Category Archives: science

A smart shirt at the Canadian Space Agency

Caption: Canadian Space Agency astronaut David Saint-Jacques tries the Bio-Monitor, a new Canadian technology, for the first time in space (January 16, 2019). The innovative smart shirt system is designed to measure and record astronauts’ vital signs. Credit: Canadian Space Agency/NASA

Here’s a biosensor announcement from an April 27, 2021 Experimental Biology (annual meeting) news release on EurekAlert,

A technology-packed tank top offers a simple, effective way to track astronauts’ vital signs and physiological changes during spaceflight, according to research being presented at the American Physiological Society annual meeting during the Experimental Biology (EB) 2021 meeting, held virtually April 27-30.

By monitoring key health markers over long periods of time with one non-intrusive device, researchers say the garment can help improve understanding of how spaceflight affects the body.

“Until now, the heart rate and activity levels of astronauts were monitored by separate devices,” said Carmelo Mastrandrea, PhD, a postdoctoral fellow at the Schlegel-University of Waterloo Research Institute for Aging in Canada, and the study’s first author. “The Bio-Monitor shirt allows simultaneous and continuous direct measurements of heart rate, breathing rate, oxygen saturation in the blood, physical activity and skin temperature, and provides a continuous estimate of arterial systolic blood pressure.”

The Bio-Monitor shirt was developed for the Canadian Space Agency by Carré Technologies based on its commercially available Hexoskin garment. In a study funded by the Canadian Space Agency, a team of researchers from the Schlegel-University of Waterloo Research Institute for Aging oversaw the first test of the shirt in space for a scientific purpose. Astronauts wore the shirt continually for 72 hours before their spaceflight and 72 hours during spaceflight, except for periods of water immersion or when the device conflicted with another activity.

The shirt’s sensors and accelerometer performed well, providing consistent results and a large amount of usable data. Based on these initial results, researchers say the shirt represents an improvement over conventional methods for monitoring astronauts’ health, which require more hands-on attention.

“By monitoring continuously and non-intrusively, we remove the psychological impacts of defined testing periods from astronaut measurements,” said Mastrandrea. “Additionally, we are able to gather information during normal activities over several days, including during daily activities and sleep, something that traditional testing cannot achieve.”

In flight, the astronauts recorded far less physical activity than the two and a half hours per day recorded in the monitoring period before takeoff, a finding that aligns with previous studies showing large reductions in physical activity during spaceflight. In addition to monitoring astronauts’ health and physical activity in space, Mastrandrea noted that the shirt could provide early warning of any health problems that occur as their bodies re-adapt to gravity back on Earth.

The commercial version of the Bio-Monitor shirt is available to the public, where it can be used for various applications including assessing athletic performance and monitoring the health of people with limited mobility. In addition to spaceflight, researchers are examining its potential use in other occupational settings that involve extreme environments, such as firefighting.

Mastrandrea will present this research in poster R2888 (abstract). Contact the media team for more information or to obtain a free press pass to access the virtual meeting.

###

About Experimental Biology 2021

Experimental Biology is an annual meeting comprised of thousands of scientists from five host societies and multiple guest societies. With a mission to share the newest scientific concepts and research findings shaping clinical advances, the meeting offers an unparalleled opportunity for exchange among scientists from across the U.S. and the world who represent dozens of scientific areas, from laboratory to translational to clinical research. http://www.experimentalbiology.org #expbio

About the American Physiological Society (APS)

Physiology is a broad area of scientific inquiry that focuses on how molecules, cells, tissues and organs function in health and disease. The American Physiological Society connects a global, multidisciplinary community of more than 10,000 biomedical scientists and educators as part of its mission to advance scientific discovery, understand life and improve health. The Society drives collaboration and spotlights scientific discoveries through its 16 scholarly journals and programming that support researchers and educators in their work. http://www.physiology.org

Mastrandrea’s abstract offers details explaining what makes this particular biosensor a new technology (from the ‘(R2888) Tracking astronaut physical activity and cardiorespiratory responses with the Bio-Monitor sensor shirt‘ abstract at the Experimental Biology (EB) 2021 meeting,

Carmelo Mastrandrea (Schlegel-UW Research Institute for Aging)| Danielle Greaves (Schlegel-UW Research Institute for Aging)| Richard Hughson (Schlegel-UW Research Institute for Aging)

Astronauts develop insulin resistance, and are at risk for cardiovascular deconditioning, during long-duration missions to the International Space Station (ISS) despite their daily exercise sessions (Hughson et al. Am J Physiol Heart Circ Physiol 310: H628–H638, 2016). Chronic unloading of the musculoskeletal and cardiovascular systems in microgravity dramatically reduces the challenge of daily activities, and the astronauts’ schedules limit them to approximately 30-min/day aerobic exercise. To understand the physical demands of spaceflight and how these change from daily life on Earth, the Vascular Aging experiment is equipping astronauts for 48-72h continuous recordings with the Canadian Space Agency’s Bio-Monitor wearable sensor shirt. The Bio-Monitor (Bio-M), developed from the commercial Hexoskin® device, consists of 3-lead ECG, thoracic and abdominal respiratory bands, 3-axis accelerometer, skin temperature and SpO2 sensor placed on the forehead. Our utilisation of this equipment necessitated the development of novel processing and visualisation techniques, to better interpret and guide subsequent data analyses [emphasis mine]. Here we present initial data from astronauts wearing the BioM prior to launch and aboard the ISS, demonstrating the ability to extract useful data from BioM, using software developed ‘in-house’.

Astronauts wore the Bio-M continually for 72-h except for periods of water immersion or when the device conflicted with another activity. After physical exercise, astronauts changed to a dry shirt. First, we assessed the key data-quality metrics to provide initial appraisals of acceptable recordings. Mean total recording length pre-flight (60.5 hours) was similar to that in-flight (66.5 hours), with a consistent distribution of recorded day (44% vs 45%, 6am-6pm) and night (56% vs 55%, 6pm-6am) hours (pre-flight vs in-flight respectively).

For each recording, quality assessment of ECG signals was performed for individual leads, before combining signals and cross-correlating R-waves to produce reliable heart-rate timings. Mean ECG quality for individual leads, represented here as the percentage of usable signal to total recording duration, was somewhat lower in-flight (92%) when compared to pre-flight (96%), likely caused by poor skin contact or dry shirt electrodes; combining lead signals as mentioned above improved the proportion of usable data to 97% and 98% respectively. Accelerometer recordings identified a significant reduction in high-force movements over the 72-hour recordings, with just over 2.5 hours/day of high-force activity in astronauts pre-flight vs 50 minutes/day in-flight. It should be noted however that accelerometer measurements in zero-gravity are likely to be reduced, and future refinement of activity data continues. Average heart rates in-flight showed little difference when compared to pre-flight, although future analyses will compare periods of sleep, rest, and activity to further refine this comparison.

We conclude that utilisation of the BioM hardware with our own analysis techniques produces high-quality data allowing for future interpretation and investigation of spaceflight-induced physiological adaptations.

As for Hexoskin (Carré Technologies inc.), I found out more on the About Us webpage of the Hexoskin website (Note: Links have been removed),

Hexoskin (Carré Technologies inc.)

Founded in 2006 in Montreal [Canada], Hexoskin is a growing private company, leader in non-invasive sensors, software, data science & AI services. The company headquartered in the bustling Rosemont neighborhood, provides solutions and services directly to customers & researchers; and through B2B contracts in pharmaceutical, academics, healthcare, security, defense, first responders, aerospace public & private organizations.

Hexoskin’s mission has always been to make the precise health data collected by its body-worn sensors accessible and useful for everyone. When the cofounders Pierre-Alexandre Fournier and Jean-François Roy started the company back in 2006, the existing technologies to report rich health data continuously didn’t exist. Hexoskin took a different approach to non-portable and invasive monitoring solutions by releasing in 2013 the first washable Smart Shirts that captures cardiac, respiratory, and activity body metrics. Today Hexoskin’s main R&D focus is the development of innovative body-worn sensors for health, mobile, and distributed software for health data management and analysis.

Since then, Hexoskin has designed the Hexoskin Connected Health Platform, a system to minimize user setup time and to maximize vital signs monitoring over long periods in a non-obstructive way with sensors embedded in a Smart Shirt. Data are synced to local and remote servers for health data management and analysis.
The Hexoskin Smart Garments are clinically validated and are developed involving patients & clients to be comfortable and easy to use.

The system is the next evolution to improve the standard of care in the following therapeutic areas: respiratory, cardiology, mental health, behavioral and physiological psychology, somnology, aging and physical performance, physical conditioning & wellbeing etc.

Next Generation Biometric Smart Shirts

Hexoskin supported the evolution of its 100% washable industry-leading Hexoskin Smart Garments to offer an easy and comfortable solution for continuously monitoring precise data during daily activities and sleep. Hexoskin is a machine washable Smart garment, designed and made in Canada that allows precise long-term monitoring of respiratory, cardiac and activity functions simultaneously, as well as sleep quality. 

Users are provided access the Hexoskin Connected Health Platform, an end-to-end system that supplies the tools to report and analyze precise data from the Hexoskin & third-party body-worn sensors. The platform offers apps for iOS, Android, and Watch OS devices. Users can access from anywhere an online dashboard with advanced reporting and analytics functionalities. Today, the Hexoskin Connected Platform is used worldwide and supported thousands of users and organizations to achieve their goals.

In 2019, Hexoskin launched the new Hexoskin ProShirt line for Men and Women with an all-new design to withstand the most active lifestyle and diverse daily living activities. The Hexoskin ProShirtcomes with built-in textile ECG & Respiratory sensors and a precise Activity sensor. The ProShirt works with the latest Hexoskin Smart recording device to offer uninterrupted continuous 24-hour monitoring. 

Today, the Hexoskin ProShirt are used by professional athletes for performance training, police & first responders for longitudinal stress monitoring, and patients in clinical trials living with chronic cardiac & respiratory conditions. 

Connected Health & Software Solutions

Hexoskin provides interoperable software solutions, secure and private infrastructure and data science services to support research and professional organizations. The system is designed to reduce the frequency of travel and allow remote communication between patients, study volunteers, caregivers, and researchers. Hexoskin is an efficient and precise solution that collects daily quantitative data from users, in their everyday lives, and over long periods of time. 

Conscious of the need for its users to understand how the data is collected and interpreted, Hexoskin early took a transparent approach by opening and documenting its Application Programing Interface (API). Today, part of Hexoskin’s success can be attributed to its community of developers and scientists that are leveraging its Connected Health Platform to create new applications and interventions not possible just a few years ago. 

Future Applications—remote health to space exploration

Since 2011, Hexoskin collaborated with the Canadian Space Agency on the Astroskin, a cutting edge Space Grade Smart Garment, now used in the International Space Station to monitor the astronauts’ health in Space. The Astroskin Vital Signs Monitoring Platform is also available to conduct research on earth.

Hexoskin hopes to bring the innovations developed for Space and its Hexoskin Connected Health Platform to support the growing need to provide patients’ access to affordable and adapted healthcare services remotely. Future applications include healthcare, chronic disease management, sleep medicine, aging at home, security & defense, and space exploration missions.

Hexoskin shirts, as noted earlier, are available commercially while inquiries about Astroskin shirts are welcomed (Note: Links have been removed),

Thinking that Astroskin will be perfect for your next study or project? Contact us  to discuss how Astroskin can support your next project. You can also request a demo of the Astroskin Vital Signs Monitoring Platform here.

Finally, I noticed that the researchers on this project were from the Schlegel-UW [University of Waterloo] Research Institute for Aging. I gather this was all about aging.

2021 Visualizing Science contest

The Canadian Science Publishing contest: Visualizing SCIENCE 2021 edition opened on July 20, 2021 with a deadline of August 17, 2021 at 23:59 (ET).

Fame, glory, and a couple of bucks could be yours should your image find favour with the judges.

Here’s more about the contest from the Visualizing SCIENCE webpage,

An image can capture a moment, communicate a message, and evoke emotion. From selfies and sketches to micrographs and modelling outputs, the Visualizing SCIENCE contest celebrates all images that visualize all facets of scientific research.

Whether you’re at the lab, in the field, or online at home, it’s time to start creating images for your chance to win cash prizes.

….

Grand Prize of $400 CAD
People’s Choice prize of $250 CAD
From the Lab category prize of $200 CAD
From the Machine category prize of $200 CAD
From the Field category prize of $200 CAD

I have more details from the Contest Rules (PDF),

In 2016, Canadian Science Publishing organized the Visualizing SCIENCE image contest. The contest seeks images that visualize scientific research. The contest is open to all members of the international research community.

Contest Participants can submit a maximum of five (5) images to each of the three (3) categories.

FROM THE LAB

This category includes all images taken within the lab including micrographs and photographs.

FROM THE MACHINE

This category includes all images created in silico (i.e., by computer) including data visualization, modelling, digital art, and infographic representations.

FROM THE FIELD

This category includes all images taken of and during field work including field sketches and photographs.

Please check out the Contest Rules (PDF) for more details such as Image requirements and Submission requirements.

You’ll find the submission form on the Visualizing SCIENCE webpage.

Finally, you might find interviews (written by Sydney Currier for Canadian Science Publishing) with some of this year’s contest judges helpful,

Good luck!

I am a book. I am a portal to …

Interactive data visualization for children who want to learn about the universe in the form of a book was published by Penguin Books as “I am a book. I am a portal to the universe.” was first published in 2020. As of April 2021, it has crossed the Atlantic Ocean occasioning an April 16, 2021 article by Mark Wilson for Fast Company (Note: Links have been removed),

… A collaboration between data-centric designer Stefanie Posavec and data journalist Miriam Quick, …

“The pared-back aesthetic is due to the book’s core concept. The whole book, even the endnotes and acknowledgements, is written in the first person, in the book’s own voice. [emphasis mine] It developed its own rather theatrical character as we worked on it,” says Posavec. “The book speaks directly to the reader using whatever materials it has at its disposal to communicate the wonders of our universe. In the purest sense, that means the book’s paper and binding, its typeface and its CMYK [cyan, magenta, yellow, black] ink, or, as the book would call them, its ‘superpowers.’” [emphases mine]

It’s hard to explain without actually experiencing it. Which is exactly why it’s so much fun. For instance, at one moment, the book asks you to put it on your head [emphasis mine] and take it off. That difference in weight you feel? That’s how much lighter you are on the top of a mountain than at sea level, the book explains, because of the difference in gravity at different altitudes. …

I recommend reading Wilson’s April 16, 2021 article in its entirety if you have the time as it is peppered with images, GIFs, and illustrative stories.

The “I am a book. I am a portal to the universe.” website offers more details,

“Typography and design combine thrillingly to form something that is

eye-opening in

every sense”

— Financial Times

Hello. I am a book.
But I’m also a portal to the universe.

I have 112 pages, measuring 20cm high and wide. I weigh 450g. And I have the power to show you the wonders of the world.

I’m different to any other book around today. I am not a book of infographics. I’m an informative, interactive experience, in which the data can be touched, felt and understood, with every measurement represented on a 1:1 scale. How long is an anteater’s tongue? How tiny is the DNA in your cells? How fast is gold mined? How loud is the sun? And how many stars have been born and exploded in the time you’ve taken to read this sentence?

… 

There is a September 2020 Conversations with Data podcast: Episode 13 (hosted by Tara Kelly on Spotify) featuring Stefanie Posavec (data-centric designer) and Miriam Quick (data journalist) discussing their book.

You can find Miriam Quick’s website here and Stefanie Posavec’s website here.

Superstar engineers and fantastic fiction writers podcast series

The ‘Inventive Podcast’ features the superstar engineers and fantastic fiction writers of the headline. The University of Salford (UK) launched the series on Wednesday, June 23, 2021or International Women in Engineering Day. Here’s more about the series from a June 21, 2021 University of Salford press release (Note: I liked the title so much I ‘borrowed’ it),

Superstar engineers and fantastic fiction writers collaborate on the brand-new Inventive Podcast

The University of Salford has announced the launch of the brand-new Inventive Podcast featuring the incredible stories of engineers whose innovative work is transforming the world we live in.

Professor Trevor Cox, Inventive Host and an Acoustical Engineer from the University of Salford said: “Engineering is so central to our lives, and yet as a subject it’s strangely hidden in plain sight. I came up with idea of Inventive to explore new ways of telling the story of engineering by mixing fact and fiction.”  He went on to comment, “Given the vast number of podcasts out there, it’s surprising how few shows focus on engineering (beyond tech).”

The project is funded by the Engineering and Physical Sciences [Research] Council (EPSRC) and brings together two Schools at the University: Science, Engineering and Environment & Arts, Media and Creative Technology.  The series will debut on Wednesday 23 June [2021], International Women in Engineering Day, with a further with 6 new episodes dropping across the summer.

Over the course of the eleven-episode series, Professor Cox meets incredible Inventive engineers. In the first episode he interviews: electronics engineer, Shrouk el Attar, a refugee and campaigner for LGBT rights, recently awarded the Women’s Engineering Society (WES) Prize for her work in femtech, smart tech that improves the lives of cis women and trans men, at the Institution of Engineering and Technology Young Woman Engineer of the Year Awards 2021; structural engineer Roma Agrawal designed the foundation and spire of London’s The Shard; and chemical engineer Askwar Hilonga who didn’t have access to clean water growing up in his village in Tanzania, but has gone on to win the Africa Prize for Engineering Innovation for his water purification nano filter.

This podcast is not just for engineers and techies! Engineering is typically represented in the media by historical narratives or ‘boy’s toys’ approach – biggest, longest, tallest. We know that has limited appeal, so we set ourselves a challenge to reach a wider audience. Engineering needs to tell better stories with people at the centre. So, we’ve interwoven factual interviews with stories commissioned from fantastic writers: C M Taylor’s piece The Night Builder, is inspired by structural engineer Roma Agrawal and includes a Banksy-like figure who works with concrete. Science Fiction writer Emma Newman’s Healing the Fractured is inspired by engineer Greg Bowie who makes trauma plates to treat broke bones and is set in a dystopian future, reminiscent of Handmaid’s Tale, with the engineer as an unexpected hero.

For more information and to sign-up for the latest episodes go to: www.inventivepodcast.com

I listened to Trevor Cox’s interview for the first and, so far, only Inventive episode, with engineer, Shrouk El-Attar, which includes award-winning writer and poet, Tania Hershman, performing her piece ‘Human Being As Circuit Board, Human Being as Dictionary‘ combining fiction, poetry and non-fiction based on El-Attar’s story. (Check out Shrouk El-Attar’s eponymous website here.)

I recognized one of the upcoming interview subjects, Askwar Hilonga, as his work with water filters in Tanzania has been featured here twice, notably in this June 16, 2015 posting.

Finally Tania Hershman (Twitter: @taniahershman) has an eponymous website here. (Note: In September 2021 she will be leading a 4-week online Science-Flavoured Writing course for the London Lit Lab. A science background isn’t necessary and, if you’re short on cash, there are some options.)

Future of Being Human: a call for proposals

The Canadian Institute for Advanced Research (CIFAR) is investigating the ‘Future of Being Human’ and has instituted a global call for proposals but there is one catch, your team has to have one person (with or without citizenship) who’s living and working in Canada. (Note: I am available.)

Here’s more about the call (from the CIFAR Global Call for Ideas: The Future of Being Human webpage),

New program proposals should explore the long term intersection of humans, science and technology, social and cultural systems, and our environment. Our understanding of the world around us, and new insights into individual and societal behaviour, have the potential to provide enormous benefits to humanity and the planet. 

We invite bold proposals from researchers at universities or research institutions that ask new questions about our complex emerging world. We are confronting challenging problems that require a diverse team incorporating multiple disciplines (potentially spanning the humanities, social sciences, arts, physical sciences, and life sciences [emphasis mine]) to engage in a sustained dialogue to develop new insights, and change the conversation on important questions facing science and humanity.

CIFAR is committed to creating a more diverse, equitable, and inclusive environment. We welcome proposals that include individuals from countries and institutions that are not yet represented in our research community.

Here’s a description, albeit, a little repetitive, of what CIFAR is asking researchers to do (from the Program Guide [PDF]),

For CIFAR’s next Global Call for Ideas, we are soliciting proposals related to The Future of Being Human, exploring in the long term the intersection of humans, science and technology, social and cultural systems, and our environment. Our understanding of the natural world around us, and new insights into individual and societal behaviour, have the potential to provide enormous benefits to humanity and the planet. We invite bold proposals that ask new questions about our complex emerging world, where the issues under study are entangled and dynamic. We are confronting challenging problems that necessitate a diverse team incorporating multiple disciplines (potentially spanning the humanities, social sciences, arts, physical sciences, and life sciences) to engage in a sustained dialogue to develop new insights, and change the conversation on important questions facing science and humanity. [p. 2 print; p. 4 PDF]

There is an upcoming information webinar (from the CIFAR Global Call for Ideas: The Future of Being Human webpage),

Monday, June 28, 2021 – 1:00pm – 1:45pm EDT

Webinar Sign-Up

Also from the CIFAR Global Call for Ideas: The Future of Being Human webpage, here are the various deadlines and additional sources of information,

August 17, 2021

Registration deadline

January 26, 2022

LOI [Letter of Intent] deadline

Spring 2022

LOIs invited to Full Proposal

Fall 2022

Full proposals due

March 2023

New program announcement and celebration

Resources

Program Guide [PDF]

Frequently Asked Questions

Good luck!

Events: COVID-19 Collages and colour, Summer Solstice Celebration of Star Knowledge—Africa and Rapanui (Easter Island), and Tools for Catching Clouds (Biennale Architettura 2021)

I have three events, two of them taking place in Canada on June 9, and June 22 2021 respectively and the third takes place in Venice, Italy.

Covid19 Collage Project on June 9, 2021

A June 7, 2019 Art/Sci Salon announcement (received via email) included this image to illustrate Ilene Sova’s COVID collages,

Pink Ruffle Credit: Ilene Sova

Here’s more from the Colour Research Society of Canada’s (CRSC) Kaleidoscope Lecture: Covid19 Collage Project by OCAD Professor Ilene Sova event page,

In this unique colour-focused artist talk, Sova will explore her Covid19 Collage Project created in direct response to the pandemic. She will take the audience through an analysis of how she utilizes the precise symbolic and aesthetic qualities of colour-choice to reflect her psychological response to our current times and amplify the intent in her artist statement: ‘Former eyes have been replaced, and the curtain pulled back on the inequities that we didn’t fully see before. Newsfeeds are full of surreal deaths and devastating condolences. Different eyes; metallic and shiny. Eyes that no longer know how to ‘look to our future” for hope and possibilities. Our Instagram lives and our vitriolic materialism now laid bare. We are left to self-reflect, face ourselves, slow down, and toss and turn at night with vivid crackling dreams alive with messages screaming from our subconscious. We thought we were separate from nature, but now we know we are one. Sequestered in our homes, our minds begin to change, fracture with confusion. We float in a sea of unknowns, covering our faces with psychological and real masks. In a sparkly shiny isolated dreamy space; how will we prophesize our new future and manifest in a new uncertain one?

Bio: Ilene Sova holds the position of Ada Slaight Chair of Contemporary Drawing and Painting in the Faculty of Art at Ontario College of Art and Design University [OCAD University]. She identifies as Mixed Race, with a white settler, Afro-Caribbean, and Black Seminole ancestry. She is also an artist who lives with the disability of Epilepsy. As such, she passionately identifies with the tenets of intersectional feminism and has dedicated her creative career to art and activism. Ilene Sova is also the founder of the Feminist Art Collective and Blank Canvases, an in-school creative arts programme for elementary school students. She holds an Honours BFA from the University of Ottawa in Painting and an MFA in Painting and Drawing from the University of Windsor. With extensive solo and group exhibitions in Canada and abroad, Sova’s work has most notably been shown at Museum of Canadian Contemporary Art, the Department of Canadian Heritage, and Mutuo Centro de Arte in Barcelona. Sova’s artwork has been featured internationally in the Journal of Psychology and Counselling, the Nigerian Arts Journal, Tabula and the Italian feminist journal, Woman’O’Clock. In her academic career, Sova has been invited to speak on diversity and equity in arts curriculum at the Art Gallery of Ontario, Pratt University and the Association of Independent Colleges of Art and Design conference in Los Angeles. A passionate public speaker, Sova was chosen to speak at the first TEDx Women event in Toronto, and Southern University New York where she gave an all University Lecture on Art and Social Change. Additionally, Sova was invited to deliver the Arthur C. Danto Memorial Keynote Lecture at the 76th Annual Meeting of the American Society for Aesthetics (ASA). Sova’s exhibitions and advocacy in education have been featured on Global Television, CBC Radio, the Toronto Star, Canada AM, The Metro, National Post, Canadian Art, and MSN News.

Register here on eventbrite

Date and time

Wed, June 9, 2021

4:00 PM – 5:00 PM PDT

A Zoom link will be emailed to registered participants approximately 1 hour before the talk, and posted on our CRSC webpage.

Summer Solstice Celebration of Star Knowledge—Africa and Rapanui (Easter Island) on June 22, 2021

Ingenium’s* Indigenous Star Knowledge Symposia series was first mentioned here in a September 18, 2020 posting: Casting your eyes upon the night heavens in advance of the Autumnal (Fall) Equinox celebration, the first in the series.

With the Summer Solstice, we have the fourth and, I believe, the last in the series. From the Summer Solstice, Celebration of Star Knowledge from Africa and Rapanui (Easter Island) event page,

June 22, 2021. 3 p.m. Eastern.

Featured Speakers: Edmundo Edwards Eastman (Rapanui) and Jarita Holbrook (African culture)

Welcome from: Anita Tenasco, Kitigan Zibi, Quebec (Algonquin)

Opening Prayer: Wilfred Buck, Manitoba (Ininew)

Moderated by: Yasmin Catricheo, Chile (Mapuche)

Presentation #1: Cosmovision of the Polynesia and Rapanui. 

Featured Speaker: Edmundo Edwards Eastman. Archeoastronomy. President Fundación
Planetario Rapanui

Abstract: Some 3,500 years ago, the ancestors of the Polynesians led the speediest human expansion of the pre-historic world, guided by nothing more than their complex astronomical observations and an understanding of natural signs. This knowledge, coupled with tremendous navigational skills and human ingenuity, allowed the Polynesians to explore the vast Pacific Ocean and develop highly sophisticated cultures on thousands of different islands.  

Bio: Edmundo’s passion for archaeology started when he was 12 years old and discovered a pre-Incan site in northern Chile, yet it was after visiting Rapa Nui in 1957, that he became enthralled by Rapanui culture and returned to the island in 1960 with archaeologist William Mulloy.  Edmundo has lived and worked in Polynesia ever since. In 1977 he co-founded the Centro de Estudios de Isla de Pascua where he carried out archaeological and ethnographic studies for the University of Chile until 1985. He then left for Tahiti, conducting archaeological surveys and leading restoration work in the Society, Marquesas, and Austral Islands until he returned to Rapa Nui in 1994. Edmundo has since then devoted himself to the scientific study and preservation of the archaeology and culture of the Pacific islands.  He is the co-founder of the Pacific Islands Research Institute (PIRI) and co-owner of Archaeological Travel Service (ATS). Edmundo is an active member of the Explorers Club and in 2011 he was honored with the Lowell Thomas Award for his exceptional contribution to human knowledge through his valuable research and discoveries in Polynesia, and in 2016 he received the Citation of Merit.

Presentation #2: Celestial Africa

Featured Speaker: Jarita Holbrook

Abstract: The continent of Africa is large and has thousands of ethnic groups living in over 50 countries. Though home to some of the biggest astronomical telescopes in the world, there remains the perception that Africans have little awareness of the celestial realm. In reality, African indigenous astronomy is rich with many cultural connections to the sky as well as many practical uses of the sky. Holbrook will share some of the African legacy of rich skylore, artistic works, and practices connected to the sky.

Bio: Jarita Holbrook is a Marie Skłowdowska Curie Fellow in Science, Technology & Innovation Studies at the University of Edinburgh. Holbrook has successfully navigated the physical science and the social sciences. Upon moving to South Africa in 2013 to the Physics department at the University of the Western Cape, Holbrook was engaged in indigenous astronomy, studying the sociocultural aspects of astrophysics education in South Africa, and making a film about the social issues connected to building the Square Kilometre Array radio telescope. Using interview based inquiry, Holbrook researches the practices of inclusion and exclusion through analyzing socioeconomic class, gender, and ethnicity among database-driven astrophysics collaborations. Holbrook’s current project, ASTROMOVES, explores these in the context of career decision making among astrophysicists.

Panellists:

Anita Tenasco is an Anishinabeg from Kitigan Zibi. She has a Bachelor’s degree in history and teaching from the University of Ottawa, as well as a First Nations leadership certificate from Saint Paul’s University, in Ottawa. She has also taken courses in public administration at ENAP (The University of Public Administration). In Kitigan Zibi, she has held various positions in the field of education and, since 2005, is director of education in her community.

Anita was an active participant in the Honouring Our Ancestors project, in which the Anishinabeg Nation of Kitigan Zibi, under Gilbert Whiteduck’s direction, was successful in the restitution of the remains of ancestors conserved at the Canadian Museum of History, in Gatineau. Anita also participated in the organizing of a conference on repatriation, in Kitigan Zibi, in 2005. She plays an important role in this research project.

http://nikanishk.ca/en/blog/project-participants/anita-tenasco-2/

Wilfred Buck is a member of the Opaskwayak Cree Nation. He obtained his B.Ed. & Post Bacc. from the University of Manitoba.

As an educator Wilfred has had the opportunity and good fortune to travel to South and Central America as well as Europe and met, shared and listened to Indigenous people from all over the world.

He is a husband, father of four, son, uncle, brother, nephew, story-teller, mad scientist, teacher, singer, pipe-carrier, sweat lodge keeper, old person and sun dance leader. Researching Ininew star stories Wilfred found a host of information which had to be interpreted and analyzed to identify if the stories were referring to the stars. The journey began… The easiest way to go about doing this, he was told, was to look up. 

“The greatest teaching that was ever given to me, other than my wife and children, is the ability to see the humor in the world”…Wilfred Buck

https://acakwuskwun.com/

Yasmin Catricheo is the STEM Education Scholar at AUI’s Office of Education and Public Engagement. She is a physics educator from Chile, and of Mapuche origin. Yasmin is passionate about the teaching of science and more recently has focused in the area of astronomy and STEM. In her professional training she has taken a range of courses in science and science education, and researched the benefits of scientific argumentation in the physics classroom, earning a master’s degree in education from the University of Bío-Bío. Yasmín is also a member of the indigenous group “Mapu Trafun”, and she works closely with the Mapuche community to recover the culture and communicate the message of the Mapuche Worldview. In 2018 Yasmín was selected as the Chilean representative for Astronomy in Chile Educator Ambassador Program (ACEAP) founded by NSF.

Associated Universities Inc.

Register for the Webinar

Note: You can also find the information on Ingenium’s French language event page: Solstice d’été : une célébration des connaissances stellaires de l’Afrique et de Rapa Nui (l’île de Pâques).

*Ingenium is the name for Canada’s Museums of Science and Innovation, which acts as an umbrella organization for the Canada Agriculture and Food Museum, the Canada Aviation and Space Museum, and the Canada Science and Technology Museum.

Tools for Catching Clouds at Venice’s Biennale Architettura 2021

This information comes from a June 8, 2021 email received from the artist himself, Lanfranco Aceti,

Tools for Catching Clouds is a new series of works of art by Lanfranco Aceti. They are a segment of Preferring Sinking to Surrender — the artist’s installation at the Venice Architecture Biennale, 2021. The installation is comprised of drawings, sculptures, paintings, videos, performances, and a vegetable garden. 

Curated by Alessandro Melis for the Italian Pavilion, Preferring Sinking to Surrender is a progression and accumulation of works of art that will be developed throughout the duration of the Venice Architecture Biennale, from May 21, 2021, to November 21, 2021. 

The artist reimagines the future in matriarchal terms and bypasses social upheavals and legacies of environmental disasters through a series of aesthetic approaches that navigate melancholia, anger, and hope. The works of art retrace the legacies of the past — back to the Italic tribes that populated the Apennines before the founding of Rome and the arrival of Greeks in southern Italy.  

The worship of the Magna Mater — or the Great Black Mediterranean Mother — by the Italic tribes is a necessary rediscovery to understand the resilience of matriarchy and its values of acceptance and inclusion within societies that have become patriarchal in nature and, de facto, hierarchical and exclusionary. Nevertheless, these values resist and persist, and have empowered entire generations who were considered ‘outsiders’ and who have found, in the embrace of the ‘Mamma Schiavona’ (another name for the Magna Mater), their strength, networks of solidarity, and empowerment. 

Aceti’s research in gender issues and alternative structures to patriarchy, developed during a one year affiliation at Art, Culture and Technology (ACT) @ MIT, inspired a continued analysis of pre-Roman matriarchal societies. This led to the conception of Preferring Sinking to Surrender as an alternative space and narrative to current capitalistic cultural frameworks. 

“I have to say that it is a pleasure working with Alessandro Melis,” said Aceti. “Not every curator is fond of process based art. For me it is particularly rewarding to have found a curator that is both empowering and supportive.” 

For more information and images of Tools for Catching Clouds, click here

About the Artist

Lanfranco Aceti is known for his extensive career as artist, curator, and academic. He has exhibited numerous personal projects including Car Park, a public performance in the UK at the John Hansard Gallery; Who The People?, an installation artwork acquired in its entirety by the Chetham’s Library and Museum in Manchester; Sowing and Reaping, installation artworks acquired in their entirety by the National Museum of Contemporary Art of Cyprus; Hope Coming On, a site-specific choral performance he designed for the Museum of Fine Arts, Boston and realized in front of Turner’s Slave Ship (Slavers Throwing Overboard the Dead and Dying, Typhoon Coming On); Shimmer, a series of sculptural, photographic, and painting works curated by Irini Papadimitriou (V&A) at the Tobazi Mansion in Hydra; a large choral performance titled Accursed for the Thessaloniki Biennial in Greece; and Knock, Knock, Knocking a public space installation in the Mediterranean Garden Pavilion of the New Sea Waterfront of Thessaloniki. Currently, he is developing a large international project, Preferring Sinking to Surrender for the Venice Architecture Biennale 2021, which includes performances in major cities around the world. 

About The Studium

The Studium is Lanfranco Aceti’s artistic studio. It has partnered with public and private organizations as well as with individuals to realize the artist’s works and to develop fora for the discussion of aesthetic approaches to public space, the role of contemporary art in the social political landscape, and themes of social and environmental justice.

For questions or information and materials, please contact The Studium’s Marketing Director, John Francescutti.

The Venice Architecture Biennale (or Biennale Architettura 2021), from May 21, 2021, to November 21, 2021.

Fish DJ makes discoveries about fish hearing

A March 2, 2021 University of Queensland press release (also on EurekAlert) announces research into how fish brains develop and how baby fish hear,

A DJ-turned-researcher at The University of Queensland has used her knowledge of cool beats to understand brain networks and hearing in baby fish

The ‘Fish DJ’ used her acoustic experience to design a speaker system for zebrafish larvae and discovered that their hearing is considerably better than originally thought.

This video clip features zebrafish larvae listening to music, MC Hammer’s ‘U Can’t Touch This’ (1990),

Here’s the rest of the March 2, 2021 University of Queensland press release,

PhD candidate Rebecca Poulsen from the Queensland Brain Institute said that combining this new speaker system with whole-brain imaging showed how larvae can hear a range of different sounds they would encounter in the wild.

“For many years my music career has been in music production and DJ-ing — I’ve found underwater acoustics to be a lot more complicated than air frequencies,” Ms Poulsen said.

“It is very rewarding to be using the acoustic skills I learnt in my undergraduate degree, and in my music career, to overcome the challenge of delivering sounds to our zebrafish in the lab.

“I designed the speaker to adhere to the chamber the larvae are in, so all the sound I play is accurately received by the larvae, with no loss through the air.”

Ms Poulsen said people did not often think about underwater hearing, but it was crucial for fish survival – to escape predators, find food and communicate with each other.

Ms Poulsen worked with Associate Professor Ethan Scott, who specialises in the neural circuits and behaviour of sensory processing, to study the zebrafish and find out how their neurons work together to process sounds.

The tiny size of the zebrafish larvae allows researchers to study their entire brain under a microscope and see the activity of each brain cell individually.

“Using this new speaker system combined with whole brain imaging, we can see which brain cells and regions are active when the fish hear different types of sounds,” Dr Scott said.

The researchers are testing different sounds to see if the fish can discriminate between single frequencies, white noise, short sharp sounds and sound with a gradual crescendo of volume.

These sounds include components of what a fish would hear in the wild, like running water, other fish swimming past, objects hitting the surface of the water and predators approaching.

“Conventional thinking is that fish larvae have rudimentary hearing, and only hear low-frequency sounds, but we have shown they can hear relatively high-frequency sounds and that they respond to several specific properties of diverse sounds,” Dr Scott said.

“This raises a host of questions about how their brains interpret these sounds and how hearing contributes to their behaviour.”

Ms Poulsen has played many types of sounds to the larvae to see which parts of their brains light up, but also some music – including MC Hammer’s “U Can’t Touch This”– that even MC Hammer himself enjoyed.

The March 3, 3021 story by Graham Readfearn originally published by The Guardian (also found on MSN News), has more details about the work and the researcher,

As Australia’s first female dance music producer and DJ, Rebecca Poulsen – aka BeXta – is a pioneer, with scores of tracks, mixes and hundreds of gigs around the globe under her belt.

But between DJ gigs, the 46-year-old is now back at university studying neuroscience at Queensland Brain Institute at the University of Queensland in Brisbane.

And part of this involves gently securing baby zebrafish inside a chamber and then playing them sounds while scanning their brains with a laser and looking at what happens through a microscope.

The analysis for the study doesn’t look at how the fish larvae react during Hammer [MC Hammer] time, but how their brain cells react to simple single-frequency sounds.

“It told us their hearing range was broader than we thought it was before,” she says.

Poulsen also tried more complex sounds, like white noise and “frequency sweeps”, which she describes as “like the sound when Wile E Coyote falls off a cliff” in the Road Runner cartoons.

“When you look at the neurons that light up at each sound, they’re unique. The fish can tell the difference between complex and different sounds.”

This is, happily, where MC Hammer comes in.

Out of professional and scientific curiosity – and also presumably just because she could – Poulsen played music to the fish.

She composed her own piece of dance music and that did seem to light things up.

But what about U Can’t Touch This?

“You can see when the vocal goes ‘ohhh-oh’, specific neurons light up and you can see it pulses to the beat. To me it looks like neurons responding to different parts of the music.

“I do like the track. I was pretty little when it came out and I loved it. I didn’t have the harem pants, though, but I did used to do the dance.”

How do you stop the fish from swimming away while you play them sounds? And how do you get a speaker small enough to deliver different volumes and frequencies without startling the fish?

For the first problem, the baby zebrafish – just 3mm long – are contained in a jelly-like substance that lets them breathe “but stops them from swimming away and keeps them nice and still so we can image them”.

For the second problem, Poulsen and colleagues used a speaker just 1cm wide and stuck it to the glass of the 2cm-cubed chamber the fish was contained in.

Using fish larvae has its advantages. “They’re so tiny we can see their whole brain … we can see the whole brain live in real time.”

If you have the time, I recommend reading Readfearn’s March 3, 3021 story in its entirety.

Poulsen as Bexta has a Wikipedia entry and I gather from Readfearn’s story that she is still active professionally.

Here’s a link to and a citation for the published paper,

Broad frequency sensitivity and complex neural coding in the larval zebrafish auditory system by Rebecca E. Poulsen, Leandro A. Scholz, Lena Constantin, Itia Favre-Bulle, Gilles C. Vanwalleghem, Ethan K. Scott. Current Biology DOI:https://doi.org/10.1016/j.cub.2021.01.103 Published: March 02, 2021

This paper appears to be open access.

There is an earlier version of the paper on bioRxiv made available for open peer review. Oddly, I don’t see any comments but perhaps I need to login.

Related research but not the same

I was surprised when a friend of mine in early January 2021 needed to be persuaded that noise in aquatic environments is a problem. If you should have any questions or doubts, perhaps this March 4, 2021 article by Amy Noise (that is her name) on the Research2Reality website can answer them,

Ever had builders working next door? Or a neighbour leaf blowing while you’re trying to make a phone call? Unwanted background noise isn’t just stressful, it also has tangible health impacts – for both humans and our marine cousins.

Sound travels faster and farther in water than in air. For marine creatures who rely heavily on sound, crowded ocean soundscapes could be more harmful than previously thought.

Marine animals use sound to navigate, communicate, find food and mates, spot predators, and socialize. But since the Industrial Revolution, humans have made the planet, and the oceans in particular, exponentially noisier.

From shipping and fishing, to mining and sonar, underwater anthropogenic noise is becoming louder and more prevalent. While parts of the ocean’s chorus are being drowned out, others are being permanently muted through hunting and habitat loss.

[An] international team, including University of Victoria biologist Francis Juanes, reviewed over 10,000 papers from the past 40 years. They found overwhelming evidence that anthropogenic noise is negatively impacting marine animals.

Getting back to Poulsen and Queensland, her focus is on brain development not noise although I imagine some of her work may be of use to researchers investigating anthropogenic noise and its impact on aquatic life.

TRIUMF (Canada’s national particle accelerator centre) welcomes Nigel Smith as its new Chief Executive Officer (CEO) on May 17, 2021and some Hollywood news

I have two bits of news as noted in the headline. There’s news about TRIUMF located on the University of British Columbia (UBC) endowment lands and news about Dr. Suzanne Simard (UBC Forestry) and her memoir, Finding the Mother Tree: Discovering the Wisdom of the Fores.

Nigel Smith and TRIUMF (Canada’s national particle accelerator centre)

As soon as I saw his first name, Nigel, I bet myself he’d be from the UK (more about that later in this posting). This is TRIUMF’s third CEO since I started science blogging in May 2008. When I first started it was called TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) but these days it’s TRIUMF (Canada’s national particle accelerator centre).

As for the organization’s latest CEO, here’s more from a TRIUMF February 12, 2021 announcement page ( the text is identical to TRIUMF’s February 12, 2021 press release),

Dr. Nigel Smith, Executive Director of SNOLAB, has been selected to serve as the next Director of TRIUMF.  

Succeeding Dr. Jonathan Bagger, who departed TRIUMF in January 2021 to become CEO of the American Physical Society, Dr. Smith’s appointment comes as the result of a highly competitive, six-month international search. Dr. Smith will begin his 5-year term as TRIUMF Director on May 17, 2021. 

“I am truly honoured to have been selected as the next Director of TRIUMF”, said Dr. Smith. “I have long been engaged with TRIUMF’s vibrant community and have been really impressed with the excellence of its science, capabilities and people. TRIUMF plays a unique and vital role in Canada’s research ecosystem and I look forward to help continue the legacy of excellence upheld by Dr. Jonathan Bagger and the previous TRIUMF Directors”.  

Describing what interested him in the position, Smith spoke to the breadth and impact of TRIUMF’s diverse science programs, stating “TRIUMF has an amazing portfolio of research covering fundamental and applied science that also delivers tangible societal impact through its range of medical and commercialisation initiatives. I am extremely excited to have the opportunity to lead a laboratory with such a broad and world-leading science program.” 

“Nigel brings all the necessary skills and background to the role of Director,” said Dr. Digvir Jayas, Interim Director of TRIUMF, Chair of the TRIUMF Board of Management, and Vice-President, Research and International at the University of Manitoba. “As Executive Director of SNOLAB, Dr. Smith is both a renowned researcher and experienced laboratory leader who offers a tremendous track record of success spanning the local, national, and international spheres. The Board of Management is thrilled to bring Nigel’s expertise to TRIUMF so he may help guide the laboratory through many of the exciting developments on the horizon.  

Dr. Smith joins TRIUMF at an important period in the laboratory’s history, moving into the second year of our current Five-Year Plan (2020-2025) and preparing to usher in a new era of science and innovation that will include the completion of the Advance Rare Isotope Laboratory (ARIEL) and the Institute for Advanced Medical Isotopes (IAMI) [not to be confused with Amii {Alberta Machine Intelligence Institute}]. This new infrastructure, alongside TRIUMF’s existing facilities and world-class research programs, will solidify Canada’s position as a global leader in both fundamental and applied research. 

Dr. Smith expressed his optimism for TRIUMF, saying “I am delighted to have this opportunity, and it will be a pleasure to lead the laboratory through this next exciting phase of our growth and evolution.” 

Smith is leaving what is probably one of the more unusual laboratories, at a depth of 2km, SNOLAB is the deepest, cleanest laboratory in the world. (more information either at SNOLAB or its Wikipedia entry.)

Is Smith from the UK? Some clues

I found my subsequent clues on SNOLAB’s ‘bio’ page for Dr. Nigel Smith,

Nigel Smith joined SNOLAB as Director during July 2009. He currently holds a full Professorship at Laurentian University, adjunct Professor status at Queen’s University, and a visiting Professorial chair at Imperial College, London. He received his Bachelor of Science in physics from Leeds University in the U.K. in 1985 and his Ph. D. in astrophysics from Leeds in 1991. He has served as a lecturer at Leeds University, a research associate at Imperial College London, group leader (dark matter) and deputy division head at the STFC Rutherford Appleton Laboratory, before relocating to Canada to oversee the SNOLAB deep underground facility.

The answer would seem to be yes, Nigel James Telfer Smith is originally from the UK.

I don’t know if this is going to be a trend but this is the second ‘Nigel” to lead TRIUMF. (The Nigels are now tied with the Johns and the Alans. Of course, the letter ‘j’ seems the most popular with four names, John, John, Jack, and Jonathan.) Here’s a list of TRIUMF’s previous CEOs (from the TRIUMF Wikipedia entry),

Since its inception, TRIUMF has had eight directors [now nine] overseeing its operations.

The first Nigel (Lockyer) is described as an American in his Wikipedia entry. He was born in Scotland and raised in Canada. However, he has spent the majority of his adult life in the US, other than the five or six years at TRIUMF. So, previous Nigel also started life in the UK.

Good luck to the new Nigel.

UBC forestry professor, Suzanne Simard’s memoir going to the movies?

Given that Simard’s memoir, Finding the Mother Tree: Discovering the Wisdom of the Forest, was published last week on May 4, 2021, this is very heady news,. From a May 12, 2021 article by Cassandra Gill for the Daily Hive (Note: Links have been removed),

Jake Gyllenhaal is bringing the story of a UBC professor to the big screen.

The Oscar nominee’s production company, Nine Stories, is producing a film based on Suzanne Simard’s memoir, Finding the Mother Tree.

Amy Adams is set to play Simard, who is a forest ecology expert renowned for her research on plants and fungi.

Adams is also co-producing the film with Gyllenhaal through her own company, Bond Group Entertainment.

The BC native [Simard] developed an interest in trees and the outdoors through her close relationship with her grandfather, who was a horse logger.

Her 30 year career and early life is documented in the memoir, which was released last week on May 4 [2021]. Simard explores how trees have evolved, have memories, and are the foundation of our planet’s ecosystem — along with her own personal experiences with grief.

The scientists’ [sic] influence has had influence in popular culture, notably in James Cameron’s 2009 film Avatar. The giant willow-like “Tree of Souls” was specifically inspired by Simard’s work.

No mention of a script and no mention of financing, so, it could be a while before we see the movie on Netflix, Apple+, HBO, or maybe a movie house (if they’re open by then).

I think the script may prove to the more challenging aspect of this project. Here’s the description of Simard’s memoir (from the Finding the Mother Tree webpage on suzannesimard.com)

From the world’s leading forest ecologist who forever changed how people view trees and their connections to one another and to other living things in the forest–a moving, deeply personal journey of discovery.

About the Book

In her first book, Simard brings us into her world, the intimate world of the trees, in which she brilliantly illuminates the fascinating and vital truths – that trees are not simply the source of timber or pulp, but are a complex, interdependent circle of life; that forests are social, cooperative creatures connected through underground networks by which trees communicate their vitality and vulnerabilities with communal lives not that different from our own.

Simard writes – in inspiring, illuminating, and accessible ways – how trees, living side by side for hundreds of years, have evolved, how they perceive one another, learn and adapt their behaviors, recognize neighbors, and remember the past; how they have agency about the future; elicit warnings and mount defenses, compete and cooperate with one another with sophistication, characteristics ascribed to human intelligence, traits that are the essence of civil societies – and at the center of it all, the Mother Trees: the mysterious, powerful forces that connect and sustain the others that surround them.

How does Simard’s process of understanding trees and conceptualizing a ‘mother tree’ get put into a script for a movie that’s not a documentary or an animation?

Movies are moving pictures, yes? How do you introduce movement and action in a script heavily focused on trees, which operate on a timescale that’s vastly different.

It’s an interesting problem and I look forward to seeing how it’s resolved. I wish them good luck.

Exotic magnetism: a quantum simulation from D-Wave Sytems

Vancouver (Canada) area company, D-Wave Systems is trumpeting itself (with good reason) again. This 2021 ‘milestone’ achievement builds on work from 2018 (see my August 23, 2018 posting for the earlier work). For me, the big excitement was finding the best explanation for quantum annealing and D-Wave’s quantum computers that I’ve seen yet (that explanation and a link to more is at the end of this posting).

A February 18, 2021 news item on phys.org announces the latest achievement,

D-Wave Systems Inc. today [February 18, 2021] published a milestone study in collaboration with scientists at Google, demonstrating a computational performance advantage, increasing with both simulation size and problem hardness, to over 3 million times that of corresponding classical methods. Notably, this work was achieved on a practical application with real-world implications, simulating the topological phenomena behind the 2016 Nobel Prize in Physics. This performance advantage, exhibited in a complex quantum simulation of materials, is a meaningful step in the journey toward applications advantage in quantum computing.

A February 18, 2021 D-Wave Systems press release (also on EurekAlert), which originated the news item, describes the work in more detail,

The work by scientists at D-Wave and Google also demonstrates that quantum effects can be harnessed to provide a computational advantage in D-Wave processors, at problem scale that requires thousands of qubits. Recent experiments performed on multiple D-Wave processors represent by far the largest quantum simulations carried out by existing quantum computers to date.

The paper, entitled “Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets”, was published in the journal Nature Communications (DOI 10.1038/s41467-021-20901-5, February 18, 2021). D-Wave researchers programmed the D-Wave 2000Q™ system to model a two-dimensional frustrated quantum magnet using artificial spins. The behavior of the magnet was described by the Nobel-prize winning work of theoretical physicists Vadim Berezinskii, J. Michael Kosterlitz and David Thouless. They predicted a new state of matter in the 1970s characterized by nontrivial topological properties. This new research is a continuation of previous breakthrough work published by D-Wave’s team in a 2018 Nature paper entitled “Observation of topological phenomena in a programmable lattice of 1,800 qubits” (Vol. 560, Issue 7719, August 22, 2018). In this latest paper, researchers from D-Wave, alongside contributors from Google, utilize D-Wave’s lower noise processor to achieve superior performance and glean insights into the dynamics of the processor never observed before.

“This work is the clearest evidence yet that quantum effects provide a computational advantage in D-Wave processors,” said Dr. Andrew King, principal investigator for this work at D-Wave. “Tying the magnet up into a topological knot and watching it escape has given us the first detailed look at dynamics that are normally too fast to observe. What we see is a huge benefit in absolute terms, with the scaling advantage in temperature and size that we would hope for. This simulation is a real problem that scientists have already attacked using the algorithms we compared against, marking a significant milestone and an important foundation for future development. This wouldn’t have been possible today without D-Wave’s lower noise processor.”

“The search for quantum advantage in computations is becoming increasingly lively because there are special problems where genuine progress is being made. These problems may appear somewhat contrived even to physicists, but in this paper from a collaboration between D-Wave Systems, Google, and Simon Fraser University [SFU], it appears that there is an advantage for quantum annealing using a special purpose processor over classical simulations for the more ‘practical’ problem of finding the equilibrium state of a particular quantum magnet,” said Prof. Dr. Gabriel Aeppli, professor of physics at ETH Zürich and EPF Lausanne, and head of the Photon Science Division of the Paul Scherrer Institute. “This comes as a surprise given the belief of many that quantum annealing has no intrinsic advantage over path integral Monte Carlo programs implemented on classical processors.”

“Nascent quantum technologies mature into practical tools only when they leave classical counterparts in the dust in solving real-world problems,” said Hidetoshi Nishimori, Professor, Institute of Innovative Research, Tokyo Institute of Technology. “A key step in this direction has been achieved in this paper by providing clear evidence of a scaling advantage of the quantum annealer over an impregnable classical computing competitor in simulating dynamical properties of a complex material. I send sincere applause to the team.”

“Successfully demonstrating such complex phenomena is, on its own, further proof of the programmability and flexibility of D-Wave’s quantum computer,” said D-Wave CEO Alan Baratz. “But perhaps even more important is the fact that this was not demonstrated on a synthetic or ‘trick’ problem. This was achieved on a real problem in physics against an industry-standard tool for simulation–a demonstration of the practical value of the D-Wave processor. We must always be doing two things: furthering the science and increasing the performance of our systems and technologies to help customers develop applications with real-world business value. This kind of scientific breakthrough from our team is in line with that mission and speaks to the emerging value that it’s possible to derive from quantum computing today.”

The scientific achievements presented in Nature Communications further underpin D-Wave’s ongoing work with world-class customers to develop over 250 early quantum computing applications, with a number piloting in production applications, in diverse industries such as manufacturing, logistics, pharmaceutical, life sciences, retail and financial services. In September 2020, D-Wave brought its next-generation Advantage™ quantum system to market via the Leap™ quantum cloud service. The system includes more than 5,000 qubits and 15-way qubit connectivity, as well as an expanded hybrid solver service capable of running business problems with up to one million variables. The combination of Advantage’s computing power and scale with the hybrid solver service gives businesses the ability to run performant, real-world quantum applications for the first time.

That last paragraph seems more sales pitch than research oriented. It’s not unexpected in a company’s press release but I was surprised that the editors at EurekAlert didn’t remove it.

Here’s a link to and a citation for the latest paper,

Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets by Andrew D. King, Jack Raymond, Trevor Lanting, Sergei V. Isakov, Masoud Mohseni, Gabriel Poulin-Lamarre, Sara Ejtemaee, William Bernoudy, Isil Ozfidan, Anatoly Yu. Smirnov, Mauricio Reis, Fabio Altomare, Michael Babcock, Catia Baron, Andrew J. Berkley, Kelly Boothby, Paul I. Bunyk, Holly Christiani, Colin Enderud, Bram Evert, Richard Harris, Emile Hoskinson, Shuiyuan Huang, Kais Jooya, Ali Khodabandelou, Nicolas Ladizinsky, Ryan Li, P. Aaron Lott, Allison J. R. MacDonald, Danica Marsden, Gaelen Marsden, Teresa Medina, Reza Molavi, Richard Neufeld, Mana Norouzpour, Travis Oh, Igor Pavlov, Ilya Perminov, Thomas Prescott, Chris Rich, Yuki Sato, Benjamin Sheldan, George Sterling, Loren J. Swenson, Nicholas Tsai, Mark H. Volkmann, Jed D. Whittaker, Warren Wilkinson, Jason Yao, Hartmut Neven, Jeremy P. Hilton, Eric Ladizinsky, Mark W. Johnson, Mohammad H. Amin. Nature Communications volume 12, Article number: 1113 (2021) DOI: https://doi.org/10.1038/s41467-021-20901-5 Published: 18 February 2021

This paper is open access.

Quantum annealing and more

Dr. Andrew King, one of the D-Wave researchers, has written a February 18, 2021 article on Medium explaining some of the work. I’ve excerpted one of King’s points,

Insight #1: We observed what actually goes on under the hood in the processor for the first time

Quantum annealing — the approach adopted by D-Wave from the beginning — involves setting up a simple but purely quantum initial state, and gradually reducing the “quantumness” until the system is purely classical. This takes on the order of a microsecond. If you do it right, the classical system represents a hard (NP-complete) computational problem, and the state has evolved to an optimal, or at least near-optimal, solution to that problem.

What happens at the beginning and end of the computation are about as simple as quantum computing gets. But the action in the middle is hard to get a handle on, both theoretically and experimentally. That’s one reason these experiments are so important: they provide high-fidelity measurements of the physical processes at the core of quantum annealing. Our 2018 Nature article introduced the same simulation, but without measuring computation time. To benchmark the experiment this time around, we needed lower-noise hardware (in this case, we used the D-Wave 2000Q lower noise quantum computer), and we needed, strangely, to slow the simulation down. Since the quantum simulation happens so fast, we actually had to make things harder. And we had to find a way to slow down both quantum and classical simulation in an equitable way. The solution? Topological obstruction.

If you have time and the inclination, I encourage you to read King’s piece.

New podcast—Mission: Interplanetary and Event Rap: a one-stop custom rap shop Kickstarter

I received two email notices recently, one from Dr. Andrew Maynard (Arizona State University; ASU) and one from Baba Brinkman (Canadian rapper of science and other topics now based in New York).

Mission: Interplanetary

I found a “Mission: Interplanetary— a podcast on the future of humans as a spacefaring species!” webpage (Link: https://collegeofglobalfutures.asu.edu/blog/2021/03/23/mission-interplanetary-redefining-how-we-talk-about-humans-in-space/) on the Arizona State University College of Global Futures website,

Back in January 2019 I got an email from my good friend and colleague Lance Gharavi with the title “Podcast brainstorming.” Two years on, we’ve just launched the Mission: Interplanetary podcast–and it’s amazing!

It’s been a long journey — especially with a global pandemic thrown in along the way — but on March 23 [2021], the Mission: Interplanetary podcast with Slate and ASU finally launched.

After two years of planning, many discussions, a bunch dry runs, and lots (and by that I mean lots) of Zoom meetings, we are live!

As the team behind the podcast talked about and developed the ideas underpinning the Mission: Interplanetary,we were interested in exploring new ways of thinking and talking about the future of humanity as a space-faring species as part of Arizona State University’s Interplanetary Initiative. We also wanted to go big with these conversations — really big!

And that is exactly what we’ve done in this partnership with Slate.

The guests we’re hosting, the conversations we have lined up, the issues we grapple with, are all literally out of this world. But don’t just take my word for it — listen to the first episode above with the incredible Lindy Elkins-Tanton talking about NASA’s mission to the asteroid 16 Psyche.

And this is just a taste of what’s to come over the next few weeks as we talk to an amazing lineup of guests.

So if you’re looking for a space podcast with a difference, and one that grapples with big questions around our space-based future, please do subscribe on your favorite podcast platform. And join me and the fabulous former NASA astronaut Cady Coleman as we explore the future of humanity in space.

See you there!

Slate’s webpage (Mission: Interplanetary; Link: https://slate.com/podcasts/mission-interplanetary) offers more details about the co-hosts and the programmes along with embedded podcasts,

Cady Coleman is a former NASA astronaut and Air Force colonel. She flew aboard the International Space Station on a six-month expedition as the lead science and robotics officer. A frequent speaker on space and STEM topics, Coleman is also a musician who’s played from space with the Chieftains and Ian Anderson of Jethro Tull.

Andrew Maynard is a scientist, author, and expert in risk innovation. His books include Films From the Future: The Technology and Morality of Sci-Fi Movies and Future Rising

Latest Episodes

April 27, 2021

Murder in Space

What laws govern us when we leave Earth?

Happy listening. And, I apologize for the awkward links.

Event Rap Kickstarter

Baba Brinkman’s April 27, 2021 email notice has this to say about his latest venture,

Join the Movement, Get Rewards

My new Kickstarter campaign for Event Rap is live as of right now! Anyone who backs the project is helping to launch an exciting new company, actually a new kind of company, the first creator marketplace for rappers. Please take a few minutes to read the campaign description, I put a lot of love into it.

The campaign goal is to raise $26K in 30 days, an average of $2K per artist participating. If we succeed, this platform becomes a new income stream for independent artists during the pandemic and beyond. That’s the vision, and I’m asking for your help to share it and support it.

But instead of why it matters, let’s talk about what you get if you support the campaign!

$10-$50 gets you an advance copy of my new science rap album, Bright Future. I’m extremely proud of this record, which you can preview here, and Bright Future is also a prototype for Event Rap, since all ten of the songs were commissioned by people like you.

$250 – $500 gets you a Custom Rap Video written and produced by one of our artists, and you have twelve artists and infinite topics to choose from. This is an insanely low starting price for an original rap video from a seasoned professional, and it applies only during the Kickstarter. What can the video be about? Anything at all. You choose!

In case it’s helpful, here’s a guide I wrote entitled “How to Brief a Rapper

$750 – $1,500 gets you a live rap performance at your virtual event. This is also an amazingly low price, especially since you can choose to have the artist freestyle interactively with your audience, write and perform a custom rap live, or best of all compose a “Rap Up” summary of the event, written during the event, that the artist will perform as the grand finale.

That’s about as fresh and fun as rap gets.

$3,000 – $5,000 the highest tiers bring the highest quality, a brand new custom-written, recorded, mixed and mastered studio track, or studio track plus full rap music video, with an exclusive beat and lyrics that amplify your message in the impactful, entertaining way that rap does best.

I know this higher price range isn’t for everyone, but check out some of the music videos our artists have made, and maybe you can think of a friend to send this to who has a budget and a worthy cause.

Okay, that’s it!

Those prices are in US dollars.

I gather at least one person has backed given enough money to request a custom rap on cycling culture in the Netherlands.

The campaign runs for another 26 days. It has amassed over $8,400 CAD towards a goal of $32,008 CAD. (The site doesn’t show me the goal in USD although the pledges/reward are listed in that currency.)