Category Archives: Uncategorized

Of puke, CRISPR, fruit flies, and monarch butterflies

I’ve never seen an educational institution use a somewhat vulgar slang term such as ‘puke’ before. Especially not in a news release. You’ll find that elsewhere online ‘puke’ has been replaced, in the headline, with the more socially acceptable ‘vomit’.

Since I wanted to catch this historic moment amid concerns that the original version of the news release will disappear, I’m including the entire news release as i saw it on EurekAlert.com (from an October 2, 2019 University of California at Berkeley news release),

News Release 2-Oct-2019

CRISPRed fruit flies mimic monarch butterfly — and could make you puke
Scientists recreate in flies the mutations that let monarch butterfly eat toxic milkweed with impunity

University of California – Berkeley

The fruit flies in Noah Whiteman’s lab may be hazardous to your health.

Whiteman and his University of California, Berkeley, colleagues have turned perfectly palatable fruit flies — palatable, at least, to frogs and birds — into potentially poisonous prey that may cause anything that eats them to puke. In large enough quantities, the flies likely would make a human puke, too, much like the emetic effect of ipecac syrup.

That’s because the team genetically engineered the flies, using CRISPR-Cas9 gene editing, to be able to eat milkweed without dying and to sequester its toxins, just as America’s most beloved butterfly, the monarch, does to deter predators.

This is the first time anyone has recreated in a multicellular organism a set of evolutionary mutations leading to a totally new adaptation to the environment — in this case, a new diet and new way of deterring predators.

Like monarch caterpillars, the CRISPRed fruit fly maggots thrive on milkweed, which contains toxins that kill most other animals, humans included. The maggots store the toxins in their bodies and retain them through metamorphosis, after they turn into adult flies, which means the adult “monarch flies” could also make animals upchuck.

The team achieved this feat by making three CRISPR edits in a single gene: modifications identical to the genetic mutations that allow monarch butterflies to dine on milkweed and sequester its poison. These mutations in the monarch have allowed it to eat common poisonous plants other insects could not and are key to the butterfly’s thriving presence throughout North and Central America.

Flies with the triple genetic mutation proved to be 1,000 times less sensitive to milkweed toxin than the wild fruit fly, Drosophila melanogaster.

Whiteman and his colleagues will describe their experiment in the Oct. 2 [2019] issue of the journal Nature.

Monarch flies

The UC Berkeley researchers created these monarch flies to establish, beyond a shadow of a doubt, which genetic changes in the genome of monarch butterflies were necessary to allow them to eat milkweed with impunity. They found, surprisingly, that only three single-nucleotide substitutions in one gene are sufficient to give fruit flies the same toxin resistance as monarchs.

“All we did was change three sites, and we made these superflies,” said Whiteman, an associate professor of integrative biology. “But to me, the most amazing thing is that we were able to test evolutionary hypotheses in a way that has never been possible outside of cell lines. It would have been difficult to discover this without having the ability to create mutations with CRISPR.”

Whiteman’s team also showed that 20 other insect groups able to eat milkweed and related toxic plants – including moths, beetles, wasps, flies, aphids, a weevil and a true bug, most of which sport the color orange to warn away predators – independently evolved mutations in one, two or three of the same amino acid positions to overcome, to varying degrees, the toxic effects of these plant poisons.

In fact, his team reconstructed the one, two or three mutations that led to each of the four butterfly and moth lineages, each mutation conferring some resistance to the toxin. All three mutations were necessary to make the monarch butterfly the king of milkweed.
Resistance to milkweed toxin comes at a cost, however. Monarch flies are not as quick to recover from upsets, such as being shaken — a test known as “bang” sensitivity.

“This shows there is a cost to mutations, in terms of recovery of the nervous system and probably other things we don’t know about,” Whiteman said. “But the benefit of being able to escape a predator is so high … if it’s death or toxins, toxins will win, even if there is a cost.”

Plant vs. insect

Whiteman is interested in the evolutionary battle between plants and parasites and was intrigued by the evolutionary adaptations that allowed the monarch to beat the milkweed’s toxic defense. He also wanted to know whether other insects that are resistant — though all less resistant than the monarch — use similar tricks to disable the toxin.

“Since plants and animals first invaded land 400 million years ago, this coevolutionary arms race is thought to have given rise to a lot of the plant and animal diversity that we see, because most animals are insects, and most insects are herbivorous: they eat plants,” he said.

Milkweeds and a variety of other plants, including foxglove, the source of digitoxin and digoxin, contain related toxins — called cardiac glycosides — that can kill an elephant and any creature with a beating heart. Foxglove’s effect on the heart is the reason that an extract of the plant, in the genus Digitalis, has been used for centuries to treat heart conditions, and why digoxin and digitoxin are used today to treat congestive heart failure.

These plants’ bitterness alone is enough to deter most animals, but a small minority of insects, including the monarch (Danaus plexippus) and its relative, the queen butterfly (Danaus gilippus), have learned to love milkweed and use it to repel predators.

Whiteman noted that the monarch is a tropical lineage that invaded North America after the last ice age, in part enabled by the three mutations that allowed it to eat a poisonous plant other animals could not, giving it a survival edge and a natural defense against predators.

“The monarch resists the toxin the best of all the insects, and it has the biggest population size of any of them; it’s all over the world,” he said.

The new paper reveals that the mutations had to occur in the right sequence, or else the flies would never have survived the three separate mutational events.

Thwarting the sodium pump

The poisons in these plants, most of them a type of cardenolide, interfere with the sodium/potassium pump (Na+/K+-ATPase) that most of the body’s cells use to move sodium ions out and potassium ions in. The pump creates an ion imbalance that the cell uses to its favor. Nerve cells, for example, transmit signals along their elongated cell bodies, or axons, by opening sodium and potassium gates in a wave that moves down the axon, allowing ions to flow in and out to equilibrate the imbalance. After the wave passes, the sodium pump re-establishes the ionic imbalance.

Digitoxin, from foxglove, and ouabain, the main toxin in milkweed, block the pump and prevent the cell from establishing the sodium/potassium gradient. This throws the ion concentration in the cell out of whack, causing all sorts of problems. In animals with hearts, like birds and humans, heart cells begin to beat so strongly that the heart fails; the result is death by cardiac arrest.

Scientists have known for decades how these toxins interact with the sodium pump: they bind the part of the pump protein that sticks out through the cell membrane, clogging the channel. They’ve even identified two specific amino acid changes or mutations in the protein pump that monarchs and the other insects evolved to prevent the toxin from binding.

But Whiteman and his colleagues weren’t satisfied with this just so explanation: that insects coincidentally developed the same two identical mutations in the sodium pump 14 separate times, end of story. With the advent of CRISPR-Cas9 gene editing in 2012, coinvented by UC Berkeley’s Jennifer Doudna, Whiteman and colleagues Anurag Agrawal of Cornell University and Susanne Dobler of the University of Hamburg in Germany applied to the Templeton Foundation for a grant to recreate these mutations in fruit flies and to see if they could make the flies immune to the toxic effects of cardenolides.

Seven years, many failed attempts and one new grant from the National Institutes of Health later, along with the dedicated CRISPR work of GenetiVision of Houston, Texas, they finally achieved their goal. In the process, they discovered a third critical, compensatory mutation in the sodium pump that had to occur before the last and most potent resistance mutation would stick. Without this compensatory mutation, the maggots died.

Their detective work required inserting single, double and triple mutations into the fruit fly’s own sodium pump gene, in various orders, to assess which ones were necessary. Insects having only one of the two known amino acid changes in the sodium pump gene were best at resisting the plant poisons, but they also had serious side effects — nervous system problems — consistent with the fact that sodium pump mutations in humans are often associated with seizures. However, the third, compensatory mutation somehow reduces the negative effects of the other two mutations.

“One substitution that evolved confers weak resistance, but it is always present and allows for substitutions that are going to confer the most resistance,” said postdoctoral fellow Marianna Karageorgi, a geneticist and evolutionary biologist. “This substitution in the insect unlocks the resistance substitutions, reducing the neurological costs of resistance. Because this trait has evolved so many times, we have also shown that this is not random.”

The fact that one compensatory mutation is required before insects with the most resistant mutation could survive placed a constraint on how insects could evolve toxin resistance, explaining why all 21 lineages converged on the same solution, Whiteman said. In other situations, such as where the protein involved is not so critical to survival, animals might find different solutions.

“This helps answer the question, ‘Why does convergence evolve sometimes, but not other times?'” Whiteman said. “Maybe the constraints vary. That’s a simple answer, but if you think about it, these three mutations turned a Drosophila protein into a monarch one, with respect to cardenolide resistance. That’s kind of remarkable.”

###

The research was funded by the Templeton Foundation and the National Institutes of Health. Co-authors with Whiteman and Agrawal are co-first authors Marianthi Karageorgi of UC Berkeley and Simon Groen, now at New York University; Fidan Sumbul and Felix Rico of Aix-Marseille Université in France; Julianne Pelaez, Kirsten Verster, Jessica Aguilar, Susan Bernstein, Teruyuki Matsunaga and Michael Astourian of UC Berkeley; Amy Hastings of Cornell; and Susanne Dobler of Universität Hamburg in Germany.

Robert Sanders’ Oct. 2, 2019′ news release for the University of California at Berkeley (it’s also been republished as an Oct. 2, 2019 news item on ScienceDaily) has had its headline changed to ‘vomit’ but you’ll find the more vulgar word remains in two locations of the second paragraph of the revised new release.

If you have time, go to the news release on the University of California at Berkeley website just to admire the images that have been embedded in the news release. Here’s one,

Caption: A Drosophila melanogaster “monarch fly” with mutations introduced by CRISPR-Cas9 genome editing (V111, S119 and H122) to the sodium potassium pump, on a wing of a monarch butterfly (Danaus plexippus). Credit & Ccpyright: Julianne Pelaez

Here’s a link to and a citation for the paper,

Genome editing retraces the evolution of toxin resistance in the monarch butterfly by Marianthi Karageorgi, Simon C. Groen, Fidan Sumbul, Julianne N. Pelaez, Kirsten I. Verster, Jessica M. Aguilar, Amy P. Hastings, Susan L. Bernstein, Teruyuki Matsunaga, Michael Astourian, Geno Guerra, Felix Rico, Susanne Dobler, Anurag A. Agrawal & Noah K. Whiteman. Nature (2019) DOI: https://doi.org/10.1038/s41586-019-1610-8 Published 02 October 2019

This paper is behind a paywall.

Words about a word

I’m glad they changed the headline and substituted vomit for puke. I think we need vulgar and/or taboo words to release anger or disgust or other difficult emotions. Incorporating those words into standard language deprives them of that power.

The last word: Genetivision

The company mentioned in the new release, Genetivision, is the place to go for transgenic flies. Here’s a sampling from the their Testimonials webpage,

GenetiVision‘s service has been excellent in the quality and price. The timeliness of its international service has been a big plus. We are very happy with its consistent service and the flies it generates.”
Kwang-Wook Choi, Ph.D.
Department of Biological Sciences
Korea Advanced Institute of Science and Technology


“We couldn’t be happier with GenetiVision. Great prices on both standard P and PhiC31 transgenics, quick turnaround time, and we’re still batting 1000 with transformant success. We used to do our own injections but your service makes it both faster and more cost-effective. Thanks for your service!”
Thomas Neufeld, Ph.D.
Department of Genetics, Cell Biology and Development
University of Minnesota

You can find out more here at the Genetivision website.

Repairing brain circuits using nanotechnology

A July 30, 2019 news item on Nanowerk announces some neuroscience research (they used animal models) that could prove helpful with neurodegenerative diseases,

Working with mouse and human tissue, Johns Hopkins Medicine researchers report new evidence that a protein pumped out of some — but not all — populations of “helper” cells in the brain, called astrocytes, plays a specific role in directing the formation of connections among neurons needed for learning and forming new memories.

Using mice genetically engineered and bred with fewer such connections, the researchers conducted proof-of-concept experiments that show they could deliver corrective proteins via nanoparticles to replace the missing protein needed for “road repairs” on the defective neural highway.

Since such connective networks are lost or damaged by neurodegenerative diseases such as Alzheimer’s or certain types of intellectual disability, such as Norrie disease, the researchers say their findings advance efforts to regrow and repair the networks and potentially restore normal brain function.

A July 30, 2019 Johns Hopkins University School of Medicine news release (also on EurekAlert) provides more detail about the work (Note: A link has been removed),

“We are looking at the fundamental biology of how astrocytes function, but perhaps have discovered a new target for someday intervening in neurodegenerative diseases with novel therapeutics,” says Jeffrey Rothstein, M.D., Ph.D., the John W. Griffin Director of the Brain Science Institute and professor of neurology at the Johns Hopkins University School of Medicine.

“Although astrocytes appear to all look alike in the brain, we had an inkling that they might have specialized roles in the brain due to regional differences in the brain’s function and because of observed changes in certain diseases,” says Rothstein. “The hope is that learning to harness the individual differences in these distinct populations of astrocytes may allow us to direct brain development or even reverse the effects of certain brain conditions, and our current studies have advanced that hope.”

In the brain, astrocytes are the support cells that act as guides to direct new cells, promote chemical signaling, and clean up byproducts of brain cell metabolism.

Rothstein’s team focused on a particular astrocyte protein, glutamate transporter-1, which previous studies suggested was lost from astrocytes in certain parts of brains with neurodegenerative diseases. Like a biological vacuum cleaner, the protein normally sucks up the chemical “messenger” glutamate from the spaces between neurons after a message is sent to another cell, a step required to end the transmission and prevent toxic levels of glutamate from building up.

When these glutamate transporters disappear from certain parts of the brain — such as the motor cortex and spinal cord in people with amyotrophic lateral sclerosis (ALS) — glutamate hangs around much too long, sending messages that overexcite and kill the cells.

To figure out how the brain decides which cells need the glutamate transporters, Rothstein and colleagues focused on the region of DNA in front of the gene that typically controls the on-off switch needed to manufacture the protein. They genetically engineered mice to glow red in every cell where the gene is activated.

Normally, the glutamate transporter is turned on in all astrocytes. But, by using between 1,000- and 7,000-bit segments of DNA code from the on-off switch for glutamate, all the cells in the brain glowed red, including the neurons. It wasn’t until the researchers tried the largest sequence of an 8,300-bit DNA code from this location that the researchers began to see some selection in red cells. These red cells were all astrocytes but only in certain layers of the brain’s cortex in mice.

Because they could identify these “8.3 red astrocytes,” the researchers thought they might have a specific function different than other astrocytes in the brain. To find out more precisely what these 8.3 red astrocytes do in the brain, the researchers used a cell-sorting machine to separate the red astrocytes from the uncolored ones in mouse brain cortical tissue, and then identified which genes were turned on to much higher than usual levels in the red compared to the uncolored cell populations. The researchers found that the 8.3 red astrocytes turn on high levels of a gene that codes for a different protein known as Norrin.

Rothstein’s team took neurons from normal mouse brains, treated them with Norrin, and found that those neurons grew more of the “branches” — or extensions — used to transmit chemical messages among brain cells. Then, Rothstein says, the researchers looked at the brains of mice engineered to lack Norrin, and saw that these neurons had fewer branches than in healthy mice that made Norrin.

In another set of experiments, the research team took the DNA code for Norrin plus the 8,300 “location” DNA and assembled them into deliverable nanoparticles. When they injected the Norrin nanoparticles into the brains of mice engineered without Norrin, the neurons in these mice began to quickly grow many more branches, a process suggesting repair to neural networks. They repeated these experiments with human neurons too.

Rothstein notes that mutations in the Norrin protein that reduce levels of the protein in people cause Norrie disease — a rare, genetic disorder that can lead to blindness in infancy and intellectual disability. Because the researchers were able to grow new branches for communication, they believe it may one day be possible to use Norrin to treat some types of intellectual disabilities such as Norrie disease.

For their next steps, the researchers are investigating if Norrin can repair connections in the brains of animal models with neurodegenerative diseases, and in preparation for potential success, Miller [sic] and Rothstein have submitted a patent for Norrin.

Here’s a link to and a citation for the paper,

Molecularly defined cortical astroglia subpopulation modulates neurons via secretion of Norrin by Sean J. Miller, Thomas Philips, Namho Kim, Raha Dastgheyb, Zhuoxun Chen, Yi-Chun Hsieh, J. Gavin Daigle, Malika Datta, Jeannie Chew, Svetlana Vidensky, Jacqueline T. Pham, Ethan G. Hughes, Michael B. Robinson, Rita Sattler, Raju Tomer, Jung Soo Suk, Dwight E. Bergles, Norman Haughey, Mikhail Pletnikov, Justin Hanes & Jeffrey D. Rothstein. Nature Neuroscience volume 22, pages741–752 (2019) DOI: https://doi.org/10.1038/s41593-019-0366-7 Published: 01 April 2019 Issue Date: May 2019

This paper is behind a paywall.

Printing metal on flowers or gelatin

Martin Thuo and his research group have developed heat-free technology that can print conductive, metallic lines and traces on just about anything, including a rose petal. Photo courtesy of Martin Thuo.

I’m not sure how I feel about an electrified rose but it is strangely fascinating. Here’s more from a July 29, 2019 news item on Nanowerk,

Martin Thuo of Iowa State University and the Ames Laboratory clicked through the photo gallery for one of his research projects.

How about this one? There was a rose with metal traces printed on a delicate petal.

Or this? A curled sheet of paper with a flexible, programmable LED display.

Maybe this? A gelatin cylinder with metal traces printed across the top.

Caption: Martin Thuo and his research group have printed electronic traces on gelatin. Credit: Martin Thuo/Iowa State University

A July 26, 2019 Iowa State University news release (also on EurekAlert but published on July 29, 2019), which originated the news item,

All those photos showed the latest application of undercooled metal technology developed by Thuo and his research group. The technology features liquid metal (in this case Field’s metal, an alloy of bismuth, indium and tin) trapped below its melting point in polished, oxide shells, creating particles about 10 millionths of a meter across.

When the shells are broken – with mechanical pressure or chemical dissolving – the metal inside flows and solidifies, creating a heat-free weld or, in this case, printing conductive, metallic lines and traces on all kinds of materials, everything from a concrete wall to a leaf.

That could have all kinds of applications, including sensors to measure the structural integrity of a building or the growth of crops. The technology was also tested in paper-based remote controls that read changes in electrical currents when the paper is curved. Engineers also tested the technology by making electrical contacts for solar cells and by screen printing conductive lines on gelatin, a model for soft biological tissues, including the brain.

“This work reports heat-free, ambient fabrication of metallic conductive interconnects and traces on all types of substrates,” Thuo and a team of researchers wrote in a paper describing the technology recently published online by the journal Advanced Functional Materials.

Thuo – an assistant professor of materials science and engineering at Iowa State, an associate of the U.S. Department of Energy’s Ames Laboratory and a co-founder of the Ames startup SAFI-Tech Inc. that’s commercializing the liquid-metal particles – is the lead author. Co-authors are Andrew Martin, a former undergraduate in Thuo’s lab and now an Iowa State doctoral student in materials science and engineering; Boyce Chang, a postdoctoral fellow at the University of California, Berkeley, who earned his doctoral degree at Iowa State Zachariah Martin, Dipak Paramanik and Ian Tevis, of SAFI-Tech; Christophe Frankiewicz, a co-founder of Sep-All in Ames and a former Iowa State postdoctoral research associate; and Souvik Kundu, an Iowa State graduate student in electrical and computer engineering.
The project was supported by university startup funds to establish Thuo’s research lab at Iowa State, Thuo’s Black & Veatch faculty fellowship and a National Science Foundation Small Business Innovation Research grant.

Thuo said he launched the project three years ago as a teaching exercise.

“I started this with undergraduate students,” he said. “I thought it would be fun to get students to make something like this. It’s a really beneficial teaching tool because you don’t need to solve 2 million equations to do sophisticated science.”

And once students learned to use a few metal-processing tools, they started solving some of the technical challenges of flexible, metal electronics.

“The students discovered ways of dealing with metal and that blossomed into a million ideas,” Thuo said. “And now we can’t stop.”

And so the researchers have learned how to effectively bond metal traces to everything from water-repelling rose petals to watery gelatin. Based on what they now know, Thuo said it would be easy for them to print metallic traces on ice cubes or biological tissue.

All the experiments “highlight the versatility of this approach,” the researchers wrote in their paper, “allowing a multitude of conductive products to be fabricated without damaging the base material.”

Here’s a link to and a citation for the paper,

Heat‐Free Fabrication of Metallic Interconnects for Flexible/Wearable Devices by Andrew Martin, Boyce S. Chang, Zachariah Martin, Dipak Paramanik, Christophe Frankiewicz, Souvik Kundu, Ian D. Tevis, Martin Thuo. Advanced Functional Materials Online Version of Record before inclusion in an issue 1903687 DOI: https://doi.org/10.1002/adfm.201903687 First published online: 15 July 2019

This paper is behind a paywall.

Artificial nose for intelligent olfactory substitution

The signal transmitted into mouse brain can participate in mouse perception and act as the brain stimulator. (Image credit: Prof. ZHAN Yang)

I’m fascinated by the image. Are they suggesting putting implants into people’s brains that can sense dangerous gaseous molecules and convert that into data which can be read on a smartphone? And, are they harvesting bioenergy to supply energy to the implant?

A July 29, 2019 news item on Azonano was not as helpful in answering my questions as I’d hoped (Note: A link has been removed),

An artificial olfactory system based on a self-powered nano-generator has been built by Prof. ZHAN Yang’s team at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences [CAS], together with colleagues at the University of Electronic Science and Technology of China.

The device, which can detect a variety of odor molecules and identify different odors, has been demonstrated in vivo in animal models. The research titled “An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution” has been reported in Nano Energy.

A July 25, 2019 CAS press release, which originated the news item, provides a little more information,

Odor processing is important to many species. Specific olfactory receptors located on the neurons are involved in odor recognition. These different olfactory receptors form patterned distribution.

Inspired by the biological receptors, the teams collaborated on formulating an artificial olfactory system. Through nano-fabrication on the soft materials and special alignment of material structures, the teams built a self-power device that can code and differentiate different odorant molecules.

This device has been connected to the mouse brain to demonstrate that the olfactory signals can produce appropriate neural stimulation. When the self-powered device generated the electric currents, the mouse displayed behavioral motion changes.

This study, inspired by the biological olfactory system, provides insights on novel design of neural stimulation and brain-machine interface. 

Here’s a link to and a citation for the paper,

An artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution by Tianyan Zhong, Mengyang Zhang, Yongming Fu, Yechao Han, Hongye Guan, Haoxuan He, Tianming Zhao, Lili Xing, Xinyu Xue, Yan Zhang, Yang Zhan.Nano Energy Volume 63, September 2019, 103884 DOI: https://doi.org/10.1016/j.nanoen.2019.103884

This paper is behind a paywall.

Animating a paper doll with a crystalline muscle

She does sit-ups!

I love those opening scenes (Hint: It was a dark and stormy night …). Now for the science, from a July 17, 2019 news item on Nanowerk,

Scary movies about dolls that can move, like Anabelle and Chucky, are popular at theaters this summer. Meanwhile, a much less menacing animated doll has chemists talking. Researchers have given a foil “paper doll” the ability to move and do sit-ups with a new material called polymer covalent organic frameworks (polyCOFs). …

A July 17, 2019 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, provides technical detail,

Scientists make conventional COFs by linking simple organic building blocks, such as carbon-containing molecules with boric acid or aldehyde groups, with covalent bonds. The ordered, porous structures show great potential for various applications, including catalysis, gas storage and drug delivery. However, COFs typically exist as nano- or micro-sized crystalline powders that are brittle and can’t be made into larger sheets or membranes that would be useful for many practical applications. Yao Chen, Shengqian Ma, Zhenjie Zhang and colleagues wondered if they could improve COFs’ mechanical properties by using linear polymers as building blocks.

The researchers based their polyCOF on an existing COF structure, but during the compound’s synthesis, they added polyethylene glycol (PEG) to the reactants. The PEG chains bridged the pore space of the COF, making a more compact, cohesive and stable structure. In contrast to the original COF, the polyCOF could be incorporated into flexible membranes that were repeatedly bent, twisted or stretched without damage. To demonstrate how polyCOFs could be used as an artificial muscle, the team made a doll containing the membrane as the waist and aluminum foil as its other parts. Upon exposure to ethanol vapors, the doll sat up; when the vapors were withdrawn, it laid down. The researchers repeated these actions several times, making the doll do “sit-ups.” The expansion of polyCOF pores upon binding the gas likely explains the doll’s calisthenics, the researchers say.

Here’s a link to and a citation for the paper,

PolyCOFs: A New Class of Freestanding Responsive Covalent Organic Framework Membranes with High Mechanical Performance by Zhifang Wang, Qi Yu, Yubo Huang. Hongde An, Yu Zhao, Yifan Feng, Xia Li, Xinlei Shi, Jiajie Liang, Fusheng Pan, Peng Cheng, Yao Chen, Shengqian Ma, Zhenjie Zhang. ACS Cent. Sci.2019XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/acscentsci.9b00212 Publication Date: June 25, 2019 Copyright © 2019 American Chemical Society

This paper appears to be open access.

Aesthetics and Colour Research—a November 28, 2019 talk about the tools and technology in Toronto, Canada

From a November 19, 2019 ArtSci Salon announcement (received via email),\

I [Robin] am co-organizing a lecture on AESTHETICS AND COLOUR RESEARCH AT THE

UNIVERSITY OF TORONTO’S PSYCHOLOGICAL LABORATORY

by Erich Weidenhammer, PhD (University of Toronto)

The lecture is Thu Nov 28 [2019], 6-8pm at the Thomas Fisher Rare Book Library at U of T [University of Toronto]. There will also be colour-related artifacts from the library collection on display.

Full details are here, with an eventbrite registration link for the talk (Free).

HTTPS://WWW.COLOURRESEARCH.ORG/CRSC-EVENTS/2019/11/28/LECTURE-AESTHETICS-AND-COLOUR-RESEARCH-AT-THE-UNIVERSITY-OF-TORONTOS-PSYCHOLOGICAL-LABORATORY

If you follow the link above, you’ll find this description of the talk and more,

Aesthetics and Colour Research at the University of Toronto’s Psychological Laboratory

This talk focuses on the tools and technology of colour research used in Kirschmann’s Toronto laboratory, as well as their role in supporting Kirschmann’s belief in a renewed science of aesthetics. [Between 1893 and 1908, the German-born psychologist August Kirschmann (1860-1932), led the University of Toronto’s newly founded psychological laboratory.] The talk will include a display of surviving artifacts used in the Laboratory. It will also include some colour-related artifacts from the University of Toronto Archives and Records Management Services (UTARMS), and the Fisher Rare Books Library.

Erich Weidenhammer is Curator of the University of Toronto Scientific Instruments Collection (UTSIC.org), an effort to safeguard and catalogue the material culture of research and teaching at the University of Toronto. He is also an Adjunct Curator for Scientific Processes at Ingenium: Canada’s Museums of Science & Innovation in Ottawa. Erich received his PhD in 2014 from the Institute for the History and Philosophy of Science and Technology (IHPST) of the University of Toronto for a dissertation that explored the relationship between chemistry and medicine in late eighteenth-century Britain.

Courtesy University of Toronto Scientific Instruments Collection

It turns out that this talk at the University of Toronto is part of a larger series of talks being organized by the Colour Research Society of Canada (CRSC). Here’s more about the society from the CRSC’s About page,

The CRSC is a non-profit organisation for colour research, focused on fostering a cross-disciplinary sharing of colour knowledge. seeking to develop and support a national, cross-disciplinary network of artists and designers, scholars and practitioners, with an interest in engagements with colour, and to encourage discourse between arts, sciences and industry related to colour research and knowledge.

The Colour Research Society of Canada (CRSC) is the Canadian member organisation of the AIC (International Colour Association)

The Nov. 28, 2019 talk is part of the CRSC’s Kaleidoscope Lecture Series.

Rijksmuseum’s ‘live’ restoration of Rembrandt’s masterpiece: The Nightwatch: is it or isn’t it like watching paint dry?

Somewhere in my travels, I saw ‘like watching paint dry’ as a description for the experience of watching researchers examining Rembrandt’s Night Watch. Granted it’s probably not that exciting but there has to be something to be said for being present while experts undertake an extraordinary art restoration effort. The Night Watch is not only a masterpiece—it’s huge.

This posting was written closer to the time the ‘live’ restoration first began. I have an update at the end of this posting.

A July 8, 2019 news item on the British Broadcasting Corporation’s (BBC) news online sketches in some details,

The masterpiece, created in 1642, has been placed inside a specially designed glass chamber so that it can still be viewed while being restored.

Enthusiasts can follow the latest on the restoration work online.

The celebrated painting was last restored more than 40 years ago after it was slashed with a knife.

The Night Watch is considered Rembrandt’s most ambitious work. It was commissioned by the mayor and leader of the civic guard of Amsterdam, Frans Banninck Cocq, who wanted a group portrait of his militia company.

The painting is nearly 4m tall and 4.5m wide (12.5 x 15 ft) and weighs 337kg (743lb) [emphasis mine]. As well as being famous for its size, the painting is acclaimed for its use of dramatic lighting and movement.

But experts at Amsterdam’s Rijksmuseum are concerned that aspects of the masterpiece are changing, pointing as an example to the blanching of the figure of a small dog. The museum said the multi-million euro research and restoration project under way would help staff gain a better understanding of the painting’s condition.

An October 16, 2018 Rijksmuseum press release announced the restoration work months prior to the start (Note: Some of the information is repetitive;),

Before the restoration begins, The Night Watch will be the centrepiece of the Rijksmuseum’s display of their entire collection of more than 400 works by Rembrandt in an exhibition to mark the 350th anniversary of the artist’s death opening on 15 February 2019.

Commissioned in 1642 by the mayor and leader of the civic guard of Amsterdam, Frans Banninck Cocq, to create a group portrait of his shooting company, The Night Watch is recognised as one of the most important works of art in the world today and hangs in the specially designed “Gallery of Honour” at the Rijksmuseum. It is more than 40 years since The Night Watch underwent its last major restoration, following an attack on the painting in 1975.

The Night Watch will be encased in a state-of-the-art clear glass chamber designed by the French architect Jean Michel Wilmotte. This will ensure that the painting can remain on display for museum visitors. A digital platform will allow viewers from all over the world to follow the entire process online [emphasis mine] continuing the Rijksmuseum innovation in the digital field.

Taco Dibbits, General Director Rijksmuseum: The Night Watch is one of the most famous paintings in the world. It belongs to us all, and that is why we have decided to conduct the restoration within the museum itself – and everyone, wherever they are, will be able to follow the process online.

The Rijksmuseum continually monitors the condition of The Night Watch, and it has been discovered that changes are occurring, such as the blanching [emphasis mine] on the dog figure at the lower right of the painting. To gain a better understanding of its condition as a whole, the decision has been taken to conduct a thorough examination. This detailed study is necessary to determine the best treatment plan, and will involve imaging techniques, high-resolution photography and highly advanced computer analysis. Using these and other methods, we will be able to form a very detailed picture of the painting – not only of the painted surface, but of each and every layer, from varnish to canvas.

A great deal of experience has been gained in the Rijksmuseum relating to the restoration of Rembrandt’s paintings. Last year saw the completion of the restoration of Rembrandt’s spectacular portraits of Marten Soolmans and Oopjen Coppit. The research team working on The Night Watch is made up of researchers, conservators and restorers from the Rijksmuseum, which will conduct this research in close collaboration with museums and universities in the Netherlands and abroad.

The Night Watch

The group portrait of the officers and other members of the militia company of District II, under the command of Captain Frans Banninck Cocq and Lieutenant Willem van Ruytenburch, now known as The Night Watch, is Rembrandt’s most ambitious painting. This 1642 commission by members of Amsterdam’s civic guard is Rembrandt’s first and only painting of a militia group. It is celebrated particularly for its bold and energetic composition, with the musketeers being depicted ‘in motion’, rather than in static portrait poses. The Night Watch belongs to the city of Amsterdam, and it been the highlight of the Rijksmuseum collection since 1808. The architect of the Rijksmuseum building Pierre Cuypers (1827-1921) even created a dedicated gallery of honour for The Night Watch, and it is now admired there by more than 2.2 million people annually.

2019, The Year of Rembrandt

The Year of Rembrandt, 2019, marks the 350th anniversary of the artist’s death with two major exhibitions honouring the great master painter. All the Rembrandts of the Rijksmuseum (15 February to 10 June 2019) will bring together the Rijksmuseum’s entire collection of Rembrandt’s paintings, drawings and prints, for the first time in history. The second exhibition, Rembrandt-Velázquez (11 October 2019 to 19 January 2020), will put the master in international context by placing 17th-century Spanish and Dutch masterpieces in dialogue with each another.

First, the restoration work is not being livestreamed; the digital platform Operation Night Watch is a collection of resources, which are being updated constantly, For example, the first scan was placed online in Operation Night Watch on July 16, 2019.

Second, ‘blanching’ reminded me of a June 22, 2017 posting where I featured research into why masterpieces were turning into soap, (Note: The second paragraph should be indented to indicated that it’s an excerpt fro the news release. Unfortunately, the folks at WordPress appear to have removed the tools that would allow me to do that and more),

This piece of research has made a winding trek through the online science world. First it was featured in an April 20, 2017 American Chemical Society news release on EurekAlert

A good art dealer can really clean up in today’s market, but not when some weird chemistry wreaks havoc on masterpieces. Art conservators started to notice microscopic pockmarks forming on the surfaces of treasured oil paintings that cause the images to look hazy. It turns out the marks are eruptions of paint caused, weirdly, by soap that forms via chemical reactions. Since you have no time to watch paint dry, we explain how paintings from Rembrandts to O’Keefes are threatened by their own compositions — and we don’t mean the imagery.

….

Getting back to the Night Watch, there’s a July 8, 2019 Rijksmuseum press release which provides some technical details,

On 8 July 2019 the Rijksmuseum starts Operation Night Watch. It will be the biggest and most wide-ranging research and conservation project in the history of Rembrandt’s masterpiece. The goal of Operation Night Watch is the long-term preservation of the painting. The entire operation will take place in a specially designed glass chamber so the visiting public can watch.

Never before has such a wide-ranging and thorough investigation been made of the condition of The Night Watch. The latest and most advanced research techniques will be used, ranging from digital imaging and scientific and technical research, to computer science and artificial intelligence. The research will lead to a better understanding of the painting’s original appearance and current state, and provide insight into the many changes that The Night Watch has undergone over the course of the last four centuries. The outcome of the research will be a treatment plan that will form the basis for the restoration of the painting.

Operation Night Watch can also be followed online from 8 July 2019 at rijksmuseum.nl/nightwatch

From art historical research to artificial intelligence

Operation Night Watch will look at questions regarding the original commission, Rembrandt’s materials and painting technique, the impact of previous treatments and later interventions, as well as the ageing, degradation and future of the painting. This will involve the newest and most advanced research methods and technologies, including art historical and archival research, scientific and technical research, computer science and artificial intelligence.

During the research phase The Night Watch will be unframed and placed on a specially designed easel. Two platform lifts will make it possible to study the entire canvas, which measures 379.5 cm in height and 454.5 cm in width.

Advanced imaging techniques

Researchers will make use of high resolution photography, as well as a variety of advanced imaging techniques, such as macro X-ray fluorescence scanning (macro-XRF) and hyperspectral imaging, also called infrared reflectance imaging spectroscopy (RIS), to accurately determine the condition of the painting.

56 macro-XRF scans

The Night Watch will be scanned millimetre by millimetre using a macro X-ray fluorescence scanner (macro-XRF scanner). This instrument uses X-rays to analyse the different chemical elements in the paint, such as calcium, iron, potassium and cobalt. From the resulting distribution maps of the various chemical elements in the paint it is possible to determine which pigments were used. The macro-XRF scans can also reveal underlying changes in the composition, offering insights into Rembrandt’s painting process. To scan the entire surface of the The Night Watch it will be necesary to make 56 scans, each one of which will take 24 hours.

12,500 high-resolution photographs

A total of some 12,500 photographs will be taken at extremely high resolution, from 180 to 5 micrometres, or a thousandth of a millimetre. Never before has such a large painting been photographed at such high resolution. In this way it will be possible to see details such as pigment particles that normally would be invisible to the naked eye. The cameras and lamps will be attached to a dynamic imaging frame designed specifically for this purpose.

Glass chamber

Operation Night Watch is for everyone to follow and will take place in full view of the visiting public in an ultra-transparent glass chamber designed by the French architect Jean Michel Wilmotte.

Research team

The Rijksmuseum has extensive experience and expertise in the investigation and treatment of paintings by Rembrandt. The conservation treatment of Rembrandt’s portraits of Marten Soolmans and Oopjen Coppit was completed in 2018. The research team working on The Night Watch is made up of more than 20 Rijksmuseum scientists, conservators, curators and photographers. For this research, the Rijksmuseum is also collaborating with museums and universities in the Netherlands and abroad, including the Dutch Cultural Heritage Agency (RCE), Delft University of Technology (TU Delft), the University of Amsterdam (UvA), Amsterdam University Medical Centre (AUMC), University of Antwerp (UA) and National Gallery of Art, Washington DC.

The Night Watch

Rembrandt’s Night Watch is one of the world’s most famous works of art. The painting is the property of the City of Amsterdam, and it is the heart of Amsterdam’s Rijksmuseum, where it is admired by more than two million visitors each year. The Night Watch is the Netherland’s foremost national artistic showpiece, and a must-see for tourists.

Rembrandt’s group portrait of officers and other civic guardsmen of District 2 in Amsterdam under the command of Captain Frans Banninck Cocq and Lieutenant Willem van Ruytenburch has been known since the 18th century as simply The Night Watch. It is the artist’s most ambitious painting. One of Amsterdam’s 20 civic guard companies commissioned the painting for its headquarters, the Kloveniersdoelen, and Rembrandt completed it in 1642. It is Rembrandt’s only civic guard piece, and it is famed for the lively and daring composition that portrays the troop in active poses rather than the traditional static ones.

Donors and partners

AkzoNobel is main partner of Operation Night Watch.

Operation Night Watch is made possible by The Bennink Foundation, PACCAR Foundation, Piet van der Slikke & Sandra Swelheim, American Express Foundation, Familie De Rooij, Het AutoBinck Fonds, Segula Technologies, Dina & Kjell Johnsen, Familie D. Ermia, Familie M. van Poecke, Henry M. Holterman Fonds, Irma Theodora Fonds, Luca Fonds, Piek-den Hartog Fonds, Stichting Zabawas, Cevat Fonds, Johanna Kast-Michel Fonds, Marjorie & Jeffrey A. Rosen, Stichting Thurkowfonds and the Night Watch Fund.

With the support of the Ministry of Education, Culture and Science, the City of Amsterdam, Founder Philips and main sponsors ING, BankGiro Loterij and KPN every year more than 2 million people visit the Rijksmuseum and The Night Watch.

Details:
Rembrandt van Rijn (1606-1669)
The Night Watch, 1642
oil on canvas
Rijksmuseum, on loan from the Municipality of Amsterdam

Update as of November 22, 2019

I just clicked on the Operation Night Watch link and found a collection of resources including videos of live updates from October 2019. As noted earlier, they’re not livestreaming the restoration. The October 29, 2019 ‘live update’ features a host speaking in Dutch (with English subtitles in the version I was viewing) and interviews with the scientists conducting the research necessary before they start actually restoring the painting.

Blockchain made physical: BlocKit

Caption: Parts of BlocKit Credit: Irni Khairuddin

I’m always on the lookout for something that helps make blockchain and cryptocurrency more understandable. (For the uninitiated or anyone like me who needed to refresh their memories, I have links to good essays on the topic further down in this posting.)

A July 10, 2019 news item on ScienceDaily announces a new approach to understanding blockchain technology,

A kit made from everyday objects is bringing the blockchain into the physical world.

The ‘BlocKit’, which includes items such as plastic tubs, clay discs, padlocks, envelopes, sticky notes and battery-powered candles, is aimed to help people understand how digital blockchains work and can also be used by innovators designing new systems and services around blockchain.

A team of computer scientists from Lancaster University, the University of Edinburgh in the UK, and the Universiti Teknologi MARA, in Malaysia, created the prototype BlocKit because blockchain — the decentralised digital infrastructure that is used to organise the cryptocurrency Bitcoin and holds promise to revolutionise many other sectors from finance, supply-chain and healthcare — is so difficult for people to comprehend.

A July 10, 2019 Lancaster University press release (also on EurekAlert), which originated the news item, expands on the theme,

“Despite growing interest in its potential, the blockchain is so novel, disruptive and complex, it is hard for most people to understand how these systems work,” said Professor Corina Sas of Lancaster University’s School of Computing and Communications. “We have created a prototype kit consisting of physical objects that fulfil the roles of different parts of the blockchain. The kit really helps people visualise the different component parts of blockchain, and how they all interact.

“Having tangible physical objects, such as a transparent plastic box for a Bitcoin wallet, clay discs for Bitcoins, padlocks for passwords and candles representing miners’ computational power, makes thinking around processes and systems much easier to comprehend.”

The BlocKit consisted of physical items that represented 11 key aspects of blockchain infrastructure and it was used to explore key characteristics of blockchain, such as trust – an important challenge for Bitcoin users. The kit was evaluated as part of a study involving 15 experienced Bitcoin users.

“We received very positive feedback from the people who used the kit in our study and, interestingly, we found that the BlocKit can also be used by designers looking to develop new services based around blockchain – such as managing patients’ health records for example.”

I will be providing a link to and a citation for the paper but first, I’m excerpting a few bits,

We report on a workshop with 15 bitcoin experts, [emphasis mine] 12 males, 3 females, (mean age 29, range 21-39). All participants had at least 2 years of engaging in bitcoin transactions: 9 had between 2 and 3 years, 4 had between 4 and 5 years, 2had more than 6 years. All participants have at least graduate education, i.e., 6 BSc, 7 MScs, and 2 Ph.D. Participants were recruited through the mailing lists of two universities,and through a local Bitcoins meetup group. [p. 3]

A striking finding was the overwhelmingly positive experience supported by BlocKit. Findings show that 10 participants deeply enjoyed physically touching [emphasis mine] its objects and enacting their movement in space while talking about blockchain processes: “there is going to be other transactions from other people essentially, so let’s put a few bitcoins in that box. I love this stuff, this is amazing” [P12]. Participants suggested that BlocKit could be a valuable tool for learning about blockchain: “I think this all makes sense and would be fine to explain to the novices. It is cool, this is really an interesting kit”[P7]. Other participants suggested leveraging gamification principles for learning about blockchain: “It’s almost like you could turn this into some kind of cool game like a monopoly”[P5] [p. 5]

A significant finding is the value of the kit in supporting experts to materialize and reflect on their understanding of blockchain infrastructure and its inner working. We argue that through its materiality, the kit allows bringing the mental models into question, which in turn helps experts confirm their understandings, develop more nuanced understandings, or even revise some previously held, less accurate assumptions. [emphasis mine]

Even experts are still learning about bitcoin and blockchain according to this research sample. it’s also interesting to note that the workshop participants enjoyed the physicality. I don’t see too many mentions of it in my wanderings but I can’t help wondering if all this digitization is going to leave people starved for touch.

Getting back to blockchain, here’s the link and citation I promised,

BlocKit: A Physical Kit for Materializing and Designing for Blockchain Infrastructure by Irni Eliana Khairuddin, Corina Sas, and Chris Speed.presented at Designing Interactive Systems (DIS) 2019
ACM International Conference Series [downloaded from https://eprints.lancs.ac.uk/id/eprint/132467/1/Design_Kit_DIS_28.pdf]

This paper is open access, as for BlocKit, it exists only as a prototype according to the July 10, 2019 Lancaster University press release.

Introductory essays for blockchain and cryptocurrency

Here are two of my favourites. First, there’s this February 6, 2018 essay (part ii of a series) by Tim Schneider on artnet.com explaining it all by using the art world and art market as examples,

… the fraught relationship between art and value lies at the molten core of several pieces made using blockchain technology. Part one of this series addressed how, in theory, the blockchain strengthens the markets for new media by introducing the concept of digital scarcity. This innovation means that works as simple as an “original” JPG or GIF could be made as rare as Francis Bacon paintings. (This fact leads to a host of business implications that will be covered in Part III.

However, a handful of forward-looking artists is using the blockchain to do more than reset the market’s perception of supply and demand. The technology, their work proves, is more than new software—it’s also a new medium.

The description of how artists using blockchain as a medium provides some of the best descriptions of cryptocurrency and blockchain that I’ve been able to find.

The other essay, a January 5, 2018 article for Slate.com by Joshua Oliver, provides some detail I haven’t seen anywhere else (Note: A link has been removed),

Already, blockchain has been hailed as likely to revolutionize … well … everything. Banks, health care, voting, supply chains, fantasy football, Airbnb, coffee: Nothing is beyond the hypothetical reach of blockchain as a revolutionary force. These predictions are easy to sell because blockchain is still little-understood. If you don’t quite know what blockchain is, it’s easier to imagine that it is whatever you want it to be. But before we can begin to search for the real potential amid the mass of blockchain conjecture and hype, we need to clear up what exactly we mean when we say blockchain.

One cause of confusion is the phrase the blockchain, which makes it sound like blockchain is one specific thing. In reality, the word blockchain is commonly used to describe two broad types of computer systems. [emphases mine] Both use similar underlying protocols, but they have other important differences. Bitcoin represents one approach to using blockchain, one wedded to principles of radical decentralization. The second approach—pioneered by more business-minded players—puts blockchain to use without adopting bitcoin’s revolutionary, decentralized governance. Both of these designs are short-handed as blockchains, so it’s easy to miss the crucial differences. Without grasping these differences, it’s hard to understand where we are today in the development of this promising technology, which blockchain ventures are worth your attention, and what might happen next.

That’s all I’ve got for now.

2019 Canadian Science Policy Conference (Nov.13 – 16, 2019 in Ottawa, Canada) celebrates its 10th year

Congratulations to the folks at the Canadian Science Policy Centre who’ve worked for 10 years to produce an annual, national Canadian Science Policy Conference! That’s a lot of blood, sweat, tears, and determination.

Here are highlights from the 2019 programme as noted in a July 10, 2019 CSPC announcement (received via email),

Theme: Science and Policy

Bringing the Social Sciences into New Policy Spaces: Solution-oriented case studies and dialogue

Organized by Natural Resources Canada

Evidence in Practice: How do decision-makers obtain and use information?
Organized by Evidence for Democracy

Fishing for Open Science Innovation–Should Canada join cOAlition/Plan S?
Organized by Natural Sciences and Engineering Research Council | Social Sciences and Humanities Research Council | Canadian Institutes of Health Research

How the Sciences of Human Behaviour Can Help us Put Knowledge at the Heart of Policymaking
Organized by European Commission – Joint Research Centre

International Research Collaboration in a Polarized World
Organized by Office of the Vice-President, Research & Innovation, University of Toronto

Mapping Dynamic Research Ecosystems: Tapping into new indicators, big data, and emerging technologies
Organized by Natural Sciences and Engineering Research Council

Municipalities: Terrain for innovation
Organized by Fonds de recherche du Québec

National Inuit Strategy on Research (NISR) in Action: Developing an Inuit Nunangat research policy
Organized by Inuit Tapiriit Kanatami

Not a Palaver! How can interdisciplinary, intersectoral and international collaboration be successful?
Organized by UK Research and Innovation

Policy Lessons in the Age of Technological Disruption
Organized by Spindle Strategy Corp.

Precision Policy- Advances in big data analytics and government policy
Organized by Simon Fraser University

Risk, Uncertainty, Unknowns, and Nonsense – Engagement with the public on radiation, nuclear, and climate [sic]
Organized by Centre for the Study of Science and Innovation Policy (CSIP), University of Saskatchewan

The Influence of Indigenous Knowledge on Policy and Practice
Organized by Federation for the Humanities and Social Sciences and Genome British Columbia

The PROMISE OF SCIENCE and Its Implications for Science Policy: Perspectives of Canada’s STI community
Organized by VISTA Science & Technology Inc.

Towards a National Approach to Responsible AI
Organized by Queen’s University

Understanding and Addressing the Challenges for Collaborative Federal Science
Organized by Public Services and Procurement Canada
 
Theme: Science and Society

Artificial Intelligence – How interdisciplinary AI contributes to resilient and just societies
Organized by Economic and Social Research Council (ESRC)

Convergence Science and Tackling Grand Challenges
Organized by Privy Council Office

Creating SciComm: An interactive session connecting scientists, policy makers and the public
Organized by Pixels and Plans | Art the Science

Eating Right, Living Better: Building healthier food systems worldwide
Organized by International Development Research Centre (IDRC)

Fighting the Opioid Crisis by Reducing Stigma in the Media and Using Media to Reduce Stigma
Organized by Carleton University

Harnessing the Power of the Crowd: Innovative solutions to engaging communities in research
Organized by MEOPAR/Fathom Fund

Making Science Communication Happen – Moving from good intentions to getting the job done
Organized by NIVA

Scientists in the Public Space: When discussion turns into a media storm
Organized by Fonds de recherche du Québec

The Public Record: Enabling scientists to be honest brokers of evidence & information in an age of popular misinformation
Organized by  Alberta Environment and Parks – Office of the Chief Scientist
 
Theme: Science, Innovation, and Economic Development

A Winning Formula for Building Regional Innovation Capacity: Skills, research and collaboration
Organized by Colleges and Institutes Canada / National Alliance of Provincial Health Research Organizations

AI as an Enabler of Innovative Competitiveness
Organized by National Research Council Canada

Examining the Role of Data Trusts in Smart Cities Governance
Organized by Compute Ontario

Ontario-First in the Innovation Economy: Impacts of a $1B public-private-partnership on Canadian healthcare commercialization
Organized by FACIT

Open Science is Transforming the Research Landscape
Organized by The Neuro – Montreal Neurological Institute and Hospital

Supports for Women Entrepreneurs: Discussion on existing knowledge, research and innovative methods to dismantle barriers
Organized by Ryerson University

Toward a Quantum Strategy for Canada
Organized by National Research Council Canada

Whose Facts actually Matter? How to truly embrace inclusiveness in science, innovation and policy
Organized by University of Ottawa, Institute for Science, Society and Policy  
Theme: Science and International Affairs

Artificial Intelligence: Building resilience against cyber threats 
Organized  by Simon Fraser University

Lines in the Sand: The struggle for national security in a world [sic]
Organized by David Johnston Research and Technology Park, University of Waterloo

Personhood Rights for Water Bodies: A fad or a path to sustainable development goals?
Organized by University of Waterloo

Research Without Borders: Funding agency case studies on international collaboration
Organized by UK Research and Innovation

Science Diplomacy in a Changing Arctic
Organized by Embassy of Switzerland
Theme: Science and the Next Generation

Empowering Youth Through Self-led and Experiential Learning

Organized by Ingenium – Canada’s Museums of Science and Innovation

SING’ing Indigenous Technoscience: An encounter with the summer internship for Indigenous peoples in Genomics Canada
Organized by University of Alberta

The Role of the Next Generation in Science Diplomacy 
Organized by Fonds de recherche du Québec

What Future for Young Science Policy Practitioners?
Organized by American Association for the Advancement of Science

What Would an Inclusive Innovation Agenda for a New Generation of Indigenous Children in Canada Look Like?
Organized by Ulnooweg – Digital Mikmaq
 
Short Talks 

Global Governance and Emerging ‘High-Risk’ Technologies

Journal of Science Policy & Governance: Engaging students & early career researchers in S&T policy

Mapping Diversity in Post-Disaster Emergency Assistance

Mobilizing Change from Within: A case study on gender equity and internal research funding

Translating Research to Impact Policy – Our journey in concussion policy in canada [sic]

Why Pro-LGBT Policies Can Turn Out to be Innovation Policies? Evidence-based arguments to support diversity in Canada

Wikipedia Editing & Edit-A-Thons: A form of science advocacy  
View CSPC 2019 Program

Comments

It looks like a good programme. I’m particularly excited about the artificial intelligence (AI) sessions and heartened to see more participation from the indigenous community as it continues to organize. For so long, the thought of indigenous science was rejected so it’s good to see these small steps toward recognition and respect.

Also, there are a couple of countries and regions represented at this conference that suggest Canadian policymakers (or policymakers in training) might be opening the door to welcome more than just our US, UK, and European neighbours into the discussion. There’s someone from Chile and someone from the Caribbean (specifically, Barbados) in addition to the sprinkling of Americans, Brits, and Europeans at this year’s conference.

One thing I wasn’t expecting to see was representation by the RCMP (Royal Canadian Mounted Police). Of course, the member (Susheel Gupta) will be on the panel discussing national security. Hopefully this participation is part of a new direction for the RCMP’s public outreach. They definitely need some positive news given the current state of their reputation in Canada.

What’s missing?

The most puzzling thing about this programme is CRISPR and germline editing. Not a single session touches on the subject. Given that the news about the CRISPR twins broke in November 2018 (see my November 28, 2018 posting) and the international furor that followed, I’d expect we’d be discussing it.

Especially in light of the interest in changing the rules in Canada on germline editing. Currently there’s a ban on it and as I noted in my April 26, 2019 posting, there seems to be a campaign to change to lift or alter that ban..

It seems like a glaring omission but perhaps no one made the suggestion and no one organizing committee was able to assemble a panel.

Plus this year too, there’s no mention of the Phoenix Pay System failure. Sure, there’s talk about big data (a panel on Precision Policy) and the previously noted AI sessions but where’s the talk about the failures, specifically, Phoenix, a digital/technology failure.

The Canadian government’s new pay system was an astonishing debacle from when it was first implemented in early 2016 and the saga continues. In the three years since I don’t recall a single session at a Canadian Science Policy Conference where failure of major digital projects and the implications have been discussed. Meanwhile, the Canadian government continues on its merry drive towards more data collection and implementation of AI and other technologies. Shouldn’t we be considering the social and policy implications of this drive and what happens when there’s a failure? I gather the answer is no.

For anyone unfamiliar with the Phoenix failure, it affected every pay system in the Canadian federal government. In a bid to cut costs by centralizing, updating, and further digitizing the system, Phoenix was implemented despite warnings that it wasn’t ready. As I understand it, government employees (273,571 in 2018), to this day, still don’t know if they will get a pay cheque or if they will get the right amount in their pay cheque in any given month.

Finally

Bravo! There are lots of good things happening with the Canadian Science Policy Conferences.

Register here and take advantage of the early bird discount (until August 31,2019).

World’s smallest magnetic resonance imaging (MRI) of a single atom

While not science’s sleekest machine, this microscope was able to capture M.R.I. scans of single atoms. Credit: IBM Research

Such a messy looking thing—it makes me feel better about my housekeeping. In any event, it’s fascinating to think this scanning tunneling microscope as seen in the above can actually act as an MRI device and create an image of a single atom.

There’s a wonderful article in the New York Times about the work but I’m starting first with a July 1, 2019 news item on Nanowerk,

Researchers at the Center for Quantum Nanoscience (QNS) within the Institute for Basic Science (IBS) at Ewha Womans University [Seoul, South Korea) have made a major scientific breakthrough by performing the world’s smallest magnetic resonance imaging (MRI). In an international collaboration with colleagues from the US, QNS scientists used their new technique to visualize the magnetic field of single atoms.

A July 2, 2019 IBS news release (also on EurekAlert but published July 1, 2019), which originated the news item, provides some insight into the research,

An MRI is routinely done in hospitals nowadays as a part of imaging for diagnostics. MRI’s detect the density of spins – the fundamental magnets in electrons and protons – in the human body. Traditionally, billions and billions of spins are required for an MRI scan. The new findings, published today [July 1, 2019] in the journal Nature Physics, show that this process is now also possible for an individual atom on a surface. To do this, the team used a Scanning Tunneling Microscope, which consists of an atomically sharp metal tip that allows researchers to image and probe single atoms by scanning the tip across the surface.

The two elements that were investigated in this work, iron and titanium, are both magnetic. Through precise preparation of the sample, the atoms were readily visible in the microscope. The researchers then used the microscope’s tip like an MRI machine to map the three-dimensional magnetic field created by the atoms with unprecedented resolution. In order to do so, they attached another spin cluster to the sharp metal tip of their microscope. Similar to everyday magnets, the two spins would attract or repel each other depending on their relative position. By sweeping the tip spin cluster over the atom on the surface, the researchers were able to map out the magnetic interaction. Lead author, Dr. Philip Willke of QNS says: “It turns out that the magnetic interaction we measured depends on the properties of both spins, the one on the tip and the one on the sample. For example, the signal that we see for iron atoms is vastly different from that for titanium atoms. This allows us to distinguish different kinds of atoms by their magnetic field signature and makes our technique very powerful.”

The researchers plan to use their single-atom MRI to map the spin distribution in more complex structures such as molecules and magnetic materials. “Many magnetic phenomena take place on the nanoscale, including the recent generation of magnetic storage devices.” says Dr. Yujeong Bae also of QNS, a co-author in this study. “We now plan to study a variety of systems using our microscopic MRI.” The ability to analyze the magnetic structure on the nanoscale can help to develop new materials and drugs. Moreover, the research team wants to use this kind of MRI to characterize and control quantum systems. These are of great interest for future computation schemes, also known as quantum computing

“I am very excited about these results. It is certainly a milestone in our field and has very promising implications for future research.” says Prof. Andreas Heinrich, Director of QNS. “The ability to map spins and their magnetic field with previously unimaginable precision, allows us to gain deeper knowledge about the structure of matter and opens new fields of basic research.”

The Center for Quantum Nanoscience, on the campus of Ewha Womans University in Seoul, South Korea, is a world-leading research center merging quantum and nanoscience to engineer the quantum future through basic research. Backed by Korea’s Institute for Basic Science, which was founded in 2011, the Center for Quantum Nanoscience draws on decades of QNS Director Andreas J. Heinrich’s (A Boy and His Atom, IBM, 2013) scientific leadership to lay the foundation for future technology by exploring the use of quantum behavior atom-by-atom on surfaces with highest precision.

You may have noticed that other than a brief mention in the first paragraph (in the Nanowerk news item excerpt), there’s no mention of the US researchers and their contribution to the work.

Interestingly, the July 1, 2019 New York Time article by Knvul Sheikh returns the favour by focusing almost entirely on US researchers while giving the Korean researchers a passing mention (Note: Links have been removed),

Different microscopy techniques allow scientists to see the nucleotide-by-nucleotide genetic sequences in cells down to the resolution of a couple atoms as seen in an atomic force microscopy image. But scientists at the IBM Almaden Research Center in San Jose, Calif., and the Institute for Basic Sciences in Seoul, have taken imaging a step further, developing a new magnetic resonance imaging technique that provides unprecedented detail, right down to the individual atoms of a sample.

When doctors want to detect tumors, measure brain function or visualize the structure of joints, they employ huge M.R.I. machines, which apply a magnetic field across the human body. This temporarily disrupts the protons spinning in the nucleus of every atom in every cell. A subsequent, brief pulse of radio-frequency energy causes the protons to spin perpendicular to the pulse. Afterward, the protons return to their normal state, releasing energy that can be measured by sensors and made into an image.

But to gather enough diagnostic data, traditional hospital M.R.I.s must scan billions and billions of protons in a person’s body, said Christopher Lutz, a physicist at IBM. So he and his colleagues decided to pack the power of an M.R.I. machine into the tip of another specialized instrument known as a scanning tunneling microscope to see if they could image individual atoms.

The tip of a scanning tunneling microscope is just a few atoms wide. And it moves along the surface of a sample, it picks up details about the size and conformation of molecules.

The researchers attached magnetized iron atoms to the tip, effectively combining scanning-tunneling microscope and M.R.I. technologies.

When the magnetized tip swept over a metal wafer of iron and titanium, it applied a magnetic field to the sample, disrupting the electrons (rather than the protons, as a typical M.R.I. would) within each atom. Then the researchers quickly turned a radio-frequency pulse on and off, so that the electrons would emit energy that could be visualized. …

Here’s a link to and a citation for the paper,

Magnetic resonance imaging of single atoms on a surface by Philip Willke, Kai Yang, Yujeong Bae, Andreas J. Heinrich & Christopher P. Lutz. Nature Physics (2019) DOI: https://doi.org/10.1038/s41567-019-0573-x Published 01 July 2019

This paper is behind a paywall.