Scientists at Indian Institute of Science (IISc) created hybrid nanoparticles made of gold and copper sulfide that can kill cancer cells

It’s been a while since there was a theranostic (diagnosis and therapy combined in one treatment) story here.

Caption: Schematic indicating photo-theranostic potential of TSP-CA Credit: Madhavi Tripathi

A September 11, 2023 news item on phys.org announces the research, Note: A link has been removed,

Scientists at the Indian Institute of Science (IISc) have developed a new approach to potentially detect and kill cancer cells, especially those that form a solid tumor mass. They have created hybrid nanoparticles made of gold and copper sulfide that can kill cancer cells using heat and enable their detection using sound waves, according to a study published in ACS Applied Nano Materials.

A September 11, 2023 Indian Institute of Science (IISC) press release (also on EurekAlert), which originated the news item, provides more detail about the research,

Early detection and treatment are key in the battle against cancer. Copper sulphide nanoparticles have previously received attention for their application in cancer diagnosis, while gold nanoparticles, which can be chemically modified to target cancer cells, have shown anticancer effects. In the current study, the IISc team decided to combine these two into hybrid nanoparticles.  

“These particles have photothermal, oxidative stress, and photoacoustic properties,” says Jaya Prakash, Assistant Professor at the Department of Instrumentation and Applied Physics (IAP), IISc, and one of the corresponding authors of the paper. PhD students Madhavi Tripathi and Swathi Padmanabhan are co-first authors.

When light is shined on these hybrid nanoparticles, they absorb the light and generate heat, which can kill cancer cells. These nanoparticles also produce singlet oxygen atoms that are toxic for the cells. “We want both these mechanisms to kill the cancer cell,” Jaya Prakash explains.  

The researchers say that the nanoparticles can also help diagnose certain cancers. Existing methods such as standalone CT and MRI scans require trained radiology professionals to decipher the images. The photoacoustic property of the nanoparticles allows them to absorb light and generate ultrasound waves, which can be used to detect cancer cells with high contrast once the particles reach them. The ultrasound waves generated from the particles allow for a more accurate image resolution as sound waves scatter less when they pass through tissues compared to light. Scans created from the generated ultrasound waves can also provide better clarity and can be used to measure the oxygen saturation in the tumour, boosting their detection.

“You can integrate this with existing systems of detection or treatment,” says Ashok M Raichur, Professor at the Department of Materials Engineering, and another corresponding author. For example, the nanoparticles can be triggered to produce heat by shining a light on them using an endoscope that is typically used for cancer screening. 

Previously developed nanoparticles have limited applications because of their large size. The IISc team used a novel reduction method to deposit tiny seeds of gold onto the copper sulphide surface. The resulting hybrid nanoparticles – less than 8 nm in size – can potentially travel inside tissues easily and reach tumours. The researchers believe that the nanoparticles’ small size would also allow them to leave the human body naturally without accumulating, although extensive studies have to be carried out to determine if they are safe to use inside the human body.  

In the current study, the researchers have tested their nanoparticles on lung cancer and cervical cancer cell lines in the lab. They now plan to take the results forward for clinical development.  

Here’s a link to and a citation for the paper,

Seed-Mediated Galvanic Synthesis of CuS–Au Nanohybrids for Photo-Theranostic Applications by Madhavi Tripathi, Swathi Padmanabhan, Jaya Prakash, and Ashok M. Raichur. ACS Appl. Nano Mater. 2023, 6, 16, 14861–14875 DOI: https://doi.org/10.1021/acsanm.3c02405 Publication Date:August 10, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

Leave a Reply

Your email address will not be published. Required fields are marked *