Category Archives: Music

Large Interactive Virtual Environment Laboratory (LIVELab) located in McMaster University’s Institute for Music & the Mind (MIMM) and the MetaCreation Lab at Simon Fraser University

Both of these bits have a music focus but they represent two entirely different science-based approaches to that form of art and one is solely about the music and the other is included as one of the art-making processes being investigated..

Large Interactive Virtual Environment Laboratory (LIVELab) at McMaster University

Laurel Trainor and Dan J. Bosnyak both of McMaster University (Ontario, Canada) have written an October 27, 2019 essay about the LiveLab and their work for The Conversation website (Note: Links have been removed),

The Large Interactive Virtual Environment Laboratory (LIVELab) at McMaster University is a research concert hall. It functions as both a high-tech laboratory and theatre, opening up tremendous opportunities for research and investigation.

As the only facility of its kind in the world, the LIVELab is a 106-seat concert hall equipped with dozens of microphones, speakers and sensors to measure brain responses, physiological responses such as heart rate, breathing rates, perspiration and movements in multiple musicians and audience members at the same time.

Engineers, psychologists and clinician-researchers from many disciplines work alongside musicians, media artists and industry to study performance, perception, neural processing and human interaction.

In the LIVELab, acoustics are digitally controlled so the experience can change instantly from extremely silent with almost no reverberation to a noisy restaurant to a subway platform or to the acoustics of Carnegie Hall.

Real-time physiological data such as heart rate can be synchronized with data from other systems such as motion capture, and monitored and recorded from both performers and audience members. The result is that the reams of data that can now be collected in a few hours in the LIVELab used to take weeks or months to collect in a traditional lab. And having measurements of multiple people simultaneously is pushing forward our understanding of real-time human interactions.

Consider the implications of how music might help people with Parkinson’s disease to walk more smoothly or children with dyslexia to read better.

[…] area of ongoing research is the effectiveness of hearing aids. By the age of 60, nearly 49 per cent of people will suffer from some hearing loss. People who wear hearing aids are often frustrated when listening to music because the hearing aids distort the sound and cannot deal with the dynamic range of the music.

The LIVELab is working with the Hamilton Philharmonic Orchestra to solve this problem. During a recent concert, researchers evaluated new ways of delivering sound directly to participants’ hearing aids to enhance sounds.

Researchers hope new technologies can not only increase live musical enjoyment but alleviate the social isolation caused by hearing loss.

Imagine the possibilities for understanding music and sound: How it might help to improve cognitive decline, manage social performance anxiety, help children with developmental disorders, aid in treatment of depression or keep the mind focused. Every time we conceive and design a study, we think of new possibilities.

The essay also includes an embedded 12 min. video about LIVELab and details about studies conducted on musicians and live audiences. Apparently, audiences experience live performance differently than recorded performances and musicians use body sway to create cohesive performances. You can find the McMaster Institute for Music & the Mind here and McMaster’s LIVELab here.

Capturing the motions of a string quartet performance. Laurel Trainor, Author provided [McMaster University]

Metacreation Lab at Simon Fraser University (SFU)

I just recently discovered that there’s a Metacreation Lab at Simon Fraser University (Vancouver, Canada), which on its homepage has this ” Metacreation is the idea of endowing machines with creative behavior.” Here’s more from the homepage,

As the contemporary approach to generative art, Metacreation involves using tools and techniques from artificial intelligence, artificial life, and machine learning to develop software that partially or completely automates creative tasks. Through the collaboration between scientists, experts in artificial intelligence, cognitive sciences, designers and artists, the Metacreation Lab for Creative AI is at the forefront of the development of generative systems, be they embedded in interactive experiences or integrated into current creative software. Scientific research in the Metacreation Lab explores how various creative tasks can be automated and enriched. These tasks include music composition [emphasis mine], sound design, video editing, audio/visual effect generation, 3D animation, choreography, and video game design.

Besides scientific research, the team designs interactive and generative artworks that build upon the algorithms and research developed in the Lab. This work often challenges the social and cultural discourse on AI.

Much to my surprise I received the Metacreation Lab’s inaugural email newsletter (received via email on Friday, November 15, 2019),

Greetings,

We decided to start a mailing list for disseminating news, updates, and announcements regarding generative art, creative AI and New Media. In this newsletter: 

  1. ISEA 2020: The International Symposium on Electronic Art. ISEA return to Montreal, check the CFP bellow and contribute!
  2. ISEA 2015: A transcription of Sara Diamond’s keynote address “Action Agenda: Vancouver’s Prescient Media Arts” is now available for download. 
  3. Brain Art, the book: we are happy to announce the release of the first comprehensive volume on Brain Art. Edited by Anton Nijholt, and published by Springer.

Here are more details from the newsletter,

ISEA2020 – 26th International Symposium on Electronic Arts

Montreal, September 24, 2019
Montreal Digital Spring (Printemps numérique) is launching a call for participation as part of ISEA2020 / MTL connect to be held from May 19 to 24, 2020 in Montreal, Canada. Founded in 1990, ISEA is one of the world’s most prominent international arts and technology events, bringing together scholarly, artistic, and scientific domains in an interdisciplinary discussion and showcase of creative productions applying new technologies in art, interactivity, and electronic and digital media. For 2020, ISEA Montreal turns towards the theme of sentience.

ISEA2020 will be fully dedicated to examining the resurgence of sentience—feeling-sensing-making sense—in recent art and design, media studies, science and technology studies, philosophy, anthropology, history of science and the natural scientific realm—notably biology, neuroscience and computing. We ask: why sentience? Why and how does sentience matter? Why have artists and scholars become interested in sensing and feeling beyond, with and around our strictly human bodies and selves? Why has this notion been brought to the fore in an array of disciplines in the 21st century?
CALL FOR PARTICIPATION: WHY SENTIENCE? ISEA2020 invites artists, designers, scholars, researchers, innovators and creators to participate in the various activities deployed from May 19 to 24, 2020. To complete an application, please fill in the forms and follow the instructions.

The final submissions deadline is NOVEMBER 25, 2019. Submit your application for WORKSHOP and TUTORIAL Submit your application for ARTISTIC WORK Submit your application for FULL / SHORT PAPER Submit your application for PANEL Submit your application for POSTER Submit your application for ARTIST TALK Submit your application for INSTITUTIONAL PRESENTATION
Find Out More
You can apply for several categories. All profiles are welcome. Notifications of acceptance will be sent around January 13, 2020.

Important: please note that the Call for participation for MTL connect is not yet launched, but you can also apply to participate in the programming of the other Pavilions (4 other themes) when registrations are open (coming soon): mtlconnecte.ca/en TICKETS

Registration is now available to assist to ISEA2020 / MTL connect, from May 19 to 24, 2020. Book today your Full Pass and get the early-bird rate!
Buy Now

More from the newsletter,

ISEA 2015 was in Vancouver, Canada, and the proceedings and art catalog are still online. The news is that Sara Diamond released her 2015 keynote address as a paper: Action Agenda: Vancouver’s Prescient Media Arts. It is never too late so we thought we would let you know about this great read. See The 2015 Proceedings Here

The last item from the inaugural newsletter,

The first book that surveys how brain activity can be monitored and manipulated for artistic purposes, with contributions by interactive media artists, brain-computer interface researchers, and neuroscientists. View the Book Here

As per the Leonardo review from Cristina Albu:

“Another seminal contribution of the volume is the presentation of multiple taxonomies of “brain art,” which can help art critics develop better criteria for assessing this genre. Mirjana Prpa and Philippe Pasquier’s meticulous classification shows how diverse such works have become as artists consider a whole range of variables of neurofeedback.” Read the Review

For anyone not familiar with the ‘Leonardo’ cited in the above, it’s Leonardo; the International Society for the Arts, Sciences and Technology.

Should this kind of information excite and motivate you do start metacreating, you can get in touch with the lab,

Our mailing address is:
Metacreation Lab for Creative AI
School of Interactive Arts & Technology
Simon Fraser University
250-13450 102 Ave.
Surrey, BC V3T 0A3
Web: http://metacreation.net/
Email: metacreation_admin (at) sfu (dot) ca

The medical community and art/science: two events in Canada in November 2019

This time it’s the performing arts. I have one theatre and psychiatry production in Toronto and a music and medical science event in Vancouver.

Toronto’s Here are the Fragments opening on November 19, 2019

From a November 2, 2019 ArtSci Salon announcement (received via email),

An immersive theatre experience inspired by the psychiatric writing of Frantz Fanon

Here are the Fragments.
Co-produced by The ECT Collective and The Theatre Centre
November 19-December 1, 2019
Tickets: Preview $17 | Student/senior/arts worker $22 | Adult $30
Service charges may apply
Book 416-538-0988 | PURCHASE ONLINE

An immigrant psychiatrist develops psychosis and then schizophrenia. He walks a long path towards reconnection with himself, his son, and humanity.

Walk with him.

Within our immersive design (a fabric of sound, video, and live actors) lean in close to the possibilities of perceptual experience.

Schizophrenics ‘hear voices’. Schizophrenics fear loss of control over their own thoughts and bodies. But how does any one of us actually separate internal and external voices? How do we trust what we see or feel? How do we know which voices are truly our own?

Within the installation find places of retreat from chaos. Find poetry. Find critical analysis.

Explore archival material, Fanon’s writings and contemporary interviews with psychiatrists, neuroscientists, artists, and people living with schizophrenia, to reflect on the relationships between identity, history, racism and mental health.

I was able to find out more in a November 6, 2019 article at broadwayworld.com (Note: Some of this is repetitive),

How do we trust what we see or feel? How do we know which voices are truly our own? THE THEATRE CENTRE and THE ECT COLLECTIVE are proud to Co-produce HERE ARE THE FRAGMENTS., an immersive work of theatre written by Suvendrini Lena, Theatre Centre Residency artist and CAMH [ Centre for Addiction and Mental Health] Neurologist. Based on the psychiatric writing of famed political theorist Frantz Fanon and combining narratives, sensory exploration, and scientific and historical analysis, HERE ARE THE FRAGMENTS. reflects on the relationships between identity, history, racism, and mental health. FRAGMENTS. will run November 19 to December 1 at The Theatre Centre (Opening Night November 21).

HERE ARE THE FRAGMENTS. consists of live performances within an interactive installation. The plot, told in fragments, follows a psychiatrist early in his training as he develops psychosis and ultimately, treatment resistant schizophrenia. Eduard, his son, struggles to connect with his father, while the young man must also make difficult treatment decisions.

The Theatre Centre’s Franco Boni Theatre and Gallery will be transformed into an immersive interactive installation. The design will offer many spaces for exploration, investigation, and discovery, bringing audiences into the perceptual experience of Schizophrenia. The scenes unfold around you, incorporating a fabric of sound, video, and live actors. Amidst the seeming chaos there will also be areas of retreat; whispering voices, Fanon’s own books, archival materials, interviews with psychiatrists, neuroscientists, and people living with schizophrenia all merge to provoke analysis and reflection on the intersection of racism and mental health.

Suvendrini Lena (Writer) is a playwright and neurologist. She works as the staff neurologist at the Centre for Addiction and Mental Health and at the Centre for Headache at Women’s College Hospital [Toronto]. She is an Assistant Professor of Psychiatry and Neurology at the University of Toronto where she teaches medical students, residents, and fellows. She also teaches a course called Staging Medicine, a collaboration between The Theatre Centre and University of Toronto Postgraduate Medical Education.

Frantz Fanon (1925-1961), was a French West Indian psychiatrist, political philosopher, revolutionary, and writer, whose works are influential in the fields of post-colonial studies, critical theory, and Marxism. Fanon published numerous books, including Black Skin, White Masks (1952) and The Wretched of the Earth (1961).

In addition to performances, The Theatre Centre will host a number of panels and events. Highlights include a post-show talkback with Ngozi Paul (Development Producer, Artist/Activist) and Psychiatrist Collaborator Araba Chintoh on November 22. Also of note is Our Patients and Our Selves: Experiences of Racism Among Health Care Workers with facilitator Dr. Fatimah Jackson-Best of Black Health Alliance on November 23rd and Fanon Today: A Creative Symposium on November 24th, a panel, reading, and creative discussion featuring David Austin, Frank Francis, Doris Rajan and George Elliot Clarke [formerly Toronto’s Poet Laureate and Canadian Parliamentary Poet Laureate; emphasis and link mine].

You can get more details and a link for ticket purchase here.

Sounds and Science: Vienna meets Vancouver on November 30, 2019

‘Sounds and Science’ originated at the Medical University of Vienna (Austria) as the November 6, 2019 event posting on the University of British Columbia’s (UBC) Faculty of Medicine website,

The University of British Columbia will host the first Canadian concert bringing leading musical talents of Vienna together with dramatic narratives from science and medicine.

“Sounds and Science: Vienna Meets Vancouver” is part of the President’s Concert Series, to be held Nov. 30, 2019 on UBC campus. The event is modeled on a successful concert series launched in Austria in 2014, in cooperation with the Medical University of Vienna.

“Basic research tends to always stay within its own box, yet research is telling the most beautiful stories,” says Dr. Josef Penninger, director of UBC’s Life Sciences Institute, a professor of medical genetics and a Canada 150 Chair. “With this concert, we are bringing science out of the ivory tower, using the music of great composers such as Mozart, Schubert or Strauss to transport stories of discovery and insight into the major diseases that affected the composers themselves, and continue to have a significant impact on our society.”

Famous composers of the past are often seen as icons of classical music, but in fact, they were human beings, living under enormous physical constraints – perhaps more than people today, according to Dr. Manfred Hecking, an associate professor of internal medicine at the Medical University of Vienna.

“But ‘Sounds and Science’ is not primarily about suffering and disease,” says Dr. Hecking, a former member of the Vienna Philharmonic Orchestra who will be playing double bass during the concert. “It is a fun way of bringing music and science together. Combining music and thought, we hope that we will reach the attendees of the ‘Sounds and Science’ concert in Vancouver on an emotional, perhaps even personal level.”

A showcase for Viennese music, played in the tradition of the Vienna Philharmonic by several of its members, as well as the world-class science being done here at UBC, “Sounds and Science” will feature talks by UBC clinical and research faculty, including Dr. Penninger. Their topics will range from healthy aging and cancer research to the historical impact of bacterial infections.

Combining music and thought, we hope that we will reach the attendees of the ‘Sounds and Science’ concert in Vancouver on an emotional, perhaps even personal level.
Dr. Manfred Hecking

Faculty speaking at “Sounds and Science” will be:
Dr. Allison Eddy, professor and head, department of pediatrics, and chief, pediatric medicine, BC Children’s Hospital and BC Women’s Hospital;
Dr. Troy Grennan, clinical assistant professor, division of infectious diseases, UBC faculty of medicine;
Dr. Poul Sorensen, professor, department of pathology and laboratory medicine, UBC faculty of medicine; and
Dr. Roger Wong, executive associate dean, education and clinical professor of geriatric medicine, UBC faculty of medicine
UBC President and Vice-Chancellor Santa J. Ono and Vice President Health and Dr. Dermot Kelleher, dean, faculty of medicine and vice-president, health at UBC will also speak during the evening.

The musicians include two outstanding members of the Vienna Philharmonic – violinist Prof. Günter Seifert and violist-conductor Hans Peter Ochsenhofer, who will be joined by violinist-conductor Rémy Ballot and double bassist Dr. Manfred Hecking, who serves as a regular substitute in the orchestra.

For those in whose lives intertwine music and science, the experience of cross-connection will be familiar. For Dr. Penninger, the concert represents an opportunity to bring the famous sound of the Vienna Philharmonic to UBC and British Columbia, to a new audience. “That these musicians are coming here is a fantastic recognition and acknowledgement of the amazing work being done at UBC,” he says.

“Like poetry, music is a universal language that all of us immediately understand and can relate to. Science tells the most amazing stories. Both of them bring meaning and beauty to our world.”

“Sounds and Science” – Vienna Meets Vancouver is part of the President’s Concert Series | November 30, 2019 on campus at the Old Auditorium from 6:30 to 9:30 p.m.

To learn more about the Sounds and Science concert series hosted in cooperation with the Medical University of Vienna, visit www.soundsandscience.com.

I found more information regarding logistics,

Saturday, November 30, 2019
6:30 pm
The Old Auditorium, 6344 Memorial Road, UBC

Box office and Lobby: Opens at 5:30 pm (one hour prior to start of performance)
Old Auditorium Concert Hall: Opens at 6:00 pm

Sounds
Günter Seifert  VIOLIN
Rémy Ballot VIOLIN
Hans Peter Ochsenhofer VIOLA
Manfred Hecking DOUBLE BASS

Science
Josef Penninger GENETICS
Manfred Hecking INTERNAL MEDICINE
Troy Grennan INFECTIOUS DISEASE
Poul Sorensen PATHOLOGY & LABORATORY MEDICINE
Allison Eddy PEDIATRICS
Roger Wong GERIATRICS

Tickets are also available in person at UBC concert box-office locations:
– Old Auditorium
– Freddie Wood Theatre
– The Chan Centre for the Performing Art

General admission: $10.00
Free seating for UBC students
Purchase tickets for both President’s Concert Series events to make it a package, and save 10% on both performances

Transportation
Public and Bike Transportation
Please visit Translink for bike and transit information.
Parking
Suggested parking in the Rose Garden Parkade.

Buy Tickets

The Sounds and Science website has a feature abut the upcoming Vancouver concert and it offers a history dating from 2008,

MUSIC AND MEDICINE

The idea of combining music and medicine into the “Sounds & Science” – scientific concert series started in 2008, when the Austrian violinist Rainer Honeck played Bach’s Chaconne in d-minor directly before a keynote lecture, held by Nobel laureate Peter Doherty, at the Austrian Society of Allergology and Immunology’s yearly meeting in Vienna. The experience at that lecture was remarkable, truly a special moment. “Sounds & Science” was then taken a step further by bringing several concepts together: Anton Neumayr’s medical histories of composers, John Brockman’s idea of a “Third Culture” (very broadly speaking: combining humanities and science), and finally, our perception that science deserves a “Red Carpet” to walk on, in front of an audience. Attendees of the “Sounds & Science” series have also described that music opens the mind, and enables a better understanding of concepts in life and thereby science in general. On a typical concert/lecture, we start with a chamber music piece, continue with the pathobiography of the composer, go back to the music, and then introduce our main speaker, whose talk should be genuinely understandable to a broad, not necessarily scientifically trained audience. In the second half, we usually try to present a musical climax. One prerequisite that “Sounds & Science” stands for, is the outstanding quality of the principal musicians, and of the main speakers. Our previous concerts/lectures have so far covered several aspects of medicine like “Music & Cancer” (Debussy, Brahms, Schumann), “Music and Heart” (Bruckner, Mahler, Wagner), and “Music and Diabetes” (Bach, Ysaÿe, Puccini). For many individuals who have combined music and medicine or music and science inside of their own lives and biographies, the experience of a cross-connection between sounds and science is quite familiar. But there is also this “fun” aspect of sharing and participating, and at the “Sounds & Science” events, we usually try to ensure that the event location can easily be turned into a meeting place.

At a guess, Science and Sounds started informally in 2008 and became a formal series in 2014.

There is a video but it’s in German. It’s enjoyable viewing with beautiful music but unless you have German language skills you won’t get the humour. Also it runs for over 9 minutes (a little longer than most of videos you’ll find here on FrogHeart),

Enjoy!

Sonifying proteins to make music and brand new proteins

Markus Buehler at the Massachusetts Institute of Technology (MIT) has been working with music and science for a number of years. My December 9, 2011 posting, Music, math, and spiderwebs, was the first one here featuring his work. My November 28, 2012 posting, Producing stronger silk musically, was a followup to Buehler’s previous work.

A June 28, 2019 news item on Azonano provides a recent update,

Composers string notes of different pitch and duration together to create music. Similarly, cells join amino acids with different characteristics together to make proteins.

Now, researchers have bridged these two seemingly disparate processes by translating protein sequences into musical compositions and then using artificial intelligence to convert the sounds into brand-new proteins. …

Caption: Researchers at MIT have developed a system for converting the molecular structures of proteins, the basic building blocks of all living beings, into audible sound that resembles musical passages. Then, reversing the process, they can introduce some variations into the music and convert it back into new proteins never before seen in nature. Credit: Zhao Qin and Francisco Martin-Martinez

A June 26, 2019 American Chemical Society (ACS) news release, which originated the news item, provides more detail and a video,

To make proteins, cellular structures called ribosomes add one of 20 different amino acids to a growing chain in combinations specified by the genetic blueprint. The properties of the amino acids and the complex shapes into which the resulting proteins fold determine how the molecule will work in the body. To better understand a protein’s architecture, and possibly design new ones with desired features, Markus Buehler and colleagues wanted to find a way to translate a protein’s amino acid sequence into music.

The researchers transposed the unique natural vibrational frequencies of each amino acid into sound frequencies that humans can hear. In this way, they generated a scale consisting of 20 unique tones. Unlike musical notes, however, each amino acid tone consisted of the overlay of many different frequencies –– similar to a chord. Buehler and colleagues then translated several proteins into audio compositions, with the duration of each tone specified by the different 3D structures that make up the molecule. Finally, the researchers used artificial intelligence to recognize specific musical patterns that corresponded to certain protein architectures. The computer then generated scores and translated them into new-to-nature proteins. In addition to being a tool for protein design and for investigating disease mutations, the method could be helpful for explaining protein structure to broad audiences, the researchers say. They even developed an Android app [Amino Acid Synthesizer] to allow people to create their own bio-based musical compositions.

Here’s the ACS video,

A June 26, 2019 MIT news release (also on EurekAlert) provides some specifics and the MIT news release includes two embedded audio files,

Want to create a brand new type of protein that might have useful properties? No problem. Just hum a few bars.

In a surprising marriage of science and art, researchers at MIT have developed a system for converting the molecular structures of proteins, the basic building blocks of all living beings, into audible sound that resembles musical passages. Then, reversing the process, they can introduce some variations into the music and convert it back into new proteins never before seen in nature.

Although it’s not quite as simple as humming a new protein into existence, the new system comes close. It provides a systematic way of translating a protein’s sequence of amino acids into a musical sequence, using the physical properties of the molecules to determine the sounds. Although the sounds are transposed in order to bring them within the audible range for humans, the tones and their relationships are based on the actual vibrational frequencies of each amino acid molecule itself, computed using theories from quantum chemistry.

The system was developed by Markus Buehler, the McAfee Professor of Engineering and head of the Department of Civil and Environmental Engineering at MIT, along with postdoc Chi Hua Yu and two others. As described in the journal ACS Nano, the system translates the 20 types of amino acids, the building blocks that join together in chains to form all proteins, into a 20-tone scale. Any protein’s long sequence of amino acids then becomes a sequence of notes.

While such a scale sounds unfamiliar to people accustomed to Western musical traditions, listeners can readily recognize the relationships and differences after familiarizing themselves with the sounds. Buehler says that after listening to the resulting melodies, he is now able to distinguish certain amino acid sequences that correspond to proteins with specific structural functions. “That’s a beta sheet,” he might say, or “that’s an alpha helix.”

Learning the language of proteins

The whole concept, Buehler explains, is to get a better handle on understanding proteins and their vast array of variations. Proteins make up the structural material of skin, bone, and muscle, but are also enzymes, signaling chemicals, molecular switches, and a host of other functional materials that make up the machinery of all living things. But their structures, including the way they fold themselves into the shapes that often determine their functions, are exceedingly complicated. “They have their own language, and we don’t know how it works,” he says. “We don’t know what makes a silk protein a silk protein or what patterns reflect the functions found in an enzyme. We don’t know the code.”

By translating that language into a different form that humans are particularly well-attuned to, and that allows different aspects of the information to be encoded in different dimensions — pitch, volume, and duration — Buehler and his team hope to glean new insights into the relationships and differences between different families of proteins and their variations, and use this as a way of exploring the many possible tweaks and modifications of their structure and function. As with music, the structure of proteins is hierarchical, with different levels of structure at different scales of length or time.

The team then used an artificial intelligence system to study the catalog of melodies produced by a wide variety of different proteins. They had the AI system introduce slight changes in the musical sequence or create completely new sequences, and then translated the sounds back into proteins that correspond to the modified or newly designed versions. With this process they were able to create variations of existing proteins — for example of one found in spider silk, one of nature’s strongest materials — thus making new proteins unlike any produced by evolution.

Although the researchers themselves may not know the underlying rules, “the AI has learned the language of how proteins are designed,” and it can encode it to create variations of existing versions, or completely new protein designs, Buehler says. Given that there are “trillions and trillions” of potential combinations, he says, when it comes to creating new proteins “you wouldn’t be able to do it from scratch, but that’s what the AI can do.”

“Composing” new proteins

By using such a system, he says training the AI system with a set of data for a particular class of proteins might take a few days, but it can then produce a design for a new variant within microseconds. “No other method comes close,” he says. “The shortcoming is the model doesn’t tell us what’s really going on inside. We just know it works.

This way of encoding structure into music does reflect a deeper reality. “When you look at a molecule in a textbook, it’s static,” Buehler says. “But it’s not static at all. It’s moving and vibrating. Every bit of matter is a set of vibrations. And we can use this concept as a way of describing matter.”

The method does not yet allow for any kind of directed modifications — any changes in properties such as mechanical strength, elasticity, or chemical reactivity will be essentially random. “You still need to do the experiment,” he says. When a new protein variant is produced, “there’s no way to predict what it will do.”

The team also created musical compositions developed from the sounds of amino acids, which define this new 20-tone musical scale. The art pieces they constructed consist entirely of the sounds generated from amino acids. “There are no synthetic or natural instruments used, showing how this new source of sounds can be utilized as a creative platform,” Buehler says. Musical motifs derived from both naturally existing proteins and AI-generated proteins are used throughout the examples, and all the sounds, including some that resemble bass or snare drums, are also generated from the sounds of amino acids.

The researchers have created a free Android smartphone app, called Amino Acid Synthesizer, to play the sounds of amino acids and record protein sequences as musical compositions.

Here’s a link to and a citation for the paper,

A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence by Chi-Hua Yu, Zhao Qin, Francisco J. Martin-Martinez, Markus J. Buehler. ACS Nano 2019 XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/acsnano.9b02180 Publication Date:June 26, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

ETA October 23, 2019 1000 hours: Ooops! I almost forgot the link to the Aminot Acid Synthesizer.

Monitoring forest soundscapes for conservation and more about whale songs

I don’t understand why anyone would publicize science work featuring soundscapes without including an audio file. However, no one from Princeton University (US) phoned and asked for my advice :).

On the plus side, my whale story does have a sample audio file. However, I’m not sure if I can figure out how to embed it here.

Princeton and monitoring forests

In addition to a professor from Princeton University, there’s the founder of an environmental news organization and someone who’s both a professor at the University of Queensland (Australia) and affiliated with the Nature Conservancy making this of the more unusual collaborations I’ve seen.

Moving on to the news, a January 4, 2019 Princeton University news release (also on EurekAlert but published on Jan. 3, 2019) by B. Rose Kelly announces research into monitoring forests,

Recordings of the sounds in tropical forests could unlock secrets about biodiversity and aid conservation efforts around the world, according to a perspective paper published in Science.

Compared to on-the-ground fieldwork, bioacoustics –recording entire soundscapes, including animal and human activity — is relatively inexpensive and produces powerful conservation insights. The result is troves of ecological data in a short amount of time.

Because these enormous datasets require robust computational power, the researchers argue that a global organization should be created to host an acoustic platform that produces on-the-fly analysis. Not only could the data be used for academic research, but it could also monitor conservation policies and strategies employed by companies around the world.

“Nongovernmental organizations and the conservation community need to be able to truly evaluate the effectiveness of conservation interventions. It’s in the interest of certification bodies to harness the developments in bioacoustics for better enforcement and effective measurements,” said Zuzana Burivalova, a postdoctoral research fellow in Professor David Wilcove’s lab at Princeton University’s Woodrow Wilson School of Public and International Affairs.

“Beyond measuring the effectiveness of conservation projects and monitoring compliance with forest protection commitments, networked bioacoustic monitoring systems could also generate a wealth of data for the scientific community,” said co-author Rhett Butler of the environmental news outlet Mongabay.

Burivalova and Butler co-authored the paper with Edward Game, who is based at the Nature Conservancy and the University of Queensland.

The researchers explain that while satellite imagery can be used to measure deforestation, it often fails to detect other subtle ecological degradations like overhunting, fires, or invasion by exotic species. Another common measure of biodiversity is field surveys, but those are often expensive, time consuming and cover limited ground.

Depending on the vegetation of the area and the animals living there, bioacoustics can record animal sounds and songs from several hundred meters away. Devices can be programmed to record at specific times or continuously if there is solar polar or a cellular network signal. They can also record a range of taxonomic groups including birds, mammals, insects, and amphibians. To date, several multiyear recordings have already been completed.

Bioacoustics can help effectively enforce policy efforts as well. Many companies are engaged in zero-deforestation efforts, which means they are legally obligated to produce goods without clearing large forests. Bioacoustics can quickly and cheaply determine how much forest has been left standing.

“Companies are adopting zero deforestation commitments, but these policies do not always translate to protecting biodiversity due to hunting, habitat degradation, and sub-canopy fires. Bioacoustic monitoring could be used to augment satellites and other systems to monitor compliance with these commitments, support real-time action against prohibited activities like illegal logging and poaching, and potentially document habitat and species recovery,” Butler said.

Further, these recordings can be used to measure climate change effects. While the sounds might not be able to assess slow, gradual changes, they could help determine the influence of abrupt, quick differences to land caused by manufacturing or hunting, for example.

Burivalova and Game have worked together previously as you can see in a July 24, 2017 article by Justine E. Hausheer for a nature.org blog ‘Cool Green Science’ (Note: Links have been removed),

Morning in Musiamunat village. Across the river and up a steep mountainside, birds-of-paradise call raucously through the rainforest canopy, adding their calls to the nearly deafening insect chorus. Less than a kilometer away, small birds flit through a grove of banana trees, taro and pumpkin vines winding across the rough clearing. Here too, the cicadas howl.

To the ear, both garden and forest are awash with noise. But hidden within this dawn chorus are clues to the forest’s health.

New acoustic research from Nature Conservancy scientists indicates that forest fragmentation drives distinct changes in the dawn and dusk choruses of forests in Papua New Guinea. And this innovative method can help evaluate the conservation benefits of land-use planning efforts with local communities, reducing the cost of biodiversity monitoring in the rugged tropics.

“It’s one thing for a community to say that they cut fewer trees, or restricted hunting, or set aside a protected area, but it’s very difficult for small groups to demonstrate the effectiveness of those efforts,” says Eddie Game, The Nature Conservancy’s lead scientist for the Asia-Pacific region.

Aside from the ever-present logging and oil palm, another threat to PNG’s forests is subsistence agriculture, which feeds a majority of the population. In the late 1990s, The Nature Conservancy worked with 11 communities in the Adelbert Mountains to create land-use plans, dividing each community’s lands into different zones for hunting, gardening, extracting forest products, village development, and conservation. The goal was to limit degradation to specific areas of the forest, while keeping the rest intact.

But both communities and conservationists needed a way to evaluate their efforts, before the national government considered expanding the program beyond Madang province. So in July 2015, Game and two other scientists, Zuzana Burivalova and Timothy Boucher, spent two weeks gathering data in the Adelbert Mountains, a rugged lowland mountain range in Papua New Guinea’s Madang province.

Working with conservation rangers from Musiamunat, Yavera, and Iwarame communities, the research team tested an innovative method — acoustic sampling — to measure biodiversity across the community forests. Game and his team used small acoustic recorders placed throughout the forest to record 24-hours of sound from locations in each of the different land zones.

Soundscapes from healthy, biodiverse forests are more complex, so the scientists hoped that these recordings would show if parts of the community forests, like the conservation zones, were more biodiverse than others. “Acoustic recordings won’t pick up every species, but we don’t need that level of detail to know if a forest is healthy,” explains Boucher, a conservation geographer with the Conservancy.

Here’s a link to and a citation for the latest work from Burivalova and Game,

The sound of a tropical forest by Zuzana Burivalova, Edward T. Game, Rhett A. Butler. Science 04 Jan 2019: Vol. 363, Issue 6422, pp. 28-29 DOI: 10.1126/science.aav1902

This paper is behind a paywall. You can find out more about Mongabay and Rhett Butler in its Wikipedia entry.

***ETA July 18, 2019: Cara Cannon Byington, Associate Director, Science Communications for the Nature Conservancy emailed to say that a January 3, 2019 posting on the conservancy’s Cool Green Science Blog features audio files from the research published in ‘The sound of a tropical forest. Scroll down about 75% of the way for the audio.***

Whale songs

Whales share songs when they meet and a January 8, 2019 Wildlife Conservation Society news release (also on EurekAlert) describes how that sharing takes place,

Singing humpback whales from different ocean basins seem to be picking up musical ideas from afar, and incorporating these new phrases and themes into the latest song, according to a newly published study in Royal Society Open Science that’s helping scientists better understand how whales learn and change their musical compositions.

The new research shows that two humpback whale populations in different ocean basins (the South Atlantic and Indian Oceans) in the Southern Hemisphere sing similar song types, but the amount of similarity differs across years. This suggests that males from these two populations come into contact at some point in the year to hear and learn songs from each other.

The study titled “Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins” appears in the latest edition of the Royal Society Open Science journal. The authors are: Melinda L. Rekdahl, Carissa D. King, Tim Collins, and Howard Rosenbaum of WCS (Wildlife Conservation Society); Ellen C. Garland of the University of St. Andrews; Gabriella A. Carvajal of WCS and Stony Brook University; and Yvette Razafindrakoto of COSAP [ (Committee for the Management of the Protected Area of Bezà Mahafaly ] and Madagascar National Parks.

“Song sharing between populations tends to happen more in the Northern Hemisphere where there are fewer physical barriers to movement of individuals between populations on the breeding grounds, where they do the majority of their singing. In some populations in the Southern Hemisphere song sharing appears to be more complex, with little song similarity within years but entire songs can spread to neighboring populations leading to song similarity across years,” said Dr. Melinda Rekdahl, marine conservation scientist for WCS’s Ocean Giants Program and lead author of the study. “Our study shows that this is not always the case in Southern Hemisphere populations, with similarities between both ocean basin songs occurring within years to different degrees over a 5-year period.”

The study authors examined humpback whale song recordings from both sides of the African continent–from animals off the coasts of Gabon and Madagascar respectively–and transcribed more than 1,500 individual sounds that were recorded between 2001-2005. Song similarity was quantified using statistical methods.

Male humpback whales are one of the animal kingdom’s most noteworthy singers, and individual animals sing complex compositions consisting of moans, cries, and other vocalizations called “song units.” Song units are composed into larger phrases, which are repeated to form “themes.” Different themes are produced in a sequence to form a song cycle that are then repeated for hours, or even days. For the most part, all males within the same population sing the same song type, and this population-wide song similarity is maintained despite continual evolution or change to the song leading to seasonal “hit songs.” Some song learning can occur between populations that are in close proximity and may be able to hear the other population’s song.

Over time, the researchers detected shared phrases and themes in both populations, with some years exhibiting more similarities than others. In the beginning of the study, whale populations in both locations shared five “themes.” One of the shared themes, however, had differences. Gabon’s version of Theme 1, the researchers found, consisted of a descending “cry-woop”, whereas the Madagascar singers split Theme 1 into two parts: a descending cry followed by a separate woop or “trumpet.”

Other differences soon emerged over time. By 2003, the song sung by whales in Gabon became more elaborate than their counterparts in Madagascar. In 2004, both population song types shared the same themes, with the whales in Gabon’s waters singing three additional themes. Interestingly, both whale groups had dropped the same two themes from the previous year’s song types. By 2005, songs being sung on both sides of Africa were largely similar, with individuals in both locations singing songs with the same themes and order. However, there were exceptions, including one whale that revived two discontinued themes from the previous year.

The study’s results stands in contrast to other research in which a song in one part of an ocean basin replaces or “revolutionizes” another population’s song preference. In this instance, the gradual changes and degrees of similarity shared by humpbacks on both sides of Africa was more gradual and subtle.

“Studies such as this one are an important means of understanding connectivity between different whale populations and how they move between different seascapes,” said Dr. Howard Rosenbaum, Director of WCS’s Ocean Giants Program and one of the co-authors of the new paper. “Insights on how different populations interact with one another and the factors that drive the movements of these animals can lead to more effective plans for conservation.”

The humpback whale is one of the world’s best-studied marine mammal species, well known for its boisterous surface behavior and migrations stretching thousands of miles. The animal grows up to 50 feet in length and has been globally protected from commercial whaling since the 1960s. WCS has studied humpback whales since that time and–as the New York Zoological Society–played a key role in the discovery that humpback whales sing songs. The organization continues to study humpback whale populations around the world and right here in the waters of New York; research efforts on humpback and other whales in New York Bight are currently coordinated through the New York Aquarium’s New York Seascape program.

I’m not able to embed the audio file here but, for the curious, there is a portion of a humpback whale song from Gabon here at EurekAlert.

Here’s a link to and a citation for the research paper,

Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins by Melinda L. Rekdahl, Ellen C. Garland, Gabriella A. Carvajal, Carissa D. King, Tim Collins, Yvette Razafindrakoto and Howard Rosenbaum. Royal Society Open Science 21 November 2018 Volume 5 Issue 11 https://doi.org/10.1098/rsos.172305 Published:28 November 2018

This is an open access paper.

May 2019: Canada and science, science, science—events

It seems May 2019 is destined to be a big month where science events in Canada are concerned. I have three national science science promotion programmes, Science Odyssey, Science Rendezvous, and Pint of Science Festival Canada (part of an international effort); two local (Vancouver, Canada) events, an art/sci café from Curiosity Collider and a SciCats science communication workshop; a national/local event at Ingenium’s Canada Science and Technology Museum in Ottawa, and an international social media (Twitter) event called #Museum Week.

Science Odyssey 2019 (formerly Science and Technology Week)

In 2016 the federal Liberal government rebranded a longstanding science promotion/education programme known as Science and Technology Week to Science Odyseey and moved it from the autumn to the spring. (Should you be curious about this change, there’s a video on YouTube with Minister of Science Kirsty Duncan and Parliamentary Secretary for Science Terry Beech launching “Science Odyssey, 10 days of innovation and science discovery.” My May 10, 2016 posting provides more details about the change.)

Moving forward to the present day, the 2019 edition of Science Odyseey will run from May 4 – May 19, 2019 for a whopping16 days. The Science Odyssey website can be found here.

Once you get to the website and choose your language, on the page where you land, you’ll find if you scroll down, there’s an option to choose a location (ignore the map until after you’ve successfully chosen a location and clicked on the filter button (it took me at least twice before achieving success; this seems to be a hit and miss affair).

Once you have applied the filter, the map will change and make more sense but I liked using the text list which appears after the filer has been applied better. Should you click on the map, you will lose the filtered text list and have to start over.

Science Rendezvous 2019

I’m not sure I’d call Science Rendezvous the largest science festival in Canada (it seems to me Beakerhead might have a chance at that title) but it did start in 2008 as its Wikipedia entry mentions (Note: Links have been removed),

Science Rendezvous is the largest [emphasis mine] science festival in Canada; its inaugural event happened across the Greater Toronto Area (GTA) on Saturday, May 10, 2008. By 2011 the event had gone national, with participation from research institutes, universities, science groups and the public from all across Canada – from Vancouver to St. John’s to Inuvik. Science Rendezvous is a registered not-for-profit organization dedicated to making great science accessible to the public. The 2017 event took place on Saturday May 13 at more than 40 simultaneous venues.

This free all-day event aims to highlight and promote great science in Canada. The target audience is the general public, parents, children and youth, with an ultimate aim of improving enrollment and investment in sciences and technology in the future.

Science Rendezvous is being held on May 11, 2019 and its website can be found here.You can find events listed by province here. There are no entries for Alberta, Nunavut, or Prince Edward Island this year.

Science Rendezvous seems to have a relationship to Science Odyssey, my guess is that they are receiving funds. In any case , you may find that an event on the Science Rendezvous site is also on the Science Odyssey site or vice versa, depending on where you start.

Pint of Science Festival (Canada)

The 2019 Pint of Science Festival will be in 25 cities across Canada from May 20 – 22, 2019. Reminiscent of the Café Scientifique events (Vancouver, Canada) where science and beer are closely interlinked, so it is with the Pint of Science Festival, which has its roots in the UK. (Later, I have something about Guelph, Ontario and its ‘beery’ 2019 Pint event.)

Here’s some history about the Canadian inception and its UK progenitor. From he Pint of Science of Festival Canada website, the About Us page,

About Us
Pint of Science is a non-profit organisation that brings some of the most brilliant scientists to your local pub to discuss their latest research and findings with you. You don’t need any prior knowledge, and this is your chance to meet the people responsible for the future of science (and have a pint with them). Our festival runs over a few days in May every year,but we occasionally run events during other months. 
 
A propos de nous 
Pinte de Science est une organisation à but non lucratif qui amène quelques brillants scientifiques dans un bar près de chez vous pour discuter de leurs dernières recherches et découvertes avec le public. Vous n’avez besoin d’aucune connaissance préalable, et c’est l’occasion de rencontrer les responsables de l’avenir de la science (et de prendre une pinte avec eux). Notre festival se déroule sur quelques jours au mois de mai chaque année, mais nous organisons parfois quelques événements exceptionnels en dehors des dates officielles du festival.
 
History 
In 2012 Dr Michael Motskin and Dr Praveen Paul were two research scientists at Imperial College London in the UK. They started and organised an event called ‘Meet the Researchers’. It brought people affected by Parkinson’s, Alzheimer’s, motor neurone disease and multiple sclerosis into their labs to show them the kind of research they do. It was inspirational for both visitors and researchers. They thought if people want to come into labs to meet scientists, why not bring the scientists out to the people? And so Pint of Science was born. In May 2013 they held the first Pint of Science festival in just three UK cities. It quickly took off around the world and is now in nearly 300 cities. Read more here. Pint of Science Canada held its first events in 2016, a full list of locations can be found here.
 
L’Histoire
 En 2012, Dr Michael Motskin et Dr Praveen Paul étaient deux chercheurs à l’Imperial College London, au Royaume-Uni. Ils ont organisé un événement intitulé «Rencontrez les chercheurs» et ont amené les personnes atteintes de la maladie de Parkinson, d’Alzheimer, de neuropathie motrice et de sclérose en plaques dans leurs laboratoires pour leur montrer le type de recherche qu’ils menaient. C’était une source d’inspiration pour les visiteurs et les chercheurs. Ils ont pensé que si les gens voulaient se rendre dans les laboratoires pour rencontrer des scientifiques, pourquoi ne pas les faire venir dans des bars? Et ainsi est née une Pinte de Science. En mai 2013, ils ont organisé le premier festival Pinte de Science dans trois villes britanniques. Le festival a rapidement décollé dans le monde entier et se trouve maintenant dans près de 300 villes. Lire la suite ici . Pinte de Science Canada a organisé ses premiers événements en 2016. Vous trouverez une liste complète des lieux ici.

Tickets and programme are available as of today, May 1, 2019. Just go here: https://pintofscience.ca/locations/

I clicked on ‘Vancouver’ and found a range of bars, dates, and topics. It’s worth checking out every topic because the title doesn’t necessarily get the whole story across. Kudos to the team putting this together. Where these things are concderned, I don’t get surprised often. Here’s how it happened, I was expecting another space travel story when I saw this title: ‘Above and beyond: planetary science’. After clicking on the arrow,

Geology isn’t just about the Earth beneath our feet. Join us for an evening out of this world to discover what we know about the lumps of rock above our heads too!

Thank you for the geology surprise. As for the international part of this festival, you can find at least one bar in Europe, Asia and Australasia, the Americas, and Africa.

Beer and Guelph (Ontario)

I also have to tip my hat to Science Borealis (Canada’s science blog aggregator) for the tweet which led me to Pint of Science Guelph and a very special beer/science ffestival announcement,


Pint of Science Guelph will be held over three nights (May 20, 21, and 22) at six different venues, and will feature twelve different speakers. Each venue will host two speakers with talks ranging from bridging the digital divide to food fraud to the science of bubbles and beer. There will also be trivia and lots of opportunity to chat with the various researchers to learn more about what they do, and why they do it.

But wait! There’s more! Pint of Science Guelph is (as far as I’m aware) the first Pint of Science (2019) in Canada to have its own beer. Thanks to the awesome folks at Wellington Brewery, a small team of Pint of Science Guelph volunteers and speakers spent last Friday at the brewery learning about the brewing process by making a Brut IPA. This tasty beverage will be available as part of the Pint of Science celebration. Just order it by name – Brain Storm IPA.

Curiosity Collider (Vancouver, Canada)

The (Curiosity) Collider Café being held on May 8, 2019 is affiliated with Science Odyssey. From the Collider Café event webpage,

Credit: Michael Markowsky

Details,

Collider Cafe: Art. Science. Journeys.

Date/Time
Date(s) – 08/05/2019
8:00 pm – 9:30 pm
Location
Pizzeria Barbarella [links to address information]
654 E Broadway , Vancouver, BC

#ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science. Meet. Discover. Connect. Create. Are you curious?

Join us at “Collider Cafe: Art. Science. Journeys.” to explore how art and science intersect in the exploration of curiosity

//New location! Special thanks to Pizzeria Barbarella for hosting this upcoming Collider Cafe!//
 
* Michael Markowsky (visual art): The Dawn of the Artist-Astronaut
* Jacqueline Firkins (costume design): Fashioning Cancer: The Correlation between Destruction and Beauty
* Garvin Chinnia (visual art): Triops Journey
* Bob Pritchard (music technology): A Moving Experience: Gesture Tracking for Performance
 
The event starts promptly at 8pm (doors open at 7:30pm). $5.00-10.00 (sliding scale) cover at the door. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.

Visit our Facebook page to let us know you are coming, and see event updates and speaker profiles.

You can find a map and menu information for Pizzeria Barbarella here. If memory serves, the pizzeria was named after the owner’s mother. I can’t recall if Barbarella was a nickname or a proper name.

I thought I recognized Jacqueline Firkins’ name and it turns out that I profiled her work on cancer fashion in a March 21, 2014 posting.

SciCats and a science communication workshop (in Vancouver)

I found the workshop announcement in a May 1, 2019 Curiosity Collider newsletter received via email,


May 5 [2019] Join the Fundamentals of Science Communication Workshop by SciCATs, and network with other scicomm enthusiasts. Free for grad students!

I found more information about the workshop on the SciCATs’ Fundamentals of Science Communication registration page (I’ve highlighted the portions that tell you the time commitement, the audience, and the contents),

SciCATs (Science Communication Action Team, uh, something) is a collective of science communicators (and cat fans) providing free, open source, online, skills-based science communication training, resources, and in-person workshops.

We believe that anyone, anywhere should be able to learn the why and the how of science communication!

For the past two years, SciCATs has been developing online resources and delivering science communication workshops to diverse groups of those interested in science communication. We are now hosting an open, public event to help a broader audience of those passionate about science to mix, mingle, and build their science communication skills – all while having fun.

SciCATs’ Fundamentals of Science Communication is a three-hour interactive workshop [emphasis mine] followed by one hour of networking.

For this event, our experienced SciCATs facilitators will lead the audience through our most-requested science communication modules:
Why communicate science
Finding your message
Telling your science as a story
Understanding your audience
[emphasis mine]

This workshop is ideal for people who are new to science communication [empahsis mine] or those who are more experienced. You might be an undergraduate or graduate student, researcher, technician, or other roles that have an interest in talking to the public about what you do. Perhaps you just want to hang out and meet some local science communicators. This is a great place to do it!

After the workshop we have a reservation at Chaqui Grill (1955 Cornwall), it will be a great opportunity to continue to network with all of the Sci-Cats and science communicators that attend over a beverage! They do have a full dinner menu as well.

Date and Time
Sun, May 5, 2019
2:00 PM – 5:00 PM PDT

Location
H.R. MacMillan Space Centre
1100 Chestnut Street
Vancouver, BC V6J 3J9

Refund Policy
Refunds up to 1 day before event

You can find out more about SciCats and its online resources here.

da Vinci in Canada from May 2 to September 2, 2019

This show is a big deal and it’s about to open in Ottawa in our national Science and Technology Museum (one of the Ingenium museums of science), which makes it national in name and local in practice since most of us will not make it to Ottawa during the show’s run.

Here’s more from the Leonardo da Vinci – 500 Years of Genius exhibition webpage, (Note: A transcript is included)

Canada Science and Technology Museum from May 2 to September 2, 2019.

For the first time in Canada, the Canada Science and Technology Museum presents Leonardo da Vinci – 500 Years of Genius, the most comprehensive exhibition experience on Leonardo da Vinci to tour the world. Created by Grande Exhibitions in collaboration with the Museo Leonardo da Vinci in Rome and a number of experts and historians from Italy and France, this interactive experience commemorates 500 years of Leonardo’s legacy, immersing visitors in his extraordinary life like never before.

Transcript

Demonstrating the full scope of Leonardo da Vinci’s achievements, Leonardo da Vinci – 500 Years of Genius celebrates one of the most revered and dynamic intellects of all time. Revolutionary SENSORY4™ technology allows visitors to take a journey into the mind of the ultimate Renaissance man for the very first time.

Discover for yourself the true genius of Leonardo as an inventor, artist, scientist, anatomist, engineer, architect, sculptor and philosopher. See and interact with over 200 unique displays, including machine inventions, life-size reproductions of Leonardo’s Renaissance art, entertaining animations giving insight into his most notable works, and touchscreen versions of his actual codices.

Leonardo da Vinci – 500 Years of Genius also includes the world’s exclusive Secrets of Mona Lisa exhibition – an analysis of the world’s most famous painting, conducted at the Louvre Museum by renowned scientific engineer, examiner and photographer of fine art Pascal Cotte.

Whether you are a history aficionado or discovering Leonardo for the first time, Leonardo da Vinci – 500 Years of Genius is an entertaining, educational and enlightening experience the whole family will love.

For a change I’ve placed the video after its transcript,

The April 30, 2019 Ingenium announcement (received via email) hints at something a little more exciting than walking around and looking at cases,

Discover the true genius of Leonardo as an inventor, artist, scientist, anatomist, engineer, architect, sculptor, and philosopher. See and interact with more than 200 unique displays, including machine inventions, life-size reproductions of Leonardo’s Renaissance art, touchscreen versions of his life’s work, and an immersive, walkthrough cinematic experience. Leonardo da Vinci – 500 Years of Genius [includes information about entry fees] the exclusive Secrets of Mona Lisa exhibition – an analysis of the world’s most famous painting.

I imagine there will be other events associated with this exhbition but for now there’s an opening night event, which is part of the museum’s Curiosity on Stage series (ticket purchase here),

Curiosity on Stage: Evening Edition – Leonardo da Vinci: 500 Years of Genius

Join the Italian Embassy and the Canada Science and Technology Museum for an evening of discussion and discovery on the quintessential Renaissance man, Leonardo da Vinci.
Invited speakers from the Galileo Museum in Italy, Carleton University, and the University of Ottawa will explore the historical importance of da Vinci’s diverse body of work, as well as the lasting impact of his legacy on science, technology, and art in our age.

Be among the first to visit the all-new exhibition “Leonardo da Vinci – 500 Years of Genius”! Your Curiosity on Stage ticket will grant you access to the exhibit in its entirety, which includes life-size reproductions of Leonardo’s art, touchscreen versions of his codices, and so much more!

Speakers:
Andrea Bernardoni (Galileo Museum) – Senior Researcher
Angelo Mingarelli (Carleton University) – Mathematician
Hanan Anis (University of Ottawa) – Professor in Electrical and Computer Engineering
Lisa Leblanc (Canada Science and Technology Museum) – Director General; Panel Moderator

Read about their careers here.

Join the conversation and share your thoughts using the hashtag #CuriosityOnStage.

Agenda:
5:00 – 6:30 pm: Explore the “Leonardo da Vinci: 500 Years of Genius” exhibit. Light refreshments and networking opportunities.
6:30 – 8:30 pm: Presentations and Panel discussion
Cost:
Members: $7
Students: $7 with discount code “SALAI” (valid student ID required on night of event)
Non-members: $10
*Parking fees are included with admission.

Tickets are not yet sold out.

#Museum Week 2019

#Museum Week (website) is being billed as “The first worldwide cultural event on social networks. The latest edition is being held from May 13 – 19, 2019. As far as I’m aware, it’s held on Twitter exclusively. You can check out the hash tag feed (#Museum Week) as it’s getting quite active even now.

They don’t have a list of participants for this year which leaves me feeling a little sad. It’s kind of fun to check out how many and which institutions in your country are planning to participate. I would have liked to have seen whether or not the Canada Science and Technology Museum and Science World Vancouver will be there. (I think both participated last year.) Given how busy the hash tag feed becomes during the event, I’m not likely to see them on it even if they’re tweeting madly.

May 2019 looks to be a very busy month for Canadian science enthusiasts! No matter where you are there is something for you.

Quantum Rhapsodies

“Quantum Rhapsodies” combines a narrative script, video images and live music by the Jupiter String Quartet to explore the world of quantum physics. The performance will premiere April 10 [2019] at the Beckman Institute for Advanced Science and Technology. Courtesy Beckman Institute for Advanced Science and Technology

Here’s more about Quantum Rhapsodies, a free public art/science music performance at the University of Illinois on April 10, 2019, from an April 5, 2019 University of Illinois news release (also here) by Jodi Heckel,

A new performance that explores the world of quantum physics will feature the music of the Jupiter String Quartet, a fire juggler and a fantastical “Alice in Quantumland” scene.

“Quantum Rhapsodies,” the vision of physics professor Smitha Vishveshwara, looks at the foundational developments in quantum physics, the role it plays in our world and in technology such as the MRI, and the quantum mysteries that remain unanswered.

“The quantum world is a world that inspires awe, but it’s also who we are and what we are made of,” said Vishveshwara, who wrote the piece and guided the visuals.

The performance will premiere April 10 [2019] as part of the 30th anniversary celebration of the Beckman Institute for Advanced Science and Technology. The event begins with a 5 p.m. reception, followed by the performance at 6 p.m. and a meet-and-greet with the show’s creators at 7 p.m. The performance will be in the atrium of the Beckman Institute, 405 N. Mathews Ave., Urbana, [emphases mine] and it is free and open to the public. While the available seating is filling up, the atrium space will allow for an immersive experience in spite of potentially restricted viewing.

The production is a sister piece to “Quantum Voyages,” a performance created in 2018 by Vishveshwara and theatre professor Latrelle Bright to illustrate the basic concepts of quantum physics. It was performed at a quantum physics conference celebrating Nobel Prize-winning physicist Anthony Leggett’s 80th birthday in 2018.

While “Quantum Voyages” was a live theater piece, “Quantum Rhapsodies” combines narration by Bright, video images and live music from the Jupiter String Quartet. It ponders the wonder of the cosmos, the nature of light and matter, and the revolutionary ideas of quantum physics. A central part of the narrative involves the theory of Nobel Prize-winning French physicist Louis de Broglie that matter, like light, can behave as a wave.

The visuals – a blend of still images, video and animation – were created by a team consisting of the Beckman Visualization Laboratory; Steven Drake, a video producer at Beckman; filmmaker Nic Morse of Protagonist Pizza Productions; and members of a class Vishveshwara teaches, Where the Arts Meet Physics.

The biggest challenge in illustrating the ideas in the script was conveying the scope of the piece, from the galactic scale of the cosmos to the subatomic scale of the quantum world, Drake said. The concepts of quantum physics “are not something you can see. It’s theoretical or so small you can’t put it under a microscope or go out into the real world and film it,” he said.

Much of the work involved finding images, both scientific and artistic, that would help illustrate the concepts of the piece and complement the poetic language that Vishveshwara used, as well as the music.

Students and teaching assistant Danielle Markovich from Vishveshwara’s class contributed scientific images and original paintings. Drake used satellite images from the Hubble Space Telescope and other satellites, as well as animation created by the National Center for Supercomputing Applications in its work with NASA, for portions of the script talking about the cosmos. The Visualization Laboratory provided novel scientific visualizations.

“What we’re good at doing and have done for years is taking research content and theories and visualizing that information. We do that for a very wide variety of research and data. We’re good at coming up with images that represent these invisible worlds, like quantum physics,” said Travis Ross, the director of the lab.

Some ideas required conceptual images, such as footage by Morse of a fire juggler at Allerton Park to represent light and of hands moving to depict the rotational behavior of water-based hydrogen within a person in an MRI machine.

Motion was incorporated into a painting of a lake to show water rippling and light flickering across it to illustrate light waves. In the “Alice in Quantumland” sequence, a Mad Hatter’s tea party filmed at the Illini Union was blended with cartoonlike animated elements into the fantasy sequence by Jose Vazquez, an illustrator and concept artist who works in the Visualization Lab.

“Our main objective is making sure we’re representing it in a believable way that’s also fun and engaging,” Ross said. “We’ve never done anything quite like this. It’s pretty unique.”

In addition to performing the score, members of the Jupiter String Quartet were the musical directors, creating the musical narrative to mesh with the script. The music includes contemplative compositions by Beethoven to evoke the cosmos and playful modern compositions that summon images of the movements of particles and waves.

“I was working with such talented people and creative minds, and we had fun and came up with these seemingly absurd ideas. But then again, it’s like that with the quantum world as well,” Vishveshwara said.

“My hope is not necessarily for people to understand everything, but to infuse curiosity and to feel the grandness and the beauty that is part of who we are and the cosmos that we live in,” she said..

Here’s a preview of this free public performance,

How to look at SciArt (also known as, art/science depending on your religion)

There’s an intriguing April 8, 2019 post on the Science Borealis blog by Katrina Vera Wong and Raymond Nakamura titled: How to look at (and appreciate) SciArt,

….

The recent #SciArt #TwitterStorm, in which participants tweeted their own sciart and retweeted that of others, illustrated the diversity of approaches to melding art and science. With all this work out there, what can we do, as advocates of art and science, to better appreciate sciart? We’d like to foster interest in, and engagement with, sciart so that its value goes beyond how much it costs or how many likes it gets.

An article by Kit Messham-Muir based on the work of art historian Erwin Panofsky outlines a three-step strategy for looking at art: Look. See. Think. Looking is observing what the elements are. Seeing draws meaning from it. Thinking links personal experience and accessible information to the piece at hand.

Looking and seeing is also part of the Visual Thinking Strategies (VTS) method originally developed for looking at art and subsequently applied to science and other subjects as a social, object-oriented learning process. It begins by asking, “What is going on here?”, followed by “What do you see that makes you think that?” This allows learners of different backgrounds to participate and encourages the pursuit of evidence to back up opinions.

Let’s see how these approaches might work on your own or in conversation. Take, for example, the following work by natural history illustrator Julius Csotonyi:

I hope some of our Vancouver-based (Canada) art critics get a look at some of this material. I read a review a few years ago and the critic seemed intimidated by the idea of looking at work that explicitly integrated and reflected on science. Since that time (Note: there aren’t that many art reviewers here), I have not seen another attempt by an art critic.

The Backstreet Boys sing genetics (not really) but their latest album is called “DNA”

Other that the promotional artwork, cover art and the title, the Backstreet Boys pop band does not seem to have taken science or DNA (deoxyribonucleic acid)/genetics to heart in their latest oeuvre. As for what chickens have to do with it, I I gather this is some sort of humorous nod to a past hit song. Still, I am weirdly fascinated by this January 25, 2019 video news item on Billboard,

Having looked at the list of songs on the DNA album (they’re listed in the Billboard news item where they’ve embedded audio samples), I can’t find anything that suggests an interest in genetics but perhaps you can: Don’t Go Breaking My Heart? Nobody Else? Breathe? New Love? Passionate? Is It Just Me? Chances? No Place? Chateau? The Way It Was? Just Like You Like it? OK? Anyone who can figure out how the songs relate to DNA, please let me know in the Comments.

Frankly, that’s as much analysis as I can offer on the topic. Thankfully, Karen James (an independent educator, researcher, and consultant in molecular biology) has written a February 5, 2019 article (I Want DNA That Way; The Backstreet Boys’ new album and tour features a very old-school depiction of DNA) for slate.com where she unpacks the imagery in the promotional material and on the cover (Note: Links have been removed),

The Backstreet Boys are back. Credit: Dennis Leupold [downloaded from https://slate.com/technology/2019/02/backstreet-boys-dna-album-cover-gene-sequencing.html]

The Backstreet Boys released a new album. I never thought I’d start a science article—or any article—with that sentence, but here we are.

We are here because the promotional artwork for the album (above) is a photograph of the boy band (man band?) lit by a projection of DNA bands. The image, and the album’s title, DNA, jumped out of my Twitter timeline because I’m a geneticist, I work with DNA, and I’ve seen countless images just like it in textbooks and research articles. I’ve even made them myself in the lab.

What struck me as funny (both funny-ha-ha and funny-odd) is that the lab methods that could have produced this image are old—older even than the Backstreet Boys’ first album. One of the methods—called Sanger sequencing—was published in 1977, making it even older than two of the Backstreet Boys themselves, scientist Kristy Lamb pointed out. Genetics is a particularly fast-moving science. New technologies are constantly emerging and eclipsing prior ones. Yet this 40-year-old imagery persists, and not just in the promotional artwork for DNA. Just do a Google image search for “DNA sequencing” and you’ll see plenty of images like this mixed in with the double helices and long GATTACA readouts.

After her description of Sanger sequencing James offers another ‘sequencing’ possibility, almost as old as the Sanger technique,

Careful readers might have noticed that I suggested there was more than one method that produces images like this. At first glance, I thought the projection in the Backstreet Boys’ publicity photo was modified from an image made with Sanger sequencing. But when I looked again in preparation for writing this article, I had second thoughts. Why aren’t the lanes clustered in groups of four? Why are some of the bands in adjacent lanes the same size? (They shouldn’t be if you’re doing Sanger sequencing.) It could be that the photo was heavily modified with individual lanes copied and pasted. Indeed, some of the lanes are even identical to each other (*suppresses fake ivory tower scoff*).

Or it could be that this image was made with another old method: DNA fingerprinting. Made famous in so many crime TV shows, DNA fingerprinting was invented in 1984 by Alec Jeffreys, who, though he did not win a Nobel Prize, was made a knight of the British Empire for his contribution to science, among many other prestigious awards, which is nice.

I suspect the Backstreet Boys weren’t going for a tongue-in-cheek reference to their own advancing age. While today’s DNA sequencing methods produce images that scarcely resemble those produced by Sanger sequencing and DNA fingerprinting, the old-school imagery is still everywhere. The Backstreet Boys’ promotional team probably just went with a stock image that looked compelling and worked well as a projection.

James returns to her theme, why use imagery associated with outdated techniques? (Note: Links have been removed),

But that doesn’t answer the real question: Why is 40-year-old imagery still so ubiquitous? As science writer and editor Stephanie Keep tweeted, one reason may be that, despite its age, the Sanger method is still taught in high school classrooms: “It’s so visual and intuitive.” It’s true. When I teach students about DNA sequencing, I always start with Sanger sequencing and use that as the basis for explaining newer technologies, adding more complexity as I go, following the historical timeline.

Another reason the old imagery is still in use may be that the images produced by newer, so-called next-generation sequencing methods aren’t visually scored by a scientist sitting at a lab bench, but by computers. As such, the images themselves often go unseen by human eyes [emphasis mine], despite their colorful beauty.

Interesting, eh? The latest imagery is not seen by human eyes. So the newest imagery is intended for machines. James presents an example of the ‘new’ imagery,

An image generated using a next-generation DNA sequencing method.. Credit: Illumina [downloaded from https://slate.com/technology/2019/02/backstreet-boys-dna-album-cover-gene-sequencing.html]

According to James, this image was not easily obtained according to one of her tweets. [https://twitter.com/kejames/status/1092888034322845696] So, big thanks to Illumina (there’s also a Wikipedia entry about the company). Getting back to James’ and her article, she asks why the band titled their latest album, DNA,

But why did the Backstreet Boys call their album DNA in the first place? The official RCA Records press release announcing the album says, “BSB analyzed their individual DNA profiles to see what crucial element each member represents in the groups DNA.” It links to a YouTube video that supposedly explains “how their individual strains, when brought together, create the unstoppable and legendary Backstreet Boys.”

The video is a futuristic, spy movie–esque montage, complete with a computerized female voice describing the various characteristics of each Backstreet Boy. Reader, I confess: I cringed. There were so many tropes and misconceptions about DNA packed into the 83-second video, I would have to write a follow-up to this just to explore them. The cringeworthiness doesn’t end there, though. The cover of DNA has each Backstreet Boy on his own spiral staircase.

The staircases are surely meant to evoke the structure of DNA: the famous double helix. But there’s a problem, as the social media account for the journal Genome Biology tweeted: The staircases are spiraling in the wrong direction. DNA is usually right-handed. If you stick out your right thumb, your fingers will naturally curl in a right-handed spiral as you move your hand in the direction your thumb is pointing. The Backstreet Boys’ staircases are left-handed.

Here’s the promotional trailer for DNA,

It’s everything James says it is. As for those wrongly spiraling DNA staircases,

RCA Records [downloaded from https://slate.com/technology/2019/02/backstreet-boys-dna-album-cover-gene-sequencing.html]

Thank you to Karen James for this illuminating article. If you have time, I encourage you to read her piece in its entirety:
I Want DNA That Way; The Backstreet Boys’ new album and tour features a very old-school depiction of DNA.

As for why the Backstreet Boys called their album DNA and you likely guessed. it would seem to be a promotional gimmick meant to leverage the perceived interest in commercial DNA testing by companies such as 23andMe and Ancestry, amongst others.