Category Archives: science

In memory of those in the science, engineering, or technology communities returning to or coming to live or study in Canada on Flight PS752

176 people died on the Ukraine International Airlines Flight PS752 bound for Kyiv when it was shot down in what now appears to have been a tragic mistake. 138 of those people were scheduled to take connecting flights to Canada.

I extend my profound sympathies to these and all the families that must endure this loss.

National Post’s January 11, 2020 In Memoriam tribute (in the print edition) provides a glimpse of the impact this loss is having and, likely, will continue to have for some time. Approximately 60 of the people mentioned in the tribute were identifiably members of the science, engineering, or technology communities in Canada.

  • Ardalan Ebnoddin Hamidi  Civil Engineer
  • Forough Khadem Immunologist and Mitacs employee
  • Sharieh Faghihi DDS
  • Fareed Arasteh PhD Student Molecular Genetics
  • Pedram Jadidi PhD Student Civil Engineering
  • Naser Pourshabanoshibi MD
  • Firouzeh Madani MD
  • Ghazal Nourian PhD Student Nanophotonic Energy
  • Mehran Abtahi PostDoc Civil Engineering
  • Hadis Hayatdavoudi PhD Student Electrochemistry and Corrosion Science Centre
  • Alireza Pey CEO Message Hopper (Tech Startup)
  • Milad Nahavandi Ph.D. Student Industrial Bioproduct Lab
  • Mohammad Hossein Saket Mechanical Engineer
  • Fatemah Kazerani Medical manager
  • Hamid Setarah Kokab PhD Student Mechanical Engineering
  • Samira Bashiri Research Assistant Biology
  • Shekoufeh Choopannejad MD
  • Sara Saadat Alumna 2019 Bachelor of Science in Psychology
  • Saba Saadat Undergraduate Student Biological Sciences
  • Amirhossien Ghasemi Graduate Student Biomedical Engineering
  • Razgar Rahimi Instructor Faculty of Engineering and Applied Science
  • Farideh Gholami Lecturer Ontario Tech University
  • Mansour Pourjam Laboratory Technician Ottawa Denture & Implant Centre
  • Neda Sadighi MD
  • Sajedeh Saraeian Incoming Masters Student Chemical Engineering Program
  • Roja (or Rouja) Azadian Engineer
  • Alma Oladi PhD Student, Mathematics and Statistics
  • Mansour Esnaashary Esfahani PhD Student Civil Engineering
  • Ghanimat Azhdari PhD Student Dept. of Geography, Environment and Geomatics 
  • Hiva Molani HVAC Technician
  • Pedram Mousavi Professor Mechanical Engineering
  • Mojgan Daneshmand Professor Electrical and Computer Engineering
  • Farhad Niknam DDS
  • Marzieh Foroutan PhD Student Geography and Environmental Management
  • Saeed Kashani PhD Student Chemistry
  • Delaram Dadashnejad Student Nutrition
  • Bahareh Karami (Moghadam) Technologist Capital Planning and Delivery Branch
  • Mohammad Amin Jebelli MD & Graduate Student Master of Health Science in Translational Research
  • Amirhossien Ghasemi Graduate Student Biomedical Engineering
  • Mohsen Salahi Instructor Quality Engineering, Construction Project Management, and Chemical Laboratory Analysis Programs
  • Mahsa Amirliravi Instructor Quality Engineering, Construction Project Management, and Chemical Laboratory Analysis Programs
  • Amir Hossein Saeedinia PhD Student Mechanical Engineering
  • Masoumeh Ghavi Student Engineering
  • Zeynab Asadi-Lari Science Student University of Toronto, Mississauga
  • Mohammad Hossein Asadi-Lari MD/PhD Student at the Faculty of Medicine
  • Parisa Eghbalian DDS
  • Kasra Saati Senior Quality Engineer
  • Shadi Jamshidi Chemical Engineer
  • Shahab Raana Mechanical Engineer & Student Welding Technology
  • Mohammad Mahdi Elyasi Co-founder ID Green Inc. (Agricultural Tech Startup)
  • Arash Pourzarabi Graduate Student Engineering and Computer Science
  • Pouneh Gourji Graduate Student Engineering and Computer Science
  • Mirmohammad (Mehdi) Sadeghi Civil Engineer
  • Bahareh Haj Esfandiari Civil Engineer
  • Mojtaba Abbasnezhad PhD Student Engineering
  • Arvin Morattab PhD Student École de technologie supérieure
  • Aida Farzaneh PhD Student & Lecturer Engineering Department École de technologie supérieure
  • Sara Mamani Master’s in mechanical, industrial, and geoenvironmental engineering
  • Siavash Ghafouri Azar Masters in Mechanical Engineering

The Canadian Science Policy Centre (CSPC) has also compiled a list which is more exhaustive as it includes ,members of the academic communities at large and it includes details about the universities where people taught or studied.

Richard Warnica’s moving January 11, 2019 essay (‘A continuous secretion of sorrow’: The Iran plane tragedy and a sense of what was lost) for Post Media ends with these words,

It is the sum of everything in 176 lives. It is absence piled on absence. It is too massive to conceive.

If you are inclined, I strongly suggest you read Warnica’s essay. It’s not easy to read but you might find it helpful (I found it so).

Finally, if there are any errors in or omissions from the list, please let me know so I can make corrections.

ETA January 17, 2020: Nicole Janson wrote a January 9, 2020 article for University Affairs, which provides another memorial to the members of the academic community lost in the passenger plane shot down by Iran on January 8, 2020.

Infinity, time, physics, math, and a play at the Vancouver (Canada) East Cultural Centre, January 7 – 19, 2020

Time seems to be having a moment. (I couldn’t resist. 🙂 If Carlo Rovelli’s 2018 book, The Order of Time, is any indication the topic has attained a new level of interest. The only other evidence I have is that I stumble across essays about time in unlikely places.

Infinity, a play about time and more, has been produced and toured on and off since 2015 when it won the Dora Mavor Moore Award for best new play.

Here’s a clip from one of the productions,

Here’s what the publicists at the Cultch (Vancouver East Cultural Centre) have posted about the play on the Events webpage,

A surprising, funny, and revelatory new play about love, sex, and math.

The cynical, skeptical daughter of a theoretical physicist and a composer, Sarah Jean’s clinical approach to love meets with little success. In this absorbing drama infused with science and classical music, three exceptional minds collide like charged particles in an accelerator. Sarah Jean’s hugely talented, yet severely dysfunctional, family will learn that love and time itself are connected in unimaginable ways.

From award-winning playwright Hannah Moscovitch; featuring two of our country’s most esteemed actors, Jonathon Young and Amy Rutherford, up-and-comer Emily Jane King, and violinist Andréa Tyniec; with original music by visionary composer Njo Kong Kie.

“The play makes you feel as much as it makes you think.”—NOW Toronto

There is a December 23, 2019 preview article by Janet Smith for the Georgia Straight which gives you some insight into the playwright and her work (Note: There is some profanity in the second paragraph),

Albert Einstein once called time a “stubbornly persistent illusion”, but tell that to a busy playwright who’s juggling deadlines for TV scripts and stage openings with parenting a four-year-old-boy.

“I’m in an insane relationship with time as a mother—this agonized relationship with time,” writer Hannah Moscovitch laments with a laugh, speaking to the Straight from her Halifax home before her show Infinity opens here after the holidays. “This work-life balance: I was like, ‘What the fuck is everybody complaining about?’ Until I had to do it.

“I mean, if I don’t work less I will wreck his childhood. So it’s not like a theoretical ideal that I should have work-life balance,” she continues, sounding as self-effacing, funny, and candidly introspective as some of her best-known female stage characters. And then she reflects more seriously, “Writing Infinity gave me the chance to grapple with that. And now I’m in a constant existential relationship with time; I’m constantly thinking about it. Time is intricately linked to death, they’re inevitably linked. When you come back to time you come back to death.”

In 2008, Ross Manson, artistic director, of Toronto’s Volcano Theatre, approached Moscovitch with an article in Harper’s magazine about the history of timekeeping, with the idea of commissioning her to write on the theme. Moscovitch went on to read Time Reborn: From the Crisis in Physics to the Future of the Universe [2013], in which American theoretical physicist Lee Smolin, of the Perimeter Institute for Theoretical Physics in Ontario, challenges Einstein’s idea of time as illusion.

With Manson’s help, she would go on to meet Smolin as she worked on her play, turning to him as an expert source on the science she was trying to convey in her story. Along the way, she formed a friendship with the man she was once intimidated to meet.

“Oddly enough, while all the specifics are different about what we do, some of the generals are the same,” she explains. “We have no language in common, but we really enjoy hanging out with each other. There’s a critical endeavour in both of our work that is thought-based, and we both very much live in our minds.”

For a more jaundiced view, there’s Conrad Sweatman’s April 5, 2019 review of the play’s script in book form for prairiefire,

The uses and abuses of science in playwriting: a review of Hannah Moscovitch’s play Infinity 

Hannah Moscovitch is an indie darling of Canadian theatre, and her Dora-winning play Infinity reaffirms her reputation as one of Canada’s brightest, most ambitious playwrights. If this sounds like the sort of detached praise one reads on a student report card, it’s partially because throughout my readings of Infinity I wrestled between admiration and annoyance at its rather academic cleverness. While ultimately it earns my letter of recommendation, Infinity sometimes feels like the dramatic equivalent of a class valedictorian’s graduation speech.

Back to Infinity. In his lively introduction to the play’s script, the famous physicist Lee Smolin, who consulted on the play, describes scientists and artists as“explorers of our common future” and pleads for a more open, friendly exchange between these two camps. (Smolin, vi). It comes off as a conciliatory remark after decades of the ‘science wars’ in academia, and Smolin also lauds Moscovitch for bucking the humanities’ postmodernist trend of knocking science and its practitioners. All fine sentiments. But what does this emphasis on the commonality between art and science mean, if anything, about the relationship between the subjective, social stuff of art and the objective, natural stuff of science? Does it suggest that the scientific method should by employed by playwrights and novelists in the fictional study of human nature, as some of the naturalist novelists of the 19th century believed? 

I have no reason to think that either Smolin or Moscovitch really wish for science to colonize the arts and humanities. …

Infinity is a fine addition to the aforementioned genre of smart, humanistic plays about physicists and mathematicians that had its heyday around the turn of the Millennium. It has some of their same flaws and cerebral charms and belongs more, in spirit, to the comparatively untroubled moment, before the Iraq and Afghanistan wars, the Global Recession, and Trump. If, like me, you spent your first years willingly reading serious literature and theatre at length in a humanities department where every text was filtered through the parallax perspectives of postmodern critical theory, you may find refreshing Infinity’s enthusiasm for science and its world of objectivism. You may feel the same way about its avoidance of the crude identity politics, inspired partially by such theory, that’s particularly in vogue in the arts right now: a kind of reactive agitprop in the age of Trump. But with the world staggering right now from one crisis to the next, a contemporary play about Ivy League intellectuals, their theories of time and struggles for authenticity, seems, well, a little untimely. …

Sweatman has identified one of the big problems with using concepts from mathematics and the sciences to inform fiction and art. The romantic poets ran into the same problem as Richard Holmes explores at length in his 2008 book, The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science. Shelley eventually abandoned his attempts at including science in his poems.

Interestingly, most of us don’t seem to realize that the arts and sciences have been intimately linked for millenia. For example, De rerum natura a multi-volume poem by Roman poet, Lucretius ( (c. 99 BCE – c. 55 BCE), is a philosophical treatise exploring mind, soul, and the principles of atomism (i.e., atoms).

I hope you enjoy the play, if you choose to go. According to the Events webpage (scroll down), the playwright will be present at two post-show talkbacks.

Cryonaut LEGO ®, quantum computing, and Season’s Greetings for 2019!

Caption: For the first time, LEGO ® has been cooled to the lowest temperature possible in an experiment which reveals a new use for the popular toy. Credit: Josh Chawner

Pretty interesting science and seasonally appropriate for large numbers of people, this video was posted on December 23, 2019 (from YouTube’s The World’s Coolest LEGO Set! webpage),

Hamster Productions 154K subscribers Our LEGO insulator paper:… A world leading team of ultra-low temperature physicists at Lancaster University decided to place a LEGO figure and four LEGO blocks inside their record-breaking dilution refrigerator. This machine – specially made at the University – is the most effective refrigerator in the world, capable of reaching 1.6 millidegrees above absolute zero (minus 273.15 Centigrade), which is about 200,000 times colder than room temperature and 2,000 times colder than deep space. This research was lead by Low Temperature Physicist Dr. Dmitry Zmeev ——————————- TRANSLATORS: Chinese (Traditional) – Hsin Hui Chang Russian – Dmitry Zmeev Dutch – Ruben Leenders Spanish – Marta San Juan Mucientes Italian – Leonardo Forcieri Polish – Veronica Letka ——————————– …

From a December 23, 2019 news item on ScienceDaily,

For the first time, LEGO ® has been cooled to the lowest temperature possible in an experiment which reveals a new use for the popular toy.

Its special properties mean it could be useful in the development of quantum computing.

A world leading team of ultra-low temperature physicists at Lancaster University decided to place a LEGO ® figure and four LEGO ® blocks inside their record-breaking dilution refrigerator.

This machine — specially made at the University — is the most effective refrigerator in the world, capable of reaching 1.6 millidegrees above absolute zero (minus 273.15 Centigrade), which is about 200,000 times colder than room temperature and 2,000 times colder than deep space.

The results — published in the journal Scientific Reports — were surprising.

A December 23, 2019 Lancaster University press release (also on EurekAlert), which originated the news item, expands on the theme,

Dr Dmitry Zmeev, who led the research team, said: “”Our results are significant because we found that the clamping arrangement between the LEGO ® blocks causes the LEGO ® structures to behave as an extremely good thermal insulator at cryogenic temperatures.

“This is very desirable for construction materials used for the design of future scientific equipment like dilution refrigerators.”

Invented 50 years ago, the dilution refrigerator is at the centre of a global multi-billion dollar industry and is crucial to the work of modern experimental physics and engineering, including the development of quantum computers.

The use of ABS plastic structures, such as LEGO ®, instead of the solid materials currently in use, means that any future thermal insulator could be produced at a significantly reduced cost.

Researchers say the next step is to design and 3D print a new thermal insulator for the next generation of dilution refrigerators.

Here’s a link to and a citation for the paper,

LEGO® Block Structures as a Sub-Kelvin Thermal Insulator by J. M. A. Chawner, A. T. Jones, M. T. Noble, G. R. Pickett, V. Tsepelin & D. E. Zmeev. Scientific Reports volume 9, Article number: 19642 (2019) doi:10.1038/s41598-019-55616-7 Published 23 December 2019

This paper is open access.

Finally, Joyeux Noël et Bonne année 2020!

Awe, science, and God

Having been brought up in a somewhat dogmatic religion, I was a bit resistant when I saw ‘religion’ mentioned in the news release but it seems I am being dogmatic. Here’s a definition from the Religion Wikipedia entry (Note: Links have been removed),

Religion is a social-cultural system of designated behaviors and practices, morals, worldviews, texts, sanctified places, prophecies, ethics, or organizations, that relates humanity to supernatural, transcendental, or spiritual elements. However, there is no scholarly consensus over what precisely constitutes a religion.[1][2]

This research into science and God suggests that the two ‘belief’ systems are not antithetical. From a July 18, 2019 Arizona State University (ASU) news release (also on EurekAlert but published on July 17, 2019) by Kimberlee D’Ardenne,

Most Americans believe science and religion are incompatible, but a recent study suggests that scientific engagement can actually promote belief in God.

Researchers from the Arizona State University Department of Psychology found that scientific information can create a feeling of awe, which leads to belief in more abstract views of God. The work will be published in the September 2019 issue of the Journal of Experimental Social Psychology and is now available online.

“There are many ways of thinking about God. Some see God in DNA, some think of God as the universe, and others think of God in Biblical, personified terms,” said Kathryn Johnson, associate research professor at ASU and lead author on the study. “We wanted to know if scientific engagement influenced beliefs about the existence or nature of God.”

Though science is often thought of in terms of data and experiments, ASU psychology graduate student Jordan Moon, who was a coauthor on the paper, said science might be more to some people. To test how people connect with science and the impact it had on their beliefs about God, the researchers looked at two types of scientific engagement: logical thinking or experiencing the feeling of awe.

The team first surveyed participants about how interested they were in science, how committed they were to logical thinking and how often they felt awe. Reporting a commitment to logic was associated with unbelief. The participants who reported both a strong commitment to logic and having experienced awe, or a feeling of overwhelming wonder that often leads to open-mindedness, were more likely to report believing in God. The most common description of God given by those participants was not what is commonly found in houses of worship: They reported believing in an abstract God described as mystical or limitless.

“When people are awed by the complexity of life or the vastness of the universe, they were more inclined to think in more spiritual ways,” Johnson said. “The feeling of awe might make people more open to other ways of conceptualizing God.”

In another experiment, the research team had the participants engage with science by watching videos. While a lecture about quantum physics led to unbelief or agnosticism, watching a music video about how atoms are both particles and waves led people to report feeling awe. Those who felt awe also were more likely to believe in an abstract God.

“A lot of people think science and religion do not go together, but they are thinking about science in too simplistic a way and religion in too simplistic a way,” said Adam Cohen, professor of psychology and senior author on the paper. “Science is big enough to accommodate religion, and religion is big enough to accommodate science.”

Cohen added that the work could lead to broader views of both science and religion.

Morris Okun, Matthew Scott and Holly O’Rourke from ASU and Joshua Hook from the University of North Texas also contributed to the work. The study was funded by the John Templeton Foundation.

Here’s a link to and a citation for the paper,

Science, God, and the cosmos: Science both erodes (via logic) and promotes (via awe) belief in God by Kathryn A.Johnson, Jordan W.Moon, Morris A.Okun, Matthew J.Scott, Holly P.O’Rourke, Joshua N.Hook, Adam B. Cohen. Journal of Experimental Social Psychology
Volume 84, September 2019, 103826 DOI:

This paper is behind a paywall.

I noted the funding from the John Templeton Foundation and recalled they have a prize that relates to this topic.

2019 Templeton Prize winner

A March 20, 2019 article by Lee Billings for Scientific American offers a profile of the 2019 Templeton Prize winner,

Marcelo Gleiser, a 60-year-old Brazil-born theoretical physicist at Dartmouth College and prolific science popularizer, has won this year’s Templeton Prize. Valued at just under $1.5 million, the award from the John Templeton Foundation annually recognizes an individual “who has made an exceptional contribution to affirming life’s spiritual dimension.” [emphasis mine] Its past recipients include scientific luminaries such as Sir Martin Rees and Freeman Dyson, as well as religious or political leaders such as Mother Teresa, Desmond Tutu and the Dalai Lama.

Across his 35-year scientific career, Gleiser’s research has covered a wide breadth of topics, ranging from the properties of the early universe to the behavior of fundamental particles and the origins of life. But in awarding him its most prestigious honor, the Templeton Foundation chiefly cited his status as a leading public intellectual revealing “the historical, philosophical and cultural links between science, the humanities and spirituality.” He is also the first Latin American to receive the prize.

Scientific American spoke with Gleiser about the award, how he plans to advance his message of consilience, the need for humility in science, why humans are special, and the fundamental source of his curiosity as a physicist.

You’ve written and spoken eloquently about nature of reality and consciousness, the genesis of life, the possibility of life beyond Earth, the origin and fate of the universe, and more. How do all those disparate topics synergize into one, cohesive message for you

To me, science is one way of connecting with the mystery of existence. And if you think of it that way, the mystery of existence is something that we have wondered about ever since people began asking questions about who we are and where we come from. So while those questions are now part of scientific research, they are much, much older than science. I’m not talking about the science of materials, or high-temperature superconductivity, which is awesome and super important, but that’s not the kind of science I’m doing. I’m talking about science as part of a much grander and older sort of questioning about who we are in the big picture of the universe. To me, as a theoretical physicist and also someone who spends time out in the mountains, this sort of questioning offers a deeply spiritual connection with the world, through my mind and through my body. Einstein would have said the same thing, I think, with his cosmic religious feeling.

If you’re interested, this is a wide ranging profile touching on one of the big questions in physics, Is there a theory of everything?

For anyone curious about the Templeton Foundation, you can find out more here.


Frog and phone – Credit: Marta Yebra Alvarez

There is a ‘frogphone’ but you won’t be talking or communicating directly with frogs, instead you will get data about them, according to a December 6, 2019 British Ecological Society press release (also on EurekAlert),

Researchers have developed the ‘FrogPhone’, a novel device which allows scientists to call up a frog survey site and monitor them in the wild. The FrogPhone is the world’s first solar-powered remote survey device that relays environmental data to the observer via text messages, whilst conducting real-time remote acoustic surveys over the phone. These findings are presented in the British Ecological Society Journal Methods in Ecology and Evolution today [December 6, 2019].

The FrogPhone introduces a new concept that allows researchers to “call” a frog habitat, any time, from anywhere, once the device has been installed. The device has been developed at the University of New South Wales (UNSW) Canberra and the University of Canberra in collaboration with the Australian Capital Territory (ACT) and Region Frogwatch Program and the Australian National University.

The FrogPhone utilises 3G/4G cellular mobile data coverage and capitalises on the characteristic wideband audio of mobile phones, which acts as a carrier for frog calls. Real time frog calls can be transmitted across the 3G/4G network infrastructure, directly to the user’s phone. This supports clear sound quality and minimal background noise, allowing users to identify the calls of different frog species.

“We estimate that the device with its current microphone can detect calling frogs from a 100-150m radius” said lead author Dr. Adrian Garrido Sanchis, Associate Lecturer at UNSW Canberra. “The device allows us to monitor the local frog population with more frequency and ease, which is significant as frog species are widely recognised as indicators of environmental health” said the ACT and Region Frogwatch coordinator and co-author, Anke Maria Hoefer.

The FrogPhone unifies both passive acoustic and active monitoring methods, all in a waterproof casing. The system has a large battery capacity coupled to a powerful solar panel. It also contains digital thermal sensors to automatically collect environmental data such as water and air temperature in real-time. The FrogPhone uses an open-source platform which allows any researcher to adapt it to project-specific needs.

The system simulates the main features of a mobile phone device. The FrogPhone accepts incoming calls independently after three seconds. These three seconds allow time to activate the temperature sensors and measure the battery storage levels. All readings then get automatically texted to the caller’s phone.

Acoustic monitoring of animals generally involves either site visits by a researcher or using battery-powered passive acoustic devices, which record calls and store them locally on the device for later analysis. These often require night-time observation, when frogs are most active. Now, when researchers dial a device remotely, the call to the FrogPhone can be recorded indirectly and analysed later.

Ms. Hoefer remarked that “The FrogPhone will help to drastically reduce the costs and risks involved in remote or high intensity surveys. Its use will also minimize potential negative impacts of human presence at survey sites. These benefits are magnified with increasing distance to and inaccessibility of a field site.”

A successful field trial of the device was performed in Canberra from August 2017 to March 2018. Researchers used spectrograms, graphs which allow the visual comparison of the spectrum of frequencies of frog signals over time, to test the recording capabilities of the FrogPhone.

Ms. Hoefer commented that “The spectrogram comparison between the FrogPhone and the standard direct mobile phone methodology in the lab, for the calls of 9 different frog species, and the field tests have proven that the FrogPhone can be successfully used as a new alternative to conduct frog call surveys.”

The use of the current FrogPhone is limited to areas with adequate 3G/4G phone coverage. Secondly, to listen to frogs in a large area, several survey devices would be needed. In addition, it relies on exposure to sunlight.

Future additions to the FrogPhone could include a satellite communications module for poor signal areas, or the use of multidirectional microphones for large areas. Lead author Garrido Sanchis emphasized that “In densely vegetated areas the waterproof case of the FrogPhone allows the device to be installed as a floating device in the middle of a pond, to maximise solar access to recharge the batteries”.

Dr. Garrido Sanchis said “While initially tested in frogs, the technology used for the FrogPhone could easily be extended to capture other animal vocalisation (e.g. insects and mammals), expanding the applicability to a wide range of biodiversity conservation studies”.

Here’s what the FrogPhone looks like onsite,

The FrogPhone installed at the field site. Credit: Kumudu Munasinghe

Here’s a link to and a citation for the paper,

The FrogPhone: A novel device for real‐time frog call monitoring by Adrian, Garrido Sanchis, Lorenzo Bertolelli, Anke Maria Hoefer, Marta Yebra Alvarez, Kumudu Munasinghe. Methods in Ecology and Evolution First published [online]: 04 December 2019

This paper is open access.

Ochre (a rock art pigment) and revising the history books?

A new generation of archaeologists and researchers may be getting ready to revise the history books. Brandi Lee MacDonald and her colleagues conducted research in the Babine Lake region of British Columbia (one of Canada’s 10 provinces; there are also three territories) on how the red pigment (ochre) used in the rock art that region was produced and they found something new. The people in that region don’t seem to have pulverized the rocks into powder as they did elsewhere. In the Babine Lake region, instead, they harvested aquatic sediment, heated the material to temperatures within a specific range, and eventually produced the dye you see on the rock art below.

Caption: This is one of the pieces of rock art found at Babine Lake. It is representative of the rock art that was analyzed in the study. Credit: University of Missouri

A November 19, 2019 University of Missouri news release (also on EurekAlert and found as a Nov. 19, 2019 news item on ScienceDaily), describes the context for this research,

Ochre, one of Earth’s oldest naturally occurring materials, was often used as a vivid red paint in ancient rock art known as pictographs across the world. Despite its broad use throughout human history and a modern focus on how the artistic symbolism is interpreted, little research exists on the paint itself and how it was produced.

“Ochre is one of the only types of material that people have continually used for over 200,000 years, if not longer,” said MacDonald, who specializes in ancient pigments. “Therefore, we have a deep history in the archeological record of humans selecting and engaging with this material, but few people study how it’s actually made.”

Rock art: pictograph? petroglyph? geoglyph?

The image above shows a pictograph. MacDonald explains the difference between pictographs, petroglyphs, and geoglyphs. “A pictograph is something that’s painted, a petroglyph is stone that’s been carved, and a geoglyph is a pile of stones that have been assembled in a meaningful fashion.”

An archaeologist with a PhD from McMaster University (Hamilton, Ontario, Canada) and a special interest in pigments and rock art and their use in the Pacific Northwest and in the lower Canadian Shield, MacDonald noticed something interesting in the rock art of the Babine Lake region.

“I studied the ancient use of mineral pigments and found interesting chemical elements in the paint.” MacDonald’s observations indicated that the ochre didn’t have the same chemical signatures found in other samples.

What makes the ochre in the Babine Lake region different?

The November 19, 2019 University of Missouri news release provides a quote from MacDonald that could change how we view the use of technology in the Babine Lake region and elsewhere and may have implications for new, sustainable technologies,

“It’s common to think about the production of red paint as people collecting red rocks and crushing them up,” MacDonald said. “Here, with the help of multiple scientific methods, we were able to reconstruct the approximate temperature at which the people at Babine Lake were deliberately heating this biogenic paint over open-hearth fires. So, this wasn’t a transformation done by chance with nature. Today, engineers are spending a lot of money trying to determine how to produce highly thermo-stable paints for ceramic manufacturing or aerospace engineering without much known success, yet we’ve found that hunter-gatherers had already discovered a successful way to do this long ago.”

How do you study rock art?

That was my big question (although I may not have phrased it quite that way) when interviewing Brandi Lee MacDonald about her work,

“It’s challenging. The equipment we use is not very portable.”

In the study, the scientists heated a single grain of ochre and watched the effects of temperature change under an electron microscope at MU’s Electron Microscopy Core facility.

“I take very tiny samples for microanalysis [analysis at the micro {one millionth of a metre}] scale] and always in consultation with the indigenous community (or communities). In fact, we try to take samples from previously damaged work.”

“In this case, I came across a small sample that was taken in the 1970s (a time when standards for asking for permissions were different) in the archive at the BC Royal Museum that we were able to use for our study. We addressed the 1970s situation by asking for permission this time.”

Once the researchers had taken a good look and confirmed there were significant chemical differences between the ochre found in the rock art of the Babine Lake area and the ochre found in rock art from other parts of the world, they tried to reproduce the process for deriving the ‘Babine Lake ochre pigment’. (Note: I’m coining a phrase, MacDonald did not use the term.)

The November 19, 2019 University of Missouri news release noted this about the ochre’s source,

This is the first study of the rock art at Babine Lake. It shows that individuals who prepared the ochre paints harvested an aquatic, iron-rich bacteria out of the lake — in the form of an orange-brown sediment.

Here’s what the researchers did to reproduce the ochre, from the Introduction to the paper; citation and link are at the end of this section of the posting (Note: Links have been removed),

We present here two important findings. Multiple independent lines of evidence unite to show that the individuals who prepared paints for rock art at Babine Lake harvested aquatic microbial iron mats dominated by iron-oxidizing bacteria (FeOB) […]. Those bacterial species produce biominerals with unique morphologies that can be long-lived31. This iron-rich material was homogenized and heated in large domestic hearths at a controlled range of approximately 750 °C to 850 °C; a technical gesture that was deliberately performed to enhance color properties, transforming orange-brown sediment to a vivid red hue. The heat treatment process converted the non-crystalline iron oxide minerals to crystalline forms resulting in increased colorfastness and resistance to degradation. This selective production of durable, colorfast, and highly thermostable biogenically-derived rock art paint represents a unique technological innovation. Our findings contribute to a growing body of literature on how hunter-gatherer communities in the Pacific Northwest possessed skilled ecological knowledge32. We also advance knowledge on the nanostructure, thermostability, and diagenesis of L. ochracea biomineral nanocomposites, with implications for the contemporary commercial production of renewable, thermostable, colorfast red pigments33,34.

As I understand it, researchers dried sediment from aquatic mats that are similar to those found in the Babine Lake region and then pulverized the dried sediment into a powder before reconstituting it with water (in time past, bear grease or salmon roe could also be used) to create a paint.

You can find out more about the research here (it’s an open access paper),

Hunter-Gatherers Harvested and Heated Microbial Biogenic Iron Oxides to Produce Rock Art Pigment by Brandi Lee MacDonald, David Stalla, Xiaoqing He, Farid Rahemtulla, David Emerson, Paul A. Dube, Matthew R. Maschmann, Catherine E. Klesner & Tommi A. White. Scientific Reports volume 9, Article number: 17070 (2019) Published: 19 November 2019

There are also nanoparticles

Studying the past can be a destructive process. no matter how careful you try to be. So to minimize any damage and, in addition to obtaining samples from previously damaged rock art, researchers use equipment that can provide measures at the microscale (one millionth) and nanoscale (one billionth). For example, the researchers were able to examine magnetite, maghemite, and hematite nanoparticles present on and in the FeOB (iron-oxidizing bacteria) samples.

Future directions

MacDonald is hoping to further the research, “I’d like to find out if this technology was only used in the Babine Lake region or whether it was more widespread. I’d also like to know when the technology was developed and over what time period it was used.”

“On a more practical basis, the indigenous community was excited that this technology might have applications in ceramic engineering.” MacDonald noted, “Researchers are very interested in sustainably-derived dyes that can withstand high temperature and retain their colour.”

It’s peculiarly satisfying to realize that this research into ochre and rock art could eventually lead to economic benefits for the indigenous community and surrounding region.

As well, it’s thrilling to think that ceramic engineers in Japan and elsewhere internationally who are actively hunting for environmentally friendly dyes that can be used for industrial purposes may find what they’re looking for in the distant past.

Large Interactive Virtual Environment Laboratory (LIVELab) located in McMaster University’s Institute for Music & the Mind (MIMM) and the MetaCreation Lab at Simon Fraser University

Both of these bits have a music focus but they represent two entirely different science-based approaches to that form of art and one is solely about the music and the other is included as one of the art-making processes being investigated..

Large Interactive Virtual Environment Laboratory (LIVELab) at McMaster University

Laurel Trainor and Dan J. Bosnyak both of McMaster University (Ontario, Canada) have written an October 27, 2019 essay about the LiveLab and their work for The Conversation website (Note: Links have been removed),

The Large Interactive Virtual Environment Laboratory (LIVELab) at McMaster University is a research concert hall. It functions as both a high-tech laboratory and theatre, opening up tremendous opportunities for research and investigation.

As the only facility of its kind in the world, the LIVELab is a 106-seat concert hall equipped with dozens of microphones, speakers and sensors to measure brain responses, physiological responses such as heart rate, breathing rates, perspiration and movements in multiple musicians and audience members at the same time.

Engineers, psychologists and clinician-researchers from many disciplines work alongside musicians, media artists and industry to study performance, perception, neural processing and human interaction.

In the LIVELab, acoustics are digitally controlled so the experience can change instantly from extremely silent with almost no reverberation to a noisy restaurant to a subway platform or to the acoustics of Carnegie Hall.

Real-time physiological data such as heart rate can be synchronized with data from other systems such as motion capture, and monitored and recorded from both performers and audience members. The result is that the reams of data that can now be collected in a few hours in the LIVELab used to take weeks or months to collect in a traditional lab. And having measurements of multiple people simultaneously is pushing forward our understanding of real-time human interactions.

Consider the implications of how music might help people with Parkinson’s disease to walk more smoothly or children with dyslexia to read better.

[…] area of ongoing research is the effectiveness of hearing aids. By the age of 60, nearly 49 per cent of people will suffer from some hearing loss. People who wear hearing aids are often frustrated when listening to music because the hearing aids distort the sound and cannot deal with the dynamic range of the music.

The LIVELab is working with the Hamilton Philharmonic Orchestra to solve this problem. During a recent concert, researchers evaluated new ways of delivering sound directly to participants’ hearing aids to enhance sounds.

Researchers hope new technologies can not only increase live musical enjoyment but alleviate the social isolation caused by hearing loss.

Imagine the possibilities for understanding music and sound: How it might help to improve cognitive decline, manage social performance anxiety, help children with developmental disorders, aid in treatment of depression or keep the mind focused. Every time we conceive and design a study, we think of new possibilities.

The essay also includes an embedded 12 min. video about LIVELab and details about studies conducted on musicians and live audiences. Apparently, audiences experience live performance differently than recorded performances and musicians use body sway to create cohesive performances. You can find the McMaster Institute for Music & the Mind here and McMaster’s LIVELab here.

Capturing the motions of a string quartet performance. Laurel Trainor, Author provided [McMaster University]

Metacreation Lab at Simon Fraser University (SFU)

I just recently discovered that there’s a Metacreation Lab at Simon Fraser University (Vancouver, Canada), which on its homepage has this ” Metacreation is the idea of endowing machines with creative behavior.” Here’s more from the homepage,

As the contemporary approach to generative art, Metacreation involves using tools and techniques from artificial intelligence, artificial life, and machine learning to develop software that partially or completely automates creative tasks. Through the collaboration between scientists, experts in artificial intelligence, cognitive sciences, designers and artists, the Metacreation Lab for Creative AI is at the forefront of the development of generative systems, be they embedded in interactive experiences or integrated into current creative software. Scientific research in the Metacreation Lab explores how various creative tasks can be automated and enriched. These tasks include music composition [emphasis mine], sound design, video editing, audio/visual effect generation, 3D animation, choreography, and video game design.

Besides scientific research, the team designs interactive and generative artworks that build upon the algorithms and research developed in the Lab. This work often challenges the social and cultural discourse on AI.

Much to my surprise I received the Metacreation Lab’s inaugural email newsletter (received via email on Friday, November 15, 2019),


We decided to start a mailing list for disseminating news, updates, and announcements regarding generative art, creative AI and New Media. In this newsletter: 

  1. ISEA 2020: The International Symposium on Electronic Art. ISEA return to Montreal, check the CFP bellow and contribute!
  2. ISEA 2015: A transcription of Sara Diamond’s keynote address “Action Agenda: Vancouver’s Prescient Media Arts” is now available for download. 
  3. Brain Art, the book: we are happy to announce the release of the first comprehensive volume on Brain Art. Edited by Anton Nijholt, and published by Springer.

Here are more details from the newsletter,

ISEA2020 – 26th International Symposium on Electronic Arts

Montreal, September 24, 2019
Montreal Digital Spring (Printemps numérique) is launching a call for participation as part of ISEA2020 / MTL connect to be held from May 19 to 24, 2020 in Montreal, Canada. Founded in 1990, ISEA is one of the world’s most prominent international arts and technology events, bringing together scholarly, artistic, and scientific domains in an interdisciplinary discussion and showcase of creative productions applying new technologies in art, interactivity, and electronic and digital media. For 2020, ISEA Montreal turns towards the theme of sentience.

ISEA2020 will be fully dedicated to examining the resurgence of sentience—feeling-sensing-making sense—in recent art and design, media studies, science and technology studies, philosophy, anthropology, history of science and the natural scientific realm—notably biology, neuroscience and computing. We ask: why sentience? Why and how does sentience matter? Why have artists and scholars become interested in sensing and feeling beyond, with and around our strictly human bodies and selves? Why has this notion been brought to the fore in an array of disciplines in the 21st century?
CALL FOR PARTICIPATION: WHY SENTIENCE? ISEA2020 invites artists, designers, scholars, researchers, innovators and creators to participate in the various activities deployed from May 19 to 24, 2020. To complete an application, please fill in the forms and follow the instructions.

The final submissions deadline is NOVEMBER 25, 2019. Submit your application for WORKSHOP and TUTORIAL Submit your application for ARTISTIC WORK Submit your application for FULL / SHORT PAPER Submit your application for PANEL Submit your application for POSTER Submit your application for ARTIST TALK Submit your application for INSTITUTIONAL PRESENTATION
Find Out More
You can apply for several categories. All profiles are welcome. Notifications of acceptance will be sent around January 13, 2020.

Important: please note that the Call for participation for MTL connect is not yet launched, but you can also apply to participate in the programming of the other Pavilions (4 other themes) when registrations are open (coming soon): TICKETS

Registration is now available to assist to ISEA2020 / MTL connect, from May 19 to 24, 2020. Book today your Full Pass and get the early-bird rate!
Buy Now

More from the newsletter,

ISEA 2015 was in Vancouver, Canada, and the proceedings and art catalog are still online. The news is that Sara Diamond released her 2015 keynote address as a paper: Action Agenda: Vancouver’s Prescient Media Arts. It is never too late so we thought we would let you know about this great read. See The 2015 Proceedings Here

The last item from the inaugural newsletter,

The first book that surveys how brain activity can be monitored and manipulated for artistic purposes, with contributions by interactive media artists, brain-computer interface researchers, and neuroscientists. View the Book Here

As per the Leonardo review from Cristina Albu:

“Another seminal contribution of the volume is the presentation of multiple taxonomies of “brain art,” which can help art critics develop better criteria for assessing this genre. Mirjana Prpa and Philippe Pasquier’s meticulous classification shows how diverse such works have become as artists consider a whole range of variables of neurofeedback.” Read the Review

For anyone not familiar with the ‘Leonardo’ cited in the above, it’s Leonardo; the International Society for the Arts, Sciences and Technology.

Should this kind of information excite and motivate you do start metacreating, you can get in touch with the lab,

Our mailing address is:
Metacreation Lab for Creative AI
School of Interactive Arts & Technology
Simon Fraser University
250-13450 102 Ave.
Surrey, BC V3T 0A3
Email: metacreation_admin (at) sfu (dot) ca

RFP (request for proposal) from Evidence for Democracy and undergraduate physics summer school/internship opportunities at the Perimeter Institute

Two very different Canadian institutions are offering opportunities to work, in one case, and to study and work, in the other case.

Evidence for Democracy and their RFP

The deadline for making your proposal is November 25, 2019 and the competition was opened on November 11, 2019. Here’s more from Evidence for Democracy’s RFP webpage,

Evidence for Democracy (E4D) is a national science-based non-partisan, non-profit organization promoting science integrity and evidence-based policy development in Canada.

E4D intends to hire a contractor to work with us to produce a case study documenting and examining the grassroots movement that evolved in Canada to support evidence-informed policymaking (EIP) from 2013 to 2019, and to determine which elements could inspire similar work in other countries.

E4D will produce a case study documenting and examining the grassroots movement that evolved in Canada to support evidence-informed policymaking from 2013 to 2019 to see which elements could inspire similar work in other countries.

The goals are to better understand what elements of E4D’s work over this period have been successful and why. This will be achieved through a survey of E4D’s supporters and interviews with various people in the science policy and evidence field in Canada.

The project will start with information gathering from inside and outside the E4D community. One of the goals is to learn more about which E4D activities have been the most and least effective at engaging and mobilizing individuals around evidence-informed policymaking, so we will start with a digital survey of our broad supporter base to learn from them. This will be disseminated by email to our E4D network. To add to the survey data, we will conduct interviews with selected members of E4D’s network to dig deeper into why they chose to engage and what motivated them (aiming for 20 interviews with E4D volunteers and network of expert members). Finally, we will conduct interviews with individuals who are external to E4D but engaged in science policy or EIP to have an external perspective on E4D’s work and grassroots engagement.

The information will be synthesized into a report outlining the grassroots movement to support EIP that emerged in Canada; what actions and activities strengthened this movement and why; and what specific actions, strategies and lessons learned can be drawn out to be applied in other countries.

E4D is looking to contract an individual to develop survey and interview questions, execute the interviews, complete the information synthesis and the first draft of the report. The ideal individual will be a freelance science writer or science journalist who has some experience looking at issues through an international lens to ensure the final report is context-appropriate.

Timeline and Compensation
December: Drafting and finalizing interview questions and recipient list and begin survey and interviews
January: Complete survey/interviews
February: Draft report

$18,000 CDN

Responses shall be submitted by email to by November 25th, 2019. Please provide your resume and a short (under 1 page) summary of your qualifications and availability for this project.

About Evidence for Democracy
Evidence for Democracy is the leading fact-driven, non-partisan, not-for-profit organization promoting the transparent use of evidence in government decision-making in Canada. Through research, education and issue campaigns, we engage and empower the science community while cultivating public and political demand for evidence-based decision-making.

A case study without science?

It’s fascinating to me that there’s no mention that the contractor might need skills in building a survey, creating an interview instrument, interviewing, and analyzing both qualitative and quantitative data. Where is the social science?

Focusing on a science writer or science journalist as examples of people who might have the required skill set suggests that more attention has been paid to the end result (the draft report) than the process.

I hope I’m wrong but this looks like a project where the importance of questions has been ignored. It can take a couple or more iterations to get your survey questions right and then you have to get your interview questions right. As for a sample of 20 qualitative interviews, that’s a lot of work.both from the perspective of setting up and conducting interviews and analyzing the copious amounts of information you are likely to receive.

Given that E4D is a science- and evidence-based organization, the project seems odd. Either they’ve left a lot out of their project description or they don’t plan to build a proper case study following basic social science protocols. It almost seems as if they’re more interested in self-promotion than in evidence. Time will tell. Once the report is released, it will be possible to examine how the gathered their information.

Perimeter Institute (PI) invites undergraduate physics students to their 2020 summer program

This looks pretty nifty given that PI will pay your expenses and you might end up with a paid internship afterwards. From a November 4, 2019 PI announcement (received via email),

Undergraduate Theoretical Physics Summer Program
Perimeter Institute for Theoretical Physics is now accepting applications for the Undergraduate Theoretical Physics Summer Program.

The program invites 20 exceptional students to join its research community for a fully-funded two-week summer school. Students will learn research tools and collaboration skills in the multi-disciplinary environment of the world’s largest independent theoretical physics research centre.

This program consists of two parts:
Two-week Summer School (fully-funded): Students are immersed in Perimeter’s dynamic research environment — attending courses on cutting-edge topics in physics, learning new techniques to solve interesting problems, working on group research projects, and potentially even publishing their work. 
Research Internship: Applicants may also be considered for a paid summer research internship. Accepted interns will work on projects alongside Perimeter researchers 

The program is accepting applications for the summer school beginning May 25, 2020.

Ways to share this opportunity with your colleagues and students
Download, print, and hang this high-resolution poster
Direct all to the Undergraduate Theoretical Physics Summer Program website for more information
Paste this key information on your sites and blogs
Application Deadline: January 6, 2020
Apply at

I’m not sure what the image on the left represents but the one on the right would seem to be some very happy students,

Perimeter Institute Summer Program

The institute is located in Waterloo, Ontario (from the PI Summer Program webpage),

We accept excellent students with a demonstrated interest in the program, who are entering the final year of their undergraduate program in Fall 2020 (special exceptions allowed).

The two-week summer school is fully funded. Successful candidates will be provided with workspace, accommodations, and weekday meals (per diem are provided for weekends). Perimeter Institute will also cover economy travel expenses between the applicant’s home institutions and Toronto Pearson Airport. Ground transportation from Toronto Pearson Airport to Perimeter Institute will be provided.

The two-week summer school is fully funded to ensure that a diverse group of top students, both in background and nationality and without regard for financial means, may attend.

Students staying for the research internship will be paid through a Research Award.


There is no application fee required.

Important Dates

January 6, 2020 – Application deadline

January 20, 2020 – By this date, all applicants will have received an email on their application status (for summer school acceptance and internship offers)

May 25 to June 5, 2020 – Two-week summer school program in session

Questions should be directed to Santiago Almada

According to the PI website, Waterloo is approximately one hour from Toronto.

Good luck!

Data science guide from Sense about Science

Sense about Science, headquartered in the UK, is in its own words (from its homepage)

Sense about Science is an independent campaigning charity that challenges the misrepresentation of science and evidence in public life. …

According to an October 1, 2019 announcement from Sense about Science (received via email), the organization has published a new guide,

Our director warned yesterday [September 30, 2019] that data science is being given a free
pass on quality in too many arenas. From flood predictions to mortgage offers to the prediction of housing needs, we are not asking enough about whether AI solutions and algorithms can bear the weight we want to put on them.

It was the UK launch of our ‘Data Science: a guide for society’ at the Institute of Physics, where we invited representatives from different sectors to take up the challenge of creating a more questioning culture. Tracey Brown said the situation was like medicine 50 years ago: it seems that some people have become too clever to explain and the rest of us are feeling too dumb to ask.

At the end of the event we had a lot of proposals for how to make different communities aware of the guide’s three fundamental questions from the people who attended. There are many hundreds of people among our friends who could do something along these lines:

     * Publicise the guide
     * Incorporate it into your own work
     * Send it to people who are involved in procurement, licensing or
reporting or decision making at community, national and international
     * Undertake a project with us to equip particular groups such as
parliamentary advisers, journalists and small charities.

Would you take a look at the guide [1] here and tell me if there’s something you can do? (

There are launches planned in other countries over the rest of this year and into 2020. We are drawing up a map of offers to reach different communities. I’ll share all your suggestions with my colleague Errin Riley at the end of this week and we will get back to you quickly.

Before linking you to the guide, here’s a brief description from the Patterns in Data webpage,

In recent years, phrases like ‘big data’, ‘machine learning’, ‘algorithms’ and ‘pattern recognition’ have started slipping into everyday discussion. We’ve worked with researchers and experts to generate an open and informed public discussion on patterns in data across a wide range of projects.

Data Science: A guide for society

According to the headlines, we’re in the middle of a ‘data revolution: large, detailed datasets and complex algorithms allow us to make predictions on anything from who will win the league to who is likely to commit a crime. Our ability to question the quality of evidence – as the public, journalists, politicians or decision makers – needs to be expanded to meet this. To know the questions to ask and how to press for clarity about the strengths and weaknesses of using analysis from data models to make decisions. This is a guide to having more of those conversations, regardless of how much you don’t know about data science.

Here’s Data Science: A Guide for Society.

Revival of dead pig brains raises moral questions about life and death

The line between life and death may not be what we thought it was according to some research that was reported in April 2019. Ed Wong’s April 17, 2019 article (behind a paywall) for The Atlantic was my first inkling about the life-death questions raised by some research performed at Yale University, (Note: Links have been removed)

The brain, supposedly, cannot long survive without blood. Within seconds, oxygen supplies deplete, electrical activity fades, and unconsciousness sets in. If blood flow is not restored, within minutes, neurons start to die in a rapid, irreversible, and ultimately fatal wave.

But maybe not? According to a team of scientists led by Nenad Sestan at Yale School of Medicine, this process might play out over a much longer time frame, and perhaps isn’t as inevitable or irreparable as commonly believed. Sestan and his colleagues showed this in dramatic fashion—by preserving and restoring signs of activity in the isolated brains of pigs that had been decapitated four hours earlier.

The team sourced 32 pig brains from a slaughterhouse, placed them in spherical chambers, and infused them with nutrients and protective chemicals, using pumps that mimicked the beats of a heart. This system, dubbed BrainEx, preserved the overall architecture of the brains, preventing them from degrading. It restored flow in their blood vessels, which once again became sensitive to dilating drugs. It stopped many neurons and other cells from dying, and reinstated their ability to consume sugar and oxygen. Some of these rescued neurons even started to fire. “Everything was surprising,” says Zvonimir Vrselja, who performed most of the experiments along with Stefano Daniele.

… “I don’t see anything in this report that should undermine confidence in brain death as a criterion of death,” says Winston Chiong, a neurologist at the University of California at San Francisco. The matter of when to declare someone dead has become more controversial since doctors began relying more heavily on neurological signs, starting around 1968, when the criteria for “brain death” were defined. But that diagnosis typically hinges on the loss of brainwide activity—a line that, at least for now, is still final and irreversible. After MIT Technology Review broke the news of Sestan’s work a year ago, he started receiving emails from people asking whether he could restore brain function to their loved ones. He very much cannot. BrainEx isn’t a resurrection chamber.

“It’s not going to result in human brain transplants,” adds Karen Rommelfanger, who directs Emory University’s neuroethics program. “And I don’t think this means that the singularity is coming, or that radical life extension is more possible than before.”

So why do the study? “There’s potential for using this method to develop innovative treatments for patients with strokes or other types of brain injuries, and there’s a real need for those kinds of treatments,” says L. Syd M Johnson, a neuroethicist at Michigan Technological University. The BrainEx method might not be able to fully revive hours-dead brains, but Yama Akbari, a critical-care neurologist at the University of California at Irvine, wonders whether it would be more successful if applied minutes after death. Alternatively, it could help to keep oxygen-starved brains alive and intact while patients wait to be treated. “It’s an important landmark study,” Akbari says.

Yong notes that the study still needs to be replicated in his article which also probes some of the ethical issues associated with the latest neuroscience research.

Nature published the Yale study,

Restoration of brain circulation and cellular functions hours post-mortem by Zvonimir Vrselja, Stefano G. Daniele, John Silbereis, Francesca Talpo, Yury M. Morozov, André M. M. Sousa, Brian S. Tanaka, Mario Skarica, Mihovil Pletikos, Navjot Kaur, Zhen W. Zhuang, Zhao Liu, Rafeed Alkawadri, Albert J. Sinusas, Stephen R. Latham, Stephen G. Waxman & Nenad Sestan. Nature 568, 336–343 (2019) DOI: Published 17 April 2019 Issue Date 18 April 2019

This paper is behind a paywall.

Two neuroethicists had this to say (link to their commentary in Nature follows) as per an April 71, 2019 news release from Case Western Reserve University (also on EurekAlert), Note: Links have been removed,

The brain is more resilient than previously thought. In a groundbreaking experiment published in this week’s issue of Nature, neuroscientists created an artificial circulation system that successfully restored some functions and structures in donated pig brains–up to four hours after the pigs were butchered at a USDA food processing facility. Though there was no evidence of restored consciousness, brains from the pigs were without oxygen for hours, yet could still support key functions provided by the artificial system. The result challenges the notion that mammalian brains are fully and irreversibly damaged by a lack of oxygen.

“The assumptions have always been that after a couple minutes of anoxia, or no oxygen, the brain is ‘dead,'” says Stuart Youngner, MD, who co-authored a commentary accompanying the study with Insoo Hyun, PhD, both professors in the Department of Bioethics at Case Western Reserve University School of Medicine. “The system used by the researchers begs the question: How long should we try to save people?”

In the pig experiment, researchers used an artificial perfusate (a type of cell-free “artificial blood”), which helped brain cells maintain their structure and some functions. Resuscitative efforts in humans, like CPR, are also designed to get oxygen to the brain and stave off brain damage. After a period of time, if a person doesn’t respond to resuscitative efforts, emergency medical teams declare them dead.

The acceptable duration of resuscitative efforts is somewhat uncertain. “It varies by country, emergency medical team, and hospital,” Youngner said. Promising results from the pig experiment further muddy the waters about the when to stop life-saving efforts.

At some point, emergency teams must make a critical switch from trying to save a patient, to trying to save organs, said Youngner. “In Europe, when emergency teams stop resuscitation efforts, they declare a patient dead, and then restart the resuscitation effort to circulate blood to the organs so they can preserve them for transplantation.”

The switch can involve extreme means. In the commentary, Youngner and Hyun describe how some organ recovery teams use a balloon to physically cut off blood circulation to the brain after declaring a person dead, to prepare the organs for transplantation.

The pig experiment implies that sophisticated efforts to perfuse the brain might maintain brain cells. If technologies like those used in the pig experiment could be adapted for humans (a long way off, caution Youngner and Hyun), some people who, today, are typically declared legally dead after a catastrophic loss of oxygen could, tomorrow, become candidates for brain resuscitation, instead of organ donation.

Said Youngner, “As we get better at resuscitating the brain, we need to decide when are we going to save a patient, and when are we going to declare them dead–and save five or more who might benefit from an organ.”

Because brain resuscitation strategies are in their infancy and will surely trigger additional efforts, the scientific and ethics community needs to begin discussions now, says Hyun. “This study is likely to raise a lot of public concerns. We hoped to get ahead of the hype and offer an early, reasoned response to this scientific advance.”

Both Youngner and Hyun praise the experiment as a “major scientific advancement” that is overwhelmingly positive. It raises the tantalizing possibility that the grave risks of brain damage caused by a lack of oxygen could, in some cases, be reversible.
“Pig brains are similar in many ways to human brains, which makes this study so compelling,” Hyun said. “We urge policymakers to think proactively about what this line of research might mean for ongoing debates around organ donation and end of life care.”

Here’s a link to and a citation to the Nature commentary,

Pig experiment challenges assumptions around brain damage in people by Stuart Youngner and Insoo Hyun. Nature 568, 302-304 (2019) DOI: 10.1038/d41586-019-01169-8 April 17, 2019

This paper is open access.

I was hoping to find out more about BrainEx, but this April 17, 2019 US National Institute of Mental Health news release is all I’ve been able to find in my admittedly brief online search. The news release offers more celebration than technical detail.

Quick comment

Interestingly, there hasn’t been much of a furor over this work. Not yet.