Category Archives: Music

Chandra Sonifications (extraplanetary music and data sonification)

I’m not sure why the astronomy community is so taken with creating music out of data but it seems to be the most active of the science communities in the field. This October 15. 2023 article by Elizabeth Hlavinka for provides a little context before describing some of the latest work, Note: Links have been removed,

Christine Malec, who has been blind since birth, has always been a big astronomy buff, fascinated by major questions about the universe like what happens when a limit reaches infinity and whether things like space travel could one day become a reality. However, throughout her childhood, most astronomical information was only accessible to her via space documentaries or science fiction books.

Nearly a decade ago, Malec discovered a completely new way to experience astronomy when she saw astronomer and musician Matt Russo, Ph.D., give a presentation at a local planetarium in Toronto. Using a process called astronomical sonification, Russo had translated information collected from the TRAPPIST-1 solar system, which has seven planets locked in an orbital resonance, into something people who are blind or have low vision could experience: music. 

Russo’s song sent a wave of goosebumps through Malec’s body. Something she had previously understood intellectually but never had turned into a sensory experience was suddenly, profoundly felt.

“It was unforgettable,” Malec told Salon in a phone interview. “I compare it to what it might be like for a sighted person to look up at the night sky and get a sensory intuition of the size and nature of the cosmos. As a blind person, that’s an experience I hadn’t had.”

Through astronomical sonification, scientists map complex astronomical structures like black holes or exploded stars through the similarly expansive and multidimensional world of sound. Translating data from outer space into music not only expands access to astronomy for people who are blind or have low vision, but it also has the potential to help all scientists better understand the universe by leading to novel discoveries. Like images from the James Webb telescope that contextualize our tiny place in the universe, astronomical sonification similarly holds the power to connect listeners to the cosmos.

“It really does bring a connection that you don’t necessarily get when you’re just looking at a cluster of galaxies that’s billions of light years away from you that stretches across many hundreds of millions of light years,” said Kimberly Kowal Arcand, Ph.D., a data visualizer for NASA’s Chandra X-ray Observatory. “Having sound as a way of experiencing that type of phenomenon, that type of object, whatever it is, is a very valid way of experiencing the world around you and of making meaning.”

Malec serves as a consultant for Chandra Sonifications, which translates complex data from astronomical objects into sound. One of their most popular productions, which has been listened to millions of times, sonified a black hole in the Perseus cluster galaxy about 240 million light-years away. When presenting this sonification at this year’s [2023] SXSW festival in March, Russo, who works with Chandra through an organization he founded called SYSTEM Sounds, said this eerie sound used to depict the black hole had been likened to “millions of damned souls being sucked into the pits of hell.” 

Here’s some of what the audience at the 2023 SXSW festival heard,

If you have the time , do read Hlavinka’s October 15. 2023 article as she tells a good story with many interesting tidbits such as this (Note: Links have been removed),

William “Bill” Kurth, Ph.D., a space physicist at the University of Iowa, said the origins of astronomical sonification can be traced back to at least the 1970s when the Voyager-1 spacecraft recorded electromagnetic wave signals in space that were sent back down to his team on Earth, where they were processed as audio recordings.

Back in 1979, the team plotted the recordings on a frequency-time spectrogram similar to a voiceprint you see on apps that chart sounds like birds chirping, Kurth explained. The sounds emitted a “whistling” effect created by waves following the magnetic fields of the planet rather than going in straight lines. The data seemed to confirm what they had suspected: lightning was shocking through Jupiter’s atmosphere.

“At that time, the existence of lightning anywhere other than in Earth’s atmosphere was unknown,” Kurth told Salon in a phone interview. “This became the first time that we realized that lightning might exist on another planet.”

And this (Note: Links have been removed),

Beyond astronomy, sonification can be applied to any of the sciences, and health researchers are currently looking at tonifying DNA strands to better understand how proteins fold in multiple dimensions. Chandra is also working on constructing tactile 3-D models of astronomical phenomena, which also expands access for people who are blind or have low vision — those who have historically only been able to experience these sciences through words, Malec said.

Chandra and other sonification projects

I found a brief and somewhat puzzling description of the Chandra sonification project on one of the of US National Aeronautics and Space Administration (NASA) websites. From a September 22, 2021 posting on the Marshall Science Research and Projects Division blog (Note: Links have been removed,)

On 9/16/21, a Chandra sonification image entitled “Jingle, Pluck, and Hum: Sounds from Space” was released to the public.  Since 2020, Chandra’s “sonification” project has transformed astronomical data from some of the world’s most powerful telescopes into sound.  Three new objects — a star-forming region, a supernova remnant, and a black hole at the center of a galaxy — are being released.  Each sonification has its own technique to translate the astronomical data into sound.

For more information visit: Data Sonifications: Westerlund 2 (Multiwavelength), Tycho’s Supernova Remnant, and M87.

A Chandra article entitled “Data Sonification: Sounds from the Milky Way” was also released in the NASA STEM Newsletter.  This newsletter was sent to 54,951 subscribers and shared with the office of STEM engagements social media tools with approximately 1.7M followers. For more information visit:—-Your-STEM-Connection-for-Sept–9–2021.html?soid=1131598650811&aid=iXfzAJk6x_s

I’m a little puzzled by the reference to a Chandra sonification image but I’m assuming that they also produce data visualizations. Anyway, as Hlavinka notes Chandra is a NASA X-ray Observatory and they have a number of different projects/initiatives.

Getting back to data sonification, Chandra offers various audio files on its A Universe of Sound webpage,

Here’s a sampling of three data sonification posts (there are more) here,


FrogHeart’s 2023 comes to an end as 2024 comes into view

My personal theme for this last year (2023) and for the coming year was and is: catching up. On the plus side, my 2023 backlog (roughly six months) to be published was whittled down considerably. On the minus side, I start 2024 with a backlog of two to three months.

2023 on this blog had a lot in common with 2022 (see my December 31, 2022 posting), which may be due to what’s going on in the world of emerging science and technology or to my personal interests or possibly a bit of both. On to 2023 and a further blurring of boundaries:

Energy, computing and the environment

The argument against paper is that it uses up resources, it’s polluting, it’s affecting the environment, etc. Somehow the part where electricity which underpins so much of our ‘smart’ society does the same thing is left out of the discussion.

Neuromorphic (brainlike) computing and lower energy

Before launching into the stories about lowering energy usage, here’s an October 16, 2023 posting “The cost of building ChatGPT” that gives you some idea of the consequences of our insatiable desire for more computing and more ‘smart’ devices,

In its latest environmental report, Microsoft disclosed that its global water consumption spiked 34% from 2021 to 2022 (to nearly 1.7 billion gallons , or more than 2,500 Olympic-sized swimming pools), a sharp increase compared to previous years that outside researchers tie to its AI research. [emphases mine]

“It’s fair to say the majority of the growth is due to AI,” including “its heavy investment in generative AI and partnership with OpenAI,” said Shaolei Ren, [emphasis mine] a researcher at the University of California, Riverside who has been trying to calculate the environmental impact of generative AI products such as ChatGPT.

Why it matters: Microsoft’s five WDM [West Des Moines in Iowa] data centers — the “epicenter for advancing AI” — represent more than $5 billion in investments in the last 15 years.

Yes, but: They consumed as much as 11.5 million gallons of water a month for cooling, or about 6% of WDM’s total usage during peak summer usage during the last two years, according to information from West Des Moines Water Works.

The focus is AI but it doesn’t take long to realize that all computing has energy and environmental costs. I have more about Ren’s work and about water shortages in the “The cost of building ChatGPT” posting.

This next posting would usually be included with my other art/sci postings but it touches on the issues. My October 13, 2023 posting about Toronto’s Art/Sci Salon events, in particular, there’s the Streaming Carbon Footprint event (just scroll down to the appropriate subhead). For the interested, I also found this 2022 paper “The Carbon Footprint of Streaming Media:; Problems, Calculations, Solutions” co-authored by one of the artist/researchers (Laura U. Marks, philosopher and scholar of new media and film at Simon Fraser University) who presented at the Toronto event.

I’m late to the party; Thomas Daigle posted a January 2, 2020 article about energy use and our appetite for computing and ‘smart’ devices for the Canadian Broadcasting Corporation’s online news,

For those of us binge-watching TV shows, installing new smartphone apps or sharing family photos on social media over the holidays, it may seem like an abstract predicament.

The gigabytes of data we’re using — although invisible — come at a significant cost to the environment. Some experts say it rivals that of the airline industry. 

And as more smart devices rely on data to operate (think internet-connected refrigerators or self-driving cars), their electricity demands are set to skyrocket.

“We are using an immense amount of energy to drive this data revolution,” said Jane Kearns, an environment and technology expert at MaRS Discovery District, an innovation hub in Toronto.

“It has real implications for our climate.”

Some good news

Researchers are working on ways to lower the energy and environmental costs, here’s a sampling of 2023 posts with an emphasis on brainlike computing that attest to it,

If there’s an industry that can make neuromorphic computing and energy savings sexy, it’s the automotive indusry,

On the energy front,

Most people are familiar with nuclear fission and some its attendant issues. There is an alternative nuclear energy, fusion, which is considered ‘green’ or greener anyway. General Fusion is a local (Vancouver area) company focused on developing fusion energy, alongside competitors from all over the planet.

Part of what makes fusion energy attractive is that salt water or sea water can be used in its production and, according to that December posting, there are other applications for salt water power,

More encouraging developments in environmental science

Again, this is a selection. You’ll find a number of nano cellulose research projects and a couple of seaweed projects (seaweed research seems to be of increasing interest).

All by myself (neuromorphic engineering)

Neuromorphic computing is a subset of neuromorphic engineering and I stumbled across an article that outlines the similarities and differences. My ‘summary’ of the main points and a link to the original article can be found here,

Oops! I did it again. More AI panic

I included an overview of the various ‘recent’ panics (in my May 25, 2023 posting below) along with a few other posts about concerning developments but it’s not all doom and gloom..

Governments have realized that regulation might be a good idea. The European Union has a n AI act, the UK held an AI Safety Summit in November 2023, the US has been discussing AI regulation with its various hearings, and there’s impending legislation in Canada (see professor and lawyer Michael Geist’s blog for more).

A long time coming, a nanomedicine comeuppance

Paolo Macchiarini is now infamous for his untested, dangerous approach to medicine. Like a lot of people, I was fooled too as you can see in my August 2, 2011 posting, “Body parts nano style,”

In early July 2011, there were reports of a new kind of transplant involving a body part made of a biocomposite. Andemariam Teklesenbet Beyene underwent a trachea transplant that required an artificial windpipe crafted by UK experts then flown to Sweden where Beyene’s stem cells were used to coat the windpipe before being transplanted into his body.

It is an extraordinary story not least because Beyene, a patient in a Swedish hospital planning to return to Eritrea after his PhD studies in Iceland, illustrates the international cooperation that made the transplant possible.

The scaffolding material for the artificial windpipe was developed by Professor Alex Seifalian at the University College London in a landmark piece of nanotechnology-enabled tissue engineering. …

Five years later I stumbled across problems with Macchiarini’s work as outlined in my April 19, 2016 posting, “Macchiarini controversy and synthetic trachea transplants (part 1 of 2)” and my other April 19, 2016 posting, “Macchiarini controversy and synthetic trachea transplants (part 2 of 2)“.

This year, Gretchen Vogel (whose work was featured in my 2016 posts) has written a June 21, 2023 update about the Macchiarini affair for Science magazine, Note: Links have been removed,

Surgeon Paolo Macchiarini, who was once hailed as a pioneer of stem cell medicine, was found guilty of gross assault against three of his patients today and sentenced to 2 years and 6 months in prison by an appeals court in Stockholm. The ruling comes a year after a Swedish district court found Macchiarini guilty of bodily harm in two of the cases and gave him a suspended sentence. After both the prosecution and Macchiarini appealed that ruling, the Svea Court of Appeal heard the case in April and May. Today’s ruling from the five-judge panel is largely a win for the prosecution—it had asked for a 5-year sentence whereas Macchiarini’s lawyer urged the appeals court to acquit him of all charges.

Macchiarini performed experimental surgeries on the three patients in 2011 and 2012 while working at the renowned Karolinska Institute. He implanted synthetic windpipes seeded with stem cells from the patients’ own bone marrow, with the hope the cells would multiply over time and provide an enduring replacement. All three patients died when the implants failed. One patient died suddenly when the implant caused massive bleeding just 4 months after it was implanted; the two others survived for 2.5 and nearly 5 years, respectively, but suffered painful and debilitating complications before their deaths.

In the ruling released today, the appeals judges disagreed with the district court’s decision that the first two patients were treated under “emergency” conditions. Both patients could have survived for a significant length of time without the surgeries, they said. The third case was an “emergency,” the court ruled, but the treatment was still indefensible because by then Macchiarini was well aware of the problems with the technique. (One patient had already died and the other had suffered severe complications.)

A fictionalized tv series ( part of the Dr. Death anthology series) based on Macchiarini’s deceptions and a Dr. Death documentary are being broadcast/streamed in the US during January 2024. These come on the heels of a November 2023 Macchiarini documentary also broadcast/streamed on US television.

Dr. Death (anthology), based on the previews I’ve seen, is heavily US-centric, which is to be expected since Adam Ciralsky is involved in the production. Ciralsky wrote an exposé about Macchiarini for Vanity Fair published in 2016 (also featured in my 2016 postings). From a December 20, 2023 article by Julie Miller for Vanity Fair, Note: A link has been removed,

Seven years ago [2016], world-renowned surgeon Paolo Macchiarini was the subject of an ongoing Vanity Fair investigation. He had seduced award-winning NBC producer Benita Alexander while she was making a special about him, proposed, and promised her a wedding officiated by Pope Francis and attended by political A-listers. It was only after her designer wedding gown was made that Alexander learned Macchiarini was still married to his wife, and seemingly had no association with the famous names on their guest list.

Vanity Fair contributor Adam Ciralsky was in the midst of reporting the story for this magazine in the fall of 2015 when he turned to Dr. Ronald Schouten, a Harvard psychiatry professor. Ciralsky sought expert insight into the kind of fabulist who would invent and engage in such an audacious lie.

“I laid out the story to him, and he said, ‘Anybody who does this in their private life engages in the same conduct in their professional life,” recalls Ciralsky, in a phone call with Vanity Fair. “I think you ought to take a hard look at his CVs.”

That was the turning point in the story for Ciralsky, a former CIA lawyer who soon learned that Macchiarini was more dangerous as a surgeon than a suitor. …

Here’s a link to Ciralsky’s original article, which I described this way, from my April 19, 2016 posting (part 2 of the Macchiarini controversy),

For some bizarre frosting on this disturbing cake (see part 1 of the Macchiarini controversy and synthetic trachea transplants for the medical science aspects), a January 5, 2016 Vanity Fair article by Adam Ciralsky documents Macchiarini’s courtship of an NBC ([US] National Broadcasting Corporation) news producer who was preparing a documentary about him and his work.

[from Ciralsky’s article]

“Macchiarini, 57, is a magnet for superlatives. He is commonly referred to as “world-renowned” and a “super-surgeon.” He is credited with medical miracles, including the world’s first synthetic organ transplant, which involved fashioning a trachea, or windpipe, out of plastic and then coating it with a patient’s own stem cells. That feat, in 2011, appeared to solve two of medicine’s more intractable problems—organ rejection and the lack of donor organs—and brought with it major media exposure for Macchiarini and his employer, Stockholm’s Karolinska Institute, home of the Nobel Prize in Physiology or Medicine. Macchiarini was now planning another first: a synthetic-trachea transplant on a child, a two-year-old Korean-Canadian girl named Hannah Warren, who had spent her entire life in a Seoul hospital. … “

Other players in the Macchiarini story

Pierre Delaere, a trachea expert and professor of head and neck surgery at KU Leuven (a university in Belgium) was one of the first to draw attention to Macchiarini’s dangerous and unethical practices. To give you an idea of how difficult it was to get attention for this issue, there’s a September 1, 2017 article by John Rasko and Carl Power for the Guardian illustrating the issue. Here’s what they had to say about Delaere and other early critics of the work, Note: Links have been removed,

Delaere was one of the earliest and harshest critics of Macchiarini’s engineered airways. Reports of their success always seemed like “hot air” to him. He could see no real evidence that the windpipe scaffolds were becoming living, functioning airways – in which case, they were destined to fail. The only question was how long it would take – weeks, months or a few years.

Delaere’s damning criticisms appeared in major medical journals, including the Lancet, but weren’t taken seriously by Karolinska’s leadership. Nor did they impress the institute’s ethics council when Delaere lodged a formal complaint. [emphases mine]

Support for Macchiarini remained strong, even as his patients began to die. In part, this is because the field of windpipe repair is a niche area. Few people at Karolinska, especially among those in power, knew enough about it to appreciate Delaere’s claims. Also, in such a highly competitive environment, people are keen to show allegiance to their superiors and wary of criticising them. The official report into the matter dubbed this the “bandwagon effect”.

With Macchiarini’s exploits endorsed by management and breathlessly reported in the media, it was all too easy to jump on that bandwagon.

And difficult to jump off. In early 2014, four Karolinska doctors defied the reigning culture of silence [emphasis mine] by complaining about Macchiarini. In their view, he was grossly misrepresenting his results and the health of his patients. An independent investigator agreed. But the vice-chancellor of Karolinska Institute, Anders Hamsten, wasn’t bound by this judgement. He officially cleared Macchiarini of scientific misconduct, allowing merely that he’d sometimes acted “without due care”.

For their efforts, the whistleblowers were punished. [emphasis mine] When Macchiarini accused one of them, Karl-Henrik Grinnemo, of stealing his work in a grant application, Hamsten found him guilty. As Grinnemo recalls, it nearly destroyed his career: “I didn’t receive any new grants. No one wanted to collaborate with me. We were doing good research, but it didn’t matter … I thought I was going to lose my lab, my staff – everything.”

This went on for three years until, just recently [2017], Grinnemo was cleared of all wrongdoing.

It is fitting that Macchiarini’s career unravelled at the Karolinska Institute. As the home of the Nobel prize in physiology or medicine, one of its ambitions is to create scientific celebrities. Every year, it gives science a show-business makeover, picking out from the mass of medical researchers those individuals deserving of superstardom. The idea is that scientific progress is driven by the genius of a few.

It’s a problematic idea with unfortunate side effects. A genius is a revolutionary by definition, a risk-taker and a law-breaker. Wasn’t something of this idea behind the special treatment Karolinska gave Macchiarini? Surely, he got away with so much because he was considered an exception to the rules with more than a whiff of the Nobel about him. At any rate, some of his most powerful friends were themselves Nobel judges until, with his fall from grace, they fell too.

The September 1, 2017 article by Rasko and Power is worth the read if you have the interest and the time. And, Delaere has written up a comprehensive analysis, which includes basic information about tracheas and more, “The Biggest Lie in Medical History” 2020, PDF, 164 pp., Creative Commons Licence).

I also want to mention Leonid Schneider, science journalist and molecular cell biologist, whose work the Macchiarini scandal on his ‘For Better Science’ website was also featured in my 2016 pieces. Schneider’s site has a page titled, ‘Macchiarini’s trachea transplant patients: the full list‘ started in 2017 and which he continues to update with new information about the patients. The latest update was made on December 20, 2023.

Promising nanomedicine research but no promises and a caveat

Most of the research mentioned here is still in the laboratory. i don’t often come across work that has made its way to clinical trials since the focus of this blog is emerging science and technology,

*If you’re interested in the business of neurotechnology, the July 17, 2023 posting highlights a very good UNESCO report on the topic.

Funky music (sound and noise)

I have couple of stories about using sound for wound healing, bioinspiration for soundproofing applications, detecting seismic activity, more data sonification, etc.

Same old, same old CRISPR

2023 was relatively quiet (no panics) where CRISPR developments are concerned but still quite active.

Art/Sci: a pretty active year

I didn’t realize how active the year was art/sciwise including events and other projects until I reviewed this year’s postings. This is a selection from 2023 but there’s a lot more on the blog, just use the search term, “art/sci,” or “art/science,” or “sciart.”

While I often feature events and projects from these groups (e.g., June 2, 2023 posting, “Metacreation Lab’s greatest hits of Summer 2023“), it’s possible for me to miss a few. So, you can check out Toronto’s Art/Sci Salon’s website (strong focus on visual art) and Simon Fraser University’s Metacreation Lab for Creative Artificial Intelligence website (strong focus on music).

My selection of this year’s postings is more heavily weighted to the ‘writing’ end of things.

Boundaries: life/nonlife

Last year I subtitled this section, ‘Aliens on earth: machinic biology and/or biological machinery?” Here’s this year’s selection,

Canada’s 2023 budget … military

2023 featured an unusual budget where military expenditures were going to be increased, something which could have implications for our science and technology research.

Then things changed as Murray Brewster’s November 21, 2023 article for the Canadian Broadcasting Corporation’s (CBC) news online website comments, Note: A link has been removed,

There was a revelatory moment on the weekend as Defence Minister Bill Blair attempted to bridge the gap between rhetoric and reality in the Liberal government’s spending plans for his department and the Canadian military.

Asked about an anticipated (and long overdue) update to the country’s defence policy (supposedly made urgent two years ago by Russia’s full-on invasion of Ukraine), Blair acknowledged that the reset is now being viewed through a fiscal lens.

“We said we’re going to bring forward a new defence policy update. We’ve been working through that,” Blair told CBC’s Rosemary Barton Live on Sunday.

“The current fiscal environment that the country faces itself does require (that) that defence policy update … recognize (the) fiscal challenges. And so it’ll be part of … our future budget processes.”

One policy goal of the existing defence plan, Strong, Secure and Engaged, was to require that the military be able to concurrently deliver “two sustained deployments of 500 [to] 1,500 personnel in two different theaters of operation, including one as a lead nation.”

In a footnote, the recent estimates said the Canadian military is “currently unable to conduct multiple operations concurrently per the requirements laid out in the 2017 Defence Policy. Readiness of CAF force elements has continued to decrease over the course of the last year, aggravated by decreasing number of personnel and issues with equipment and vehicles.”

Some analysts say they believe that even if the federal government hits its overall budget reduction targets, what has been taken away from defence — and what’s about to be taken away — won’t be coming back, the minister’s public assurances notwithstanding.

10 years: Graphene Flagship Project and Human Brain Project

Graphene and Human Brain Project win biggest research award in history (& this is the 2000th post)” on January 28, 2013 was how I announced the results of what had been a a European Union (EU) competition that stretched out over several years and many stages as projects were evaluated and fell to the wayside or were allowed onto the next stage. The two finalists received €1B each to be paid out over ten years.

Future or not

As you can see, there was plenty of interesting stuff going on in 2023 but no watershed moments in the areas I follow. (Please do let me know in the Comments should you disagree with this or any other part of this posting.) Nanotechnology seems less and less an emerging science/technology in itself and more like a foundational element of our science and technology sectors. On that note, you may find my upcoming (in 2024) post about a report concerning the economic impact of its National Nanotechnology Initiative (NNI) from 2002 to 2022 of interest.

Following on the commercialization theme, I have noticed an increase of interest in commercializing brain and brainlike engineering technologies, as well as, more discussion about ethics.

Colonizing the brain?

UNESCO held events such as, this noted in my July 17, 2023 posting, “Unveiling the Neurotechnology Landscape: Scientific Advancements, Innovations and Major Trends—a UNESCO report” and this noted in my July 7, 2023 posting “Global dialogue on the ethics of neurotechnology on July 13, 2023 led by UNESCO.” An August 21, 2023 posting, “Ethical nanobiotechnology” adds to the discussion.

Meanwhile, Australia has been producing some very interesting mind/robot research, my June 13, 2023 posting, “Mind-controlled robots based on graphene: an Australian research story.” I have more of this kind of research (mind control or mind reading) from Australia to be published in early 2024. The Australians are not alone, there’s also this April 12, 2023 posting, “Mind-reading prosthetic limbs” from Germany.

My May 12, 2023 posting, “Virtual panel discussion: Canadian Strategies for Responsible Neurotechnology Innovation on May 16, 2023” shows Canada is entering the discussion. Unfortunately, the Canadian Science Policy Centre (CSPC), which held the event, has not posted a video online even though they have a youtube channel featuring other of their events.

As for neurmorphic engineering, China has produced a roadmap for its research in this area as noted in my March 20, 2023 posting, “A nontraditional artificial synaptic device and roadmap for Chinese research into neuromorphic devices.”

Quantum anybody?

I haven’t singled it out in this end-of-year posting but there is a great deal of interest in quantum computer both here in Canada and elsewhere. There is a 2023 report from the Council of Canadian Academies on the topic of quantum computing in Canada, which I hope to comment on soon.

Final words

I have a shout out for the Canadian Science Policy Centre, which celebrated its 15th anniversary in 2023. Congratulations!

For everyone, I wish peace on earth and all the best for you and yours in 2024!

The sounds of recent (December 2023) seismic activity in Iceland

On the heels of yesterday’s When the rocks sing “I got rhythm” (my December 18, 2023 posting), I received (via email) a media notice/reminder/update about a Northwestern University (Chicago, Illinois, US) app that allows you to listen,

From the original November 16, 2023 Northwestern University news release by Amanda Morris (also published as a November 16, 2023 news item on,

As seismic activity intensifies ahead of an impending eruption of a fissure near Iceland’s Fagradalsfjall volcano, the island’s Reykjanes Peninsula is experiencing hundreds of earthquakes per day.

Now, listeners can follow along through Northwestern University’s Earthtunes app. Developed in 2019, the app transforms seismic frequencies into audible pitches. Whereas a classic seismometer records motions in the Earth’s surface as squiggly lines scratched across a page, Earthtunes enables users to hear, rather than see, activity.

So far, Iceland’s recent, ongoing seismic activity sounds like a jarring symphony of doors slamming, hail pelting against a tin roof or window and people cracking trays of ice cubes.

By listening to activities recorded by the Global Seismographic Network station (named BORG), located to the north-northeast of Reykjavik, people can hear how the seismic activity has changed around the Fagradalsfjall area.

In this audio clip, listeners can hear 24 hours of activity recorded from Friday, Nov. 10, into Saturday, Nov. 11. Peppered with a cacophony of sharp knocking noises, it sounds like someone is insistently banging on a door.

“The activity is formidable, exciting and scary,” said Northwestern seismologist Suzan van der Lee, who co-developed Earthtunes. “Iceland did the right thing by evacuating residents in nearby Grindavik and the nearby Svartsengi geothermal power plant, one of the world’s oldest geothermal power plants, which was the first to combine electricity generation with hot water for heating in the region.”

Van der Lee is the Sarah Rebecca Roland Professor of Earth and Planetary Sciences at Northwestern’s Weinberg College of Arts and Sciences. In her research, she applies data science to millions of records of seismic waves in order to decode seismic signals, which harbor valuable information about the Earth’s interior dynamics.

As hundreds of earthquakes shake the ground, Van der Lee says the impending eruption is reminiscent of the 1973 eruption of Heimaey on Iceland’s Vestmannaeyjar archipelago.

“This level of danger is unprecedented for this area of Iceland, but not for Iceland as a whole,” said van der Lee, who hiked Fagradalsfjall in June. “While most Icelandic volcanoes erupt away from towns and other infrastructure, Icelanders share the terrible memory of an eruption 50 years ago on the island Vestmannaeyjar, during which lava covered part of that island’s town, Heimaey. The residents felt very vulnerable, as the evacuated people of Grindavik feel now. In a few days or weeks, they might no longer have their jobs, homes and most possessions, while still having to feed their families and pay their mortgages. However, partially resulting from that eruption on Vestmannaeyjar, Icelanders are well prepared for the current situation in the Fagradallsfjall-Svartsengi-Grindavik area.” 

Accelerated audio

This audio clip presents the same data, with the pitch increased by 10 octaves. Listeners will hear a long, low rumbling sound, punctuated by an occasional slamming door.

“What you’re hearing is 24 hours of seismic data — filled with earthquake signals,” van der Lee said. “The vast majority of these quakes are associated with the magma intrusion into the crust of the Fagradallsfjall-Svartsengi-Grindavik area of the Reykjanes Peninsula. Seismic data are not audible; their frequencies are too low. So, the 24 hours of data are compressed into approximately 1.5 minutes of audio data. You can hear an unprecedented intensity of earthquakes during the night from last Friday into Saturday and related to a new magma intrusion into the crust area.”

In a third audio clip, the same data is less compressed, with the pitch increased by just seven octaves

“One can hear frequent earthquakes happening at this point,” van der Lee said. “Icelandic seismologists have been monitoring these quakes and their increasing vigor and changing patterns. They recognized similar patterns to earthquake swarms that preceded the 2021-2023 eruptions of the adjacent Fagradallsfjall volcano.”

Earthtunes is supported by the American Geophysical Union and Northwestern’s department of Earth and planetary sciences. Seismic data is obtained from the Earthscope Consortium. The app was designed and developed by van der Lee, Helio Tejedor, Melanie Marzen, Igor Eufrasio, Josephine Anderson, Liam Toney, Cooper Barth, Michael Ji and Leonicio Cabrera.

Jennifer Ouellette’s November 16, 2023 article for Ars Tecnica draws heavily from the news release while delving into the topic of data sonification (making sounds from data), Note: Links have been removed,


Sonification of scientific data is an area of growing interest in many different fields. For instance, several years ago, a project called LHCSound built a library of the “sounds” of a top quark jet and the Higgs boson, among others. The project hoped to develop sonification as a technique for analyzing the data from particle collisions so that physicists could “detect” subatomic particles by ear. Other scientists have mapped the molecular structure of proteins in spider silk threads onto musical theory to produce the “sound” of silk in hopes of establishing a radical new way to create designer proteins. And there’s a free app for Android called the Amino Acid Synthesizer that enables users to create their own protein “compositions” from the sounds of amino acids.

The December 19, 2023 Northwestern University media update points to the latest audio file of the eruption of the svartsengi-grindavik fissure in Iceland: 24 hours as of Monday, December 18, 2023 14:00:00 UTC.


One last thing, there are a number of postings about data sonification here; many but not all scientists and/or communication practitioners think to include audio files.

When the rocks sing “I got rhythm”

George Gershwin, along with his brother Ira, wrote jazz standards such as “I got rhythm” in 1930 and, before that, “Fascinating rhythm” in 1924 and both seem à propos in relation to this October 9, 2023 news item on,

f you could sink through the Earth’s crust, you might hear, with a carefully tuned ear, a cacophany of booms and crackles along the way. The fissures, pores, and defects running through rocks are like strings that resonate when pressed and stressed. And as a team of MIT geologists has found, the rhythm and pace of these sounds can tell you something about the depth and strength of the rocks around you.

The fissures and pores running through rocks, from the Earth’s crust to the liquid mantle, are like channels and cavities through which sound can resonate. Credit: iStock [downloaded from]

An October 9, 2023 Massachusetts Institute of Technology news release (also on EurekAlert) by Jennifer Chu, which originated the news item, (word play alert) delves down into the material, Note: A link has been removed,

“If you were listening to the rocks, they would be singing at higher and higher pitches, the deeper you go,” says MIT geologist Matěj Peč. 

Peč and his colleagues are listening to rocks, to see whether any acoustic patterns, or “fingerprints” emerge when subjected to various pressures. In lab studies, they have now shown that samples of marble, when subjected to low pressures, emit low-pitched “booms,” while at higher pressures, the rocks generate an ‘avalanche’ of higher-pitched crackles. 

Peč says these acoustic patterns in rocks can help scientists estimate the types of cracks, fissures, and other defects that the Earth’s crust experiences with depth, which they can then use to identify unstable regions below the surface, where there is potential for earthquakes or eruptions. The team’s results, published in the Proceedings of the National Academy of Sciences, could also help inform surveyors’ efforts to drill for renewable, geothermal energy. 

“If we want to tap these very hot geothermal sources, we will have to learn how to drill into rocks that are in this mixed-mode condition, where they are not purely brittle, but also flow a bit,” says Peč, who is an assistant professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “But overall, this is fundamental science that can help us understand where the lithosphere is strongest.” 

Peč’s collaborators at MIT are lead author and research scientist Hoagy O. Ghaffari, technical associate Ulrich Mok, graduate student Hilary Chang, and professor emeritus of geophysics Brian Evans. Tushar Mittal, co-author and former EAPS postdoc, is now an assistant professor at Penn State University.

Fracture and flow

The Earth’s crust is often compared to the skin of an apple. At its thickest, the crust can be 70 kilometers deep — a tiny fraction of the globe’s total, 12,700-kilometer diameter. And yet, the rocks that make up the planet’s thin peel vary greatly in their strength and stability. Geologists infer that rocks near the surface are brittle and fracture easily, compared to rocks at greater depths, where immense pressures, and heat from the core, can make rocks flow. 

The fact that rocks are brittle at the surface and more ductile at depth implies there must be an in-between — a phase in which rocks transition from one to the other, and may have properties of both, able to fracture like granite, and flow like honey. This “brittle-to-ductile transition” is not well understood, though geologists believe it may be where rocks are at their strongest within the crust. 

“This transition state of partly flowing, partly fracturing, is really important, because that’s where we think the peak of the lithosphere’s strength is and where the largest earthquakes nucleate,” Peč says. “But we don’t have a good handle on this type of mixed-mode behavior.”

He and his colleagues are studying how the strength and stability of rocks — whether brittle, ductile, or somewhere in between — varies, based on a rock’s microscopic defects. The size, density, and distribution of defects such as microscopic cracks, fissures, and pores can shape how brittle or ductile a rock can be. 

But measuring the microscopic defects in rocks, under conditions that simulate the Earth’s various pressures and depths, is no trivial task. There is, for instance, no visual-imaging technique that allows scientists to see inside rocks to map their microscopic imperfections. So the team turned to ultrasound, and the idea that, any sound wave traveling through a rock should bounce, vibrate, and reflect off any microscopic cracks and crevices, in specific ways that should reveal something about the pattern of those defects. 

All these defects will also generate their own sounds when they move under stress and therefore both actively sounding through the rock as well as listening to it should give them a great deal of information. They found that the idea should work with ultrasound waves, at megahertz frequencies.

This kind of ultrasound method is analogous to what seismologists do in nature, but at much higher frequencies,” Peč explains. “This helps us to understand the physics that occur at microscopic scales, during the deformation of these rocks.” 

A rock in a hard place

In their experiments, the team tested cylinders of Carrara marble. 

“It’s the same material as what Michaelangelo’s David is made from,” Peč notes. “It’s a very well-characterized material, and we know exactly what it should be doing.”

The team placed each marble cylinder in a a vice-like apparatus made from pistons of aluminum, zirconium, and steel, which together can generate extreme stresses. They placed the vice in a pressurized chamber, then subjected each cylinder to pressures similar to what rocks experience throughout the Earth’s crust.  

As they slowly crushed each rock, the team sent pulses of ultrasound through the top of the sample, and recorded the acoustic pattern that exited through the bottom. When the sensors were not pulsing, they were listening to any naturally occurring acoustic emissions.

They found that at the lower end of the pressure range, where rocks are brittle, the marble indeed formed sudden fractures in response, and the sound waves resembled large, low-frequency booms. At the highest pressures, where rocks are more ductile, the acoustic waves resembled a higher-pitched crackling. The team believes this crackling was produced by microscopic defects called dislocations that then spread and flow like an avalanche. 

“For the first time, we have recorded the ‘noises’ that rocks make when they are deformed across this brittle-to-ductile transition, and we link these noises to the individual microscopic defects that cause them,” Peč says. “We found that these defects massively change their size and propagation velocity as they cross this transition. It’s more complicated than people had thought.”

The team’s characterizations of rocks and their defects at various pressures can help scientists estimate how the Earth’s crust will behave at various depths, such as how rocks might fracture in an earthquake, or flow in an eruption.    

“When rocks are partly fracturing and partly flowing, how does that feed back into the earthquake cycle? And how does that affect the movement of magma through a network of rocks?” Peč says. “Those are larger scale questions that can be tackled with research like this.”

This research was supported, in part, by the National Science Foundation.

Here’s a link to and a citation for the paper,

Microscopic defect dynamics during a brittle-to-ductile transition by Hoagy O’Ghaffari, Matěj Peč, Tushar Mittal, Ulrich Mok, Hilary Chang, and Brian Evans. Proceedings of the National Academy of Sciences 120 (42) e2305667120 DOI: October 9, 2023

This paper is behind a paywall.

Punctuation: a universal complement to the mathematical perfection of language

Before getting to the research into mathematics and punctuation, I’m setting the scene with snippets from a February 13, 2023 online article by Dan Falk for Aperio magazine, which seems to function both as a magazine and an advertisement for postdoctoral work in Israel funded by the Azrieli Foundation,

Four centuries ago, Galileo famously described the physical world as a realm that was rooted in mathematics. The universe, he wrote, “cannot be read until we have learnt the language and become familiar with the characters in which it is written. It is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word.”

Since Galileo’s time, scientists and philosophers have continued to ponder the question of why mathematics is so shockingly effective at describing physical phenomena. No one would deny that this is a deep question, but for philosopher Balthasar Grabmayr, an Azrieli International Postdoctoral Fellow at the University of Haifa, even deeper questions lie beneath it. Why does mathematics work at all? Does mathematics have limits? And if it does, what can we say about those limits?

Grabmayr found his way to this field from a very different passion: music. Growing up in Vienna, he attended a music conservatory and was set on becoming a classical musician. Eventually, he began to think about what made music work, and then began to think about musical structure. “I started to realize that, actually, what I’m interested in — what I found so attractive in music — is basically mathematics,” he recalls. “Mathematics is the science of structure. I was completely captured by that.”

One of Grabmayr’s main areas of research involves Gödel coding, a technique that, roughly put, allows mathematics to study itself. Gödel coding lets you convert statements about a system of rules or axioms into statements within the original system.

Gödel coding is named for the Austrian logician Kurt Gödel, who in the 1930s developed his famous “incompleteness theorems,” which point to the inherent limitations of mathematics. Although expressed as an equation, Gödel’s proof was based on the idea that a sentence such as “This statement is unprovable” is both true and unprovable. As Rebecca Goldstein’s biography of Gödel declares, he “demonstrated that in every formal system of arithmetic there are true statements that nevertheless cannot be proved. The result was an upheaval that spread far beyond mathematics, challenging conceptions of the nature of the mind.”

Grabmayr’s work builds on the program that Gödel began nearly a century ago. “What I’m really interested in is what the limitations of mathematics are,” he says. “What are the limits of what we can prove? What are the limits of what we can express in formal languages? And what are the limits of what we can calculate using computers?” (That last remark shows that Gödel coding is of interest well beyond the philosophy of mathematics. “We’re surrounded by it,” says Grabmayr. “I mean, without Gödel coding there wouldn’t be any computers.”)

Another potential application is in cognitive science and the study of the mind. Psychologists and other scientists have long debated to what extent the mind is, or is not, like a computer. When we “think,” are we manipulating symbols the way a computer does? The jury is still out on that question, but Grabmayr believes his work can at least point toward some answers. “Cognitive science is based on the premise that we can use computational models to capture certain phenomena of the brain,” he says. “Artificial intelligence, also, is very much concerned with trying to formally capture our reasoning, our thinking processes.”

Albert Visser, a philosopher and logician at Utrecht University in the Netherlands and one of Grabmayr’s PhD supervisors, sees a number of potential payoffs for this research. “Balthasar’s work has some overspill to computer science and linguistics, since it involves a systematic reflection both on coding and on the nature of syntax,” he says. “The discussion of ideas from computer science and linguistics in Balthasar’s work is also beneficial in the other direction. [emphases mine]

Now for the research into punctuation in European languages. From an April 19, 2023 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences press release (also on EurekAlert but published April 20, 2023),

A moment’s hesitation… Yes, a full stop here – but shouldn’t there be a comma there? Or would a hyphen be better? Punctuation can be a nuisance; it is often simply neglected. Wrong! The most recent statistical analyses paint a different picture: punctuation seems to “grow out” of the foundations shared by all the (examined) languages, and its features are far from trivial.

To many, punctuation appears as a necessary evil, to be happily ignored whenever possible. Recent analyses of literature written in the world’s current major languages require us to alter this opinion. In fact, the same statistical features of punctuation usage patterns have been observed in several hundred works written in seven, mainly Western, languages. Punctuation, all ten representatives of which can be found in the introduction to this text, turns out to be a universal and indispensable complement to the mathematical perfection of every language studied. Such a remarkable conclusion about the role of mere commas, exclamation marks or full stops comes from an article by scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow, published in the journal Chaos, Solitons & Fractals.

“The present analyses are an extension of our earlier results on the multifractal features of sentence length variation in works of world literature. After all, what is sentence length? It is nothing more than the distance to the next specific punctuation mark –  the full stop. So now we have taken all punctuation marks under a statistical magnifying glass, and we have also looked at what happens to punctuation during translation,” says Prof. Stanislaw Drozdz (IFJ PAN, Cracow University of Technology).

Two sets of texts were studied. The main analyses concerning punctuation within each language were carried out on 240 highly popular literary works written in seven major Western languages: English (44), German (34), French (32), Italian (32), Spanish (32), Polish (34) and Russian (32). This particular selection of languages was based on a criterion: the researchers assumed that no fewer than 50 million people should speak the language in question, and that the works written in it should have been awarded no fewer than five Nobel Prizes for Literature. In addition, for the statistical validity of the research results, each book had to contain at least 1,500 word sequences separated by punctuation marks. A separate collection was prepared to observe the stability of punctuation in translation. It contained 14 works, each of which was available in each of the languages studied (two of the 98 language versions, however, were omitted due to their unavailability). In total, authors in both collections included such writers as Conrad, Dickens, Doyle, Hemingway, Kipling, Orwell, Salinger, Woolf, Grass, Kafka, Mann, Nietzsche, Goethe, La Fayette, Dumas, Hugo, Proust, Verne, Eco, Cervantes, Sienkiewicz or Reymont.

The attention of the Cracow researchers was primarily drawn to the statistical distribution of the distance between consecutive punctuation marks. It soon became evident that in all the languages studied, it was best described by one of the precisely defined variants of the Weibull distribution. A curve of this type has a characteristic shape: it grows rapidly at first and then, after reaching a maximum value, descends somewhat more slowly to a certain critical value, below which it reaches zero with small and constantly decreasing dynamics. The Weibull distribution is usually used to describe survival phenomena (e.g. population as a function of age), but also various physical processes, such as increasing fatigue of materials.

“The concordance of the distribution of word sequence lengths between punctuation marks with the functional form of the Weibull distribution was better the more types of punctuation marks we included in the analyses; for all marks the concordance turned out to be almost complete. At the same time, some differences in the distributions are apparent between the different languages, but these merely amount to the selection of slightly different values for the distribution parameters, specific to the language in question. Punctuation thus seems to be an integral part of all the languages studied,” notes Prof. Drozdz, only to add after a moment with some amusement: “…and since the Weibull distribution is concerned with phenomena such as survival, it can be said with not too much tongue-in-cheek that punctuation has in its nature a literally embedded struggle for survival.”

The next stage of the analyses consisted of determining the hazard function. In the case of punctuation, it describes how the conditional probability of success – i.e. the probability of the next punctuation mark – changes if no such mark has yet appeared in the analysed sequence. The results here are clear: the language characterised by the lowest propensity to use punctuation is English, with Spanish not far behind; Slavic languages proved to be the most punctuation-dependent. The hazard function curves for punctuation marks in the six languages studied appeared to follow a similar pattern, they differed mainly in vertical shift.

German proved to be the exception. Its hazard function is the only one that intersects most of the curves constructed for the other languages. German punctuation thus seems to combine the punctuation features of many languages, making it a kind of Esperanto punctuation. The above observation dovetails with the next analysis, which was to see whether the punctuation features of original literary works can be seen in their translations. As expected, the language most faithfully transforming punctuation from the original language to the target language turned out to be German.

In spoken communication, pauses can be justified by human physiology, such as the need to catch one’s breath or to take a moment to structure what is to be said next in one’s mind. And in written communication?

“Creating a sentence by adding one word after another while ensuring that the message is clear and unambiguous is a bit like tightening the string of a bow: it is easy at first, but becomes more demanding with each passing moment. If there are no ordering elements in the text (and this is the role of punctuation), the difficulty of interpretation increases as the string of words lengthens. A bow that is too tight can break, and a sentence that is too long can become unintelligible. Therefore, the author is faced with the necessity of ‘freeing the arrow’, i.e. closing a passage of text with some sort of punctuation mark. This observation applies to all the languages analysed, so we are dealing with what could be called a linguistic law,” states Dr Tomasz Stanisz (IFJ PAN), first author of the article in question.

Finally, it is worth noting that the invention of punctuation is relatively recent – punctuation marks did not occur at all in old texts. The emergence of optimal punctuation patterns in modern written languages can therefore be interpreted as the result of their evolutionary advancement. However, the excessive need for punctuation is not necessarily a sign of such sophistication. English and Spanish, contemporarily the most universal languages, appear, in the light of the above studies, to be less strict about the frequency of punctuation use. It is likely that these languages are so formalised in terms of sentence construction that there is less room for ambiguity that would need to be resolved with punctuation marks.

The Henryk Niewodniczański Institute of Nuclear Physics (IFJ PAN) is currently one of the largest research institutes of the Polish Academy of Sciences. A wide range of research carried out at IFJ PAN covers basic and applied studies, from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly publication output of IFJ PAN includes over 600 scientific papers in high-impact international journals. Each year the Institute hosts about 20 international and national scientific conferences. One of the most important facilities of the Institute is the Cyclotron Centre Bronowice (CCB), which is an infrastructure unique in Central Europe, serving as a clinical and research centre in the field of medical and nuclear physics. In addition, IFJ PAN runs four accredited research and measurement laboratories. IFJ PAN is a member of the Marian Smoluchowski Kraków Research Consortium: “Matter-Energy-Future”, which in the years 2012-2017 enjoyed the status of the Leading National Research Centre (KNOW) in physics. In 2017, the European Commission granted the Institute the HR Excellence in Research award. As a result of the categorization of the Ministry of Education and Science, the Institute has been classified into the A+ category (the highest scientific category in Poland) in the field of physical sciences.

Here’s a link to and a citation for the paper,

Universal versus system-specific features of punctuation usage patterns in major Western languages by Tomasz Stanisz, Stanisław Drożdż, and Jarosław Kwapień. Chaos, Solitons & Fractals Volume 168, March 2023, 113183 DOI:

This paper is behind a paywall but the publishers do offer a preview of sorts.

There is also an earlier, less polished, open access version on the free peer review website arXiv,

Universal versus system-specific features of punctuation usage patterns in~major Western~languages by Tomasz Stanisz, Stanislaw Drozdz, Jaroslaw Kwapie. arXiv:2212.11182 [cs.CL] (or arXiv:2212.11182v1 [cs.CL] for this version) DOI: Postede Wed, 21 Dec 2022 16:52:10 UTC (1,073 KB)

The sound of dirt

So you don’t get your hopes up, this acoustic story doesn’t offer any accompanying audio/acoustic files, i.e., I couldn’t find the sound of dirt.

In any event, there’s still an interesting story in an April 10, 2023 news item on,

U.K. and Australian ecologists have used audio technology to record different types of sounds in the soils of a degraded and restored forest to indicate the health of ecosystems.

Non-invasive acoustic monitoring has great potential for scientists to gather long-term information on species and their abundance, says Flinders University [Australia] researcher Dr. Jake Robinson, who conducted the study while at the University of Sheffield in England.

Photo: Pixabay

An April 8, 2023 Flinders University press release, which originated the news item, delves into the researcher’s work, Note: Links have been removed,

“Eco-acoustics can measure the health lf landscapes affected by farming, mining and deforestation but can also monitor their recovery following revegetation,” he says.  

“From earthworms and plant roots to shifting soils and other underground activity, these subtle sounds were stronger and more diverse in healthy soils – once background noise was blocked out.”   

The subterranean study used special microphones to collect almost 200 sound samples, each about three minutes long, from soil samples collected in restored and cleared forests in South Yorkshire, England. 

“Like underwater and above-ground acoustic monitoring, below-ground biodiversity monitoring using eco-acoustics has great potential,” says Flinders University co-author, Associate Professor Martin Breed. 

Since joining Flinders University, Dr Robinson has released his first book, entitled Invisible Friends (DOI: 10.53061/NZYJ2969) [emphasis mine], which covers his core research into ‘how microbes in the environment shape our lives and the world around us’. 

Now a researcher in restoration genomics at the College of Science and Engineering at Flinders University, the new book examines the powerful role invisible microbes play in ecology, immunology, psychology, forensics and even architecture.  

“Instead of considering microbes the bane of our life, as we have done during the global pandemic, we should appreciate the many benefits they bring in keeping plants animals, and ourselves, alive.”  

In another new article, Dr Robinson and colleagues call for a return to ‘nature play’ for children [emphasis mine] to expose their developing immune systems to a diverse array of microbes at a young age for better long-term health outcomes. 

“Early childhood settings should optimise both outdoor and indoor environments for enhanced exposure to diverse microbiomes for social, cognitive and physiological health,” the researchers say.  

“It’s important to remember that healthy soils feed the air with these diverse microbes,” Dr Robinson adds.  

It seems Robinson has gone on a publicity blitz, academic style, for his book. There’s a May 22, 2023 essay by Robinson, Carlos Abrahams (Senior Lecturer in Environmental Biology – Director of Bioacoustics, Nottingham Trent University); and Martin Breed (Associate Professor in Biology, Flinders University) on the Conversation, Note: A link has been removed,

Nurturing a forest ecosystem back to life after it’s been logged is not always easy.

It can take a lot of hard work and careful monitoring to ensure biodiversity thrives again. But monitoring biodiversity can be costly, intrusive and resource-intensive. That’s where ecological acoustic survey methods, or “ecoacoustics”, come into play.

Indeed, the planet sings. Think of birds calling, bats echolocating, tree leaves fluttering in the breeze, frogs croaking and bush crickets stridulating. We live in a euphonious theatre of life.

Even the creatures in the soil beneath our feet emit unique vibrations as they navigate through the earth to commute, hunt, feed and mate.

Robinson has published three papers within five months of each other, in addition to the book, which seems like heavy output to me.

First, here’s a link to and a citation for the education paper,

Optimising Early Childhood Educational Settings for Health Using Nature-Based Solutions: The Microbiome Aspect by Jake M. Robinson and Alexia Barrable. Educ. Sci. 2023, 13 (2), 211 DOI:
Published: 16 February 2023

This is an open access paper.

For these two links and citations, the articles seem to be very closely linked.,

The sound of restored soil: Measuring soil biodiversity in a forest restoration chronosequence with ecoacoustics by Jake M. Robinson, Martin F. Breed, Carlos Abrahams. doi: Posted January 23, 2023

The sound of restored soil: using ecoacoustics to measure soil biodiversity in a temperate forest restoration context by Jake M. Robinson, Martin F. Breed, Carlos Abrahams. Restoration Ecology, Online Version of Record before inclusion in an issue e13934 DOI: First published: 22 May 2023

Both links lead to open access papers.

Finally, there’s the book,

Invisible Friends; How Microbes Shape Our Lives and the World Around Us by Jake Robinson. Pelagic Publishing, 2022. ISBN 9781784274337 DOI: 10.53061/NZYJ2969

This you have to pay for.

For those would would like to hear something from nature, I have a May 27, 2022 posting, The sound of the mushroom. Enjoy!

Music of the chemical elements

It’s a little late since this work was presented at the American Chemical Society’s (ACS) Spring 2023 meeting but it’s a fascinating approach to the periodic table of elements that features a longstanding interest of mine, data sonification.

A March 26, 2023 news item on announces the then upcoming presentation abut a musical version of the periodic table of elements,

In chemistry, we have He [helium], Fe [iron] and Ca [calcium]—but what about do, re and mi? Hauntingly beautiful melodies aren’t the first things that come to mind when looking at the periodic table of the elements. However, using a technique called data sonification, a recent college graduate has converted the visible light given off by the elements into audio, creating unique, complex sounds for each one. Today [March 26, 2023], the researcher reports the first step toward an interactive, musical periodic table.

A March 26, 2023 ACS news release on EurekAlert, which originated the news item, provides more detail (the presentation abstract is included),

The researcher will present his results at the spring meeting of the American Chemical Society (ACS). ACS Spring 2023 is a hybrid meeting being held virtually and in-person March 26–30 [2023], and features more than 10,000 presentations on a wide range of science topics.

Previously, W. Walker Smith, the project’s sole investigator, took his combined passions of music and chemistry and converted the natural vibrations of molecules into a musical composition. “Then I saw visual representations of the discrete wavelengths of light released by the elements, such as scandium,” says Smith. “They were gorgeous and complex, and I thought, ‘Wow, I really want to turn these into music, too.’”

Elements emit visible light when they are energized. This light is made up of multiple individual wavelengths, or particular colors, with brightness levels that are unique for each element. But on paper, the collections of wavelengths for different elements are hard to tell apart visually, especially for the transition metals, which can have thousands of individual colors, says Smith. Converting the light into sound frequencies could be another way for people to detect the differences between elements.

However, creating sounds for the elements on the periodic table has been done before. For instance, other scientists have assigned the brightest wavelengths to single notes played by the keys on a traditional piano. But this approach reduced the rich variety of wavelengths released by some elements into just a few sounds, explains Smith, who is currently a researcher at Indiana University.

To retain as much of the complexity and nuance of the element spectra as possible, Smith consulted faculty mentors at Indiana University, including David Clemmer, Ph.D., a professor in the chemistry department, and Chi Wang, D.M.A., a professor in the Jacobs School of Music. With their assistance, Smith built a computer code for real-time audio that converted each element’s light data into mixtures of notes. The discrete color wavelengths became individual sine waves whose frequency corresponded to that of the light, and their amplitude matched the brightness of the light.

Early in the research process, Clemmer and Smith discussed the pattern similarities between light and sound vibrations. For instance, within the colors of visible light, violet has almost double the frequency of red, and in music, one doubling of frequency corresponds to an octave. Therefore, visible light can be thought of as an “octave of light.” But this octave of light is at a much higher frequency than the audible range. So, Smith scaled the sine waves’ frequencies down by approximately 10-12, fitting the audio output into a range where human ears are most sensitive to differences in pitch.

Because some elements had hundreds or thousands of frequencies, the code allowed these notes to be generated in real time, forming harmonies and beating patterns as they mixed together. “The result is that the simpler elements, such as hydrogen and helium, sound vaguely like musical chords, but the rest have a more complex collection of sounds,” says Smith. For example, calcium sounds like bells chiming together with a rhythm resulting from how the frequencies interact with each other. Listening to the notes from some other elements reminded Smith of a spooky background noise, similar to music used in cheesy horror movies. He was especially surprised by the element zinc, which despite having a large number of colors, sounded like “an angelic choir singing a major chord with vibrato.”

“Some of the notes sound out of tune, but Smith has kept true to that in this translation of the elements into music,” says Clemmer. These off-key tones — known musically as microtones — come from frequencies that are found between the keys of a traditional piano. Agreeing, Wang says, “The decisions as to what’s vital to preserve when doing data sonification are both challenging and rewarding. And Smith did a great job making such decisions from a musical standpoint.”

The next step is to turn this technology into a new musical instrument with an exhibit at the WonderLab Museum of Science, Health, and Technology in Bloomington, Indiana. “I want to create an interactive, real-time musical periodic table, which allows both children and adults to select an element and see a display of its visible light spectrum and hear it at the same time,” says Smith. He adds that this sound-based approach has potential value as an alternative teaching method in chemistry classrooms, because it’s inclusive to people with visual impairments and different learning styles.

Smith acknowledges support and funding from Indiana University’s Department of Chemistry, Center for Electronic and Computer Music, and Center for Rural Engagement; an Indiana University Undergraduate Research grant; the 2022 Annual Project Jumpstart Innovation Competition; and the Indiana University Hutton Honors College Grant Program.

A recorded media briefing on this topic will be posted Monday, March 27 [2023], by 10 a.m. Eastern time at Reporters can request access to media briefings during the embargo period by contacting [The ACS 2023 Spring Meeting media briefings are freely available as of June 12, 2023. The “What do the elements sound like? Media Briefing” runs approximately 11 mins.]

If you keep going past the news release, you’ll find this presentation abstract,

Designing an interactive musical periodic table: sonification of visible element emission spectra

What does the element helium sound like? What about hydrogen? While these may seem like absurd questions, the process of data sonification can be used to convert the visible spectra of chemical elements into sounds. When stimulated by electricity or heat, elements release distinct wavelengths of light depending on their electron energy levels—a sort of “chemical footprint” unique to every element. These frequencies of light, which we perceive as different colors, can be scaled into the audio range to yield different sonic frequencies, allowing one to hear the different sounds of chemical elements. This research project involved the construction of an interactive musical periodic table, combining musical and visual representations of elemental spectra from high-resolution spectral datasets.

The interactive periodic table was designed using Max/MSP, a programming language that uses digital signal processing (DSP) algorithms to generate real-time audio and visual outputs. This allows all spectral lines of an element to be played simultaneously (as a “chord”) or for individual lines to be played in succession (as a “melody”). This highly interdisciplinary project has applications spanning data analysis, STEAM (STEM [science, technology, engineering, and mathematics] + Arts) education, and public science outreach. Sonification of scientific data provides alternative methods of analysis that can expand access of such data to blind and visually impaired people. Sonification can even enhance data analysis via traditional data visualization by providing a supplementary layer of auditory information, and sonification-based learning models have been shown to improve student engagement and understanding of scientific concepts like protein folding.

This program is currently being implemented in several middle and high school music and science classes, as well as a public music/science show titled “The Sound of Molecules” at WonderLab Museum of Science. Future work will focus on designing a free and open-source version of the program that does not require specialized DSP software.

Metacreation Lab’s greatest hits of Summer 2023

I received a May 31, 2023 ‘newsletter’ (via email) from Simon Fraser University’s (SFU) Metacreation Lab for Creative Artificial Intelligence and the first item celebrates some current and past work,

International Conference on New Interfaces for Musical Expressions | NIME 2023
May 31 – June 2 | Mexico City, Mexico

We’re excited to be a part of NIME 2023, launching in Mexico City this week! 

As part of the NIME Paper Sessions, some of Metacreation’s labs and affiliates will be presenting a study based on case studies of musicians playing with virtual musical agents. Titled eTu{d,b}e, the paper was co-authored by Tommy Davis, Kasey LV Pocius, and Vincent Cusson, developers of the eTube instrument, along with music technology and interface researchers Marcelo Wanderley and Philippe Pasquier. Learn about the project and listen to sessions involving human and non-human musicians.

This research project involved experimenting with Spire Muse, a virtual performance agent co-developed by Metacreation Lab members. The paper introducing the system was awarded the best paper award at the 2021 International Conference on New Interfaces for Musical Expression (NIME). 

Learn more about the NIME2023 conference and program at the link below, which will also present a series of online music concerts later this week.

Learn more about NIME 2023

Coming up later this summer and also from the May 31, 2023 newsletter,

Evaluating Human-AI Interaction for MMM-C: a Creative AI System for Music Composition | IJCAI [2023 International Joint Conference on Artificial Intelligence] Preview

For those following the impact of AI on music composition and production, we would like to share a sneak peek of a review of user experiences using an experimental AI-composition tool [Multi-Track Music Machine (MMM)] integrated into the Steinberg Cubase digital audio workstation. Conducted in partnership with Steinberg, this study will be presented at the 2023 International Joint Conference on Artificial Intelligence (IJCAI2023), as part of the Arts and Creativity track of the conference. This year’s IJCAI conference taking place in Macao from August 19th to Aug 25th, 2023.

The conference is being held in Macao (or Macau), which is officially (according to its Wikipedia entry) the Macao Special Administrative Region of the People’s Republic of China (MSAR). It has a longstanding reputation as an international gambling and party mecca comparable to Las Vegas.