Category Archives: science

The metaverse or not

The ‘metaverse’ seems to be everywhere these days (especially since Facebook has made a number of announcements bout theirs (more about that later in this posting).

At this point, the metaverse is very hyped up despite having been around for about 30 years. According to the Wikipedia timeline (see the Metaverse entry), the first one was a MOO in 1993 called ‘The Metaverse’. In any event, it seems like it might be a good time to see what’s changed since I dipped my toe into a metaverse (Second Life by Linden Labs) in 2007.

(For grammar buffs, I switched from definite article [the] to indefinite article [a] purposefully. In reading the various opinion pieces and announcements, it’s not always clear whether they’re talking about a single, overarching metaverse [the] replacing the single, overarching internet or whether there will be multiple metaverses, in which case [a].)

The hype/the buzz … call it what you will

This September 6, 2021 piece by Nick Pringle for Fast Company dates the beginning of the metaverse to a 1992 science fiction novel before launching into some typical marketing hype (for those who don’t know, hype is the short form for hyperbole; Note: Links have been removed),

The term metaverse was coined by American writer Neal Stephenson in his 1993 sci-fi hit Snow Crash. But what was far-flung fiction 30 years ago is now nearing reality. At Facebook’s most recent earnings call [June 2021], CEO Mark Zuckerberg announced the company’s vision to unify communities, creators, and commerce through virtual reality: “Our overarching goal across all of these initiatives is to help bring the metaverse to life.”

So what actually is the metaverse? It’s best explained as a collection of 3D worlds you explore as an avatar. Stephenson’s original vision depicted a digital 3D realm in which users interacted in a shared online environment. Set in the wake of a catastrophic global economic crash, the metaverse in Snow Crash emerged as the successor to the internet. Subcultures sprung up alongside new social hierarchies, with users expressing their status through the appearance of their digital avatars.

Today virtual worlds along these lines are formed, populated, and already generating serious money. Household names like Roblox and Fortnite are the most established spaces; however, there are many more emerging, such as Decentraland, Upland, Sandbox, and the soon to launch Victoria VR.

These metaverses [emphasis mine] are peaking at a time when reality itself feels dystopian, with a global pandemic, climate change, and economic uncertainty hanging over our daily lives. The pandemic in particular saw many of us escape reality into online worlds like Roblox and Fortnite. But these spaces have proven to be a place where human creativity can flourish amid crisis.

In fact, we are currently experiencing an explosion of platforms parallel to the dotcom boom. While many of these fledgling digital worlds will become what Ask Jeeves was to Google, I predict [emphasis mine] that a few will match the scale and reach of the tech giant—or even exceed it.

Because the metaverse brings a new dimension to the internet, brands and businesses will need to consider their current and future role within it. Some brands are already forging the way and establishing a new genre of marketing in the process: direct to avatar (D2A). Gucci sold a virtual bag for more than the real thing in Roblox; Nike dropped virtual Jordans in Fortnite; Coca-Cola launched avatar wearables in Decentraland, and Sotheby’s has an art gallery that your avatar can wander in your spare time.

D2A is being supercharged by blockchain technology and the advent of digital ownership via NFTs, or nonfungible tokens. NFTs are already making waves in art and gaming. More than $191 million was transacted on the “play to earn” blockchain game Axie Infinity in its first 30 days this year. This kind of growth makes NFTs hard for brands to ignore. In the process, blockchain and crypto are starting to feel less and less like “outsider tech.” There are still big barriers to be overcome—the UX of crypto being one, and the eye-watering environmental impact of mining being the other. I believe technology will find a way. History tends to agree.

Detractors see the metaverse as a pandemic fad, wrapping it up with the current NFT bubble or reducing it to Zuck’s [Jeffrey Zuckerberg and Facebook] dystopian corporate landscape. This misses the bigger behavior change that is happening among Gen Alpha. When you watch how they play, it becomes clear that the metaverse is more than a buzzword.

For Gen Alpha [emphasis mine], gaming is social life. While millennials relentlessly scroll feeds, Alphas and Zoomers [emphasis mine] increasingly stroll virtual spaces with their friends. Why spend the evening staring at Instagram when you can wander around a virtual Harajuku with your mates? If this seems ridiculous to you, ask any 13-year-old what they think.

Who is Nick Pringle and how accurate are his predictions?

At the end of his September 6, 2021 piece, you’ll find this,

Nick Pringle is SVP [Senior Vice President] executive creative director at R/GA London.

According to the R/GA Wikipedia entry,

… [the company] evolved from a computer-assisted film-making studio to a digital design and consulting company, as part of a major advertising network.

Here’s how Pringle sees our future, his September 6, 2021 piece,

By thinking “virtual first,” you can see how these spaces become highly experimental, creative, and valuable. The products you can design aren’t bound by physics or marketing convention—they can be anything, and are now directly “ownable” through blockchain. …

I believe that the metaverse is here to stay. That means brands and marketers now have the exciting opportunity to create products that exist in multiple realities. The winners will understand that the metaverse is not a copy of our world, and so we should not simply paste our products, experiences, and brands into it.

I emphasized “These metaverses …” in the previous section to highlight the fact that I find the use of ‘metaverses’ vs. ‘worlds’ confusing as the words are sometimes used as synonyms and sometimes as distinctions. We do it all the time in all sorts of conversations but for someone who’s an outsider to a particular occupational group or subculture, the shifts can make for confusion.

As for Gen Alpha and Zoomer, I’m not a fan of ‘Gen anything’ as shorthand for describing a cohort based on birth years. For example, “For Gen Alpha [emphasis mine], gaming is social life,” ignores social and economic classes, as well as, the importance of locations/geography, e.g., Afghanistan in contrast to the US.

To answer the question I asked, Pringle does not mention any record of accuracy for his predictions for the future but I was able to discover that he is a “multiple Cannes Lions award-winning creative” (more here).

A more measured view of the metaverse

An October 4, 2021 article (What is the metaverse, and do I have to care? One part definition, one part aspiration, one part hype) by Adi Robertson and Jay Peters for The Verge offers a deeper dive into the metaverse (Note: Links have been removed),

In recent months you may have heard about something called the metaverse. Maybe you’ve read that the metaverse is going to replace the internet. Maybe we’re all supposed to live there. Maybe Facebook (or Epic, or Roblox, or dozens of smaller companies) is trying to take it over. And maybe it’s got something to do with NFTs [non-fungible tokens]?

Unlike a lot of things The Verge covers, the metaverse is tough to explain for one reason: it doesn’t necessarily exist. It’s partly a dream for the future of the internet and partly a neat way to encapsulate some current trends in online infrastructure, including the growth of real-time 3D worlds.

Then what is the real metaverse?

There’s no universally accepted definition of a real “metaverse,” except maybe that it’s a fancier successor to the internet. Silicon Valley metaverse proponents sometimes reference a description from venture capitalist Matthew Ball, author of the extensive Metaverse Primer:

“The Metaverse is an expansive network of persistent, real-time rendered 3D worlds and simulations that support continuity of identity, objects, history, payments, and entitlements, and can be experienced synchronously by an effectively unlimited number of users, each with an individual sense of presence.”

Facebook, arguably the tech company with the biggest stake in the metaverse, describes it more simply:

“The ‘metaverse’ is a set of virtual spaces where you can create and explore with other people who aren’t in the same physical space as you.”

There are also broader metaverse-related taxonomies like one from game designer Raph Koster, who draws a distinction between “online worlds,” “multiverses,” and “metaverses.” To Koster, online worlds are digital spaces — from rich 3D environments to text-based ones — focused on one main theme. Multiverses are “multiple different worlds connected in a network, which do not have a shared theme or ruleset,” including Ready Player One’s OASIS. And a metaverse is “a multiverse which interoperates more with the real world,” incorporating things like augmented reality overlays, VR dressing rooms for real stores, and even apps like Google Maps.

If you want something a little snarkier and more impressionistic, you can cite digital scholar Janet Murray — who has described the modern metaverse ideal as “a magical Zoom meeting that has all the playful release of Animal Crossing.”

But wait, now Ready Player One isn’t a metaverse and virtual worlds don’t have to be 3D? It sounds like some of these definitions conflict with each other.

An astute observation.

Why is the term “metaverse” even useful? “The internet” already covers mobile apps, websites, and all kinds of infrastructure services. Can’t we roll virtual worlds in there, too?

Matthew Ball favors the term “metaverse” because it creates a clean break with the present-day internet. [emphasis mine] “Using the metaverse as a distinctive descriptor allows us to understand the enormity of that change and in turn, the opportunity for disruption,” he said in a phone interview with The Verge. “It’s much harder to say ‘we’re late-cycle into the last thing and want to change it.’ But I think understanding this next wave of computing and the internet allows us to be more proactive than reactive and think about the future as we want it to be, rather than how to marginally affect the present.”

A more cynical spin is that “metaverse” lets companies dodge negative baggage associated with “the internet” in general and social media in particular. “As long as you can make technology seem fresh and new and cool, you can avoid regulation,” researcher Joan Donovan told The Washington Post in a recent article about Facebook and the metaverse. “You can run defense on that for several years before the government can catch up.”

There’s also one very simple reason: it sounds more futuristic than “internet” and gets investors and media people (like us!) excited.

People keep saying NFTs are part of the metaverse. Why?

NFTs are complicated in their own right, and you can read more about them here. Loosely, the thinking goes: NFTs are a way of recording who owns a specific virtual good, creating and transferring virtual goods is a big part of the metaverse, thus NFTs are a potentially useful financial architecture for the metaverse. Or in more practical terms: if you buy a virtual shirt in Metaverse Platform A, NFTs can create a permanent receipt and let you redeem the same shirt in Metaverse Platforms B to Z.

Lots of NFT designers are selling collectible avatars like CryptoPunks, Cool Cats, and Bored Apes, sometimes for astronomical sums. Right now these are mostly 2D art used as social media profile pictures. But we’re already seeing some crossover with “metaverse”-style services. The company Polygonal Mind, for instance, is building a system called CryptoAvatars that lets people buy 3D avatars as NFTs and then use them across multiple virtual worlds.

If you have the time, the October 4, 2021 article (What is the metaverse, and do I have to care? One part definition, one part aspiration, one part hype) is definitely worth the read.

Facebook’s multiverse and other news

Since starting this post sometime in September 2021, the situation regarding Facebook has changed a few times. I’ve decided to begin my version of the story from a summer 2021 announcement.

On Monday, July 26, 2021, Facebook announced a new Metaverse product group. From a July 27, 2021 article by Scott Rosenberg for Yahoo News (Note: A link has been removed),

Facebook announced Monday it was forming a new Metaverse product group to advance its efforts to build a 3D social space using virtual and augmented reality tech.

Facebook’s new Metaverse product group will report to Andrew Bosworth, Facebook’s vice president of virtual and augmented reality [emphasis mine], who announced the new organization in a Facebook post.

Facebook, integrity, and safety in the metaverse

On September 27, 2021 Facebook posted this webpage (Building the Metaverse Responsibly by Andrew Bosworth, VP, Facebook Reality Labs [emphasis mine] and Nick Clegg, VP, Global Affairs) on its site,

The metaverse won’t be built overnight by a single company. We’ll collaborate with policymakers, experts and industry partners to bring this to life.

We’re announcing a $50 million investment in global research and program partners to ensure these products are developed responsibly.

We develop technology rooted in human connection that brings people together. As we focus on helping to build the next computing platform, our work across augmented and virtual reality and consumer hardware will deepen that human connection regardless of physical distance and without being tied to devices. 

Introducing the XR [extended reality] Programs and Research Fund

There’s a long road ahead. But as a starting point, we’re announcing the XR Programs and Research Fund, a two-year $50 million investment in programs and external research to help us in this effort. Through this fund, we’ll collaborate with industry partners, civil rights groups, governments, nonprofits and academic institutions to determine how to build these technologies responsibly. 

..

Where integrity and safety are concerned Facebook is once again having some credibility issues according to an October 5, 2021 Associated Press article (Whistleblower testifies Facebook chooses profit over safety, calls for ‘congressional action’) posted on the Canadian Broadcasting Corporation’s (CBC) news online website.

Rebranding Facebook’s integrity and safety issues away?

It seems Facebook’s credibility issues are such that the company is about to rebrand itself according to an October 19, 2021 article by Alex Heath for The Verge (Note: Links have been removed),

Facebook is planning to change its company name next week to reflect its focus on building the metaverse, according to a source with direct knowledge of the matter.

The coming name change, which CEO Mark Zuckerberg plans to talk about at the company’s annual Connect conference on October 28th [2021], but could unveil sooner, is meant to signal the tech giant’s ambition to be known for more than social media and all the ills that entail. The rebrand would likely position the blue Facebook app as one of many products under a parent company overseeing groups like Instagram, WhatsApp, Oculus, and more. A spokesperson for Facebook declined to comment for this story.

Facebook already has more than 10,000 employees building consumer hardware like AR glasses that Zuckerberg believes will eventually be as ubiquitous as smartphones. In July, he told The Verge that, over the next several years, “we will effectively transition from people seeing us as primarily being a social media company to being a metaverse company.”

A rebrand could also serve to further separate the futuristic work Zuckerberg is focused on from the intense scrutiny Facebook is currently under for the way its social platform operates today. A former employee turned whistleblower, Frances Haugen, recently leaked a trove of damning internal documents to The Wall Street Journal and testified about them before Congress. Antitrust regulators in the US and elsewhere are trying to break the company up, and public trust in how Facebook does business is falling.

Facebook isn’t the first well-known tech company to change its company name as its ambitions expand. In 2015, Google reorganized entirely under a holding company called Alphabet, partly to signal that it was no longer just a search engine, but a sprawling conglomerate with companies making driverless cars and health tech. And Snapchat rebranded to Snap Inc. in 2016, the same year it started calling itself a “camera company” and debuted its first pair of Spectacles camera glasses.

If you have time, do read Heath’s article in its entirety.

An October 20, 2021 Thomson Reuters item on CBC (Canadian Broadcasting Corporation) news online includes quotes from some industry analysts about the rebrand,

“It reflects the broadening out of the Facebook business. And then, secondly, I do think that Facebook’s brand is probably not the greatest given all of the events of the last three years or so,” internet analyst James Cordwell at Atlantic Equities said.

“Having a different parent brand will guard against having this negative association transferred into a new brand, or other brands that are in the portfolio,” said Shankha Basu, associate professor of marketing at University of Leeds.

Tyler Jadah’s October 20, 2021 article for the Daily Hive includes an earlier announcement (not mentioned in the other two articles about the rebranding), Note: A link has been removed,

Earlier this week [October 17, 2021], Facebook announced it will start “a journey to help build the next computing platform” and will hire 10,000 new high-skilled jobs within the European Union (EU) over the next five years.

“Working with others, we’re developing what is often referred to as the ‘metaverse’ — a new phase of interconnected virtual experiences using technologies like virtual and augmented reality,” wrote Facebook’s Nick Clegg, the VP of Global Affairs. “At its heart is the idea that by creating a greater sense of “virtual presence,” interacting online can become much closer to the experience of interacting in person.”

Clegg says the metaverse has the potential to help unlock access to new creative, social, and economic opportunities across the globe and the virtual world.

In an email with Facebook’s Corporate Communications Canada, David Troya-Alvarez told Daily Hive, “We don’t comment on rumour or speculation,” in regards to The Verge‘s report.

I will update this posting when and if Facebook rebrands itself into a ‘metaverse’ company.

Who (else) cares about integrity and safety in the metaverse?

Apparently, the international legal firm, Norton Rose Fulbright also cares about safety and integrity in the metaverse. Here’s more from their July 2021 The Metaverse: The evolution of a universal digital platform webpage,

In technology, first-mover advantage is often significant. This is why BigTech and other online platforms are beginning to acquire software businesses to position themselves for the arrival of the Metaverse.  They hope to be at the forefront of profound changes that the Metaverse will bring in relation to digital interactions between people, between businesses, and between them both. 

What is the Metaverse? The short answer is that it does not exist yet. At the moment it is vision for what the future will be like where personal and commercial life is conducted digitally in parallel with our lives in the physical world. Sounds too much like science fiction? For something that does not exist yet, the Metaverse is drawing a huge amount of attention and investment in the tech sector and beyond.  

Here we look at what the Metaverse is, what its potential is for disruptive change, and some of the key legal and regulatory issues future stakeholders may need to consider.

What are the potential legal issues?

The revolutionary nature of the Metaverse is likely to give rise to a range of complex legal and regulatory issues. We consider some of the key ones below. As time goes by, naturally enough, new ones will emerge.

Data

Participation in the Metaverse will involve the collection of unprecedented amounts and types of personal data. Today, smartphone apps and websites allow organisations to understand how individuals move around the web or navigate an app. Tomorrow, in the Metaverse, organisations will be able to collect information about individuals’ physiological responses, their movements and potentially even brainwave patterns, thereby gauging a much deeper understanding of their customers’ thought processes and behaviours.

Users participating in the Metaverse will also be “logged in” for extended amounts of time. This will mean that patterns of behaviour will be continually monitored, enabling the Metaverse and the businesses (vendors of goods and services) participating in the Metaverse to understand how best to service the users in an incredibly targeted way.

The hungry Metaverse participant

How might actors in the Metaverse target persons participating in the Metaverse? Let us assume one such woman is hungry at the time of participating. The Metaverse may observe a woman frequently glancing at café and restaurant windows and stopping to look at cakes in a bakery window, and determine that she is hungry and serve her food adverts accordingly.

Contrast this with current technology, where a website or app can generally only ascertain this type of information if the woman actively searched for food outlets or similar on her device.

Therefore, in the Metaverse, a user will no longer need to proactively provide personal data by opening up their smartphone and accessing their webpage or app of choice. Instead, their data will be gathered in the background while they go about their virtual lives. 

This type of opportunity comes with great data protection responsibilities. Businesses developing, or participating in, the Metaverse will need to comply with data protection legislation when processing personal data in this new environment. The nature of the Metaverse raises a number of issues around how that compliance will be achieved in practice.

Who is responsible for complying with applicable data protection law? 

In many jurisdictions, data protection laws place different obligations on entities depending on whether an entity determines the purpose and means of processing personal data (referred to as a “controller” under the EU General Data Protection Regulation (GDPR)) or just processes personal data on behalf of others (referred to as a “processor” under the GDPR). 

In the Metaverse, establishing which entity or entities have responsibility for determining how and why personal data will be processed, and who processes personal data on behalf of another, may not be easy. It will likely involve picking apart a tangled web of relationships, and there may be no obvious or clear answers – for example:

Will there be one main administrator of the Metaverse who collects all personal data provided within it and determines how that personal data will be processed and shared?
Or will multiple entities collect personal data through the Metaverse and each determine their own purposes for doing so? 

Either way, many questions arise, including:

How should the different entities each display their own privacy notice to users? 
Or should this be done jointly? 
How and when should users’ consent be collected? 
Who is responsible if users’ personal data is stolen or misused while they are in the Metaverse? 
What data sharing arrangements need to be put in place and how will these be implemented?

There’s a lot more to this page including a look at Social Media Regulation and Intellectual Property Rights.

One other thing, according to the Norton Rose Fulbright Wikipedia entry, it is one of the ten largest legal firms in the world.

How many realities are there?

I’m starting to think we should talking about RR (real reality), as well as, VR (virtual reality), AR (augmented reality), MR (mixed reality), and XR (extended reality). It seems that all of these (except RR, which is implied) will be part of the ‘metaverse’, assuming that it ever comes into existence. Happily, I have found a good summarized description of VR/AR/MR/XR in a March 20, 2018 essay by North of 41 on medium.com,

Summary: VR is immersing people into a completely virtual environment; AR is creating an overlay of virtual content, but can’t interact with the environment; MR is a mixed of virtual reality and the reality, it creates virtual objects that can interact with the actual environment. XR brings all three Reality (AR, VR, MR) together under one term.

If you have the interest and approximately five spare minutes, read the entire March 20, 2018 essay, which has embedded images illustrating the various realities.

Alternate Mixed Realities: an example

TransforMR: Pose-Aware Object Substitution for Composing Alternate Mixed Realities (ISMAR ’21)

Here’s a description from one of the researchers, Mohamed Kari, of the video, which you can see above, and the paper he and his colleagues presented at the 20th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2021 (from the TransforMR page on YouTube),

We present TransforMR, a video see-through mixed reality system for mobile devices that performs 3D-pose-aware object substitution to create meaningful mixed reality scenes in previously unseen, uncontrolled, and open-ended real-world environments.

To get a sense of how recent this work is, ISMAR 2021 was held from October 4 – 8, 2021.

The team’s 2021 ISMAR paper, TransforMR Pose-Aware Object Substitution for Composing Alternate Mixed Realities by Mohamed Kari, Tobias Grosse-Puppendah, Luis Falconeri Coelho, Andreas Rene Fender, David Bethge, Reinhard Schütte, and Christian Holz lists two educational institutions I’d expect to see (University of Duisburg-Essen and ETH Zürich), the surprise was this one: Porsche AG. Perhaps that explains the preponderance of vehicles in this demonstration.

Space walking in virtual reality

Ivan Semeniuk’s October 2, 2021 article for the Globe and Mail highlights a collaboration between Montreal’s Felix and Paul Studios with NASA (US National Aeronautics and Space Administration) and Time studios,

Communing with the infinite while floating high above the Earth is an experience that, so far, has been known to only a handful.

Now, a Montreal production company aims to share that experience with audiences around the world, following the first ever recording of a spacewalk in the medium of virtual reality.

The company, which specializes in creating virtual-reality experiences with cinematic flair, got its long-awaited chance in mid-September when astronauts Thomas Pesquet and Akihiko Hoshide ventured outside the International Space Station for about seven hours to install supports and other equipment in preparation for a new solar array.

The footage will be used in the fourth and final instalment of Space Explorers: The ISS Experience, a virtual-reality journey to space that has already garnered a Primetime Emmy Award for its first two episodes.

From the outset, the production was developed to reach audiences through a variety of platforms for 360-degree viewing, including 5G-enabled smart phones and tablets. A domed theatre version of the experience for group audiences opened this week at the Rio Tinto Alcan Montreal Planetarium. Those who desire a more immersive experience can now see the first two episodes in VR form by using a headset available through the gaming and entertainment company Oculus. Scenes from the VR series are also on offer as part of The Infinite, an interactive exhibition developed by Montreal’s Phi Studio, whose works focus on the intersection of art and technology. The exhibition, which runs until Nov. 7 [2021], has attracted 40,000 visitors since it opened in July [2021?].

At a time when billionaires are able to head off on private extraterrestrial sojourns that almost no one else could dream of, Lajeunesse [Félix Lajeunesse, co-founder and creative director of Felix and Paul studios] said his project was developed with a very different purpose in mind: making it easier for audiences to become eyewitnesses rather than distant spectators to humanity’s greatest adventure.

For the final instalments, the storyline takes viewers outside of the space station with cameras mounted on the Canadarm, and – for the climax of the series – by following astronauts during a spacewalk. These scenes required extensive planning, not only because of the limited time frame in which they could be gathered, but because of the lighting challenges presented by a constantly shifting sun as the space station circles the globe once every 90 minutes.

… Lajeunesse said that it was equally important to acquire shots that are not just technically spectacular but that serve the underlying themes of Space Explorers: The ISS Experience. These include an examination of human adaptation and advancement, and the unity that emerges within a group of individuals from many places and cultures and who must learn to co-exist in a high risk environment in order to achieve a common goal.

If you have the time, do read Semeniuk’s October 2, 2021 article in its entirety. You can find the exhibits (hopefully, you’re in Montreal) The Infinite here and Space Explorers: The ISS experience here (see the preview below),

The realities and the ‘verses

There always seems to be a lot of grappling with new and newish science/technology where people strive to coin terms and define them while everyone, including members of the corporate community, attempts to cash in.

The last time I looked (probably about two years ago), I wasn’t able to find any good definitions for alternate reality and mixed reality. (By good, I mean something which clearly explicated the difference between the two.) It was nice to find something this time.

As for Facebook and its attempts to join/create a/the metaverse, the company’s timing seems particularly fraught. As well, paradigm-shifting technology doesn’t usually start with large corporations. The company is ignoring its own history.

Multiverses

Writing this piece has reminded me of the upcoming movie, “Doctor Strange in the Multiverse of Madness” (Wikipedia entry). While this multiverse is based on a comic book, the idea of a Multiverse (Wikipedia entry) has been around for quite some time,

Early recorded examples of the idea of infinite worlds existed in the philosophy of Ancient Greek Atomism, which proposed that infinite parallel worlds arose from the collision of atoms. In the third century BCE, the philosopher Chrysippus suggested that the world eternally expired and regenerated, effectively suggesting the existence of multiple universes across time.[1] The concept of multiple universes became more defined in the Middle Ages.

Multiple universes have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology, music, and all kinds of literature, particularly in science fiction, comic books and fantasy. In these contexts, parallel universes are also called “alternate universes”, “quantum universes”, “interpenetrating dimensions”, “parallel universes”, “parallel dimensions”, “parallel worlds”, “parallel realities”, “quantum realities”, “alternate realities”, “alternate timelines”, “alternate dimensions” and “dimensional planes”.

The physics community has debated the various multiverse theories over time. Prominent physicists are divided about whether any other universes exist outside of our own.

Living in a computer simulation or base reality

The whole thing is getting a little confusing for me so I think I’ll stick with RR (real reality) or as it’s also known base reality. For the notion of base reality, I want to thank astronomer David Kipping of Columbia University in Anil Ananthaswamy’s article for this analysis of the idea that we might all be living in a computer simulation (from my December 8, 2020 posting; scroll down about 50% of the way to the “Are we living in a computer simulation?” subhead),

… there is a more obvious answer: Occam’s razor, which says that in the absence of other evidence, the simplest explanation is more likely to be correct. The simulation hypothesis is elaborate, presuming realities nested upon realities, as well as simulated entities that can never tell that they are inside a simulation. “Because it is such an overly complicated, elaborate model in the first place, by Occam’s razor, it really should be disfavored, compared to the simple natural explanation,” Kipping says.

Maybe we are living in base reality after all—The Matrix, Musk and weird quantum physics notwithstanding.

To sum it up (briefly)

I’m sticking with the base reality (or real reality) concept, which is where various people and companies are attempting to create a multiplicity of metaverses or the metaverse effectively replacing the internet. This metaverse can include any all of these realities (AR/MR/VR/XR) along with base reality. As for Facebook’s attempt to build ‘the metaverse’, it seems a little grandiose.

The computer simulation theory is an interesting thought experiment (just like the multiverse is an interesting thought experiment). I’ll leave them there.

Wherever it is we are living, these are interesting times.

World CRISPR Day on October 20, 2021 from 8:00 a.m. – 6:00 p.m. PDT

H/t to rapper Baba Brinkman (born in Canada and based in New York City) for the tweet/retweet about his upcoming appearance at World CRISPR (clustered regularly interspaced palindromic repeats) Day on October 20, 2021 from 8:00 a.m. – 6:00 p.m. PDT,

Baba Brinkman @BabaBrinkman

True facts! I’ve been working with incredible #CRISPR innovator @Synthego and the @EventRapInc team, and tomorrow is #WorldCRISPRDay! Look for new DNA-themed videos and streamed performances all day from @HilaTheKilla, @CoreyJGray, @ZEPS, @MCAbdominal and me. Sign up to watch!

Synthego
@Synthego· 2h
Multiple musical notes BREAKING NEWS Multiple musical notes We’re delighted to announce that @BabaBrinkman will be performing live at #WorldCRISPRDay! Register today so you don’t miss out on this special and exclusive performance at the biggest event in #CRISPR! https://hubs.li/H0ZGfSG0

World CRISPR Day (it’s free) is being hosted by Synthego, from their About Us (company) webpage,

Synthego is a genome engineering company that enables the acceleration of life science research and development in the pursuit of improved human health.

The company leverages machine learning, automation, and gene editing to build platforms for science at scale. With its foundations in engineering disciplines, the company’s platform technologies vertically integrate proprietary hardware, software, bioinformatics, chemistries, and molecular biology to advance basic research, target validation, and clinical trials.

With its technologies cited in hundreds of peer-reviewed publications and utilized by thousands of commercial and academic researchers and therapeutic drug developers, Synthego is at the forefront of innovation enabling the next generation of medicines by delivering genome editing at an unprecedented scale.

Here’s the company’s (undated) announcement about the upcoming World CRISPR Day,

Synthego is proud to host the 2nd annual World CRISPR Day virtual event on October 20, 2021, where we can share, listen, and learn about the latest advancements in CRISPR. The day will include presentations from the world’s leading Genome Engineers, a panel discussion featuring the women of CRISPR, and much more! Don’t miss your chance to learn from the experts how CRISPR is editing the future of medicine.

Despite the COVID-related challenges that the global research community continues to face, scientists have persevered in their relentless pursuit of advancing human health. The field of CRISPR has been no exception. With development of new CRISPR innovations, drug discovery and diagnostic methods, and numerous successful reports of CRISPR-based cell and gene therapy clinical trials, the promise of CRISPR in the clinic is becoming a reality.

Join us at World CRISPR Day to hear academic and industry experts talk about their transformative research, visit our partner’s booths, take advantage of the different networking sessions with your peers, and much more!

Register now for free!

You can find World CRISPR Day 2021 here and you can find Baba Brinkman’s website here.

Having looked at the pop up pages describing the panel discussions and participants and having looked at their World CRISPR Day 2021 and 2020 videos, I strongly suspect that this day focuses on CRISPR as the solution to any number of problems in the life sciences, an area, where coincidentally, Synthego and its partners have significant expertise. With that proviso in mind, I’m sure this will be a very interesting and worthwhile day.

Walrus from Space project (citizen science)

Image:: Norwegian Atlantic Walrus. Photo: Tor Lund / WWF [Downloaded from: https://eminetra.co.uk/climate-change-the-walrus-from-space-project-is-calling-on-the-general-public-to-help-search-for-animals-on-satellite-imagery-climate-news/755984/]

Yesterday (October 14, 2021), the World Wildlife Federation (WWF) announced their Walrus from Space project in a press release,

WWF and British Antarctic Survey (BAS) are seeking the public’s help to search for walrus in thousands of satellite images taken from space, with the aim of learning more about how walrus will be impacted by the climate crisis. It’s hoped half a million people worldwide will join the new ‘Walrus from Space’ research project, a census of Atlantic walrus and walrus from the Laptev Sea, using satellite images provided by space and intelligence company Maxar Technologies’ DigitalGlobe.

Walrus are facing the reality of the climate crisis: their Arctic home is warming almost three times faster than the rest of the world and roughly 13% of summer sea ice is disappearing per decade.

From the comfort of their own homes, aspiring conservationists around the world can study the satellite pictures online, spot areas where walrus haul out onto land, and then count them. The data collected in this census of Atlantic and Laptev walrus will give scientists a clearer picture of how each population is doing—without disturbing the animals. The data will also help inform management decisions aimed at conservation efforts for the species.

Walrus use sea ice for resting and to give birth to their young. As sea ice diminishes, more walrus are forced to seek refuge on land, congregating for the chance to rest. Overcrowded beaches can have fatal consequences; walrus are easily frightened, and when spooked they stampede towards the water, trampling one another in their panic. Resting on land (as opposed to sea ice) may also force walrus to swim further and expand more energy to reach their food—food which in turn is being negatively impacted by the warming and acidification of the ocean.

In addition walrus can also be disturbed by shipping traffic and industrial development as the loss of sea ice makes the Arctic more accessible. Walrus are almost certainly going to be impacted by the climate crisis, which could result in significant population declines.

Rod Downie, chief polar adviser at WWF, said:

“Walrus are an iconic species of great cultural significance to the people of the Arctic, but climate change is melting their icy home. It’s easy to feel powerless in the face of the climate and nature emergency, but this project enables individuals to take action to understand a species threatened by the climate crisis, and to help to safeguard their future. “What happens in the Arctic doesn’t stay there; the climate crisis is a global problem, bigger than any person, species or region. Ahead of hosting this year’s global climate summit, the UK must raise its ambition and keep all of its climate promises—for the sake of the walrus, and the world.”

Previous population estimates are based upon the best data and knowledge available, but there are challenges associated with working with marine mammals in such a vast, remote and largely inaccessible place. This project will build upon the knowledge of Indigenous communities, using satellite technology to provide an up-to-date count of Atlantic and Laptev walrus populations.

Hannah Cubaynes, wildlife from space research associate at British Antarctic Survey, said:

“Assessing walrus populations by traditional methods is very difficult as they live in extremely remote areas, spend much of their time on the sea ice and move around a lot, Satellite images can solve this problem as they can survey huge tracts of coastline to assess where walrus are and help us count the ones that we find. “However, doing that for all the Atlantic and Laptev walrus will take huge amounts of imagery, too much for a single scientist or small team, so we need help from thousands of citizen scientists to help us learn more about this iconic animal.”

Earlier this year Cub Scouts from across the UK became walrus spotters to test the platform ahead of its public release. The Scouts have been a partner of WWF since the early 1970s, and over 57 million scouts globally are engaged in environmental projects.

Cub Scout Imogen Scullard, age 9, said:

“I love learning about the planet and how it works. We need to protect it from climate change. We are helping the planet by doing the walrus count with space satellites, which is really cool. It was a hard thing to do but we stuck at it”

The ‘Walrus From Space’ project, which is supported by players of the People’s Postcode Lottery, as well as RBC Tech For Nature and WWF supporters, aims to recruit more than 500,000 citizen scientists over the next five years. Over the course of the project counting methods will be continually refined and improved as data is gathered.

Laura Chow, head of charities at People’s Postcode Lottery, said:

“We’re delighted that players’ support is bringing this fantastic project to life. We encourage everyone to get involved in finding walrus so they can play a part in helping us better understand the effects of climate change on this species and their ecosystem. “Players of People’s Postcode Lottery are supporting this project as part of our Postcode Climate Challenge initiative, which is providing 12 charities with an additional £24 million for projects tackling climate change this year.”

Aspiring conservationists can help protect the species by going to wwf.org.uk/walrusfromspace where they can register to participate, and then be guided through a training module before joining the walrus census.

Download our FAQ

The WWF has released a charming video invitation”Become A Walrus Detective,” (Note: It may be a little over the top for some),

The WWF has a Learn about Walrus from Space webpage, which features the video above and includes a registration button.

Is the United Kingdom an Arctic nation?

No. They are not. (You can check here on the Arctic Countries webpage of The Arctic Institute website.)

Nonetheless and leaving aside that the Arctic and the Antarctic are literally polar opposites, I gather that the British Government in the form of the British Antarctic Survey (BAS), is quite interested in the Arctic, viz.: the Walrus from Space project.

If you keep digging you’ll find a chain of UK government agencies, from the BAS About page (at the bottom), Note: Links have been removed,,

British Antarctic Survey (BAS) is a component of the Natural Environment Research Council (NERC).

NERC is part of UK Research and Innovation

Keep digging (from the UK Research and Innovation entry on Wikipedia), Note: Links have been removed,

UK Research and Innovation (UKRI) is a non-departmental public body of the Government of the United Kingdom that directs research and innovation funding, funded through the science budget of the Department for Business, Energy and Industrial Strategy [emphases mine].

Interesting, non?

There doesn’t have to be a sinister connection between a government agency devoted to supporting business and industry and a climate change project. If we are to grapple with climate change in a significant way, we will need cooperation from many groups and coutnries (some of which may have been adversaries in the past).

Of course, the problem with the business community is that efforts aimed at the public good are often publicity stunts.

For anyone curious about the businesses mentioned in the press release, Maxar Technologies can be found here, Maxar’s DigitalGlobe here, and RBC (Royal of Bank of Canada) Tech for Nature here.

BTW, I love that walrus picture at the beginning of this posting.

Truth and Reconciliation Day Sept. 30, 2021

Years ago I came across a newspaper article where the writer had interviewed some Chiefs. I can’t remember what occasioned the article but the quotes about land rights could have been taken from one of today’s newspapers. The article was written in 1925.

In hearing the stories of what Indigenous Peoples in Canada have had to endure such as the loss of their land and rights, horrific living conditions on the reserves, the Residential schools, and more, our failure to act is impossible to understand.

The perseverance over generations is remarkable.

For anyone who may want to find out more about why there is a Truth and Reconciliation Day there is a September 28, 2021 article (Why Canada is marking the 1st National Day for Truth and Reconciliation this year) by Michelle Ghoussoub for Canadian Broadcasting Corporation (CBC) news online. The Canadian federal government has this National Day for Truth and Reconciliation webpage, which provides information about events being held across the country. APTN (once called Aboriginal Peoples Television Network) lists a special 24 hour schedule on their National Day for Truth and Reconciliation webpage.

I’d like to end on a note of hope and given that this is a science blog, these two endeavours stand out.

First Nations University

Here’s more from the About Us webpage,

First Nations University of Canada seeks to have an ongoing transformative impact through education based on a foundation of Indigenous Knowledge. The Regina campus is situated on the atim kâ-mihkosit (Red Dog) Urban Reserve, Star Blanket Cree Nation and Treaty 4 Territory. Star Blanket is the first First Nation in Canada to create an urban reserve specifically dedicated to the advancement of education.

They offer undergraduate and graduate programmes and appear to have some sort of partnership with the University of Regina (Saskatchewan). Their Indigenous Knowledge & Science undergraduate programme description can be found here.

Indigenous science, technology, and society (Indigenous STS)

I have two different webspaces for this. First, the Indigenous Science, Technology, and Society webpage on the University of Alberta, Faculty of Native Studies,

About Indigenous STS

Indigenous Science, Technology, and Society (Indigenous STS) is an international research and teaching hub, housed at the University of Alberta, for the burgeoning sub-field of Indigenous STS.

Our mission is two-fold: 1) To build Indigenous scientific literacy by training graduate students, postdoctoral, and community fellows to grapple expertly with techno-scientific projects and topics that affect their territories, peoples, economies, and institutions; and 2) To produce research and public intellectual outputs with the goal to inform national, global, and Indigenous thought and policymaking related to science and technology. Indigenous STS is committed to building and supporting techno-scientific projects and ways of thinking that promote Indigenous self-determination.

Learn more about Indigenous STS.

Principal Investigator

Kim TallBear

Kim TallBear is an Associate Professor, Faculty of Native Studies, Canada Research Chair in Indigenous Peoples, Technoscience & Environment, University of Alberta, and a 2018 Pierre Elliott Trudeau Foundation Fellow. She is a graduate of the University of California, Santa Cruz and of the Massachusetts Institute of Technology. Professor TallBear is the author of one monograph, Native American DNA: Tribal Belonging and the False Promise of Genetic Science (Minneapolis: University of Minnesota Press, 2013), which won the Native American and Indigenous Studies Association First Book Prize. She is the co-editor of a collection of essays published by the Oak Lake Writers, a Dakota and Lakota tribal writers’ society in the USA. Professor TallBear has written nearly two-dozen academic articles and chapters published in the United States, Canada, Australia, and Sweden. She also writes for the popular press and has published in venues such as BuzzFeed, Indian Country Today, and GeneWatch. She is a frequent blogger on issues related to Indigenous peoples, science, and technology. Professor TallBear is a frequent commentator in the media on issues related to Indigenous peoples and genomics including interviews in New Scientist, New York Times, Native America Calling, National Geographic, Scientific American, The Atlantic, and on NPR, CBC News and BBC World Service. Professor TallBear has advised science museums across the United States on issues related to race and science. She also advised the former President of the American Society for Human Genetics on issues related to genetic research ethics with Indigenous populations. She is a founding ethics faculty member in the Summer internship for Indigenous Peoples in Genomics (SING), and has served as an advisor to programs at genome ethics centres at Duke University and Stanford University. She is also an advisory board member of the Science & Justice Research Centre at the University of California, Santa Cruz. Professor TallBear was an elected council member of the Native American and Indigenous Studies Association (NAISA) from 2010-2013. She is co-producer of an Edmonton sexy storytelling show, Tipi Confessions, which serves as a research-creation laboratory at the University of Alberta on issues related to decolonization and Indigenous sexualities. She is a citizen of the Sisseton-Wahpeton Oyate in South Dakota and is also descended from the Cheyenne & Arapaho Tribes of Oklahoma.

Learn more about Kim TallBear

You may have already discovered the second webspace, it’s the Indigenous Science, Technology, and Society (Indigenous STS) website. There are other programmes but the one that most interested me is the Summer Internship for Indigenous Peoples in Genomics Canada (SING Canada),

About

The Summer internship for INdigenous peoples in Genomics Canada (SING Canada) is an initiative associated with the Indigenous Science, Technology, and Society Research and Training Program (Indigenous STS) at the University of Alberta, Faculty of Native Studies. Building on the success of SING US and SING AotearoaSING Canada is an annual one-week intensive workshop designed to build Indigenous capacity and scientific literacy by training undergraduate and graduate students, postdoctoral, and community fellows in the basic of genomics, bioinformatics, and Indigenous and decolonial bioethics. This week-long, all expenses paid residential program invites Indigenous participants to engage in hands-on classroom, lab, and field training in genomic sciences and Indigenous knowledge. The curriculum includes an introduction to leading advances in and Indigenous approaches to genomics and its the ethical, environmental, economic, legal, and social (GE3LS) implications. Participants gain an awareness of the uses, misuses, opportunities, and limitations of genomics as a tool for Indigenous peoples’ governance. SING Canada is distinguished by its dedication to critical Indigenous theory and an emphasis on discussing the local contexts (i.e. political, legal, biological, and Indigenous) where the workshops take place, including the human and other-than-human relations that have implications variously for human and non-human health, environments, and societies. This is not your average summer science training program!

Sponsors

Our SING Canada regular sponsors include the University of Alberta Faculty of Native Studies, Genome CanadaSilent Genomes and LifeLabs.

SING Canada seems to have originated in 2018 and one was planned for 2021. I imagine they’ll update the information when they prepare for the 2022 edition.

Postdoctoral fellowships at Canada’s Perimeter Institute for Theoretical Physics

Here’s an opportunity from the Perimeter Institute, received via a September 23, 2021,

Perimeter Institute offers a dynamic, multi-disciplinary environment with maximum research freedom and opportunity to collaborate. We welcome all candidates to apply by November 8, 2021 but applications will be considered until all positions are filled.

There’s more about the opportunity from the posting on Academic Jobs Online,

Perimeter Institute for Theoretical Physics, Research

Fellowship ID: PI-Research-2022PDF [#19639] [Note: Link removed]
Fellowship Title: 2022 Postdoctoral Fellowship
Fellowship Type: Postdoctoral
Location: Waterloo, Ontario N2L2Y5, Canada [map] [Note: Link removed]

Subject Areas: Physics / Astroparticle Physics, astrophysics, Astrophysics (astro-ph), Astrophysics Theory, Atomic Physics, Computational physics, Condensed Matter Physics, Condensed Matter Physics; Condensed Matter Theory; Computational Physics; X-ray Spectroscopy; Electronic Structure; Ultrafast Dynamics, Condensed Matter Theory, Cosmology, Dark Matter, Elementary Particle Physics, Elementary Particle Theory, GR-Cosmology (gr-qc), Gravitational Physics, Gravitational Theory, Gravitational Wave Sources, Gravity, Hadron Physics, Hadron Physics, String Theory, Mathematical Physics, Cosmology, Gravity, Theoretical Astrophysics, Experimental Astrophysics, Astroparticle Physics, Hard Condensed Matter Theory, hep, hep-lat, HEP-Lattice (hep-lat), hep-ph, HEP-Phenomenology (hep-ph), hep-th, HEP-Theory (hep-th), High energy density matter, High Energy Physics, High Energy Theory Group, High Performance Computing, HP-Theory, Machine Learning, Materials Science, Materials Sciences, materials theory;, Mathematical Physics, Neutrino physics, Nuclear & Particle Experiment, Nuclear & Particle Theory, Nuclear and Many-Body Theory, Nuclear and Particle Physics Software, Nuclear Physics, Nuclear Theory, Nuclear Theory (nucl-th), Nuclear Theory-QCD, Particle, Particle Astrophysics, particle phenomenology and astroparticle physics, Particle Physics, Particle/Cosmology Theory, Physics, Physics – Mathematical Physics, QCD, Quantum Computation, Quantum Computing, Quantum Condensed Matter Theory, Quantum Field Theory, quantum gravity, Quantum Hydrodynamics, Quantum Information Science, Quantum Optics and Quantum Science, Quantum Science, Quantum Science + Quantum Information Science + Quantum Optics + Theoretical Physics, Quantum Sensors, Soft Condensed Matter Theory, Soft Matter, Statistical physics, Stellar Astrophysics, String Theory, String Theory/Quantum Gravity/Field Theory, string-math, Strong field physics, theoretical astroparticle physics, Theoretical Astrophysics, theoretical atomic, Theoretical atomic physics, theoretical condensed matter physics, Theoretical high energy physics, theoretical nuclear, Theoretical Particle Physics, Theoretical Physics, Theoretical Soft Matter Physics, Theory of Particle Physics

Apply  

More details,

Each year Perimeter Institute for Theoretical Physics invites applications for postdoctoral positions, including named fellowships, from new and recent PhDs working in fundamental theoretical physics.

Research areas at Perimeter include: particle physics, quantum matter, cosmology, strong gravity, mathematical physics, quantum fields and strings, quantum foundations, quantum information, and quantum gravity. Importantly, research at Perimeter focuses on the intersections of those research areas.

Most postdoctoral positions are offered for a period of three years. You may also be eligible for a named four-year postdoctoral fellowship including the Jocelyn Bell Burnell, Stephen Hawking, and Chien-Shiung Wu fellowships. Senior five-year fellowships are also available. Fellowships may, in addition, be offered jointly between Perimeter and partner institutes and universities.

Applications are due November 8, 2021, however, applications submitted after this date will be considered until all positions are filled. Referees may also continue to submit their references past this deadline.

Application details such as which materials need to be submitted are here.

If you have any questions, you can try here:

https://perimeterinstitute.ca/jobs/perimeter-postdoctoral-program
Christina Bouda <apply@perimeterinstitute.ca>

Good luck!

Toronto’s (Canada) ArtSci Salon offers: Naturalized Encounters (a series of international, networked meals known as “Follow the Spread” starting Sunday, October 3, 2021

My September 26, 2021 Art/Sci Salon notice (received via email) provides these details,

Naturalization = The ecological phenomenon in which a species, taxon, or population of exotic (as opposed to native) origin integrates into a given ecosystem, becoming capable of reproducing and growing in it, and proceeds to disseminate spontaneously. In some instances, the presence of a species in a given ecosystem is so ancient that it cannot be presupposed whether it is native or introduced
How does adaptation through naturalization occur? What happens to the native population? How does coexistence happen?

Our first event will revolve around the Solanum Melongena, a plant species in the nightshade family Solanaceae commonly known as the eggplant. This plant (and the many different names it goes by Aubergine, Melanzana, Brinjal, Berenjena, باذنجان, vânătă, 茄子,بادمجان) uncertain origins, grown worldwide for its edible fruit. Eggplants exist in many shapes, sizes and colors.

Our event will be a harvest potluck, with dialogues, storytelling, and exchanges about and beyond food. Our guests will engage in creative interventions to reflect on the many ways food, and food mobility affects all sentient beings, both humans and non-humans; peoples and civilizations; individuals’ health and collective traditions. Food is nourishment, care, medicine, and art. Food is political. Food is ultimately about our survival.

This is the first of a series of networked meals titled “FOLLOW THE SPREAD,” which will be staged around the world and across time zones throughout Fall 2021-Spring 2022 in Canada (October 3, Spring 2022), Norway (October 7), the Netherlands and Taiwan (Spring 2022).

Join us online to meet 10 Canadian artists and scholars as they launch the series in Toronto and engage in a nourishing and inspiring feast

Amira Alamary
TBA

Antje Budde
Antje Budde is a conceptual, queer-feminist, interdisciplinary experimental scholar-artist and an Associate Professor of Theatre Studies, Cultural Communication and Modern Chinese Studies at the Centre for Drama, Theatre and Performance Studies, University of Toronto. Antje has created multi-disciplinary artistic works in Germany, China and Canada and works tri-lingually in German, English and Mandarin. She is the founder of a number of queerly feminist performing art projects including most recently the (DDL)2 or (Digital Dramaturgy Lab)Squared – a platform for experimental explorations of digital culture, creative labor, integration of arts and science, and technology in performance. She is interested in the intersections of natural sciences, the arts, engineering and computer science.

Charmaine Lurch
Charmaine Lurch is a multidisciplinary artist whose painting, sculpture, and social engagement reveal the intricacies and complexities of the relationships between us and our environments. Her sculptures, installations, and interventions produce enchantment as she skillfully contends with what is visible and present in conjunction with what remains unsaid or unnoticed. Lurch applies her experience in community arts and education to create inviting entry points into overwhelmingly complex and urgent racial, ecological, and historical reckonings.

Lurch’s work contends with both spatiality and temporality, enchanting her subject matter with multiple possibilities for engagement. This can be seen in the interplay between light, wire, and space in her intricate wire sculptures of bees and pollen grains, and in what scholar Tiffany Lethabo King refers to as the “open edgelessness” of Sycorax. A sensuous dynamism belies the everyday tasks reflected in her charcoal-on-parchment series Being, Belonging and Grace. Lurch’s particular evocations and explorations of space and time invite an analysis of their own, and her work has been engaged with by academics. These include King, who chose Sycorax Gesture, a charcoal illustration for the cover of her book The Black Shoals: Offshore Formations of Black and Native Studies, in which King discusses Lurch’s work in depth. Scholar Katherine McKittrick both inserted and engaged with Lurch’s work in her latest notable book, Dear Science & Other Stories.

Dave Kemp
Dave Kemp is a visual artist whose practice looks at the intersections and interactions between art, science and technology: particularly at how these fields shape our perception and understanding of the world. His artworks have been exhibited widely at venues such as at the McIntosh Gallery, The Agnes Etherington Art Centre, Art Gallery of Mississauga, The Ontario Science Centre, York Quay Gallery, Interaccess, Modern Fuel Artist-Run Centre, and as part of the Switch video festival in Nenagh, Ireland. His works are also included in the permanent collections of the Agnes Etherington Art Centre and the Canada Council Art Bank.

Dolores Steinman
Dolores Steinman is a trained pediatrician who holds a Ph.D. from the University of Toronto. She is very active in several Art/Science communities locally and internationally.

Elaine Whittaker
Elaine Whittaker is a Canadian visual artist working at the intersection of art, science, medicine, and ecology. She considers biology as contemporary art practice and as the basis for her installations, sculptures, paintings, drawings, and digital images. Whittaker has exhibited in art and science galleries and museums in Canada, France, Italy, UK, Ireland, Latvia, China, South Korea, Australia, Mexico, and the U.S. Artwork created as Artist-in-Residence with the Pelling Laboratory for Augmented Biology (University of Ottawa) was exhibited in La Fabrique du Vivant at the Pompidou Centre, Paris  in 2019.  She was one of the first Artists-in-Residence with the Ontario Science Centre in partnership with the Museum of Contemporary Art Toronto. Her work has also been featured in art, literary, and medical magazines, and books, including Bio Art: Altered Realities by William Myers (2015).

Elizabeth Littlejohn
Elizabeth Littlejohn is a communications professor, human rights activist, photojournalist, and documentary film-maker. She has written for Rabble.ca for the past thirteen years on social movements, sustainable urban planning, and climate change. As a running gun social movement videographer, she has filmed internationally. Her articles, photojournalism, and videos have documented Occupy, Idle No More, and climate change movements, and her photographs have been printed in NOW Magazine, the Toronto Star, and Our Times.

Recently Elizabeth Littlejohn has completed ‘The City Island’, a feature-length documentary she directed about the razing of homes on the Toronto Islands and the islanders’ stewardship of the park system, with the support of the Canada Council. Currently, Elizabeth is developing the Toronto Island Puzzle Tour, an augmented-reality smartphone application with five locales depicting hidden history of the Toronto Island, and funded by the City of Toronto’s Artworx Grant.

Gita Hashemi
Gita Hashemi works in visual and performance art, digital and net art, and language-based art including live embodied writing, and in publishing. Her transdisciplinary, multi-platform and often site-responsive projects explore historical, trans-border and marginalized narratives and their traces in contemporary contexts. She has received numerous project grants from Canadian arts councils, and won awards from Toronto Community Foundation, Baddeck International New Media Festival, American Ad Federation, and Ontario Association of Art Galleries among others. Hashemi is an Ontario Heritage Trust’s Doris McCarthy Artist in Residence in 2021 with a land-based project. Her work has been exhibited at many international venues including SIGGRAPH, Los Angeles; Center for Book Arts, New York; Yerba Buena Center for the Arts, San Francisco; Plug-In, Basel; Casoria Museum of Contemporary Art, Naples; Al Kahf Art Gallery, Bethlehem; Red House Centre for Culture, Sofia; Museo de Arte Contemporaneo de Yucatan, Merida; National Museum of Contemporary Art, Bucharest; Worth Ryder Gallery, Berkeley; Museo de Arte Contemporaneo de Santa Fe, Argentina; Museum of Movements, Malmo; and JolibaZWO, Berlin among others. In Canada her work has been presented at A Space Gallery, York Quay Gallery, YYZ, MAI, and Carlton University Art Gallery. She has exhibited in numerous festivals including Electroshock, France; VI Salon y coloquio internacional de art digital, Havana; New Media Art Festival, Bangkok; Biennale of Electronic Art, Perth; and New Music and Art Festival, Bowling Green and others.

Nina Czegledy
Toronto based artist, curator, educator, works internationally on collaborative art, science & technology projects. The changing perception of the human body and its environment, as well as paradigm shifts in the arts, inform her projects. She has exhibited and published widely, won awards for her artwork and has initiated, led and participated in workshops, forums and festivals worldwide at international events.

Roberta Buiani
Artistic Director of the ArtSci Salon at the Fields Institute for Research in Mathematical Sciences (Toronto). Her artistic work has travelled to art festivals (Transmediale; Hemispheric Institute Encuentro; Brazil), community centers and galleries (the Free Gallery Toronto; Immigrant Movement International, Queens, Museum of Toronto), and scientific institutions (RPI; the Fields Institute). She is a research associate at the Centre for Feminist Research and a Scholar in Residence at Sensorium: Centre for Digital Arts and Technology, at York University.

Tune in on Oct 3 [2021] at 10:30 AM EDT; 4:30 PM CET; 10:30 PM CST [Note: For those of us on the West Coast, that will 7:30 am PDT]

To view the video on Sunday, Oct. 3, 2021, just go to the ‘Naturalized Encounters’ webpage on the ArtSci Salon website and scroll down.

‘Drift: Art and Dark Matter’ at Vancouver’s (Canada) Belkin Art Gallery from 10 September – 05 December 2021

The drift in “Drift: Art and Dark Matter” (at the Belkin Art Gallery) comes from a mining term for an almost horizontal passageway or tunnel in a mine. (This makes sense when you realize SNOLAB is one of the partners for this show. For anyone unfamiliar with SNOLAB, there is more coming shortly.)

The show itself appears to be a suite of multimedia installations from four artists, which were first shown at the Agnes Etherington Art Centre at Queen’s University, Ontario.

Image: Josèfa Ntjam, Organic Nebula, 2019, photomontage, mixed techniques. Collection of the artist [one of the Drift show artists]

For anyone who’s primarily interested in the show’s Belkin Gallery appearance, scroll down to the “Drift moves to the Belkin in British Columbia” subhead where you’ll find an invitation to the show’s opening and more about the BC collaboration. **As of Sept. 9, 2021, I have updated the ‘questions’ subsection (scroll down to ?) with newly arrived answers.**

Drift: the show and the art/science residencies at Queen’s University

This show, which ran from 20 February to 30 May 2021, had its start at Queen’s University (Ontario) where it featured astroparticle physics, art/science residencies, and artists Nadia Lichtig, Josèfa Ntjam, Anne Riley and Jol Thoms, (from the Drift: Art and Dark Matter exhibition webpage on the Agnes Queen’s University site; Note: The Agnes is also known as, the Agnes Etherington Art Centre), Note: A link has been removed,

Some kind of invisible matter is having a gravitational effect on everything. Without the gravity of this “dark” matter, galaxies would fly apart. Observational data in astroparticle physics indicate that it exists, but so far dark matter hasn’t been directly detected. Given the contours of such an unknown, artists Nadia Lichtig, Josèfa Ntjam, Anne Riley and Jol Thoms reflect on the “how” and “why” of physics and art as diverse and interrelating practices of knowledge. Through open exchange between disciplines, they have created works that are sensory agents between scientific ideas of dark matter and the exploration of that which has never been directly sensed.

Drift: Art and Dark Matter is a residency and exhibition project generated by Agnes Etherington Art Centre, the Arthur B. McDonald Canadian Astroparticle Physics Research Institute and SNOLAB. Four artists of national and international stature were invited to make new work while engaging with physicists, chemists and engineers contributing to the search for dark matter at SNOLAB’s facility in Sudbury, two kilometres below the surface of the Earth.

The title Drift draws from the mining term for a horizontal tunnel, in this case the hot underground passageway in the copper and nickel mine stretching between the elevator and the clean lab spaces of SNOLAB. The project thereby begins from a reflection on the forms and energies that connect physics to art, labour, landscapes, cultures and histories.

We acknowledge the support of the Canada Council for the Arts, Ontario Arts Council, an agency of the Government of Ontario, City of Kingston Arts Fund through the Kingston Arts Council and the George Taylor Richardson Memorial Fund at Queen’s University.

Partners

The Arthur B. McDonald Canadian Astroparticle Physics Research Institute is the Canadian hub for astroparticle physics research, uniting researchers, theorists, and technical experts within one organization. Located at and led by Queen’s University, the McDonald Institute is proud to have thirteen partner universities and research institutes across the country, all of which are key players in Canada’s past and future innovation in astroparticle physics.

VISIT site >

SNOLAB is a world-class science facility located deep underground in the operational Vale Creighton nickel mine, near Sudbury, Ontario in Canada. The combination of great depth and cleanliness that SNOLAB affords allows extremely rare interactions and weak processes to be studied.  The science programme at SNOLAB is currently focussed on sub-atomic physics, largely neutrino and dark matter physics. SNOLAB seeks to enable, spearhead, catalyze and promote underground science, while inspiring both the public and future professionals in the field.

VISIT website >

SNO stands for Sudbury Neutrino Observatory according to the information in my June 6, 2019 posting about a then upcoming talk tiled, Whispering in the Dark: Updates from Underground Science. More recently, I noted that TRIUMF’s (Canada’s national particle accelerator centre) new Chief Executive Officer, Nigel Smith, was moving to Vancouver from Sudbury’s SNOLAB in my May 12, 2021 posting.

Drift’s online exhibition at the Agnes can still be accessed and there is lots to see.

There’s a little more to be had from the Drift: Art and Dark Matter exhibition webpage on the Agnes website,

Artist Biographies

Nadia Lichtig is an artist currently living in the South of France. In her multilayered work, voice is transposed into various media including painting, print, sculpture, photography, performance, soundscape and song—each medium approached not as a field to be mastered, but as a source of possibilities to question our ability to decipher the present. Visual and aural aspects entangle in her performances.

Lichtig studied linguistics at the LMU Munich in Germany and at the Ecole des Beaux-Arts de Paris, France with Jean-Luc Vilmouth, where she graduated with honours in 2001, before assisting Mike Kelley in Los Angeles, USA the same year. She taught at the Shrishti School of Art and Technology, Bangalore, India as a visiting professor in 2006, at the Ecole des Beaux-Arts of Valence in 2007, and is professor of Fine Arts at the Ecole Supérieure des Beaux-arts of Montpellier (MOCO-ESBA), France since 2009. She has collaborated with musicians who are also visual artists, such as Bertrand Georges (Audible), Christian Bouyjou (Popopfalse), Nicolu (La Chatte), Nina Canal (Ut) and Michael Moorley (The dead C). Nadia Lichtig worked and works under several group names and pseudonyms (until 2009: EchoparK, Falseparklocation, Skrietch, Ghosttrap and Nanana).

Josèfa Ntjam was born in 1992 in Metz (FR), and currently lives and works in Paris. Ntjam is part of a generation of artists who grew up with the internet, communicating and sending images by electromagnetic wave. Working with video, text, installation, performance and photomontage, Ntjam creates a story with every piece that acts as a reflection of the world around her. Drawing connections to science fiction and the cosmos, Ntjam has said of her work, “I sat there some time ago with Sun Ra in his Spaceship experimenting with a series of alternative stories. An exoteric syncretism with which I travel as a vessel in perpetual motion.”

Ntjam studied in Amiens and Dakar (Cheikh Anta Diop University) and graduated from l’Ecole Nationale Supérieure d’Art, Bourges (FR) and Ecole Nationale Supérieure d’Art, Paris-Cergy (FR). Her works and performance have been shown at numerous venues such as the 15th Biennial of Lyon, DOC! Paris, a la Zentral (CH), Palais de Tokyo, Beton Salon, La Cite internationale des arts, la Bienanale de Dakar (SN), Let Us Rflect Festival (FR), FRAC de Caen, and CAC Bretigny.

Anne Riley is a multidisciplinary artist living as an uninvited Slavey Dene/German guest from Fort Nelson First Nation on the unceded Territories of the Musqueam, Squamish and Tsleil-waututh Nations. Her work explores different ways of being and becoming, touch, and Indigeneity. Riley received her BFA from the University of Texas at Austin in 2012. She has exhibited both in the United States and Canada. Currently she is working on a public art project commissioned by the City of Vancouver with her collaborator, T’uy’tanat Cease Wyss. Wyss and Riley’s project A Constellation of Remediation consists of Indigenous remediation gardens planted throughout the city, decolonizing and healing the dirt back to soil. The duo was longlisted for the 2021 Sobey Art Award.

Riley’s that brings the other nearly as close as oneself, included in the 2015 exhibition Every Little Bit Hurts at Western Front, foregrounded touch, impression and embodied experience. It featured a wall drawing created by the artist rubbing, dragging and moving her body across the gallery wall wearing raw-dyed denim. “I’m interested in queer touch as a radical act,” she says. “It’s not always possible because of fear. But I’m also investigating first touch between mother and child. I have the same hands as my mother and my great grandmother.”

Jol Thoms is a Canadian-born, European-based artist, author and sound designer. Both his written and moving-image work engage posthumanism, feminist science studies, general ecology and the environmental implications of pervasive technical/sensing devices. In the fields of neutrino and dark matter physics he collaborates with renowned physics institutes around the world. These “laboratory-landscapes” are the focus of his practice led PhD at the University of Westminster. In 2017 Thoms was a fellow of Schloss Solitude and resident artist at the Bosch Campus for Research and Advanced Engineering.

Thoms graduated with an Honors BA in Philosophy, Art History and Visual Studies from the University of Toronto (2009) and later studied under Prof. Simon Starling at the Städelschule in Frankfurt (2013). Between 2014 and 2016 he developed and taught an experimental creative-research program for architecture students at the University of Braunschweig with then interim director Tomás Saraceno. In 2016 Thoms won the MERU Art*Science Award for his film G24|0vßß, which was installed in the Blind Faith: Between the Cognitive and the Visceral in Contemporary Art group exhibition at Haus der Kunst, Munich.

Drift moves to the Belkin in British Columbia

An invitation (also received via email) to the show’s launch in BC is for the evening before the show officially opens,

Thursday 9 Sep 2021, 6 pm

Please join us for the opening of Drift: Art and Dark Matter  with a performance-conversation between artists Denise Ferreira da Silva and Jol Thoms. This event is free and open to the public, but space is limited due to COVID-19 safety protocols. To ensure a spot, please RSVP to belkin.rsvp@ubc.ca.

Opening remarks will begin at 6 pm, followed by a conversation with Ferreira da Silva and Thoms who will touch on intersections between the films Soot Breath / Corpus Infinitum (2021) and n-Land (2021), both of which will play throughout the evening on the Belkin’s Outdoor Screen.

Soot Breath / Corpus Infinitum (2021) is a film collaboration between Arjuna Neuman and Denise Ferreira da Silva. Moving across scales geologic, historic-cultural, quantum and cosmic, the work reimagines knowledge and existence without the limits of European and Colonial constructions of the human.

n-Land (2021) is an audio-visual composition by Jol Thoms. Examining context and agency through scales at once geologic, cosmic and human, the piece probes the ecological ethics of our time through a holographic, multi-dimensional view of the SNOLAB site.

The official dates for Drift are Friday, September 10, 2021to December 5, 2021.

As best as I can tell from the Morris & Helen Belkin Art Gallery (the Belkin) homepage description of ‘Drift’, the show will comprise the original series of installations from the four artists featured at the Agnes. The new work from art/science residencies at the University of British Columbia (UBC), where the Belkin is located will be featured in artist talks and in a symposium to be held in November 2021.

Here’s how the newest residencies are described and a list of the various supporting agencies in an undated announcement on the Galleries West website,

As a complement to the Drift exhibition, the Belkin is collaborating with the Stewart Blusson Quantum Matter Institute (SBQMI) and the Department of Physics and Astronomy at UBC on Ars Scientia [emphasis mine], an interdisciplinary research project fusing the praxes of art and science that will include artist-scientist residencies and a research symposium.

We acknowledge the support of the Canada Council for the Arts, Ontario Arts Council, an agency of the Government of Ontario, City of Kingston Arts Fund through the Kingston Arts Council and the George Taylor Richardson Memorial Fund at Queen’s University. The project is curated by Sunny Kerr, Curator of Contemporary Art at Agnes Etherington Art Centre. The Belkin gratefully acknowledges [emphasis mine] the generous support of the Canada Council for the Arts, the Province of British Columbia through the BC Arts Council, UBC Grants for Catalyzing Research Clusters, and our Belkin Curator’s Forum members.

Ars Scientia

There’s a brief description of Ars Scientia in the graduate school webspace located on the UBC website. Emily Wight’s March 22, 2021 article for the Stewart Blusson Quantum Matter Institute (SBQMI) provides more detail about Ars Scientia (the first para. is the least interesting),

The Stewart Blusson Quantum Matter Institute (Blusson QMI) has partnered with the Morris & Helen Belkin Art Gallery (the Belkin) and UBC’s Department of Physics and Astronomy (UBC PHAS) in Ars Scientia, a new project that connects physicists and artists in an effort to find shared ways of communicating about science and explaining the world around us. The partnership was recently awarded two years of funding through the UBC Research Excellence Cluster program.

Though the project is in its early days, the team at Ars Scientia is already working quickly to partner scientists with artists who will conduct six-month residencies in order to explore the potential for academic art-science collaborations; much of the cluster’s early programming will be in support of DRIFT: Art and Dark Matter (DRIFT), an exhibit set to debut at the Belkin in September 2021. DRIFT is a collaborative exhibit that has linked artists and scientists in exploring ways of describing that which exists beyond the limits of our language and understanding; most recently, the exhibit connected the Agnes Etherington Art Centre at Queen’s University, the Arthur B. McDonald Canadian Astroparticle Physics Research Institute, and SNOLAB.

This partnership is a promising early step in Blusson QMI’s mission to engage meaningfully with the art community and external audiences, and an opportunity for an enriching exchange of knowledge and perspective. Students in particular will benefit from this exchange; by inviting artists into labs and research spaces, trainee scientists will gain valuable insight into how someone with different expertise might interpret their work, and how to communicate more effectively about their research. New programs are under development and will be announced soon.

Ars Scientia is co-led by Andrea Damascelli, UBC PHAS [Dept. of Physics and Astronomy] Professor and Blusson QMI Scientific Director; Jeremy Heyl, UBC PHAS Professor; and Shelly Rosenblum, Curator of Academic Programs at the Belkin, and supported by a team of staff including Program Manager James Day.

Art/science residencies in BC

I found this undated announcement on the Belkin Art Gallery website,

Ars Scientia: Merging Artistic Practice with Scientific Research

The long search for dark matter has put the spotlight on the limitations of human knowledge and technological capability. Confronted with the shortcomings of our established modes of detecting, diagnosing and testing, the search beckons the creation of new ways of learning and knowing. Fusing the praxes of arts and science in the emergent fields of interdisciplinary research, Ars Scientia, a tripartite partnership between UBC’s Stewart Blusson Quantum Matter Institute (SBQMI), the Department of Physics and Astronomy and the Belkin, presents an opportunity to foster new modes of knowledge exchange across the arts, sciences and their pedagogies. Funded by UBC’s Research Excellence Cluster program, Ars Scientia will conduct rich programming and research to address this line of inquiry over the next two years beginning in 2021.

The Ars Scientia research cluster has begun this interdisciplinary work by partnering scientists with artists to conduct six-month residencies that explore the potential for academic art-science collaborations. [List is not complete] Artists Justine A. Chambers, Josephine Lee, Khan Lee and Kelly Lycan have partnered with physicists Rysa Greenwood, Alannah Hallas, Daniel Korchinski, Kirk Madison, Sarah Morris and Luke Reynolds to identify areas of collaborative research in pursuit of both scientific and artistic aims. The residencies will culminate in a research symposium where collaborative findings will be shared, set to take place in November 2021 [emphases mine].

Much of the early programming of Ars Scientia will be in support of Drift: Art and Dark Matter (7 September-5 December 2021) at the Belkin, a residency and exhibition project generated by Agnes Etherington Art Centre, the Arthur B. McDonald Canadian Astroparticle Physics Research Institute and SNOLAB.

There is what seems to be a more complete list of the participants in the Belkin/Blusson residency on the same webpage as the undated announcement of the above,

  • Justine A. Chambers
  • Andrea Damascelli
  • James Day
  • Rysa Greenwood
  • Jeremy Heyl
  • Daniel Korchinski
  • Josephine Lee
  • Khan Lee
  • Kelly Lycan
  • Kirk Madison
  • Susana Mendez Álcala
  • Sarah Morris
  • Marcus Prasad
  • Luke Reynolds
  • Shelly Rosenblum
  • Emily Wight

You’ll notice two things should you go to the undated announcement. First, some of the names are clickable; these are the artists’ biographies. Second, Emily Wight who wrote the March 22, 2021 article for the Stewart Blusson Quantum Matter Institute (SBQMI) is also on the list. I also noticed that a couple of the names belong to people who are staff members, James Day (Ars Scientia Program Manager) and Marcus Prasad (from his personal website: Academic Programs Assistant at the Belkin Assistant Project Coordinator for Ars Scientia).

?

On Thursday, Sept. 2, 2021, I emailed some followup questions for the folks at the Belkin. Sadly, I failed to take into account that long weekend, which gave them very little time to respond before I planned to post this. Should I receive any replies, I will update this posting.

*ETA September 9, 2021: Marcus Prasad, Academic Programs Assistant at the Belkin Assistant Project Coordinator for Ars Scientia, very kindly sent answers to the questions:

Here are the questions:

  • Would you have any details about the talks, projects, and/or symposium?

*One of Ars Scientia’s main projects is a residency program between UBC physicists and 4 artists who have been paired up or grouped together to think through an arts-science collaboration. As practicing professionals in their respective fields, they have been asked to think about points of intersection and difference in their disciplines, as well as to formulate new ways of knowing and learning from each other. The intent of this residency program is to provide time and space for these collaborations to unfold in whatever way the participants desire. We plan to have a symposium/gathering event at the end of November where findings from these collaborations can be presented in a large discussion. While this research cluster is topically related to the Drift exhibition at the Belkin, it is somewhat of a separate entity. Programming in the research cluster complements the Belkin’s exhibition, but will continue over the next couple of years after Drift has left the gallery. [emphases mine]

  • Will there be an online version of the BC work? (e.g., the Agnes had and still has an online version of the show.)

*I am unsure what kind of online presence the Belkin will have for the works in the exhibition specifically, but documentation of related events and programming is often made available on their website.

  • I noticed that Emily Wight who wrote the March 22, 2021 article about the show for the ‘Stewart Blusson’ is also listed as one of the participants. The only (more or less) relevant online reference I could find for Ms. Wight was at Carleton University for a student art show. Is this the same person? Is she an artist and/or writer who’s participating in the residency?

*Emily Wight is part of the steering committee for Ars Scientia, along with myself, James Day, and Susana Mendez Álcala. Shelly Rosenblum, Andrea Damascelli, and Jeremy Heyl are the cluster co-leads, and the rest of the listed names are either artists or physicists participating in the residency.

**Note: Susana Mendez Álcala is the Large Grants and Awards Officer at the SBQMI.

  • Will there be some talks that focus on astrophysics? e.g., Might someone from TRIUMF such as the new CEO, Nigel Smith who came here from the SNOLAB give a talk? [See my May 12, 2021 posting about TRIUMF’s new Chief Executive Office {CEO}]
  • Following on that thought, will there be any joint events with other organizations as there were with The Beautiful Brain show? [See my September 11, 2017 posting titled: “Art in the details: A look at the role of art in science—a Sept. 19, 2017 Café Scientifique event in Vancouver, Canada” for more about that exhibit and its associated events ?

*To my knowledge, we have not planned for a talk with TRIUMF as of yet. The QMI is working on programming with the H.R. MacMillan space centre for Dark Matter Days, however, and we do plan to expand our reach to other organizations in the second year of our cluster.

**Prasad also had this to say: “… we are in the midst of getting an Ars Scientia website up, so there’ll be more concrete information on there to come.”

**Thank you to Marcus Prasad for the answers and for clearing up a few matters that I had not thought to ask about.**

One comment: I have had difficulties accessing the Belkin Gallery website, e.g., most of Wednesday, Sept. 1, 2021 and on the morning of Friday, September 3, 2021. Hopefully, they’re experiencing just a few glitches and nothing more serious.

There you have it.

Proximal Fields from September 8 – 12, 2021 and a peek into the international art/sci/tech scene

Toronto’s (Canada) Art/Sci Salon (also known as, Art Science Salon) sent me an August 26, 2021 announcement (received via email) of an online show with a limited viewing period (BTW, nice play on words with the title echoing the name of the institution mentioned in the first sentence),

PROXIMAL FIELDS

The Fields Institute was closed to the public for a long time. Yet, it
has not been empty. Peculiar sounds and intriguing silences, the flows
of the few individuals and the janitors occasional visiting the building
made it surprisingly alive. Microorganisms, dust specs and other
invisible guests populated undisturbed the space while the humans were
away. The building is alive. We created site specific installations
reflecting this condition: Elaine Whittaker and her poet collaborators
take us to a journey of the microbes living in our proximal spaces. Joel
Ong and his collaborators have recorded space data in the building: the
result is an emergent digital organism. Roberta Buiani and Kavi
interpret the venue as an organism which can be taken outside on a
mobile gallery.

PROXIMAL FIELDS will be visible  September 8-12 2021 at

https://ars.electronica.art/newdigitaldeal/en/proximal-fields/

it [sic] is part of Ars Electronica Garden LEONARDO LASER [Anti]disciplinary Topographies

https://ars.electronica.art/newdigitaldeal/en/antidisciplinary-topographies/

see [sic] a teaser here:

https://youtu.be/AYxlvLnYSdE

With: Elaine Whittaker, Joel Ong, Nina Czegledy, Roberta Buiani, Sachin
Karghie, Ryan Martin, Racelar Ho, Kavi.
Poetry: Maureen Hynes, Sheila Stewart

Video: Natalie Plociennik

This event is one of many such events being held for Ars Electronica 2021 festival.

For anyone who remembers back to my May 3, 2021 posting (scroll down to the relevant subhead; a number of events were mentioned), I featured a show from the ArtSci Salon community called ‘Proximal Spaces’, a combined poetry reading and bioart experience.

Many of the same artists and poets seem to have continued working together to develop more work based on the ‘proximal’ for a larger international audience.

International and local scene details (e.g., same show? what is Ars Electronica? etc.)

As you may have noticed from the announcement, there are a lot of different institutions involved.

Local: Fields Institute and ArtSci Salon

The Fields Institute is properly known as The Fields Institute for Research in Mathematical Sciences and is located at the University of Toronto. Here’s more from their About Us webpage,

Founded in 1992, the Fields Institute was initially located at the University of Waterloo. Since 1995, it has occupied a purpose-built building on the St. George Campus of the University of Toronto.

The Institute is internationally renowned for strengthening collaboration, innovation, and learning in mathematics and across a broad range of disciplines. …

The Fields Institute is named after the Canadian mathematician John Charles Fields (1863-1932). Fields was a pioneer and visionary who recognized the scientific, educational, and economic value of research in the mathematical sciences. Fields spent many of his early years in Berlin and, to a lesser extent, in Paris and Göttingen, the principal mathematical centres of Europe of that time. These experiences led him, after his return to Canada, to work for the public support of university research, which he did very successfully. He also organized and presided over the 1924 meeting of the International Congress of Mathematicians in Toronto. This quadrennial meeting was, and still is, the major meeting of the mathematics world.

There is no Nobel Prize in mathematics, and Fields felt strongly that there should be a comparable award to recognize the most outstanding current research in mathematics. With this in mind, he established the International Medal for Outstanding Discoveries in Mathematics, which, contrary to his personal directive, is now known as the Fields Medal. Information on Fields Medal winners can be found through the International Mathematical Union, which chooses the quadrennial recipients of the prize.

Fields’ name was given to the Institute in recognition of his seminal contributions to world mathematics and his work on behalf of high level mathematical scholarship in Canada. The Institute aims to carry on the work of Fields and to promote the wider use and understanding of mathematics in Canada.

The relationship between the Fields Institute and the ArtSci Salon is unclear to me. This can be found under Programs and Activities on the Fields Institute website,

2020-2021 ArtSci Salon

Description

ArtSci Salon consists of a series of semi-informal gatherings facilitating discussion and cross-pollination between science, technology, and the arts. ArtSci Salon started in 2010 as a spin-off of Subtle Technologies Festival to satisfy increasing demands by the audience attending the Festival to have a more frequent (monthly or bi-monthly) outlet for debate and information sharing across disciplines. In addition, it responds to the recent expansion in the GTA [Greater Toronto Area] area of a community of scientists and artists increasingly seeking collaborations across disciplines to successfully accomplish their research projects and questions.

For more details, visit our blog.

Sign up to our mailing list here.

For more information please contact:

Stephen Morris: smorris@physics.utoronto.ca

Roberta Buiani: rbuiani@gmail.com

We are pleased to announce our upcoming March 2021 events (more details are in the schedule below):

Ars Electronica

It started life as a Festival for Art, Technology and Society in 1979 in Linz, Austria. Here’s a little more from their About webpage,

… Since September 18, 1979, our world has changed radically, and digitization has covered almost all areas of our lives. Ars Electronica’s philosophy has remained the same over the years. Our activities are always guided by the question of what new technologies mean for our lives. Together with artists, scientists, developers, designers, entrepreneurs and activists, we shed light on current developments in our digital society and speculate about their manifestations in the future. We never ask what technology can or will be able to do, but always what it should do for us. And we don’t try to adapt to technology, but we want the development of technology to be oriented towards us. Therefore, our artistic research always focuses on ourselves, our needs, our desires, our feelings.

They have a number of initiatives in addition to the festival. The next festival, A New Digital Deal, runs from September 8 – 12, 2021 (Ars Electronica 2021). Here’s a little more from the festival webpage,

Ars Electronica 2021, the festival for art, technology and society, will take place from September 8 to 12. For the second time since 1979, it will be a hybrid event that includes exhibitions, concerts, talks, conferences, workshops and guided tours in Linz, Austria, and more than 80 other locations around the globe.

Leonardo; The International Society for Arts, Sciences and Technology

Ars Electronica and Leonardo; The International Society for Arts, Sciences and Technology (ISAST) cooperate on projects but they are two different entities. Here’s more from the About LEONARDO webpage,

Fearlessly pioneering since 1968, Leonardo serves as THE community forging a transdisciplinary network to convene, research, collaborate, and disseminate best practices at the nexus of arts, science and technology worldwide. Leonardo’ serves a network of transdisciplinary scholars, artists, scientists, technologists and thinkers, who experiment with cutting-edge, new approaches, practices, systems and solutions to tackle the most complex challenges facing humanity today.

As a not-for-profit 501(c)3 enterprising think tank, Leonardo offers a global platform for creative exploration and collaboration reaching tens of thousands of people across 135 countries. Our flagship publication, Leonardo, the world’s leading scholarly journal on transdisciplinary art, anchors a robust publishing partnership with MIT Press; our partnership with ASU [Arizona State University] infuses educational innovation with digital art and media for lifelong learning; our creative programs span thought-provoking events, exhibits, residencies and fellowships, scholarship and social enterprise ventures.

I have a description of Leonardo’s LASER (Leonardo Art Science Evening Rendezvous), from my March 22, 2021 posting (the Garden comes up next),

Here’s a description of the LASER talks from the Leonardo/ISAST LASER Talks event page,

“… a program of international gatherings that bring artists, scientists, humanists and technologists together for informal presentations, performances and conversations with the wider public. The mission of LASER is to encourage contribution to the cultural environment of a region by fostering interdisciplinary dialogue and opportunities for community building.”

To be specific it’s Ars Electronica Garden LEONARDO LASER and this is one of the series being held as part of the festival (A Digital New Deal). Here’s more from the [Anti]disciplinary Topographies ‘garden’ webpage,

Culturing transnational dialogue for creative hybridity

Leonardo LASER Garden gathers our global network of artists, scientists, humanists and technologists together in a series of hybrid formats addressing the world’s most pressing issues. Animated by the theme of a “new digital deal” and grounded in the UN Sustainability Goals, Leonardo LASER Garden cultivates our values of equity and inclusion by elevating underrepresented voices in a wide-ranging exploration of global challenges, digital communities and placemaking, space, networks and systems, the digital divide – and the impact of interdisciplinary art, science and technology discourse and collaboration.

Dovetailing with the launch of LASER Linz, this asynchronous multi-platform garden will highlight the best of the Leonardo Network (spanning 47 cities worldwide) and our transdisciplinary community. In “Extraordinary Times Call for Extraordinary Vision: Humanizing Digital Culture with the New Creativity Agenda & the UNSDGs [United Nations Sustainable Development Goals],” Leonardo/ISAST CEO Diana Ayton-Shenker presents our vision for shaping our global future. This will be followed by a Leonardo Community Lounge open to the general public, with the goal of encouraging contributions to the cultural environments of different regions through transnational exchange and community building.

Getting back to the beginning you can view Proximal Fields from September 8 – 12, 2021 as part of the Ars Electonica 2021 festival, specifically, the ‘garden’ series.

ETA September 8, 2021: There’s a newly posted (on the Fields Institute webspace) and undated notice/article “ArtSci Salon’s Proximal Fields debuts at the Ars Electronica Festival,” which includes an interview with members of the Proximal Fields team.

Mini T-shirt demonstrates photosynthetic living materials

Caption: A mini T-shirt demonstrates the photosynthetic living materials created in the lab of University Rochester biologist Anne S. Meyer and Delft University of Technology bionanoscientist Marie-Eve Aubin-Tam using 3D printers and a new bioink technique. Credit: University of Rochester photo

I’m not sure how I feel about a t-shirt, regardless of size, made of living biological material but these researchers seem uniformly enthusiastic. From a May 3, 2021 news item on phys.org (Note: A link has been removed),

Living materials, which are made by housing biological cells within a non-living matrix, have gained popularity in recent years as scientists recognize that often the most robust materials are those that mimic nature.

For the first time, an international team of researchers from the University of Rochester [located in New York state, US] and Delft University of Technology in the Netherlands used 3D printers and a novel bioprinting technique to print algae into living, photosynthetic materials that are tough and resilient. The material has a variety of applications in the energy, medical, and fashion sectors. The research is published in the journal Advanced Functional Materials.

An April 30, 2021 University of Rochester new release (also on EurekAlert but published May 3, 2021) by Lindsey Valich, which originated the news item, delves further into the topic of living materials,

“Three-dimensional printing is a powerful technology for fabrication of living functional materials that have a huge potential in a wide range of environmental and human-based applications.” says Srikkanth Balasubramanian, a postdoctoral research associate at Delft and the first author of the paper. “We provide the first example of an engineered photosynthetic material that is physically robust enough to be deployed in real-life applications.”

HOW TO BUILD NEW MATERIALS: LIVING AND NONLIVING COMPONENTS

To create the photosynthetic materials, the researchers began with a non-living bacterial cellulose–an organic compound that is produced and excreted by bacteria. Bacterial cellulose has many unique mechanical properties, including its flexibility, toughness, strength, and ability to retain its shape, even when twisted, crushed, or otherwise physically distorted.

The bacterial cellulose is like the paper in a printer, while living microalgae acts as the ink. The researchers used a 3D printer to deposit living algae onto the bacterial cellulose.

The combination of living (microalgae) and nonliving (bacterial cellulose) components resulted in a unique material that has the photosynthetic quality of the algae and the robustness of the bacterial cellulose; the material is tough and resilient while also eco-friendly, biodegradable, and simple and scalable to produce. The plant-like nature of the material means it can use photosynthesis to “feed” itself over periods of many weeks, and it is also able to be regenerated–a small sample of the material can be grown on-site to make more materials.

ARTIFICIAL LEAVES, PHOTOSYNTHETIC SKINS, AND BIO-GARMENTS

The unique characteristics of the material make it an ideal candidate for a variety of applications, including new products such as artificial leaves, photosynthetic skins, or photosynthetic bio-garments.

Artificial leaves are materials that mimic actual leaves in that they use sunlight to convert water and carbon dioxide–a major driver of climate change–into oxygen and energy, much like leaves during photosynthesis. The leaves store energy in chemical form as sugars, which can then be converted into fuels. Artificial leaves therefore offer a way to produce sustainable energy in places where plants don’t grow well, including outer space colonies. The artificial leaves produced by the researchers at Delft and Rochester are additionally made from eco-friendly materials, in contrast to most artificial leaf technologies currently in production, which are produced using toxic chemical methods.

“For artificial leaves, our materials are like taking the ‘best parts’ of plants–the leaves–which can create sustainable energy, without needing to use resources to produce parts of plants–the stems and the roots–that need resources but don’t produce energy,” says Anne S. Meyer, an associate professor of biology at Rochester. “We are making a material that is only focused on the sustainable production of energy.”

Another application of the material would be photosynthetic skins, which could be used for skin grafts, Meyer says. “The oxygen generated would help to kick-start healing of the damaged area, or it might be able to carry out light-activated wound healing.”

Besides offering sustainable energy and medical treatments, the materials could also change the fashion sector. Bio-garments made from algae would address some of the negative environmental effects of the current textile industry in that they would be high-quality fabrics that would be sustainability produced and completely biodegradable. They would also work to purify the air by removing carbon dioxide through photosynthesis and would not need to be washed as often as conventional garments, reducing water usage.

“Our living materials are promising because they can survive for several days with no water or nutrients access, and the material itself can be used as a seed to grow new living materials,” says Marie-Eve Aubin-Tam, an associate professor of bionanoscience at Delft. “This opens the door to applications in remote areas, even in space, where the material can be seeded on site.”

Here’s a link to and a citation for the paper,

Bioprinting of Regenerative Photosynthetic Living Materials by Srikkanth Balasubramanian, Kui Yu, Anne S. Meyer, Elvin Karana, Marie-Eve Aubin-Tam DOI: https://doi.org/10.1002/adfm.202011162 First published: 29 April 2021

This paper is open access.

The researchers have provided this artistic impression of 3D printing of living (microalgae) and nonliving materials (bacterial cellulose),

An artist’s illustration demonstrates how 3D printed materials could be applied as durable, living clothing. (Lizah van der Aart illustration)

A smart shirt at the Canadian Space Agency

Caption: Canadian Space Agency astronaut David Saint-Jacques tries the Bio-Monitor, a new Canadian technology, for the first time in space (January 16, 2019). The innovative smart shirt system is designed to measure and record astronauts’ vital signs. Credit: Canadian Space Agency/NASA

Here’s a biosensor announcement from an April 27, 2021 Experimental Biology (annual meeting) news release on EurekAlert,

A technology-packed tank top offers a simple, effective way to track astronauts’ vital signs and physiological changes during spaceflight, according to research being presented at the American Physiological Society annual meeting during the Experimental Biology (EB) 2021 meeting, held virtually April 27-30.

By monitoring key health markers over long periods of time with one non-intrusive device, researchers say the garment can help improve understanding of how spaceflight affects the body.

“Until now, the heart rate and activity levels of astronauts were monitored by separate devices,” said Carmelo Mastrandrea, PhD, a postdoctoral fellow at the Schlegel-University of Waterloo Research Institute for Aging in Canada, and the study’s first author. “The Bio-Monitor shirt allows simultaneous and continuous direct measurements of heart rate, breathing rate, oxygen saturation in the blood, physical activity and skin temperature, and provides a continuous estimate of arterial systolic blood pressure.”

The Bio-Monitor shirt was developed for the Canadian Space Agency by Carré Technologies based on its commercially available Hexoskin garment. In a study funded by the Canadian Space Agency, a team of researchers from the Schlegel-University of Waterloo Research Institute for Aging oversaw the first test of the shirt in space for a scientific purpose. Astronauts wore the shirt continually for 72 hours before their spaceflight and 72 hours during spaceflight, except for periods of water immersion or when the device conflicted with another activity.

The shirt’s sensors and accelerometer performed well, providing consistent results and a large amount of usable data. Based on these initial results, researchers say the shirt represents an improvement over conventional methods for monitoring astronauts’ health, which require more hands-on attention.

“By monitoring continuously and non-intrusively, we remove the psychological impacts of defined testing periods from astronaut measurements,” said Mastrandrea. “Additionally, we are able to gather information during normal activities over several days, including during daily activities and sleep, something that traditional testing cannot achieve.”

In flight, the astronauts recorded far less physical activity than the two and a half hours per day recorded in the monitoring period before takeoff, a finding that aligns with previous studies showing large reductions in physical activity during spaceflight. In addition to monitoring astronauts’ health and physical activity in space, Mastrandrea noted that the shirt could provide early warning of any health problems that occur as their bodies re-adapt to gravity back on Earth.

The commercial version of the Bio-Monitor shirt is available to the public, where it can be used for various applications including assessing athletic performance and monitoring the health of people with limited mobility. In addition to spaceflight, researchers are examining its potential use in other occupational settings that involve extreme environments, such as firefighting.

Mastrandrea will present this research in poster R2888 (abstract). Contact the media team for more information or to obtain a free press pass to access the virtual meeting.

###

About Experimental Biology 2021

Experimental Biology is an annual meeting comprised of thousands of scientists from five host societies and multiple guest societies. With a mission to share the newest scientific concepts and research findings shaping clinical advances, the meeting offers an unparalleled opportunity for exchange among scientists from across the U.S. and the world who represent dozens of scientific areas, from laboratory to translational to clinical research. http://www.experimentalbiology.org #expbio

About the American Physiological Society (APS)

Physiology is a broad area of scientific inquiry that focuses on how molecules, cells, tissues and organs function in health and disease. The American Physiological Society connects a global, multidisciplinary community of more than 10,000 biomedical scientists and educators as part of its mission to advance scientific discovery, understand life and improve health. The Society drives collaboration and spotlights scientific discoveries through its 16 scholarly journals and programming that support researchers and educators in their work. http://www.physiology.org

Mastrandrea’s abstract offers details explaining what makes this particular biosensor a new technology (from the ‘(R2888) Tracking astronaut physical activity and cardiorespiratory responses with the Bio-Monitor sensor shirt‘ abstract at the Experimental Biology (EB) 2021 meeting,

Carmelo Mastrandrea (Schlegel-UW Research Institute for Aging)| Danielle Greaves (Schlegel-UW Research Institute for Aging)| Richard Hughson (Schlegel-UW Research Institute for Aging)

Astronauts develop insulin resistance, and are at risk for cardiovascular deconditioning, during long-duration missions to the International Space Station (ISS) despite their daily exercise sessions (Hughson et al. Am J Physiol Heart Circ Physiol 310: H628–H638, 2016). Chronic unloading of the musculoskeletal and cardiovascular systems in microgravity dramatically reduces the challenge of daily activities, and the astronauts’ schedules limit them to approximately 30-min/day aerobic exercise. To understand the physical demands of spaceflight and how these change from daily life on Earth, the Vascular Aging experiment is equipping astronauts for 48-72h continuous recordings with the Canadian Space Agency’s Bio-Monitor wearable sensor shirt. The Bio-Monitor (Bio-M), developed from the commercial Hexoskin® device, consists of 3-lead ECG, thoracic and abdominal respiratory bands, 3-axis accelerometer, skin temperature and SpO2 sensor placed on the forehead. Our utilisation of this equipment necessitated the development of novel processing and visualisation techniques, to better interpret and guide subsequent data analyses [emphasis mine]. Here we present initial data from astronauts wearing the BioM prior to launch and aboard the ISS, demonstrating the ability to extract useful data from BioM, using software developed ‘in-house’.

Astronauts wore the Bio-M continually for 72-h except for periods of water immersion or when the device conflicted with another activity. After physical exercise, astronauts changed to a dry shirt. First, we assessed the key data-quality metrics to provide initial appraisals of acceptable recordings. Mean total recording length pre-flight (60.5 hours) was similar to that in-flight (66.5 hours), with a consistent distribution of recorded day (44% vs 45%, 6am-6pm) and night (56% vs 55%, 6pm-6am) hours (pre-flight vs in-flight respectively).

For each recording, quality assessment of ECG signals was performed for individual leads, before combining signals and cross-correlating R-waves to produce reliable heart-rate timings. Mean ECG quality for individual leads, represented here as the percentage of usable signal to total recording duration, was somewhat lower in-flight (92%) when compared to pre-flight (96%), likely caused by poor skin contact or dry shirt electrodes; combining lead signals as mentioned above improved the proportion of usable data to 97% and 98% respectively. Accelerometer recordings identified a significant reduction in high-force movements over the 72-hour recordings, with just over 2.5 hours/day of high-force activity in astronauts pre-flight vs 50 minutes/day in-flight. It should be noted however that accelerometer measurements in zero-gravity are likely to be reduced, and future refinement of activity data continues. Average heart rates in-flight showed little difference when compared to pre-flight, although future analyses will compare periods of sleep, rest, and activity to further refine this comparison.

We conclude that utilisation of the BioM hardware with our own analysis techniques produces high-quality data allowing for future interpretation and investigation of spaceflight-induced physiological adaptations.

As for Hexoskin (Carré Technologies inc.), I found out more on the About Us webpage of the Hexoskin website (Note: Links have been removed),

Hexoskin (Carré Technologies inc.)

Founded in 2006 in Montreal [Canada], Hexoskin is a growing private company, leader in non-invasive sensors, software, data science & AI services. The company headquartered in the bustling Rosemont neighborhood, provides solutions and services directly to customers & researchers; and through B2B contracts in pharmaceutical, academics, healthcare, security, defense, first responders, aerospace public & private organizations.

Hexoskin’s mission has always been to make the precise health data collected by its body-worn sensors accessible and useful for everyone. When the cofounders Pierre-Alexandre Fournier and Jean-François Roy started the company back in 2006, the existing technologies to report rich health data continuously didn’t exist. Hexoskin took a different approach to non-portable and invasive monitoring solutions by releasing in 2013 the first washable Smart Shirts that captures cardiac, respiratory, and activity body metrics. Today Hexoskin’s main R&D focus is the development of innovative body-worn sensors for health, mobile, and distributed software for health data management and analysis.

Since then, Hexoskin has designed the Hexoskin Connected Health Platform, a system to minimize user setup time and to maximize vital signs monitoring over long periods in a non-obstructive way with sensors embedded in a Smart Shirt. Data are synced to local and remote servers for health data management and analysis.
The Hexoskin Smart Garments are clinically validated and are developed involving patients & clients to be comfortable and easy to use.

The system is the next evolution to improve the standard of care in the following therapeutic areas: respiratory, cardiology, mental health, behavioral and physiological psychology, somnology, aging and physical performance, physical conditioning & wellbeing etc.

Next Generation Biometric Smart Shirts

Hexoskin supported the evolution of its 100% washable industry-leading Hexoskin Smart Garments to offer an easy and comfortable solution for continuously monitoring precise data during daily activities and sleep. Hexoskin is a machine washable Smart garment, designed and made in Canada that allows precise long-term monitoring of respiratory, cardiac and activity functions simultaneously, as well as sleep quality. 

Users are provided access the Hexoskin Connected Health Platform, an end-to-end system that supplies the tools to report and analyze precise data from the Hexoskin & third-party body-worn sensors. The platform offers apps for iOS, Android, and Watch OS devices. Users can access from anywhere an online dashboard with advanced reporting and analytics functionalities. Today, the Hexoskin Connected Platform is used worldwide and supported thousands of users and organizations to achieve their goals.

In 2019, Hexoskin launched the new Hexoskin ProShirt line for Men and Women with an all-new design to withstand the most active lifestyle and diverse daily living activities. The Hexoskin ProShirtcomes with built-in textile ECG & Respiratory sensors and a precise Activity sensor. The ProShirt works with the latest Hexoskin Smart recording device to offer uninterrupted continuous 24-hour monitoring. 

Today, the Hexoskin ProShirt are used by professional athletes for performance training, police & first responders for longitudinal stress monitoring, and patients in clinical trials living with chronic cardiac & respiratory conditions. 

Connected Health & Software Solutions

Hexoskin provides interoperable software solutions, secure and private infrastructure and data science services to support research and professional organizations. The system is designed to reduce the frequency of travel and allow remote communication between patients, study volunteers, caregivers, and researchers. Hexoskin is an efficient and precise solution that collects daily quantitative data from users, in their everyday lives, and over long periods of time. 

Conscious of the need for its users to understand how the data is collected and interpreted, Hexoskin early took a transparent approach by opening and documenting its Application Programing Interface (API). Today, part of Hexoskin’s success can be attributed to its community of developers and scientists that are leveraging its Connected Health Platform to create new applications and interventions not possible just a few years ago. 

Future Applications—remote health to space exploration

Since 2011, Hexoskin collaborated with the Canadian Space Agency on the Astroskin, a cutting edge Space Grade Smart Garment, now used in the International Space Station to monitor the astronauts’ health in Space. The Astroskin Vital Signs Monitoring Platform is also available to conduct research on earth.

Hexoskin hopes to bring the innovations developed for Space and its Hexoskin Connected Health Platform to support the growing need to provide patients’ access to affordable and adapted healthcare services remotely. Future applications include healthcare, chronic disease management, sleep medicine, aging at home, security & defense, and space exploration missions.

Hexoskin shirts, as noted earlier, are available commercially while inquiries about Astroskin shirts are welcomed (Note: Links have been removed),

Thinking that Astroskin will be perfect for your next study or project? Contact us  to discuss how Astroskin can support your next project. You can also request a demo of the Astroskin Vital Signs Monitoring Platform here.

Finally, I noticed that the researchers on this project were from the Schlegel-UW [University of Waterloo] Research Institute for Aging. I gather this was all about aging.