and solve for the corresponding magnetic properties. However, these structures are typically derived from many 2-D electron microscopy or x-ray crystallography images averaged together, resulting in a representative, but not true, 3-D structure.

“In this case, researchers were able to get the precise 3-D structure for a real particle,” Eisenbach said. “The UCLA group has developed a new experimental technique where they can tell where the atoms are–the coordinates–and the chemical resolution, or what they are — iron or platinum.”

The ORNL news release goes on to describe the work from the perspective of the people who ran the supercompute simulationsr,

A Supercomputing Milestone

Magnetism at the atomic level is driven by quantum mechanics — a fact that has shaken up classical physics calculations and called for increasingly complex, first-principle calculations, or calculations working forward from fundamental physics equations rather than relying on assumptions that reduce computational workload.

For magnetic recording and storage devices, researchers are particularly interested in magnetic anisotropy, or what direction magnetism favors in an atom.

“If the anisotropy is too weak, a bit written to the nanoparticle might flip at room temperature,” Kent said.

To solve for magnetic anisotropy, Eisenbach and Kent used two computational codes to compare and validate results.

To simulate a supercell of about 1,300 atoms from strongly magnetic regions of the 23,000-atom nanoparticle, they used the Linear Scaling Multiple Scattering (LSMS) code, a first-principles density functional theory code developed at ORNL.

“The LSMS code was developed for large magnetic systems and can tackle lots of atoms,” Kent said.

As principal investigator on 2017, 2016, and previous INCITE program awards, Eisenbach has scaled the LSMS code to Titan for a range of magnetic materials projects, and the in-house code has been optimized for Titan’s accelerated architecture, speeding up calculations more than 8 times on the machine’s GPUs. Exceptionally capable of crunching large magnetic systems quickly, the LSMS code received an Association for Computing Machinery Gordon Bell Prize in high-performance computing achievement in 1998 and 2009, and developments continue to enhance the code for new architectures.

Working with Renat Sabirianov at the University of Nebraska at Omaha, the team also ran VASP, a simulation package that is better suited for smaller atom counts, to simulate regions of about 32 atoms.

“With both approaches, we were able to confirm that the local VASP results were consistent with the LSMS results, so we have a high confidence in the simulations,” Eisenbach said.

Computer simulations revealed that grain boundaries have a strong effect on magnetism. “We found that the magnetic anisotropy energy suddenly transitions at the grain boundaries. These magnetic properties are very important,” Miao said.

In the future, researchers hope that advances in computing and simulation will make a full-particle simulation possible — as first-principles calculations are currently too intensive to solve small-scale magnetism for regions larger than a few thousand atoms.

Also, future simulations like these could show how different fabrication processes, such as the temperature at which nanoparticles are formed, influence magnetism and performance.

“There’s a hope going forward that one would be able to use these techniques to look at nanoparticle growth and understand how to optimize growth for performance,” Kent said.

Finally, here’s a link to and a citation for the paper,

Deciphering chemical order/disorder and material properties at the single-atom level by Yongsoo Yang, Chien-Chun Chen, M. C. Scott, Colin Ophus, Rui Xu, Alan Pryor, Li Wu, Fan Sun, Wolfgang Theis, Jihan Zhou, Markus Eisenbach, Paul R. C. Kent, Renat F. Sabirianov, Hao Zeng, Peter Ercius, & Jianwei Miao. Nature 542, 75–79 (02 February 2017) doi:10.1038/nature21042 Published online 01 February 2017

This paper is behind a paywall.