Category Archives: science

The beginnings of a quantum network link between Dutch cities

Dutch researchers, having previously announced a multi-node quantum network of three quantum processors (see my July 8, 2021 posting), are now part of an international team which has announced in an October 30, 2024 news item on ScienceDaily, a further advancement toward a future quantum internet,

An international research team led by QuTech has demonstrated a network connection between quantum processors over metropolitan distances. Their result marks a key advance from early research networks in the lab towards a future quantum internet. The team developed fully independently operating nodes and integrated these with deployed optical internet fibre, enabling a 25 km quantum link. The researchers published their findings in Science Advances.

For anyone unfamiliar with QuTech, here’s the explanation I had in my July 8, 2021 posting,

… Note: QuTech is the research center for Quantum Computing and Quantum Internet, a collaboration between TU Delft [added December 16, 2024: Delft University of Technology] and TNO is Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (English: Netherlands Organisation for Applied Scientific Research), an independent research organization) …

An October 31, 2024 Delft University of Technology press release (also on EurekAlert but published on October 30, 2024 and also published as a Fraunhofer ILT [Fraunhofer Institute for Laser Technology] October 30, 2024 press release), which originated the news item, provides more information about the research, Note: A link has been removed,

The internet allows people to share information (bits) globally. A future quantum internet will enable sharing quantum information (qubits) over a new type of network. Such qubits can not only take the values 0 or 1, but also superpositions of those (0 and 1 at the same time). In addition, qubits can be entangled, which means they share a quantum connection enabling instant correlations, no matter the distance.

Researchers around the globe are working to build quantum networks that make use of these features to offer fundamentally new communication and computing capabilities, in coexistence with the current internet. For example, qubits can generate secure encryption keys for safely sharing financial or medical data. Quantum links can also connect distant quantum computers, enhancing their power and allowing access with full privacy for users.

Moving out of the lab

An international team led by Ronald Hanson at QuTech—a collaboration between the TU Delft and TNO—was able to connect two small quantum computers between the Dutch cities of Delft and The Hague. “The distance over which we create quantum entanglement in this project, via 25 km of deployed underground fiber, is a record for quantum processors,” says Hanson. “This is the first time such quantum processors in different cities are connected.”

A few years ago the team reported the first multi-node quantum network inside the lab. “We were faced with new major challenges in going from these lab experiments to realizing a quantum link between cities. We had to design a flexible system that lets the nodes work independently over long distances, we needed to mitigate the impact of photon loss on the connection speed, and we had to ensure reliable confirmation each time the entanglement link was successfully created. Without these innovations, such a large distance would not have been possible.”

‘Like keeping the moon at a constant distance’

To tackle the challenge of photon loss, the team established the quantum connection using a photon-efficient protocol that required very precise stabilization of the connecting fiber link. Co-author Arian Stolk explains using an analogue: “The link needed to be stable well within the wavelength of the photons (smaller than a micrometer) over 25 kilometer of optical fiber. That challenge compares to keeping the distance between the earth and the moon constant with the accuracy of only a few millimeter. Through a combination of research insights and applied engineering, we were able to solve this puzzle.”

“In this work, we demonstrate successful entanglement between two quantum network nodes containing diamond spin qubits. The independently operated nodes are connected through a midpoint station via optical fiber. We were able to reliably deliver a pre-specified entangled state between the nodes.”

Collaboration between academia and industry

Co-author Kian van der Enden explains how indispensable the broad expertise of the team was for the success of the project: “Fraunhofer ILT developed a critical component for this demonstration, a new type of quantum frequency converter. OPNT delivered state-of-the-art timing hardware, Element Six provided its engineered synthetic diamond materials and Toptica developed high-stability lasers. Finally, Dutch telecom provider KPN provided the fiber infrastructure as well as the locations of the nodes, the midpoint, and the node in The Hague.”

Solid foundation for European quantum internet

This result is an important milestone that addresses key scaling challenges for future quantum networks. Jesse Robbers, Director Industry & Digital Infrastructure of Quantum Delta NL that co-funded the research, adds: “We continue to show leadership in the development of the future fundament of our Digital Infrastructure and how to make it applicable, which is the core of the national and European strategy.”

The architecture and methods are directly applicable to other qubit platforms, including the next-generation scalable qubits that the team is currently developing. The successful use of deployed, conventional internet infrastructure sets the stage for a new phase on the road towards a quantum internet. Hanson: “This work marks the crucial step out of the research lab into the field, enabling exploration of first quantum processor networks at metropolitan scale.”

Here’s a link to and a citation for the paper,

Metropolitan-scale heralded entanglement of solid-state qubits by Arian J. Stolk, Kian L. van der Enden, Marie-Christine Slater, Ingmar te Raa-Derckx, Pieter Botma, Joris van Rantwijk, J. J. Benjamin Biemond, Ronald A. J. Hagen, Rodolf W. Herfst, Wouter D. Koek, Adrianus J. H. Meskers, René Vollmer, Erwin J. van Zwet, Matthew Markham, Andrew M. Edmonds, J. Fabian Geus, Florian Elsen, Bernd Jungbluth, Constantin Haefner, Christoph Tresp, Jürgen Stuhler, Stephan Ritter, and Ronald Hanson. Science Advances 30 Oct 2024 Vol 10, Issue 44 DOI: 10.1126/sciadv.adp6442

This paper is open access.

AI and the 2024 Nobel prizes

Artificial intelligence made a splash when the 2024 Nobel Prize announcements were made as they were a key factor in both the prizes for physics and for chemistry.

Where do physics, chemistry, and AI go from here?

I have a few speculative pieces about physics, chemistry, and AI. First off we have Nello Cristianini’s (Professor of Artificial Intelligence at the University of Bath (England) October 10, 2024 essay for The Conversation, Note: Links have been removed,

The 2024 Nobel Prizes in physics and chemistry have given us a glimpse of the future of science. Artificial intelligence (AI) was central to the discoveries honoured by both awards. You have to wonder what Alfred Nobel, who founded the prizes, would think of it all.

We are certain to see many more Nobel medals handed to researchers who made use of AI tools. As this happens, we may find the scientific methods honoured by the Nobel committee depart from straightforward categories like “physics”, “chemistry” and “physiology or medicine”.

We may also see the scientific backgrounds of recipients retain a looser connection with these categories. This year’s physics prize was awarded to the American John Hopfield, at Princeton University, and British-born Geoffrey Hinton, from the University of Toronto. While Hopfield is a physicist, Hinton studied experimental psychology before gravitating to AI.

The chemistry prize was shared between biochemist David Baker, from the University of Washington, and the computer scientists Demis Hassabis and John Jumper, who are both at Google DeepMind in the UK.

There is a close connection between the AI-based advances honoured in the physics and chemistry categories. Hinton helped develop an approach used by DeepMind to make its breakthrough in predicting the shapes of proteins.

The physics laureates, Hinton in particular, laid the foundations of the powerful field known as machine learning. This is a subset of AI that’s concerned with algorithms, sets of rules for performing specific computational tasks.

Hopfield’s work is not particularly in use today, but the backpropagation algorithm (co-invented by Hinton) has had a tremendous impact on many different sciences and technologies. This is concerned with neural networks, a model of computing that mimics the human brain’s structure and function to process data. Backpropagation allows scientists to “train” enormous neural networks. While the Nobel committee did its best to connect this influential algorithm to physics, it’s fair to say that the link is not a direct one.

Every two years, since 1994, scientists have been holding a contest to find the best ways to predict protein structures and shapes from the sequences of their amino acids. The competition is called Critical Assessment of Structure Prediction (CASP).

For the past few contests, CASP winners have used some version of DeepMind’s AlphaFold. There is, therefore, a direct line to be drawn from Hinton’s backpropagation to Google DeepMind’s AlphaFold 2 breakthrough.

Attributing credit has always been controversial aspect of the Nobel prizes. A maximum of three researchers can share a Nobel. But big advances in science are collaborative. Scientific papers may have 10, 20, 30 authors or more. More than one team might contribute to the discoveries honoured by the Nobel committee.

This year we may have further discussions about the attribution of the research on backpropagation algorithm, which has been claimed by various researchers, as well as for the general attribution of a discovery to a field like physics.

We now have a new dimension to the attribution problem. It’s increasingly unclear whether we will always be able to distinguish between the contributions of human scientists and those of their artificial collaborators – the AI tools that are already helping push forward the boundaries of our knowledge.

This November 26, 2024 news item on ScienceDaily, which is a little repetitive, considers interdisciplinarity in relation to the 2024 Nobel prizes,

In 2024, the Nobel Prize in physics was awarded to John Hopfield and Geoffrey Hinton for their foundational work in artificial intelligence (AI), and the Nobel Prize in chemistry went to David Baker, Demis Hassabis, and John Jumper for using AI to solve the protein-folding problem, a 50-year grand challenge problem in science.

A new article, written by researchers at Carnegie Mellon University and Calculation Consulting, examines the convergence of physics, chemistry, and AI, highlighted by recent Nobel Prizes. It traces the historical development of neural networks, emphasizing the role of interdisciplinary research in advancing AI. The authors advocate for nurturing AI-enabled polymaths to bridge the gap between theoretical advancements and practical applications, driving progress toward artificial general intelligence. The article is published in Patterns.

“With AI being recognized in connections to both physics and chemistry, practitioners of machine learning may wonder how these sciences relate to AI and how these awards might influence their work,” explained Ganesh Mani, Professor of Innovation Practice and Director of Collaborative AI at Carnegie Mellon’s Tepper School of Business, who coauthored the article. “As we move forward, it is crucial to recognize the convergence of different approaches in shaping modern AI systems based on generative AI.”

A November 25, 2024 Carnegie Mellon University (CMU) news release, which originated the news item, describes the paper,

In their article, the authors explore the historical development of neural networks. By examining the history of AI development, they contend, we can understand more thoroughly the connections among computer science, theoretical chemistry, theoretical physics, and applied mathematics. The historical perspective illuminates how foundational discoveries and inventions across these disciplines have enabled modern machine learning with artificial neural networks. 

Then they turn to key breakthroughs and challenges in this field, starting with Hopfield’s work, and go on to explain how engineering has at times preceded scientific understanding, as is the case with the work of Jumper and Hassabis.

The authors conclude with a call to action, suggesting that the rapid progress of AI across diverse sectors presents both unprecedented opportunities and significant challenges. To bridge the gap between hype and tangible development, they say, a new generation of interdisciplinary thinkers must be cultivated.

These “modern-day Leonardo da Vincis,” as the authors call them, will be crucial in developing practical learning theories that can be applied immediately by engineers, propelling the field toward the ambitious goal of artificial general intelligence.

This calls for a paradigm shift in how scientific inquiry and problem solving are approached, say the authors, one that embraces holistic, cross-disciplinary collaboration and learns from nature to understand nature. By breaking down silos between fields and fostering a culture of intellectual curiosity that spans multiple domains, innovative solutions can be identified to complex global challenges like climate change. Through this synthesis of diverse knowledge and perspectives, catalyzed by AI, meaningful progress can be made and the field can realize the full potential of technological aspirations.

“This interdisciplinary approach is not just beneficial but essential for addressing the many complex challenges that lie ahead,” suggests Charles Martin, Principal Consultant at Calculation Consulting, who coauthored the article. “We need to harness the momentum of current advancements while remaining grounded in practical realities.”

The authors acknowledge the contributions of Scott E. Fahlman, Professor Emeritus in Carnegie Mellon’s School of Computer Science.

Here’s a link to and a citation for the paper,

The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields by Charles H. Martin, Ganesh Mani. Patterns, 2024 DOI: 10.1016/j.patter.2024.101099 Published online November 25, 2024 Copyright: © 2024 The Author(s). Published by Elsevier Inc.

This paper is open access under Creative Commons Attribution (CC BY 4.0.

A scientific enthusiast: “I was a beta tester for the Nobel prize-winning AlphaFold AI”

From an October 11, 2024 essay by Rivka Isaacson (Professor of Molecular Biophysics, King’s College London) for The Conversation, Note: Links have been removed,

The deep learning machine AlphaFold, which was created by Google’s AI research lab DeepMind, is already transforming our understanding of the molecular biology that underpins health and disease.

One half of the 2024 Nobel prize in chemistry went to David Baker from the University of Washington in the US, with the other half jointly awarded to Demis Hassabis and John M. Jumper, both from London-based Google DeepMind.

If you haven’t heard of AlphaFold, it may be difficult to appreciate how important it is becoming to researchers. But as a beta tester for the software, I got to see first-hand how this technology can reveal the molecular structures of different proteins in minutes. It would take researchers months or even years to unpick these structures in laboratory experiments.

This technology could pave the way for revolutionary new treatments and drugs. But first, it’s important to understand what AlphaFold does.

Proteins are produced by series of molecular “beads”, created from a selection of the human body’s 20 different amino acids. These beads form a long chain that folds up into a mechanical shape that is crucial for the protein’s function.

Their sequence is determined by DNA. And while DNA research means we know the order of the beads that build most proteins, it’s always been a challenge to predict how the chain folds up into each “3D machine”.

These protein structures underpin all of biology. Scientists study them in the same way you might take a clock apart to understand how it works. Comprehend the parts and put together the whole: it’s the same with the human body.

Proteins are tiny, with a huge number located inside each of our 30 trillion cells. This meant for decades, the only way to find out their shape was through laborious experimental methods – studies that could take years.

Throughout my career I, along with many other scientists, have been engaged in such pursuits. Every time we solve a protein structure, we deposit it in a global database called the Protein Data Bank, which is free for anyone to use.

AlphaFold was trained on these structures, the majority of which were found using X-ray crystallography. For this technique, proteins are tested under thousands of different chemical states, with variations in temperature, density and pH. Researchers use a microscope to identify the conditions under which each protein lines up in a particular formation. These are then shot with X-rays to work out the spatial arrangement of all the atoms in that protein.

Addictive experience

In March 2024, researchers at DeepMind approached me to beta test AlphaFold3, the latest incarnation of the software, which was close to release at the time.

I’ve never been a gamer but I got a taste of the addictive experience as, once I got access, all I wanted to do was spend hours trying out molecular combinations. As well as lightning speed, this new version introduced the option to include bigger and more varied molecules, including DNA and metals, and the opportunity to modify amino acids to mimic chemical signalling in cells.

Understanding the moving parts and dynamics of proteins is the next frontier, now that we can predict static protein shapes with AlphaFold. Proteins come in a huge variety of shapes and sizes. They can be rigid or flexible, or made of neatly structured units connected by bendy loops.

You can read Isaacson’s entire October 11, 2024 essay on The Conversation or in an October 14, 2024 news item on phys.org.

Merry 2024 Christmas (2 of 2) What sounds like something from Star Trek? Answer: 7 new frog species discovered in Madagascar

‘Captain Sisko’ is a new favourite frog image and the audio file is a revelation (scroll down and the scroll down further). Later on, this is an amusing cartoon version of a Star Trek captain.

As for the story proper, scientists who have a passion for Star Trek have made a discovery in Madagascar, from an October 15, 2024 news item on ScienceDaily,

An international team of researchers have discovered seven new species of tree frogs that make otherworldly calls in the rainforests of Madagascar. Their strange, high-pitched whistling calls sound more like sound effects from the sci-fi series Star Trek. As a result, the researchers have named the new species after seven of the series’ most iconic captains.

This is a gorgeous frog,

Frog Boophis to be named after Captain Sisko from Star Trek. Photo: Mark D. Scherz

An October 15, 2024 University of Copenhagen press release (also on EurekAlert), which originated the news item,

If you think all frogs croak, you’d be wrong. Seven newly discovered species from the tree frog genus Boophis, found across the rainforests of Madagascar, emit special bird-like whistling sounds in their communication with other frogs.

These whistling sounds reminded the research team, led by Professor Miguel Vences of the Technische Universität Braunschweig, Germany, of Star Trek, where similar whistle-like sound effects are frequently used.

“That’s why we named the frogs after Kirk, Picard, Sisko, Janeway, Archer, Burnham, and Pike—seven of the most iconic captains from the sci-fi series,” says Professor Vences.

“Not only do these frogs sound like sound-effects from Star Trek, but it seems also fitting that to find them, you often have to do quite a bit of trekking! A few species are found in places accessible to tourists, but to find several of these species, we had to undertake major expeditions to remote forest fragments and mountain peaks. There’s a real sense of scientific discovery and exploration here, which we think is in the spirit of Star Trek,” explains Assistant Professor Mark D. Scherz from the Natural History Museum of Denmark at the University of Copenhagen, who was senior author on the study.

To Drown Out the Sound of Water

The otherworldly calls of these frogs are known as “advertisement calls”—a type of self-promotion that, according to the researchers, may convey information about the male frog’s suitability as a mate to females. This particular group live along fast-flowing streams in the most mountainous regions of Madagascar—a loud background that may explain why the frogs call at such high pitches.

For fans of Star Trek, some of the frog calls might remind them of sounds from the so-called ‘boatswain whistle’ and a device called the ‘tricorder.’ To others, they might sound like a bird or an insect.

“If the frogs just croaked like our familiar European frogs, they might not be audible over the sound of rushing water from the rivers they live near. Their high-pitched trills and whistles stand out against all that noise,” explains Dr Jörn Köhler, Senior Curator of Vertebrate Zoology at the Hessisches Landesmuseum Darmstadt, Germany, who played a key role in analyzing the calls of the frogs.

“The appearance of the frogs has led to them being confused with similar species until now, but each species makes a distinctive series of these high-pitched whistles, that has allowed us to tell them apart from each other, and from other frogs,” he says.

The calls also lined up with the genetic analysis the team performed.

Vulnerable to Climate Change

Madagascar is renowned for its immense biodiversity, and research in its rainforests continues to uncover hidden species, making it a true paradise for frogs. Madagascar, an island roughly the size of France, is home to about 9% of all the world’s frog species.

“We’ve only scratched the surface of what Madagascar’s rainforests have to offer. Every time we go into the forest, we find new species, and just in terms of frogs, there are still several hundred species we haven’t yet described,” says Professor Andolalao Rakotoarison of the Université d’Itasy in Madagascar. Just in the last ten years, she and the rest of this team have described around 100 new species from the island.

The researchers behind the discovery hope that this new knowledge will strengthen conservation efforts in Madagascar’s rainforests. The species often live in close geographic proximity but at different altitudes and in different microhabitats. This division makes them particularly vulnerable to changes in climate or the environment.

Thus, the research team urges greater awareness around the conservation of Madagascar’s biodiversity to ensure that these unique species and their habitats are preserved for the future. But they also hope to continue exploring, to seek out new species in forests where no scientist has gone before.

Researchers have made an audio file of the ‘Star Trek’ captain calls available, from the October 15, 2024 University of Copenhagen press release on EurekAlert, If I didn’t know, I would have guessed these were frogs,

Here’s a link to and a citation for the paper

Communicator whistles: A Trek through the taxonomy of the Boophis marojezensis complex reveals seven new, morphologically cryptic treefrogs from Madagascar (Amphibia: Anura: Mantellidae) by Miguel Vences, Jörn Köhler, Carl R. Hutter, Michaela Preick, Alice Petzold, Andolalao Rakotoarison, Fanomezana M. Ratsoavina, Frank Glaw, Mark D. Scherz. Vertebrate Zoology 74: 643-681 DOI: https://doi.org/10.3897/vz.74.e121110 Published October 14, 2024

This article appears to be open access.

There is an amusing illustration of one of the ‘Star Trek’ frog. Unfortunately, there isn’t a caption or credit for the illustration but it is from the University of Copenhagen,

Indigenous science as part of the science story

Bravo to whomever wrote this headline “Weaving Indigenous Science into Reported Stories” for Emma Gometz’s October 29, 2024 article for The Open Notebook.com, Note: Links have been removed,

After Tokitae, a beloved orca at the Miami Seaquarium, died in 2023—just as caregivers were preparing to return her to her natal waters near Puget Sound—a wave of outlets published stories about orca conservation, including efforts by the Lummi Nation, an Indigenous group in the Pacific Northwest.

B. “Toastie” Oaster, an Indigenous-affairs reporter at High Country News and a citizen of the Choctaw Nation of Oklahoma, read in one feature that members of the Lummi Nation consider orcas to be “sacred relatives of their tribe.” The phrasing stuck out to Oaster like a sore thumb: “Orcas are scientifically verified as being our relatives,” they say. “Why word that in a way that’s making it this mystical Indian thing?”[emphases mine]

For Oaster, the phrase exemplified how non-Indigenous writers can—through poor framing or word choices—discount Indigenous knowledge and cast Indigenous voices in their articles as “mystical” or “beautiful” others, there to provide color but not to impart any serious knowledge or authority to a story.

That said, recognition of Indigenous expertise within Western science is growing. In 2023, the National Science Foundation gave a $30 million grant to fund the Center for Braiding Indigenous Knowledges and Science. Collaborations between Indigenous experts and scientists have become more common, and historical wrongs to the Indigenous community have entered the conversation at scientific institutions. (Though progress to right these wrongs remains slow.)

Gometz’s October 29, 2024 article goes on to share advice on featuring Indigenous science, sourcing Indigenous experts and more when writing up a science story.

van Gogh’s sky is alive with real-world physics

Caption: The authors measured the relative scale and spacing of the whirling brush strokes in van Gogh’s “The Starry Night,” along with variances in luminance of the paint, to see if the laws that apply in the physics of real skies apply in the artist’s depiction. The results suggest van Gogh had an innate understanding of atmospheric dynamics. He captured multiple dimensions of atmospheric physics with surprising accuracy. Credit: Yinxiang Ma

A September 17, 2024 American Institute of Physics news release (also on EurekAlert) reveals how researchers in the fields of marine sciences and fluid dynamics have revealed the ‘hidden turbulence’ in van Gogh’s The Starry Night,

Vincent van Gogh’s painting “The Starry Night” depicts a swirling blue sky with yellow moon and stars. The sky is an explosion of colors and shapes, each star encapsulated in ripples of yellow, gleaming with light like reflections on water. 

Van Gogh’s brushstrokes create an illusion of sky movement so convincing it led atmospheric scientists to wonder how closely it aligns with the physics of real skies. While the atmospheric motion in the painting cannot be measured, the brushstrokes can.

In an article published this week in Physics of Fluids, by AIP Publishing, researchers specializing in marine sciences and fluid dynamics in China and France analyzed van Gogh’s painting to uncover what they call the hidden turbulence in the painter’s depiction of the sky.

“The scale of the paint strokes played a crucial role,” author Yongxiang Huang said. “With a high-resolution digital picture, we were able to measure precisely the typical size of the brushstrokes and compare these to the scales expected from turbulence theories.”

To reveal hidden turbulence, the authors used brushstrokes in the painting like leaves swirling in a funnel of wind to examine the shape, energy, and scaling of atmospheric characteristics of the otherwise invisible atmosphere. They used the relative brightness, or luminance, of the varying paint colors as a stand-in for the kinetic energy of physical movement.

“It reveals a deep and intuitive understanding of natural phenomena,” Huang said. “Van Gogh’s precise representation of turbulence might be from studying the movement of clouds and the atmosphere or an innate sense of how to capture the dynamism of the sky.”

Their study examined the spatial scale of the painting’s 14 main whirling shapes to find out if they align with the cascading energy theory that describes the kinetic energy transfer from large- to small-scale turbulent flows in the atmosphere.

They discovered the overall picture aligns with Kolmogorov’s law, which predicts atmospheric movement and scale according to measured inertial energy. Drilling down to the microcosm within the paint strokes themselves, where relative brightness is diffused throughout the canvas, the researchers discovered an alignment with Batchelor’s scaling, which describes energy laws in small-scale, passive scalar turbulence following atmospheric movement.

Finding both scalings in one atmospheric system is rare, and it was a big driver for their research.

“Turbulence is believed to be one of the intrinsic properties of high Reynolds flows dominated by inertia, but recently, turbulence-like phenomena have been reported for different types of flow systems at a wide range of spatial scales, with low Reynolds numbers where viscosity is more dominant,” Huang said.

“It seems it is time to propose a new definition of turbulence to embrace more situations.”

Matthew Rozsa provides a more accessible description of the research in a September 20, 2024 article for Salon.com, Note: Links have been removed,

… one can look at “The Starry Night” and see a scientifically accurate representation of turbulent, cascading waters — a visual that may have directly inspired van Gogh before he transposed those dynamics into his iconic starry sky while painting in his mental asylum room in the French town of Saint-Rémy-de-Provence.

“Imagine you are standing on a bridge, and you watch the river flow. You will see swirls on the surface, and these swirls are not random.” Yongxiang Huang, lead author of the study, told CNN. “They arrange themselves in specific patterns, and these kinds of patterns can be predicted by physical laws.”

Scientists fascinated by van Gogh’s art are not limited to physicists. When researchers discovered a gecko that reminded them of the paintings of van Gogh, they gave it the scientific name Cnemaspis vangoghi. As a common terms, the authors suggested “van Gogh’s starry dwarf gecko.”

Here’s a link to and a citation for the paper,

Hidden turbulence in van Gogh’s The Starry Night by Yinxiang Ma (马寅翔), Wanting Cheng (程婉婷), Shidi Huang (黄仕迪), François G. Schmitt, Xin Lin (林昕), Yongxiang Huang (黄永祥). Physics of Fluids Volume 36, Issue 9 September 2024 DOI: https://doi.org/10.1063/5.0213627

This article is behind a paywall.

Local resistance to Lomiko Metals’ Outaouais graphite mine

It’s been a while since BC-based Lomiko Metals has rated more than a passing mention here. Back in June 2024 the company experienced a rough patch regarding their plans to mine for graphite in one of their Québec mines, from a June 9, 2024 article by Joe Bongiorno for Canadian Broadcasting Corporation (CBC) news online,

In Quebec’s Laurentians region, a few kilometres from a wildlife reserve and just outside the town of Duhamel, lies a source of one of the world’s most sought after minerals for manufacturing electric vehicle batteries: graphite.

Since Lomiko Metals Inc., a mining company based in Surrey, B.C., announced plans to build a graphite mine in the area, some residents living nearby have protested the project, fearing the potential harm to the environment.

But opposition has only gained steam after locals found out last month that the [US] Pentagon is involved in the project.

In May, Lomiko announced it received a grant of $11.4 million from the U.S. Department of Defence and another $4.9 million from Natural Resources Canada to study the conversion of graphite into battery-grade material for powering electric vehicles.

In its own announcement, the Pentagon said Lomiko’s graphite will bolster North American energy supply chains and be used for “defence applications,” words that make Duhamel resident Louis Saint-Hilaire uneasy.

Depending on how you view things, this is either good news for bad news in a September 17, 2024 news item on CBC news online, Note: Links have been removed,

Two Quebec cabinet ministers say the province will not fund a proposed graphite mine north of Gatineau because it doesn’t meet the government’s standards for local support.

B.C.-based Lomiko Metals has been testing samples from its La Loutre site near the town of Duhamel, which the company says on its project website has shown “excellent graphite properties” for making batteries.

Many nearby residents have been against the proposal for years due to a perceived threat to outdoor recreation and associated businesses. No environmental assessment of the site has been conducted.

La Loutre has drawn funding from the Canadian and American governments for its potential role in the switch from gas to electric vehicles and related drop in fossil fuel emissions, but Minister Responsible for the Outaouais Region Mathieu Lacombe said Monday [Sept4ember 16, 2024] the project lacks provincial support.

Lacombe pointed to Premier François Legault indicating in 2022 that no mining project will be carried out without what’s referred to in the province as “social acceptability” — essentially, buy-in from affected communities.

Natural Resources Minister Blanchette Vézina said the company’s request for funding from Investissement Québec wouldn’t be successful because it lacks public support.

Lomiko Metals has not responded to requests from Radio-Canada for an interview. It’s not clear what the company will do next, or what will happen with a referendum on the project scheduled for November 2025.

Embedded in the September 17, 2024 news item is a radio segment where an expert further dissects the implications of the news.

For anyone interested in graphite, I have a January 3, 2023 posting, “Making graphite from coal and a few graphite facts.” There have been some changes with the ‘graphite facts’ since the posting was published but most of the other information should still be valid.

Here are the updated facts from the Natural Resources Canada Graphite Facts webpage, which was updated March 1, 2024,

Graphite is a non-metallic mineral that has properties similar to metals, such as a good ability to conduct heat and electricity. Graphite occurs naturally or can be produced synthetically. Purified natural graphite has higher crystalline structure and offers better electrical and thermal conductivity than synthetic material.

Key facts

  • In 2022, global graphite mine production was about 1.3 million tonnes, a 15% increase from 2021.
  • Canadian natural graphite production comes from the Lac des Iles mine in Quebec.
  • Canada ranks as the sixth global producer of graphite with 13,000 tonnes of production in 2022.
  • Canada exported $22 million worth of natural graphite and $14 million worth of synthetic graphite globally in 2022, mostly to the United States.

Production

The Lac des Iles mine in Quebec is the only mine in Canada that produced graphite in 2022 [emphasis mine]. However, many other companies are working on advancing graphite projects. Canada produced 13,000 tonnes of natural graphite in 2022, which was an increase from 2021 of 9,743 tonnes.

International context

Global production and demand for graphite are anticipated to increase in the coming years, largely because of the use of graphite in the batteries of electric vehicles. In 2022, global consumption of graphite reached 3.8 million tonnes, compared to 3.6 million tonnes in 2021. Synthetic graphite accounted for about 56% of the graphite consumption, which was concentrated largely in Asia. North America consumes only 1% of global natural graphite, but almost 9% of synthetic graphite.

Global mine production of graphite was 1.3 million tonnes in 2022, up 15% compared to the previous year. China is the leading global producer, accounting for 66% of production in 2022. Canada ranks sixth globally for natural graphite production, producing about 1% of global natural graphite.

It seems Lomiko Metals’ La Loutre mine will not be adding to the country’s graphite production. I wonder what the company will do now as that La Loutre mine appears to be its chief asset, from a November 23, 2023 news release, Note: A link has been removed,

Montreal, Quebec – November 23, 2023 – Lomiko Metals Inc. (TSX.V: LMR) (“Lomiko Metals” or the “Company”) is pleased to announce the launch of a private placement (the “Private Placement“) to support the Company’s progress with its graphite and lithium projects in Quebec, Canada. The Private Placement will consist of hard dollar units for gross proceeds of up to $500,000.

Belinda Labatte, CEO and Director of Lomiko Metals: “Lomiko has accomplished many milestones in the last 18 months, including an updated Mineral Resource Estimate for La Loutre, environmental baseline studies and advancing the metallurgical studies. With this financing and committed investors, we will advance pre-feasibility level initiatives, and continue to advance the important discussions with communities, partners and First Nation Kitigan Zibi.”

Retirement of Director

A special thank you and note of appreciation for Paul Gill, Executive Chair, who will not stand for re-election as he pursues other opportunities. We appreciate his service to the company and long-standing leadership at Lomiko. We wish him well in his future endeavours. Paul Gill will continue to serve as Executive Chair until the Company’s Annual and Special Meeting on December 20, 2023.

About Lomiko Metals Inc.

The Company holds mineral interests in its La Loutre graphite development in southern Quebec. The La Loutre project site is within the Kitigan Zibi Anishinabeg (KZA) First Nation’s territory. The KZA First Nation is part of the Algonquin Nation, and the KZA traditional territory is situated within the Outaouais and Laurentides regions.​ Located 180 kilometers northwest of Montreal, the property consists of one large, continuous block with 76 mineral claims totaling 4,528 hectares (45.3 km2).

In addition to La Loutre, Lomiko is working with Critical Elements Lithium Corporation towards earning its 49% stake in the Bourier Project as per the option agreement announced on April 27th, 2021. The Bourier project site is located near Nemaska Lithium and Critical Elements south-east of the Eeyou Istchee James Bay territory in Quebec which consists of 203 claims, for a total ground position of 10,252.20 hectares (102.52 km2), in Canada’s lithium triangle near the James Bay region of Quebec that has historically housed lithium deposits and mineralization trends.

This is quite a setback for Lomiko Metals.

October 2024

It seems that while the company has regrouped it has entirely given up on La Loutre, from an October 30, 2024 news release,

October 30th, 2024 – Montreal, Québec: Lomiko Metals Inc. (TSX.V: LMR) (“Lomiko Metals” or the “Company”) is pleased to announce that the 2024 Beep-Map prospecting and sampling program is well underway on the Grenville Graphite Mineral Belt regional graphite exploration project.  The “Grenville” project includes 268 mineral claims covering 15,639 hectares on six blocks in the Laurentian region of Quebec, approximately 200 kilometers northwest of Montréal within a 100 km radius of the Company’s flagship La Loutre graphite project [emphasis mine].  The 2024 work is focused on following up on the very successful graphite results reported in the Company’s press release dated July 11, 2023.  To date, a total of 265 samples have been collected and submitted for analysis from the Dieppe, Meloche, Ruisseau and Tremblant properties, the focus of this campaign. No work is being conducted on the Carmin or North Low properties at this time.  The results of the exploration campaign will be reported as they become available.  The regional exploration program focuses on improving knowledge of graphite showings at the most prospective targets outlined in the 2022 and 2023 exploration programs.

Corporate and market update

Lomiko is part of the global transition to electrification and localization of transportation supply chains, a change that impacts all forms of transportation, cars, heavy equipment, marine etc. It also impacts communities and our talent pool to build these businesses of the future. Natural flake graphite, and specifically fine flake graphite, is crucial for the development of the North American anode industry in the new energy framework driven by tariffs on critical minerals, long-term supply chain resilience, and responsible domestic industrial growth. The La Loutre graphite is 67% fine flake distribution, making it an important source of long-term future graphite supply [emphasis mine] with demonstrated success for anode battery technology – among other uses currently being evaluated by Lomiko. According to Fortune Business Insights report dated October 14, 2024, the North American EV market is expected to grow almost quadruple to $230 billion in 2030 from $63 billion in 2022, with growth from other transportation sectors still nascent. Lomiko continues to engage with partners, customers and suppliers in building the future of this industry and developing R&D for the responsible extraction of this material.

Lomiko is initiating the reimbursement process for its recently awarded grant from the United States government and contribution agreement from the Canadian government, for work completed to date and within the scope of the agreements. It is the recipient of a Department of Defense (“DoD”) Technology Investment Agreement (“TIA”) grant of US$8.35 million (approximately CA$11.4 million) where Lomiko will match the funding over a period of 5 years, for a total agreement with the DoD of US$16.7 million. The grant falls under Title III of the Defense Production Act and is funded through the Inflation Reduction Act to ensure energy security in North America. The Company has also been approved for funding of CA$4.9 million in a non-repayable contribution agreement from the Critical Mineral Research, Development and Demonstration (CMRDD) program administered by Natural Resources Canada, with the total project cost being CA$6.6 million. The announcement was made on May 16, 2024 and can be viewed on our website at www.lomiko.com.

In addition, Lomiko announces the resignation of CFO and Corporate Secretary, Vince Osbourne, who will be pursuing a role with a private company and maintain a strategic advisory role with Lomiko going forward. Jacqueline Michael, Controller, will replace Vince Osbourne as CFO on an interim basis, with the role of Corporate Secretary to be assumed by current professionals working with Lomiko.

On behalf of the board of directors and management, Belinda Labatte, CEO and Interim Chair of the board of directors stated: “Vince has been an integral member of the Lomiko team, and we wish him success in his future endeavors, and we are pleased to continue our working relationship in his new capacity to Lomiko as advisor to the Company.”

Now with a new administration entering the US White House has a chief advisor and co-leader of a new government agency [Department of Government Efficiency] in Elon Musk who is extremely wealthy and has many businesses, notably Tesla, an electronic vehicle (EV) business. It would seem that M. Musk might have an interest in easy access to minerals important to Tesla’s business.

I wonder how this is going to work out.

Your garden as a ‘living artwork’ for insects

Pollinator Pathmaker Eden Project Edition. Photo Royston Hunt. Courtesy Alexandra Daisy Ginsberg Ltd

I suppose you could call this a kind of citizen science as well as an art project. A September 11, 2024 news item on phys.org describes a new scientific art project designed for insects,

Gardens can become “living artworks” to help prevent the disastrous decline of pollinating insects, according to researchers working on a new project.

Pollinator Pathmaker is an artwork by Dr. Alexandra Daisy Ginsberg that uses an algorithm to generate unique planting designs that prioritize pollinators’ needs over human aesthetic tastes.

A September 11, 2024 University of Exeter press release (also on EurekAlert), which originated the news item, provides more detail about the research project,

Originally commissioned by the Eden Project in Cornwall in 2021, the general public can access the artist’s online tool (www.pollinator.art) to design and plant their own living artwork for local pollinators.

While pollinators – including bees, butterflies, moths, wasps, ants and beetles – are the main audience, the results may also be appealing to humans.

Pollinator Pathmaker allows users to input the specific details of their garden, including size of plot, location conditions, soil type, and play with how the algorithm will “solve” the planting to optimise it for pollinator diversity, rather than how it looks to humans.

The new research project – led by the universities of Exeter and Edinburgh – has received funding from UK Research and Innovation as part of a new cross research council responsive mode scheme to support exciting interdisciplinary research.

The project aims to demonstrate how an artwork can help to drive innovative ecological conservation, by asking residents in the village of Constantine in Cornwall to plant a network of Pollinator Pathmaker living artworks in their gardens. These will become part of the multidisciplinary study.

“Pollinators are declining rapidly worldwide and – with urban and agricultural areas often hostile to them – gardens are increasingly vital refuges,” said Dr Christopher Kaiser-Bunbury, of the Centre for Ecology and Conservation on Exeter’s Penryn Campus in Cornwall.

“Our research project brings together art, ecology, social science and philosophy to reimagine what gardens are, and what they’re for.

“By reflecting on fundamental questions like these, we will empower people to rethink the way they see gardens.

 “We hope Pollinator Pathmaker will help to create connected networks of pollinator-friendly gardens across towns and cities.”

Good luck with the pollinators!

Soundscapes comprised of underground acoustics can help amplify soil health

For anyone who doesn’t like cartoons, this looks a lot cuter than the information it conveys,

An August 16, 2024 news item on ScienceDaily announces the work,

Barely audible to human ears, healthy soils produce a cacophony of sounds in many forms—a bit like an underground rave concert of bubble pops and clicks.

Special recordings made by Flinders University ecologists in Australia show that this chaotic mixture of soundscapes can be a measure of the diversity of tiny living animals in the soil, which create sounds as they move and interact with their environment.

An August 16, 2024 Flinders University press release (also on EurekAlert), which originated the news item, describes a newish (more about newish later) field of research ‘eco-acoustics’ and technical details about the researchers’ work, Note: A link has been removed,

With 75% of the world’s soils degraded, the future of the teeming community of living species that live underground face a dire future without restoration, says microbial ecologist Dr Jake Robinson, from the Frontiers of Restoration Ecology Lab in the College of Science and Engineering at Flinders University.

This new field of research aims to investigate the vast, teeming hidden ecosystems where almost 60% of the Earth’s species live, he says.

“Restoring and monitoring soil biodiversity has never been more important.

“Although still in its early stages, ‘eco-acoustics’ is emerging as a promising tool to detect and monitor soil biodiversity and has now been used in Australian bushland and other ecosystems in the UK.

“The acoustic complexity and diversity are significantly higher in revegetated and remnant plots than in cleared plots, both in-situ and in sound attenuation chambers.

“The acoustic complexity and diversity are also significantly associated with soil invertebrate abundance and richness.”

The latest study, including Flinders University expert Associate Professor Martin Breed and Professor Xin Sun from the Chinese Academy of Sciences, compared results from acoustic monitoring of remnant vegetation to degraded plots and land that was revegetated 15 years ago. 

The passive acoustic monitoring used various tools and indices to measure soil biodiversity over five days in the Mount Bold region in the Adelaide Hills in South Australia. A below-ground sampling device and sound attenuation chamber were used to record soil invertebrate communities, which were also manually counted.   

“It’s clear acoustic complexity and diversity of our samples are associated with soil invertebrate abundance – from earthworms, beetles to ants and spiders – and it seems to be a clear reflection of soil health,” says Dr Robinson.

“All living organisms produce sounds, and our preliminary results suggest different soil organisms make different sound profiles depending on their activity, shape, appendages and size.

“This technology holds promise in addressing the global need for more effective soil biodiversity monitoring methods to protect our planet’s most diverse ecosystems.”

This is a copy of the research paper’s graphical abstract,

Caption: Acoustic monitoring was carried out on soil in remnant vegetation as well as degraded plots and land that was revegetated 15 years ago. Credit: Flinders University

Here’s a link to and a citation for the paper,

Sounds of the underground reflect soil biodiversity dynamics across a grassy woodland restoration chronosequence by Jake M. Robinson, Alex Taylor, Nicole Fickling, Xin Sun, Martin F. Breed. Journal of Applied Ecology Volume 61, Issue 9 September 2024 Pages 2047-2060 DOI: https://doi.org/10.1111/1365-2664.14738 First published online: 15 August 2024

This paper is open access.

‘Newish’ eco-acoustics

Like a lot of newish scientific terms, eco-acoustics, appears to be evolving. A search for the term led me to the Acoustic ecology entry on Wikipedia, Note: Links have been removed,

Acoustic ecology, sometimes called ecoacoustics or soundscape studies, is a discipline studying the relationship, mediated through sound, between human beings and their environment.[1] Acoustic ecology studies started in the late 1960s with R. Murray Schafer a musician, composer and former professor of communication studies at Simon Fraser University (Vancouver, British Columbia, Canada) with the help of his team there[2] as part of the World Soundscape Project. The original WSP team included Barry Truax and Hildegard Westerkamp, Bruce Davies and Peter Huse, among others. The first study produced by the WSP was titled The Vancouver Soundscape. This innovative study raised the interest of researchers and artists worldwide, creating enormous growth in the field of acoustic ecology. In 1993, the members of the by now large and active international acoustic ecology community formed the World Forum for Acoustic Ecology.[3]

Soundscapes are composed of the anthrophony, geophony and biophony of a particular environment. They are specific to location and change over time.[12] Acoustic ecology aims to study the relationship between these things, i.e. the relationship between humans, animals and nature, within these soundscapes. These relationships are delicate and subject to disruption by natural or man-made means.[9]

The acoustic niche hypothesis, as proposed by acoustic ecologist Bernie Krause in 1993,[23] refers to the process in which organisms partition the acoustic domain, finding their own niche in frequency and/or time in order to communicate without competition from other species. The theory draws from the ideas of niche differentiation and can be used to predict differences between young and mature ecosystems. Similar to how interspecific competition can place limits on the number of coexisting species that can utilize a given availability of habitats or resources, the available acoustic space in an environment is a limited resource that is partitioned among those species competing to utilize it.[24]

In mature ecosystems, species will sing at unique bandwidths and specific times, displaying a lack of interspecies competition in the acoustic environment. Conversely, in young ecosystems, one is more likely to encounter multiple species using similar frequency bandwidths, which can result in interference between their respective calls, or a complete lack of activity in uncontested bandwidths. Biological invasions can also result in interference in the acoustic niche, with non-native species altering the dynamics of the native community by producing signals that mask or degrade native signals. This can cause a variety of ecological impacts, such as decreased reproduction, aggressive interactions, and altered predator-prey dynamics.[25] The degree of partitioning in an environment can be used to indicate ecosystem health and biodiversity.

Earlier bioacoustic research at Flinders University has been mentioned in a June 14, 2023 posting “The sound of dirt.” Finally, whether you spell it eco-acoustics or ecoacoustics or call it acoustic ecology, it is a fascinating way of understanding the natural and not-so-natural world we live in.