Category Archives: business

Avo Media, Science Telephone, and a Canadian COVID-19 billionaire scientist

I’ll start off with the COVID-19 billionaire since I imagine that excites the most interest.

AbCellera billionaire

No less an authority than the business magazine Forbes has produced a list of COVID-19 billionaires in its December 23, 2020 article (Meet The 50 Doctors, Scientists And Healthcare Entrepreneurs Who Became Pandemic Billionaires In 2020) by Giacomo Tognini (Note: Links have been removed),

Nearly a year after the first case of Covid-19 was reported in the Chinese city of Wuhan in December 2019, the world could be nearing the beginning of the end of a pandemic that has killed more than 1.7 million people. Vaccination for Covid-19 is underway in the United States and the United Kingdom, and promising antibody treatments could help doctors fight back against the disease more effectively. Tied to those breakthroughs: a host of new billionaires who have emerged in 2020, their fortunes propelled by a stock market surge as investors flocked to companies involved in the development of vaccines, treatments, medical devices and everything in between.

Altogether, Forbes found 50 new billionaires in the healthcare sector in 2020. …

Carl Hansen

Net worth: $2.9 billion

Citizenship: Canada

Source of wealth: AbCellera

Hansen is the CEO and cofounder of Vancouver-based AbCellera, a biotech firm that uses artificial intelligence and machine learning to identify the most promising antibody treatments for diseases. He founded the company in 2012. Until 2019 he also worked as a professor at the University of British Columbia, but shifted to focus full-time on AbCellera. That decision seems to have paid off, and Hansen’s 23% stake earned him a spot in the billionaire club after AbCellera’s successful listing on the Nasdaq on December 11. The U.S. government has ordered 300,000 doses of bamlanivimab, an antibody AbCellera discovered in partnership with Eli Lilly that received FDA approval as a Covid-19 treatment in November [2020].

Hansen was a professor at the University of British Columbia (UBC) where he founded AbCellera. From https://innovation.ubc.ca/about/news/spin-company-abcelleras-antibody-discovery-leads-covid-19-treatment (Note: A link has been removed),

AbCellera, a local biotechnology company founded at UBC, has developed a method that can search immune responses more deeply than any other technology. Using a microfluidic technology developed at the Michael Smith Laboratories, advanced immunology, protein chemistry, performance computing, and machine learning, AbCellera is changing the game for antibody therapeutics.

I believe a great deal of research that is commercialized was initially funded by taxpayers and I cannot recall any entrepreneurs here in Canada or elsewhere acknowledging that help in a big way. Should you be able to remember any comments of that type, please do let me know in the Comments.

Just prior to this financial bonanza, AbCellera was touting two new board members, John Montalbano on Nov. 18, 2020 and Peter Thiel on Nov. 19, 2020.

Here’s a bit about Mr. Montalbano from a Nov. 18, 2020 AbCellera news release (Note: A link has been removed),

November 18, 2020 – AbCellera, a technology company that searches, decodes, and analyzes natural immune systems to find antibodies that can be developed to prevent and treat disease, today announced the appointment of John Montalbano to its Board of Directors. Mr. Montalbano will serve as the Chair of the Audit Committee of the Board of Directors.

Mr. Montalbano is Principal of Tower Beach Capital Ltd. and serves on the boards of the Canada Pension Plan Investment Board, Aritzia Inc., and the Asia Pacific Foundation of Canada. His previous appointments include the former Vice Chair of RBC Wealth Management and CEO of RBC Global Asset Management (RBC GAM). When Mr. Montalbano retired as CEO of RBC GAM in 2015, it was among the largest 50 asset managers worldwide with $370 billion under management and offices in Canada, the United States, the United Kingdom, and Hong Kong.

Montalbano has been on this blog before in a Nov. 4, 2015 posting. If you scroll down to the subsection “Justin Trudeau and his British Columbia connection,” you’ll see mention of Montalbano’s unexpected exit as member and chair of UBC’s board of governors.

The next board member to hop on the proverbial path to riches was announced in a Nov. 19, 2020 AbCellera news release,

AbCellera, a technology company that searches, decodes, and analyzes natural immune systems to find antibodies that can be developed to prevent and treat disease, today announced the appointment of Peter Thiel to its Board of Directors.

“Peter has been a valued AbCellera investor and brings deep experience in scaling global technology companies,” said Carl Hansen, Ph.D., CEO of AbCellera. “We share his optimistic vision for the future, faith in technological progress, and long-term view on company building. We’re excited to have him join our board and look forward to working with him over the coming years.”

Mr. Thiel is a technology entrepreneur, investor, and author. He was a co-founder and CEO of PayPal, a company that he took public before it was acquired by eBay for $1.5 billion in 2002. Mr. Thiel subsequently co-founded Palantir Technologies in 2004, where he continues to serve as Chairman. As a technology investor, Mr. Thiel made the first outside investment in Facebook, where he has served as a director since 2005, and provided early funding for LinkedIn, Yelp, and dozens of technology companies. He is a partner at Founders Fund, a Silicon Valley venture capital firm that has funded companies including SpaceX and Airbnb.

“AbCellera is executing a long-term plan to make biotech move faster. I am proud to help them as they raise our expectations of what’s possible,” said Mr. Thiel.

Some Canadian business journalists got very excited over Thiel’s involvement in particular. Perhaps they were anticipating this December 10, 2020 AbCellera news release announcing an initial public offering. Much money seems to have been made not least for Mr. Montalbano, Mr. Thiel, and Mr. Hansen.

As for Mr. Thiel and taxes, I don’t know for certain but can infer that he’s not a big fan from this portion of his Wikipedia entry,

Thiel is an ideological libertarian,[108] though more recently he has espoused support for national conservatism[109] and criticized libertarian attitudes towards free trade[110] and big tech.[109]

My understanding is that libertarians object to taxes and prefer as little government structure as possible.

In any event, it seems that COVID-19 has been quite the bonanza for some people. If you’re curious you can find out more about AbCellera here.

Onto Avo Media and how it has contributed to the AbCellera story.

Avo Media, The Tyee, and Science Telephone

Vancouver (Canada)-based Avo Media describes itself this way on its homepage,

We make documentary, educational, and branded content.

We specialize in communicating science and other complex concepts in a clear, engaging way.

I think that description boils down to videos and podcasts. There’s no mention of AbCellera as one of their clients but they do list The Tyee, which in a July 1, 2020 posting (The Vancouver Company Turning Blood into a COVID Treatment: A Tyee Video) by Mashal Butt hosts a video about AbCellera,

The world anxiously awaits a vaccine to end the pandemic. But having a treatment could save countless lives in the meantime.

This Tyee video explains how Vancouver biotech company AbCellera, with funding from the federal government, is racing to develop an antibody-based therapy treatment as quickly as possible.

Experts — immunologist Ralph Pantophlet at Simon Fraser University, and co-founder and COO of AbCellera Véronique Lecault — explain what an antibody treatment is and how it can protect us from COVID-19.

It is not a cure, but it can help save lives as we wait for the cure.

This video was made in partnership with Vancouver’s Avo Media team of Jesse Lupini, Koby Michaels and Lucas Kavanagh.

It’s a video with a good explanation of AbCellera’s research. Interestingly, the script notes that the Canadian federal government gave the company over $175M for its COVID-19 work.

Why The Tyee?

While Avo Media is a local company, I notice that Jessica Yingling is listed in the final credits for the video. Yingling founded Little Dog Communications, which is based in both California and Utah. If you read the AbCellera news releases, you’ll see that she’s the media contact.

Is there a more unlikely media outlet to feature a stock market star, which probably will be making billions of dollars from this pandemic, than The Tyee? Politically, its ideology could be described as the polar opposite to libertarian ideology.

I wonder what the thought process was for the media placement and how someone based in San Diego (check out her self description on this Twitter feed @jyingling) came up with the idea?

Science Telephone

Avo Media’s latest project seems to be a podcast series, Science Telephone (this link is to the Spotify platform). Here’s more about the series and the various platforms where episodes can be found (from the Avo Media, Our Work, Science Telephone webpage) ,

Science Telephone is a new podcast that tests how well the science holds up when comedians get their hands onto it

Laugh while you learn, as the classic game of telephone is repurposed for scientific research. Each episode, one scientist explains their research to a comedian, who then has to explain it to the next comedian, and so on until it’s almost unrecognizable. See what sticks and what changes, with a rotating cast of brilliant scientists and hysterical comedians.

See a preview of the show below, or visit www.sciencetelephone.com to subscribe or listen to past episodes.

Science telephone is available on all the usual podcast platforms, including Apple Podcasts and Google Podcasts

I have included the Science Telephone preview here,

As we move towards the end of this year and this pandemic, it’s time to enjoy a little science comedy.

Gene therapy in Canada; a November 2020 report and two events in December 2020

There’s a lot of action, albeit quiet and understated, in the Canadian gene therapy ‘discussion’. One major boost to the discussion was the Nov. 3, 2020 release of a report by the Canadian Council of Academies (CCA), “From Research to Reality; The Expert Panel on the Approval and Use of Somatic Gene Therapies in Canada.”

Dec. 2 – 3, 2020 Breaking Through

Another boost is the the free and virtual, upcoming 2020 Gairdner Ontario International Symposium “Breaking Through: Delivering on the Promise of Gene Therapy“; an international symposium on gene therapy research and practice, which will feature a presentation on the CCA’s report,

Breaking Through brings together Canadian and international leaders to explore the past, present, and future of somatic gene therapy research and practice. This two-day virtual event will examine the successes, challenges and opportunities from the bench to the bedside. It will also feature:

  • Speaker sessions from Canadian and international researchers at the forefront of gene therapy research.
  • A panel discussion exploring the opportunities and challenges facing Canadian scientists, regulators, clinicians, decision-makers, and patients (Presented by NRC).
  • A presentation and Expert Panel discussion on the Council of Canadian Academies’ latest report, From Research to Reality, and a closing panel discussion about the future of gene therapies and gene editing (Presented by Genome Canada).

The title for the CCA report bears an uncanny resemblance to the name for a Canadian initiative highlighting science research, Research2Reality (R2R). (If you’re curious, you can check out my past postings on R2R by using ‘Research2Reality’ as the term for the blog’s search engine.

Glybera

This name stood out: Michael Hayden (scroll down to his name and click), one of the featured speakers for this Dec. 2 – 3, 2020 event, reminded me of the disturbing Glybera story,

Dr. Hayden identified the first mutations underlying lipoprotein lipase (LPL) deficiency and developed gene therapy approaches to treat this condition, the first approved gene therapy (Glybera) in the western world.

Kelly Crowe’s Nov. 17, 2018 story for the Canadian Broadcasting Corporation (CBC) lays it out,

It is one of this country’s great scientific achievements.

The first drug ever approved that can fix a faulty gene.

It’s called Glybera, and it can treat a painful and potentially deadly genetic disorder with a single dose — a genuine made-in-Canada medical breakthrough.

But most Canadians have never heard of it.

A team of researchers at the University of British Columbia spent decades developing the treatment for people born with a genetic mutation that causes lipoprotein lipase defficiency (LPLD).

If you have the time, do read Crowe’s Nov. 17, 2018 story but as I warned in another post, it’s heartbreaking.

Fora brief summary, the company which eventually emerged with the licensing rights to Glybera, charged $1m per dose and a single dose is good for 10 years. It seems governments are reluctant to approve the cost and for many individuals, it’s an impossible price to meet, every 10 years. So, the drug is dead. Or perhaps not? Take a look at the symposium’s agenda (scroll down) for description,

GLYBERA REINVENTED: A WINDING STORY OF COMMITMENT, CREATIVITY, AND INNOVATION

Michael Hayden, MB, ChB, PhD, FRCP(C), FRSC, C.M., O.B.C University Killam Professor, Senior Scientist, Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics,

University of British Columbia (Vancouver, BC)

Money issues

One theme from the agenda jumped out at me: money. The focus seems to be largely on accessibility and costs. The Nov. 3, 2020 CCA news release (also on EurekAlert) about the report also prominently featured costs,

Gene therapies are being approved for use in Canada, but could strain healthcare budgets and exacerbate existing treatment inequities [emphasis mine] across the country. However, there are opportunities to control spending, streamline approvals and support fair access through innovation, coordination and collaboration, according to a new expert panel report from the Council of Canadian Academies (CCA).

“Rapid scientific advances mean potentially life-changing treatments are approaching the clinic at an accelerated pace,” said Janet Rossant, PhD, C.C., FRSC, and Chair of the Expert Panel. “These new therapies, however, pose a number of challenges in terms of their introduction into the Canadian healthcare system and ensuring access to those who would most benefit.”

Gene therapies and gene editing

Before moving on, you might find it useful to know (if you don’t already) that gene therapy can be roughly divided into somatic cell gene therapy and germline gene therapy as per the Gene Therapy entry in Wikipedia.

Two other items on the symposium’s agenda (scroll down) drew my attention,

Genome editing and the promise for future therapies

Ronald Cohn, MD, FACMG, FCAHS President and CEO,
The Hospital for Sick Children (SickKids) (Toronto, ON)

COMING SOON: THE FUTURE OF GENE EDITING AND GENE THERAPIES

Presented by: Genome Canada

Rob Annan, PhD President and CEO,
Genome Canada (Ottawa, ON)

R. Alta Charo, J.D. Warren P. Knowles Professor of Law & Bioethics,
University of Wisconsin Law School (Madison, USA)

Jay Ingram, C.M. Science broadcaster and writer, Former Co-Host, Discovery Channel’s “Daily Planet” (Calgary, AB)

Vardit Ravitsky, PhD, FCAHS Full Professor, Bioethics Program, Department of Social and Preventative Medicine, School of Public Health, Université de Montréal; President, International Association of Bioethics (Montréal, QC)

Janet Rossant, PhD, C.C., FRSC President,
Gairdner Foundation (Toronto, ON) [also a member of the CCA expert panel for report on somatic cell therapies ‘From research to reality …’)

Genome editing, by the way and if you don’t know, is also known as gene editing. The presence of the word ‘future’ in both the presentations has my antennae quivering. Could they be hinting at germline editing possibilities? At this time, the research is illegal in Canada.

If you don’t happen to know, somatic gene editing, covered in the CCA report, does not affect future generations as opposed to germline gene editing, which does. Should you be curious about the germline gene editing discussion in Canada, I covered as much information as I could uncover in an April 26, 2019 posting on topic.

Jay Ingram’s presence on the panel sponsored by Genome Canada is a bit of a surprise.

I saw him years ago as the moderator for a panel presentation sponsored by Genome British Columbia. The discussion was about genetics and ethics, which was illustrated by clips from the television programme, ReGenesis (from its IMDB entry),

[Fictional] Geneticist David Sandstrom is the chief scientist at the prestigious virology/micro-biology NORBAC laboratory, a joint enterprise between the USA, Canada and Mexico for countering bio-terrorism.

Ingram (BA in microbiology and an MA that’s not identified in his Wikipedia entry) was a television science presenter for a number of years and has continued to work in the field of science communication. He didn’t seem all that knowledgeable about genetics when he moderated the ReGenesis panel but perhaps his focus will be about the communication element?

For anyone interested in attending the free and virtual “Breaking Through” event, you can register here.

CAR-T cell therapies (a type of somatic cell therapy)

One final note, the first week of December seems to be gene therapy week in Canada. There is another free and virtual event, the second session of the Summit for Cancer Immunotherapy: 2020 Speaker Series (Hosted by BioCanRx, Canada’s Immunotherapy Network), Note: I made a few changes to make this excerpt a bit easier to read,

Session Two: Developing better CAR T-Cell Therapies by engaging patients, performing systematic reviews and assessing real-world and economic evidence
Wednesday, December 9, 1:30 pm – 3:15pm EST [emphasis mine]

Chimeric Antigen Receptor T-cell (CAR-T) therapy is a personalized immunotherapy, currently being assessed in a Canadian Phase I/II clinical trial to test safety and feasibility for relapsed/refractory blood cancer (CD19+ Acute Lymphoblastic Leukemia and non-Hodgkin’s Lymphoma).

This virtual seminar will provide an overview of a multidisciplinary team’s collaborative efforts to synthesize evidence for the development of this clinical trial protocol, using a novel approach (the ‘Excelerator’ model). This approach involved the completion of a systematic review (objective review of existing trial data), engagement of patients and clinicians, and drawing from real world and economic evidence.

Dr. Fergusson will provide a brief introduction. Dr. Kednapa Thavorn will discuss the team’s use of economic modelling to select trial factors to maximize economic feasibility of the therapy, and Mackenzie Wilson (HQP) will discuss the current efforts and future directions to engage diverse stakeholders to inform this work. Gisell Castillo (HQP) will speak about the interviews that were conducted with patients and hematologists to identify potential barriers and enablers to participation and recruitment to the trial.

The team will also discuss two ongoing projects which build on this work. Dr. Lalu will provide an overview on the team’s patient engagement program throughout development of the trial protocol and plans to expand this program to other immunotherapy trials. Joshua Montroy (HQP) will also discuss ongoing work building on the initial systematic review, to use individual participant data meta-analysis to identify factors that may impact the efficacy of CAR-T cell therapy.

Dr. Justin Presseau will moderate the question and answer period.

And there’s this,

Who should attend?

Scientific and health care community including researchers, clinicians and HQP along with patients and caregivers. Note: There will be a plain language overview before the session begins and an opportunity to ask questions after the discussion.

If you want to know more about CAR T-cell therapy, sometimes called gene or cell therapy or immune effect cell therapy, prior to the Dec., 9, 2020 event, this page on the cancer.org website should prove helpful.

Congratulations to winners of 2020 Nobel Prize for Chemistry: Dr. Emmanuelle Charpentier & Dr. Jennifer A. Doudna (CRISPR-cas9)

It’s possible there’s a more dramatic development in the field of contemporary gene-editing but it’s indisputable that CRISPR (clustered regularly interspaced short palindromic repeats) -cas9 (CRISPR-associated 9 [protein]) ranks very highly indeed.

The technique, first discovered (or developed) in 2012, has brought recognition in the form of the 2020 Nobel Prize for Chemistry to CRISPR’s two discoverers, Emanuelle Charpentier and Jennifer Doudna.

An October 7, 2020 news item on phys.org announces the news,

The Nobel Prize in chemistry went to two researchers Wednesday [October 7, 2020] for a gene-editing tool that has revolutionized science by providing a way to alter DNA, the code of life—technology already being used to try to cure a host of diseases and raise better crops and livestock.

Emmanuelle Charpentier of France and Jennifer A. Doudna of the United States won for developing CRISPR-cas9, a very simple technique for cutting a gene at a specific spot, allowing scientists to operate on flaws that are the root cause of many diseases.

“There is enormous power in this genetic tool,” said Claes Gustafsson, chair of the Nobel Committee for Chemistry.

More than 100 clinical trials are underway to study using CRISPR to treat diseases, and “many are very promising,” according to Victor Dzau, president of the [US] National Academy of Medicine.

“My greatest hope is that it’s used for good, to uncover new mysteries in biology and to benefit humankind,” said Doudna, who is affiliated with the University of California, Berkeley, and is paid by the Howard Hughes Medical Institute, which also supports The Associated Press’ Health and Science Department.

The prize-winning work has opened the door to some thorny ethical issues: When editing is done after birth, the alterations are confined to that person. Scientists fear CRISPR will be misused to make “designer babies” by altering eggs, embryos or sperm—changes that can be passed on to future generations.

Unusually for phys.org, this October 7, 2020 news item is not a simple press/news release reproduced in its entirety but a good overview of the researchers’ accomplishments and a discussion of some of the issues associated with CRISPR along with the press release at the end.

I have covered some CRISPR issues here including intellectual property (see my March 15, 2017 posting titled, “CRISPR patent decision: Harvard’s and MIT’s Broad Institute victorious—for now‘) and designer babies (as exemplified by the situation with Dr. He Jiankui; see my July 28, 2020 post titled, “July 2020 update on Dr. He Jiankui (the CRISPR twins) situation” for more details about it).

An October 7, 2020 article by Michael Grothaus for Fast Company provides a business perspective (Note: A link has been removed),

Needless to say, research by the two scientists awarded the Nobel Prize in Chemistry today has the potential to change the course of humanity. And with that potential comes lots of VC money and companies vying for patents on techniques and therapies derived from Charpentier’s and Doudna’s research.

One such company is Doudna’s Editas Medicine [according to my search, the only company associated with Doudna is Mammoth Biosciences, which she co-founded], while others include Caribou Biosciences, Intellia Therapeutics, and Casebia Therapeutics. Given the world-changing applications—and the amount of revenue such CRISPR therapies could bring in—it’s no wonder that such rivalry is often heated (and in some cases has led to lawsuits over the technology and its patents).

As Doudna explained in her book, A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution, cowritten by Samuel H. Sternberg …, “… —but we could also have woolly mammoths, winged lizards, and unicorns.” And as for that last part, she made clear, “No, I am not kidding.”

Everybody makes mistakes and the reference to Editas Medicine is the only error I spotted. You can find out more about Mammoth Biosciences here and while Dr. Doudna’s comment, “My greatest hope is that it’s used for good, to uncover new mysteries in biology and to benefit humankind,” is laudable it would seem she wishes to profit from the discovery. Mammoth Biosciences is a for-profit company as can be seen at the end of the Mammoth Biosciences’ October 7, 2020 congratulatory news release,

About Mammoth Biosciences

Mammoth Biosciences is harnessing the diversity of nature to power the next-generation of CRISPR products. Through the discovery and development of novel CRISPR systems, the company is enabling the full potential of its platform to read and write the code of life. By leveraging its internal research and development and exclusive licensing to patents related to Cas12, Cas13, Cas14 and Casɸ, Mammoth Biosciences can provide enhanced diagnostics and genome editing for life science research, healthcare, agriculture, biodefense and more. Based in San Francisco, Mammoth Biosciences is co-founded by CRISPR pioneer Jennifer Doudna and Trevor Martin, Janice Chen, and Lucas Harrington. The firm is backed by top institutional investors [emphasis mine] including Decheng, Mayfield, NFX, and 8VC, and leading individual investors including Brook Byers, Tim Cook, and Jeff Huber.

An October 7, 2029 Nobel Prize press release, which unleashed all this interest in Doudna and Charpentier, notes this,

Prize amount: 10 million Swedish kronor, to be shared equally between the Laureates.

In Canadian money that amount is $1,492,115.03 (as of Oct. 9, 2020 12:40 PDT when I checked a currency converter).

Ordinarily there’d be a mildly caustic comment from me about business opportunities and medical research but this is a time for congratulations to both Dr. Emanuelle Charpentier and Dr. Jennifer Doudna.

Effective treatment for citrus-destroying disease?

Citrus greening is a worldwide problem. A particularly virulent disease that destroys citrus fruit, it’s a problem that is worsening. Before getting to the research from the University of California at Riverside (UCR), here’s more about the disease and how it’s developing from the UCR Huanglongbing, (HLB, Citrus Greening webpage,

The Situation: Citrus huanglongbing (HLB), previously called citrus greening disease, is one of the most destructive diseases of citrus worldwide.  Originally thought to be caused by a virus, it is now known to be caused by unculturable phloem-limited bacteria.  There are three forms of greening that have been described.  The African form produces symptoms only under cool conditions and is transmitted by the African citrus psyllid Trioza erytreae, while the Asian form prefers warmer conditions and is transmitted by the Asian citrus psyllid Diaphorina citri.  Recently a third American form transmitted by the Asian citrus psyllid was discovered in Brazil.  This American form of the disease apparently originated in China.  In North America, the psyllid vector, Diaphorina citri, of HLB is found in Florida, Louisiana, Georgia, South Carolina, Texas and Hawaii, and recently arrived in Southern California from Mexico. HLB is known to occur in Florida Lousiana, South Carolina, Georgia, Cuba, Belize and the Eastern Yucatan of Mexico.  A federal quarantine restricts all movement of citrus and other plants in the family Rutaceae from Asian Citrus Psyllid or HLB-infested areas into California in order to prevent introduction of the disease.

 Damage:  The HLB bacteria can infect most citrus cultivars, species and hybrids and even some citrus relatives.  Leaves of newly infected trees develop a blotchy mottle appearance.  On chronically infected trees, the leaves are small and exhibit asymmetrical blotchy mottling (in contrast to Zinc deficiency that causes symmetrical blotching).  Fruit from HLB-infected trees are small, lopsided, poorly colored, and contain aborted seeds. The juice from affected fruit is low in soluble solids, high in acids and abnormally bitter.  The fruit retains its green color at the navel end when mature, which is the reason for the common name “citrus greening disease.”  This fruit is of no value because of poor size and quality.  There is no cure for the disease and rapid tree removal is critical for prevention of spread.

Economic Impact: HLB is one of the most devastating diseases of citrus and since its discovery in Florida in 2005, citrus acreage in that state has declined significantly.  If the disease were to establish in California, the nursery industry would be required to move all of their production under screenhouses, pesticide treatments for the vector would be instituted resulting in greatly increased pesticide costs (3-6 treatments per year) and indirect costs due to pesticide-induced disruption of integrated pest management programs for other citrus pests.  A costly eradication program would need to be instituted to remove infected trees in order to protect the citrus industry.

Distribution of HLB: In April 2012, after about a week of testing, the California Department of Food and Agriculture (CDFA) removed a pumelo tree with a lemon graft from Hacienda Heights in Los Angeles County after the tree and an Asian citrus psyllid found on the tree both tested positive for Huanglongbing. In 2005, HLB was also found in Florida and it is now known to occur in Louisiana, Georgia, South Carolina, Cuba, Belze and Eastern Mexico.  Worldwide, HLB is also present in China, eastern and southern Africa, the Indian subcontinent, Mauritius, Reunion, the Saudi Arabian peninsula, and southeast Asia.

Research:  Research is focusing on characterization of the bacteria, development of detection methods, and control of the disease and the psyllid.  To date, control of the disease is based on planting HLB-free citrus germplasm, eradication of infected citrus plants, and control of the vector with systemic insecticides.  Countries with HLB learn to manage the disease so that they can still produce citrus.  In California, the best strategy is to keep this disease out. This goal is supported by both federal and state quarantine regulations and the University of California’s Citrus Clonal Protection Program, which provides a mechanism for the safe introduction of citrus germplasm into California.

A July 7, 2020 news item on phys.org announces what researchers hope can be used commercially as a new treatment for citrus greening disease from researchers University of California at Riverside (UCR), Note: Links have been removed,

UC Riverside scientists have found the first substance capable of controlling Citrus Greening Disease, which has devastated citrus farms in Florida and also threatens California.

The new treatment effectively kills the bacterium causing the disease with a naturally occurring molecule found in wild citrus relatives. This molecule, an antimicrobial peptide, offers numerous advantages over the antibiotics currently used to treat the disease.

UCR geneticist Hailing Jin, who discovered the cure after a five-year search, explained that unlike antibiotic sprays, the peptide is stable even when used outdoors in high heat, easy to manufacture, and safe for humans.

A July 7, 2020 UCR news release (also on EurekAlert) by Jules Bernstein, which originated the news item, provides technical detail and information about plans to commercialize the product,

“This peptide is found in the fruit of Australian finger limes, which can naturally tolerate Citrus Greening bacteria and has been consumed for hundreds of years,” Jin said. “It is much safer to use this natural plant product on agricultural crops than other synthetic chemicals.”

Currently, some growers in Florida are spraying antibiotics and pesticides in an attempt to save trees from the CLas bacterium that causes citrus greening, also known as Huanglongbing or HLB.

“Most antibiotics are temperature sensitive, so their effects are largely reduced when applied in the hot weather,” Jin said. “By contrast, this peptide is stable even when used in 130-degree heat.”

Jin found the peptide by examining plants such as the Australian finger lime known to possess natural tolerance for the bacteria that causes Citrus Greening Disease, and she isolated the genes that contribute to this innate immunity. One of these genes produces the peptide, which she then tested over the course of two years. Improvement was soon visible.

“You can see the bacteria drastically reduced, and the leaves appear healthy again only a few months after treatment,” Jin said.

Because the peptide only needs to be reapplied a few times per year, it is highly cost effective for growers. This peptide can also be developed into a vaccine to protect young healthy plants from infection, as it is able to induce the plant’s innate immunity to the bacteria.

Jin’s peptide can be applied by injection or foliage spray, and it moves systemically through plants and remains stable, which makes the effect of the treatment stronger.

The treatment will be further enhanced with proprietary injection technology made by Invaio Sciences. UC Riverside has entered into an exclusive, worldwide license agreement with Invaio, ensuring this new treatment goes exactly where it’s needed in plants.

“Invaio is enthusiastic to partner with UC Riverside and advance this innovative technology for combating the disease known as Citrus Greening or Huanglongbing,” said Invaio Chief Science Officer Gerardo Ramos. “The prospect of addressing this previously incurable and devastating crop disease, helping agricultural communities and improving the environmental impact of production is exciting and rewarding,” he said. “This is crop protection in harmony with nature.”

The need for an HLB cure is a global problem, but hits especially close to home as California produces 80 percent of all the fresh citrus in the United States, said Brian Suh, director of technology commercialization in UCR’s Office of Technology Partnerships, which helps bring university technology to market for the benefit of society through licenses, partnerships, and startup companies.

“This license to Invaio opens up the opportunity for a product to get to market faster,” Suh said. “Cutting edge research from UCR, like the peptide identified by Dr. Jin, has a tremendous amount of commercial potential and can transform the trajectory of real-world problems with these innovative solutions.”

You can find out more about Invaio Sciences here.

Citrus greening has been featured here before in an April 7, 2015 posting titled, Citrus canker, Florida, and Zinkicide. There doesn’t seem to have been much progress made with this Florida solution for citrus greening. This 2018 document on nano.gov was the most recent I could find, ZinkicideTM- a systemic nano-ZnO based bactericide/fungicide for crop protection by Swadeshmukul Santra.

New ingredient for computers: water!

A July 25, 2019 news item on Nanowerk provides a description of Moore`s Law and some ‘watery’ research that may upend it,

Moore’s law – which says the number of components that could be etched onto the surface of a silicon wafer would double every two years – has been the subject of recent debate. The quicker pace of computing advancements in the past decade have led some experts to say Moore’s law, the brainchild of Intel co-founder Gordon Moore in the 1960s, no longer applies. Particularly of concern, next-generation computing devices require features smaller than 10 nanometers – driving unsustainable increases in fabrication costs.

Biology creates features at sub-10nm scales routinely, but they are often structured in ways that are not useful for applications like computing. A Purdue University group has found ways of transforming structures that occur naturally in cell membranes to create other architectures, like parallel 1nm-wide line segments, more applicable to computing.

Inspired by biological cell membranes, Purdue researchers in the Claridge Research Group have developed surfaces that act as molecular-scale blueprints for unpacking and aligning nanoscale components for next-generation computers. The secret ingredient? Water, in tiny amounts.

A July 25, 2019 Purdue University news release (also on EurekAlert), expands on the theme,

“Biology has an amazing tool kit for embedding chemical information in a surface,” said Shelley Claridge, a recently tenured faculty member in chemistry and biomedical engineering at Purdue, who leads a group of nanomaterials researchers. “What we’re finding is that these instructions can become even more powerful in nonbiological settings, where water is scarce.”

In work just published in Chem, sister journal to Cell, the group has found that stripes of lipids can unpack and order flexible gold nanowires with diameters of just 2 nm, over areas corresponding to many millions of molecules in the template surface.

“The real surprise was the importance of water,” Claridge said. “Your body is mostly water, so the molecules in your cell membranes depend on it to function. Even after we transform the membrane structure in a way that’s very nonbiological and dry it out, these molecules can pull enough water out of dry winter air to do their job.”

Their work aligns with Purdue’s Giant Leaps celebration, celebrating the global advancements in sustainability as part of Purdue’s 150th anniversary. Sustainability is one of the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

The research team is working with the Purdue Research Foundation Office of Technology Commercialization to patent their work. They are looking for partners for continued research and to take the technology to market. [emphasis mine]

I wonder how close they are to taking this work to market. Usually they say it will be five to 10 years but perhaps we’ll see water-based computers in the near future. In the meantime, here’s a link to and a citation for the paper,

1-nm-Wide Hydrated Dipole Arrays Regulate AuNW Assembly on Striped Monolayers in Nonpolar Solvent by Ashlin G. Porter, Tianhong Ouyang, Tyler R. Hayes, John Biechele-Speziale, Shane R. Russell, Shelley A. Claridge. Chem DOI: DOI:https://doi.org/10.1016/j.chempr.2019.07.002 Published online:July 25, 2019

This paper is behind a paywall.

AI (artificial intelligence) artist got a show at a New York City art gallery

AI artists first hit my radar in August 2018 when Christie’s Auction House advertised an art auction of a ‘painting’ by an algorithm (artificial intelligence). There’s more in my August 31, 2018 posting but, briefly, a French art collective, Obvious, submitted a painting, “Portrait of Edmond de Belamy,” that was created by an artificial intelligence agent to be sold for an estimated to $7000 – $10,000. They weren’t even close. According to Ian Bogost’s March 6, 2019 article for The Atlantic, the painting sold for $432,500 In October 2018.

It has also, Bogost notes in his article, occasioned an art show (Note: Links have been removed),

… part of “Faceless Portraits Transcending Time,” an exhibition of prints recently shown [Februay 13 – March 5, 2019] at the HG Contemporary gallery in Chelsea, the epicenter of New York’s contemporary-art world. All of them were created by a computer.

The catalog calls the show a “collaboration between an artificial intelligence named AICAN and its creator, Dr. Ahmed Elgammal,” a move meant to spotlight, and anthropomorphize, the machine-learning algorithm that did most of the work. According to HG Contemporary, it’s the first solo gallery exhibit devoted to an AI artist.

If they hadn’t found each other in the New York art scene, the players involved could have met on a Spike Jonze film set: a computer scientist commanding five-figure print sales from software that generates inkjet-printed images; a former hotel-chain financial analyst turned Chelsea techno-gallerist with apparent ties to fine-arts nobility; a venture capitalist with two doctoral degrees in biomedical informatics; and an art consultant who put the whole thing together, A-Team–style, after a chance encounter at a blockchain conference. Together, they hope to reinvent visual art, or at least to cash in on machine-learning hype along the way.

The show in New York City, “Faceless Portraits …,” exhibited work by an artificially intelligent artist-agent (I’m creating a new term to suit my purposes) that’s different than the one used by Obvious to create “Portrait of Edmond de Belamy,” As noted earlier, it sold for a lot of money (Note: Links have been removed),

Bystanders in and out of the art world were shocked. The print had never been shown in galleries or exhibitions before coming to market at auction, a channel usually reserved for established work. The winning bid was made anonymously by telephone, raising some eyebrows; art auctions can invite price manipulation. It was created by a computer program that generates new images based on patterns in a body of existing work, whose features the AI “learns.” What’s more, the artists who trained and generated the work, the French collective Obvious, hadn’t even written the algorithm or the training set. They just downloaded them, made some tweaks, and sent the results to market.

“We are the people who decided to do this,” the Obvious member Pierre Fautrel said in response to the criticism, “who decided to print it on canvas, sign it as a mathematical formula, put it in a gold frame.” A century after Marcel Duchamp made a urinal into art [emphasis mine] by putting it in a gallery, not much has changed, with or without computers. As Andy Warhol famously said, “Art is what you can get away with.”

A bit of a segue here, there is a controversy as to whether or not that ‘urinal art’, also known as, The Fountain, should be attributed to Duchamp as noted in my January 23, 2019 posting titled ‘Baroness Elsa von Freytag-Loringhoven, Marcel Duchamp, and the Fountain’.

Getting back to the main action, Bogost goes on to describe the technologies underlying the two different AI artist-agents (Note: Links have been removed),

… Using a computer is hardly enough anymore; today’s machines offer all kinds of ways to generate images that can be output, framed, displayed, and sold—from digital photography to artificial intelligence. Recently, the fashionable choice has become generative adversarial networks, or GANs, the technology that created Portrait of Edmond de Belamy. Like other machine-learning methods, GANs use a sample set—in this case, art, or at least images of it—to deduce patterns, and then they use that knowledge to create new pieces. A typical Renaissance portrait, for example, might be composed as a bust or three-quarter view of a subject. The computer may have no idea what a bust is, but if it sees enough of them, it might learn the pattern and try to replicate it in an image.

GANs use two neural nets (a way of processing information modeled after the human brain) to produce images: a “generator” and a “discerner.” The generator produces new outputs—images, in the case of visual art—and the discerner tests them against the training set to make sure they comply with whatever patterns the computer has gleaned from that data. The quality or usefulness of the results depends largely on having a well-trained system, which is difficult.

That’s why folks in the know were upset by the Edmond de Belamy auction. The image was created by an algorithm the artists didn’t write, trained on an “Old Masters” image set they also didn’t create. The art world is no stranger to trend and bluster driving attention, but the brave new world of AI painting appeared to be just more found art, the machine-learning equivalent of a urinal on a plinth.

Ahmed Elgammal thinks AI art can be much more than that. A Rutgers University professor of computer science, Elgammal runs an art-and-artificial-intelligence lab, where he and his colleagues develop technologies that try to understand and generate new “art” (the scare quotes are Elgammal’s) with AI—not just credible copies of existing work, like GANs do. “That’s not art, that’s just repainting,” Elgammal says of GAN-made images. “It’s what a bad artist would do.”

Elgammal calls his approach a “creative adversarial network,” or CAN. It swaps a GAN’s discerner—the part that ensures similarity—for one that introduces novelty instead. The system amounts to a theory of how art evolves: through small alterations to a known style that produce a new one. That’s a convenient take, given that any machine-learning technique has to base its work on a specific training set.

The results are striking and strange, although calling them a new artistic style might be a stretch. They’re more like credible takes on visual abstraction. The images in the show, which were produced based on training sets of Renaissance portraits and skulls, are more figurative, and fairly disturbing. Their gallery placards name them dukes, earls, queens, and the like, although they depict no actual people—instead, human-like figures, their features smeared and contorted yet still legible as portraiture. Faceless Portrait of a Merchant, for example, depicts a torso that might also read as the front legs and rear haunches of a hound. Atop it, a fleshy orb comes across as a head. The whole scene is rippled by the machine-learning algorithm, in the way of so many computer-generated artworks.

Faceless Portrait of a Merchant, one of the AI portraits produced by Ahmed Elgammal and AICAN. (Artrendex Inc.) [downloaded from https://www.theatlantic.com/technology/archive/2019/03/ai-created-art-invades-chelsea-gallery-scene/584134/]

Bogost consults an expert on portraiture for a discussion about the particularities of portraiture and the shortcomings one might expect of an AI artist-agent (Note: A link has been removed),

“You can’t really pick a form of painting that’s more charged with cultural meaning than portraiture,” John Sharp, an art historian trained in 15th-century Italian painting and the director of the M.F.A. program in design and technology at Parsons School of Design, told me. The portrait isn’t just a style, it’s also a host for symbolism. “For example, men might be shown with an open book to show how they are in dialogue with that material; or a writing implement, to suggest authority; or a weapon, to evince power.” Take Portrait of a Youth Holding an Arrow, an early-16th-century Boltraffio portrait that helped train the AICAN database for the show. The painting depicts a young man, believed to be the Bolognese poet Girolamo Casio, holding an arrow at an angle in his fingers and across his chest. It doubles as both weapon and quill, a potent symbol of poetry and aristocracy alike. Along with the arrow, the laurels in Casio’s hair are emblems of Apollo, the god of both poetry and archery.

A neural net couldn’t infer anything about the particular symbolic trappings of the Renaissance or antiquity—unless it was taught to, and that wouldn’t happen just by showing it lots of portraits. For Sharp and other critics of computer-generated art, the result betrays an unforgivable ignorance about the supposed influence of the source material.

But for the purposes of the show, the appeal to the Renaissance might be mostly a foil, a way to yoke a hip, new technology to traditional painting in order to imbue it with the gravity of history: not only a Chelsea gallery show, but also an homage to the portraiture found at the Met. To reinforce a connection to the cradle of European art, some of the images are presented in elaborate frames, a decision the gallerist, Philippe Hoerle-Guggenheim (yes, that Guggenheim; he says the relation is “distant”) [the Guggenheim is strongly associated with the visual arts by way the two Guggeheim museums, one in New York City and the other in Bilbao, Portugal], told me he insisted upon. Meanwhile, the technical method makes its way onto the gallery placards in an official-sounding way—“Creative Adversarial Network print.” But both sets of inspirations, machine-learning and Renaissance portraiture, get limited billing and zero explanation at the show. That was deliberate, Hoerle-Guggenheim said. He’s betting that the simple existence of a visually arresting AI painting will be enough to draw interest—and buyers. It would turn out to be a good bet.

The art market is just that: a market. Some of the most renowned names in art today, from Damien Hirst to Banksy, trade in the trade of art as much as—and perhaps even more than—in the production of images, objects, and aesthetics. No artist today can avoid entering that fray, Elgammal included. “Is he an artist?” Hoerle-Guggenheim asked himself of the computer scientist. “Now that he’s in this context, he must be.” But is that enough? In Sharp’s estimation, “Faceless Portraits Transcending Time” is a tech demo more than a deliberate oeuvre, even compared to the machine-learning-driven work of his design-and-technology M.F.A. students, who self-identify as artists first.

Judged as Banksy or Hirst might be, Elgammal’s most art-worthy work might be the Artrendex start-up itself, not the pigment-print portraits that its technology has output. Elgammal doesn’t treat his commercial venture like a secret, but he also doesn’t surface it as a beneficiary of his supposedly earnest solo gallery show. He’s argued that AI-made images constitute a kind of conceptual art, but conceptualists tend to privilege process over product or to make the process as visible as the product.

Hoerle-Guggenheim worked as a financial analyst for Hyatt before getting into the art business via some kind of consulting deal (he responded cryptically when I pressed him for details). …

This is a fascinating article and I have one last excerpt, which poses this question, is an AI artist-agent a collaborator or a medium? There ‘s also speculation about how AI artist-agents might impact the business of art (Note: Links have been removed),

… it’s odd to list AICAN as a collaborator—painters credit pigment as a medium, not as a partner. Even the most committed digital artists don’t present the tools of their own inventions that way; when they do, it’s only after years, or even decades, of ongoing use and refinement.

But Elgammal insists that the move is justified because the machine produces unexpected results. “A camera is a tool—a mechanical device—but it’s not creative,” he said. “Using a tool is an unfair term for AICAN. It’s the first time in history that a tool has had some kind of creativity, that it can surprise you.” Casey Reas, a digital artist who co-designed the popular visual-arts-oriented coding platform Processing, which he uses to create some of his fine art, isn’t convinced. “The artist should claim responsibility over the work rather than to cede that agency to the tool or the system they create,” he told me.

Elgammal’s financial interest in AICAN might explain his insistence on foregrounding its role. Unlike a specialized print-making technique or even the Processing coding environment, AICAN isn’t just a device that Elgammal created. It’s also a commercial enterprise.

Elgammal has already spun off a company, Artrendex, that provides “artificial-intelligence innovations for the art market.” One of them offers provenance authentication for artworks; another can suggest works a viewer or collector might appreciate based on an existing collection; another, a system for cataloging images by visual properties and not just by metadata, has been licensed by the Barnes Foundation to drive its collection-browsing website.

The company’s plans are more ambitious than recommendations and fancy online catalogs. When presenting on a panel about the uses of blockchain for managing art sales and provenance, Elgammal caught the attention of Jessica Davidson, an art consultant who advises artists and galleries in building collections and exhibits. Davidson had been looking for business-development partnerships, and she became intrigued by AICAN as a marketable product. “I was interested in how we can harness it in a compelling way,” she says.

The art market is just that: a market. Some of the most renowned names in art today, from Damien Hirst to Banksy, trade in the trade of art as much as—and perhaps even more than—in the production of images, objects, and aesthetics. No artist today can avoid entering that fray, Elgammal included. “Is he an artist?” Hoerle-Guggenheim asked himself of the computer scientist. “Now that he’s in this context, he must be.” But is that enough? In Sharp’s estimation, “Faceless Portraits Transcending Time” is a tech demo more than a deliberate oeuvre, even compared to the machine-learning-driven work of his design-and-technology M.F.A. students, who self-identify as artists first.

Judged as Banksy or Hirst might be, Elgammal’s most art-worthy work might be the Artrendex start-up itself, not the pigment-print portraits that its technology has output. Elgammal doesn’t treat his commercial venture like a secret, but he also doesn’t surface it as a beneficiary of his supposedly earnest solo gallery show. He’s argued that AI-made images constitute a kind of conceptual art, but conceptualists tend to privilege process over product or to make the process as visible as the product.

Hoerle-Guggenheim worked as a financial analyst[emphasis mine] for Hyatt before getting into the art business via some kind of consulting deal (he responded cryptically when I pressed him for details). …

If you have the time, I recommend reading Bogost’s March 6, 2019 article for The Atlantic in its entirety/ these excerpts don’t do it enough justice.

Portraiture: what does it mean these days?

After reading the article I have a few questions. What exactly do Bogost and the arty types in the article mean by the word ‘portrait’? “Portrait of Edmond de Belamy” is an image of someone who doesn’t and never has existed and the exhibit “Faceless Portraits Transcending Time,” features images that don’t bear much or, in some cases, any resemblance to human beings. Maybe this is considered a dull question by people in the know but I’m an outsider and I found the paradox: portraits of nonexistent people or nonpeople kind of interesting.

BTW, I double-checked my assumption about portraits and found this definition in the Portrait Wikipedia entry (Note: Links have been removed),

A portrait is a painting, photograph, sculpture, or other artistic representation of a person [emphasis mine], in which the face and its expression is predominant. The intent is to display the likeness, personality, and even the mood of the person. For this reason, in photography a portrait is generally not a snapshot, but a composed image of a person in a still position. A portrait often shows a person looking directly at the painter or photographer, in order to most successfully engage the subject with the viewer.

So, portraits that aren’t portraits give rise to some philosophical questions but Bogost either didn’t want to jump into that rabbit hole (segue into yet another topic) or, as I hinted earlier, may have assumed his audience had previous experience of those kinds of discussions.

Vancouver (Canada) and a ‘portraiture’ exhibit at the Rennie Museum

By one of life’s coincidences, Vancouver’s Rennie Museum had an exhibit (February 16 – June 15, 2019) that illuminates questions about art collecting and portraiture, From a February 7, 2019 Rennie Museum news release,

‘downloaded from https://renniemuseum.org/press-release-spring-2019-collected-works/] Courtesy: Rennie Museum

February 7, 2019

Press Release | Spring 2019: Collected Works
By rennie museum

rennie museum is pleased to present Spring 2019: Collected Works, a group exhibition encompassing the mediums of photography, painting and film. A portraiture of the collecting spirit [emphasis mine], the works exhibited invite exploration of what collected objects, and both the considered and unintentional ways they are displayed, inform us. Featuring the works of four artists—Andrew Grassie, William E. Jones, Louise Lawler and Catherine Opie—the exhibition runs from February 16 to June 15, 2019.

Four exquisite paintings by Scottish painter Andrew Grassie detailing the home and private storage space of a major art collector provide a peek at how the passionately devoted integrates and accommodates the physical embodiments of such commitment into daily life. Grassie’s carefully constructed, hyper-realistic images also pose the question, “What happens to art once it’s sold?” In the transition from pristine gallery setting to idiosyncratic private space, how does the new context infuse our reading of the art and how does the art shift our perception of the individual?

Furthering the inquiry into the symbiotic exchange between possessor and possession, a selection of images by American photographer Louise Lawler depicting art installed in various private and public settings question how the bilateral relationship permeates our interpretation when the collector and the collected are no longer immediately connected. What does de-acquisitioning an object inform us and how does provenance affect our consideration of the art?

The question of legacy became an unexpected facet of 700 Nimes Road (2010-2011), American photographer Catherine Opie’s portrait of legendary actress Elizabeth Taylor. Opie did not directly photograph Taylor for any of the fifty images in the expansive portfolio. Instead, she focused on Taylor’s home and the objects within, inviting viewers to see—then see beyond—the façade of fame and consider how both treasures and trinkets act as vignettes to the stories of a life. Glamorous images of jewels and trophies juxtapose with mundane shots of a printer and the remote-control user manual. Groupings of major artworks on the wall are as illuminating of the home’s mistress as clusters of personal photos. Taylor passed away part way through Opie’s project. The subsequent photos include Taylor’s mementos heading off to auction, raising the question, “Once the collections that help to define someone are disbursed, will our image of that person lose focus?”

In a similar fashion, the twenty-two photographs in Villa Iolas (1982/2017), by American artist and filmmaker William E. Jones, depict the Athens home of iconic art dealer and collector Alexander Iolas. Taken in 1982 by Jones during his first travels abroad, the photographs of art, furniture and antiquities tell a story of privilege that contrast sharply with the images Jones captures on a return visit in 2016. Nearly three decades after Iolas’s 1989 death, his home sits in dilapidation, looted and vandalized. Iolas played an extraordinary role in the evolution of modern art, building the careers of Max Ernst, Yves Klein and Giorgio de Chirico. He gave Andy Warhol his first solo exhibition and was a key advisor to famed collectors John and Dominique de Menil. Yet in the years since his death, his intention of turning his home into a modern art museum as a gift to Greece, along with his reputation, crumbled into ruins. The photographs taken by Jones during his visits in two different eras are incorporated into the film Fall into Ruin (2017), along with shots of contemporary Athens and antiquities on display at the National Archaeological Museum.

“I ask a lot of questions about how portraiture functionswhat is there to describe the person or time we live in or a certain set of politics…”
 – Catherine Opie, The Guardian, Feb 9, 2016

We tend to think of the act of collecting as a formal activity yet it can happen casually on a daily basis, often in trivial ways. While we readily acknowledge a collector consciously assembling with deliberate thought, we give lesser consideration to the arbitrary accumulations that each of us accrue. Be it master artworks, incidental baubles or random curios, the objects we acquire and surround ourselves with tell stories of who we are.

Andrew Grassie (Scotland, b. 1966) is a painter known for his small scale, hyper-realist works. He has been the subject of solo exhibitions at the Tate Britain; Talbot Rice Gallery, Edinburgh; institut supérieur des arts de Toulouse; and rennie museum, Vancouver, Canada. He lives and works in London, England.

William E. Jones (USA, b. 1962) is an artist, experimental film-essayist and writer. Jones’s work has been the subject of retrospectives at Tate Modern, London; Anthology Film Archives, New York; Austrian Film Museum, Vienna; and, Oberhausen Short Film Festival. He is a recipient of the John Simon Guggenheim Memorial Fellowship and the Creative Capital/Andy Warhol Foundation Arts Writers Grant. He lives and works in Los Angeles, USA.

Louise Lawler (USA, b. 1947) is a photographer and one of the foremost members of the Pictures Generation. Lawler was the subject of a major retrospective at the Museum of Modern Art, New York in 2017. She has held exhibitions at the Whitney Museum of American Art, New York; Stedelijk Museum, Amsterdam; National Museum of Art, Oslo; and Musée d’Art Moderne de La Ville de Paris. She lives and works in New York.

Catherine Opie (USA, b. 1961) is a photographer and educator. Her work has been exhibited at Wexner Center for the Arts, Ohio; Henie Onstad Art Center, Oslo; Los the Angeles County Museum of Art; Portland Art Museum; and the Guggenheim Museum, New York. She is the recipient of United States Artist Fellowship, Julius Shulman’s Excellence in Photography Award, and the Smithsonian’s Archive of American Art Medal.  She lives and works in Los Angeles.

rennie museum opened in October 2009 in historic Wing Sang, the oldest structure in Vancouver’s Chinatown, to feature dynamic exhibitions comprising only of art drawn from rennie collection. Showcasing works by emerging and established international artists, the exhibits, accompanied by supporting catalogues, are open free to the public through engaging guided tours. The museum’s commitment to providing access to arts and culture is also expressed through its education program, which offers free age-appropriate tours and customized workshops to children of all ages.

rennie collection is a globally recognized collection of contemporary art that focuses on works that tackle issues related to identity, social commentary and injustice, appropriation, and the nature of painting, photography, sculpture and film. Currently the collection includes works by over 370 emerging and established artists, with over fifty collected in depth. The Vancouver based collection engages actively with numerous museums globally through a robust, artist-centric, lending policy.

So despite the Wikipedia definition, it seems that portraits don’t always feature people. While Bogost didn’t jump into that particular rabbit hole, he did touch on the business side of art.

What about intellectual property?

Bogost doesn’t explicitly discuss this particular issue. It’s a big topic so I’m touching on it only lightly, if an artist worsk with an AI, the question as to ownership of the artwork could prove thorny. Is the copyright owner the computer scientist or the artist or both? Or does the AI artist-agent itself own the copyright? That last question may not be all that farfetched. Sophia, a social humanoid robot, has occasioned thought about ‘personhood.’ (Note: The robots mentioned in this posting have artificial intelligence.) From the Sophia (robot) Wikipedia entry (Note: Links have been removed),

Sophia has been interviewed in the same manner as a human, striking up conversations with hosts. Some replies have been nonsensical, while others have impressed interviewers such as 60 Minutes’ Charlie Rose.[12] In a piece for CNBC, when the interviewer expressed concerns about robot behavior, Sophia joked that he had “been reading too much Elon Musk. And watching too many Hollywood movies”.[27] Musk tweeted that Sophia should watch The Godfather and asked “what’s the worst that could happen?”[28][29] Business Insider’s chief UK editor Jim Edwards interviewed Sophia, and while the answers were “not altogether terrible”, he predicted it was a step towards “conversational artificial intelligence”.[30] At the 2018 Consumer Electronics Show, a BBC News reporter described talking with Sophia as “a slightly awkward experience”.[31]

On October 11, 2017, Sophia was introduced to the United Nations with a brief conversation with the United Nations Deputy Secretary-General, Amina J. Mohammed.[32] On October 25, at the Future Investment Summit in Riyadh, the robot was granted Saudi Arabian citizenship [emphasis mine], becoming the first robot ever to have a nationality.[29][33] This attracted controversy as some commentators wondered if this implied that Sophia could vote or marry, or whether a deliberate system shutdown could be considered murder. Social media users used Sophia’s citizenship to criticize Saudi Arabia’s human rights record. In December 2017, Sophia’s creator David Hanson said in an interview that Sophia would use her citizenship to advocate for women’s rights in her new country of citizenship; Newsweek criticized that “What [Hanson] means, exactly, is unclear”.[34] On November 27, 2018 Sophia was given a visa by Azerbaijan while attending Global Influencer Day Congress held in Baku. December 15, 2018 Sophia was appointed a Belt and Road Innovative Technology Ambassador by China'[35]

As for an AI artist-agent’s intellectual property rights , I have a July 10, 2017 posting featuring that question in more detail. Whether you read that piece or not, it seems obvious that artists might hesitate to call an AI agent, a partner rather than a medium of expression. After all, a partner (and/or the computer scientist who developed the programme) might expect to share in property rights and profits but paint, marble, plastic, and other media used by artists don’t have those expectations.

Moving slightly off topic , in my July 10, 2017 posting I mentioned a competition (literary and performing arts rather than visual arts) called, ‘Dartmouth College and its Neukom Institute Prizes in Computational Arts’. It was started in 2016 and, as of 2018, was still operational under this name: Creative Turing Tests. Assuming there’ll be contests for prizes in 2019, there’s (from the contest site) [1] PoetiX, competition in computer-generated sonnet writing; [2] Musical Style, composition algorithms in various styles, and human-machine improvisation …; and [3] DigiLit, algorithms able to produce “human-level” short story writing that is indistinguishable from an “average” human effort. You can find the contest site here.

A little digital piracy can boost bottom line for manufacturers and retailers

I’ve seen the argument before but this is the first time I’ve seen an academic supporting the thesis that digital piracy can be a boon for business. From a January 28, 2019 news item on phys.org,

HBO’s popular television series “Game of Thrones” returns in April, but millions of fans continue to illegally download the program, giving it the dubious distinction of being the most pirated program.

Many may wonder why the TV network hasn’t taken a more aggressive approach to combating illegal streaming services and downloaders. Perhaps it is because the benefits to the company outweigh the consequences. Research analysis by faculty in Indiana University’s Kelley School of Business and two other schools found that a moderate level of piracy can have a positive impact on the bottom line for both the manufacturer and the retailer—and not at the expense of consumers.

A January 28, 2019 Indiana University at Bloomington news release (also on EurekAlert), which originated the news item, expands on the theme,

“When information goods are sold to consumers via a retailer, in certain situations, a moderate level of piracy seems to have a surprisingly positive impact on the profits of the manufacturer and the retailer while, at the same time, enhancing consumer welfare,” wrote Antino Kim, assistant professor of operations and decision technologies at Kelley, and his co-authors.

“Such a win-win-win situation is not only good for the supply chain but is also beneficial for the overall economy.”

While not condoning piracy, Kim and his colleagues were surprised to find that it can actually reduce, or completely eliminate at times, the adverse effect of double marginalization, an economic concept where both manufacturers and retailers in the same supply chain add to the price of a product, passing these markups along to consumers.

The professors found that, because piracy can affect the pricing power of both the manufacturer and the retailer, it injects “shadow” competition into an otherwise monopolistic market.

“From the manufacturer’s point of view, the retailer getting squeezed is a good thing,” Kim said. “It can’t mark up the product as before, and the issue of double marginalization diminishes. Vice versa, if the manufacturer gets squeezed, the retailer is better off

“What we found is, by both of them being squeezed together — both at the upstream and the downstream levels — they are able to get closer to the optimal retail price that a single, vertically integrated entity would charge.”

In the example of “Game of Thrones,” HBO is the upstream “manufacturer” in the supply chain, and cable and satellite TV operators are the downstream “retailers.”

Kim and his co-authors — Atanu Lahiri, associate professor of information systems at the University of Texas-Dallas, and Debabrata Dey, professor of information systems at the University of Washington — presented their findings in the article, “The ‘Invisible Hand’ of Piracy: An Economic Analysis of the Information-Goods Supply Chain,” published in the latest issue of MIS Quarterly.

They suggest that businesses, government and consumers rethink the value of anti-piracy enforcement, which can be quite costly, and consider taking a moderate approach. Australia, for instance, due to prohibitive costs, scrapped its three-strikes scheme to track down illegal downloaders and send them warning notices. Though the Australian Parliament passed a new anti-piracy law last year, its effectiveness remains unclear until after it is reviewed in two years.

As with other studies, Kim and his colleagues found that when enforcement is low and piracy is rampant, both manufacturers and retailers suffer. But they caution against becoming overzealous in prosecuting illegal downloaders or in lobbying for more enforcement.

“Our results do not imply that the legal channel should, all of a sudden, start actively encouraging piracy,” they said. “The implication is simply that, situated in a real-world context, our manufacturer and retailer should recognize that a certain level of piracy or its threat might actually be beneficial and should, therefore, exercise some moderation in their anti-piracy efforts.

“This could manifest itself in them tolerating piracy to a certain level, perhaps by turning a blind eye to it,” they add. “Such a strategy would indeed be consistent with how others have described HBO’s attitude toward piracy of its products.”

This research was first made available online in August 2018, ahead of final publication in print in December 2018.

Fascinating analysis, eh?

Here’s a link to and a citation for the paper,

The “Invisible Hand” of Piracy: An Economic Analysis of the Information-Goods Supply Chain by Antino Kim, Atanu Lahiri, and Debabrata Dey. MIS Quarterly 2018 Volume 42 Issue 4: 1117-1141; DOI: 10.25300/MISQ/2018/14798

Intriguingly, for a paper about piracy someone has decided it should reside behind a paywall. However, there is an appendix which seems to be freely available here.

Nanoflowers for better drug delivery; researchers looking for commercial partners

Caption: Schematic representation of the movement of the flower-like particle as it makes its way through a cellular trap to deliver therapeutic genes. Credit: WSU [Washington State University]

It looks more like a swimming pool with pool toys to me but I imagine that nobody wants to say that they’re sending ‘pool toys’ through your bloodstream. Nanoflowers or flower-shaped nanoparticles sounds nicer.

From a January 10, 2019 news item on Nanowerk,

Washington State University [WSU] researchers have developed a novel way to deliver drugs and therapies into cells at the nanoscale without causing toxic effects that have stymied other such efforts.

The work could someday lead to more effective therapies and diagnostics for cancer and other illnesses.

Led by Yuehe Lin, professor in WSU’s School of Mechanical and Materials Engineering, and Chunlong Chen, senior scientist at the Department of Energy’s Pacific Northwest National Laboratory (PNNL), the research team developed biologically inspired materials at the nanoscale that were able to effectively deliver model therapeutic genes into tumor cells. …

A January 10, 2019 WSU news release (also on EurekAlert) by Tina Hilding, which originated the news item, describes the work in greater detail,

Researchers have been working to develop nanomaterials that can effectively carry therapeutic genes directly into the cells for the treatment of diseases such as cancer. The key issues for gene delivery using nanomaterials are their low delivery efficiency of medicine and potential toxicity.

“To develop nanotechnology for medical purposes, the first thing to consider is toxicity — That is the first concern for doctors,” said Lin.

The flower-like particle the WSU and PNNL team developed is about 150 nanometers in size, or about one thousand times smaller than the width of a piece of paper. It is made of sheets of peptoids, which are similar to natural peptides that make up proteins. The peptoids make for a good drug delivery particle because they’re fairly easy to synthesize and, because they’re similar to natural biological materials, work well in biological systems.

The researchers added fluorescent probes in their peptoid nanoflowers, so they could trace them as they made their way through cells, and they added the element fluorine, which helped the nanoflowers more easily escape from tricky cellular traps that often impede drug delivery.

The flower-like particles loaded with therapeutic genes were able to make their way smoothly out of the predicted cellular trap, enter the heart of the cell, and release their drug there.

“The nanoflowers successfully and rapidly escaped (the cell trap) and exhibited minimal cytotoxicity,” said Lin.

After their initial testing with model drug molecules, the researchers hope to conduct further studies using real medicines.

“This paves a new way for us to develop nanocargoes that can efficiently deliver drug molecules into the cell and offers new opportunities for targeted gene therapies,” he said.

The WSU and PNNL team have filed a patent application for the new technology, and they are seeking industrial partners for further development.

Should you and your company be interested in partnering with the researchers, contact:

  • Yuehe Lin, professor, School of Mechanical and Materials Engineering, 509‑335‑8523, yuehe.lin@wsu.edu
  • Tina Hilding, communications director, Voiland College of Engineering and Architecture, 509‑335‑5095, thilding@wsu.edu

For those who’d like more information, here’s a link to and a citation for the paper,

Efficient Cytosolic Delivery Using Crystalline Nanoflowers Assembled from Fluorinated Peptoids by Yang Song, Mingming Wang, Suiqiong Li, Haibao Jin, Xiaoli Cai, Dan Du, He Li, Chun‐Long Chen, Yuehe Lin. Small DOI: https://doi.org/10.1002/smll.201803544 First published: 22 November 2018

This paper is behind a paywall.

Searchable database for hazardous nanomaterials and a Graphene Verification Programme

I have two relatively recent news bits about nanomaterials, the second being entirely focused on graphene.

Searchable database

A July 9, 2019 news item on Nanowerk announces a means of finding out what hazards may be associated with 300 different nanomaterials (Note: A Link has been removed),

A new search tool for nanomaterials has been published on the European Union Observatory for Nanomaterials (EUON) website. It will enable regulators to form a better view of available data and give consumers access to chemicals safety information.

The tool combines data submitted by companies in their REACH registrations [Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) ], data collected about nanomaterials used as ingredients in cosmetic products under the Cosmetics Regulation and data from the public national nanomaterial inventories of Belgium and France.

A July 3, 2019 EUON press release, which originated the news item, provides a bit more detail,

The EUON’s search brings data from these sources together in one place, allowing users to easily search for nanomaterials that are currently on the EU market. The results are linked to ECHA’s [European Chemicals Agency] database of chemicals registered in the EU and, for the first time, summarised information about the substances, their properties as well as detailed safety and characterisation data can be easily found.

Background

While there are over 300 nanomaterials on the EU market, 37 are currently covered by an existing registration under REACH. The information requirements for REACH were revised last year with explicit obligations for nanomaterials manufactured in or imported to the EU. The new requirements enter into force in January 2020 and will result in more publicly available information.

The EUON aims to increase the transparency of information available to the public on the safety and markets of nanomaterials in the EU. A key aim of the observatory is to create a one-stop shop for information, where EU citizens and stakeholders including NGOs, industry, and regulators can all easily find accessible and relevant safety information on nanomaterials on the EU market.

Here’s the searchable database.

Graphene verification

There was a bit of a scandal about fake graphene in the Fall of 2018 (my May 28, 2019 posting gives details). Dexter Johnson provides additional insight and information about the launch of a new graphene verification programme and news of a slightly older graphene verification programme in his July 9, 2019 article for the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website (Note: Links have been removed),

Last year [2018], the graphene community was rocked by a series of critical articles that appeared in some high-profile journals. First there was an Advanced Material’s article with the rather innocuously title: “The Worldwide Graphene Flake Production”. It was perhaps the follow-up article that appeared in the journal Nature that really shook things up with its incendiary title: “The war on fake graphene”.

In these two articles it was revealed that material that had been claimed to be high-quality (and high-priced) graphene was little more than graphite powder. Boosted by their appearance in high-impact journals, these articles threatened the foundations of the graphene marketplace.

But while these articles triggered a lot of hand wringing among the buyers and sellers of graphene, it’s not clear that their impact extended much beyond the supply chain of graphene. Whether or not graphene has aggregated back to being graphite is one question. An even bigger one is whether or not consumers are actually being sold a better product on the basis that it incorporates graphene.

Dexter details some of the issues from the consumer’s perspective (Note: Links have been removed),

Consumer products featuring graphene today include everything from headphones to light bulbs. Consequently, there is already confusion among buyers about the tangible benefits graphene is supposed to provide. And of course the situation becomes even worse if the graphene sold to make products may not even be graphene: how are consumers supposed to determine whether graphene infuses their products with anything other than a buzzword?

Another source of confusion arises because when graphene is incorporated into a product it is effectively a different animal from graphene in isolation. There is ample scientific evidence that graphene when included in a material matrix, like a polymer or even paper, can impart new properties to the materials. “You can transfer some very useful properties of graphene into other materials by adding graphene, but just because the resultant material contains graphene it does not mean it will behave like free-standing graphene, explains Tom Eldridge, of UK-based Fullerex, a consultancy that provides companies with information on how to include graphene in a material matrix

The rest of Dexter’s posting goes on to mention two new graphene verification progammes (producer and product) available through The Graphene Council. As for what the council is, there’s this from council’s About webpage,

The Graphene Council was founded in 2013 with a mission to serve the global community of graphene professionals. Today, The Graphene Council is the largest community in the world for graphene researchers, academics, producers, developers, investors, nanotechnologists, regulatory agencies, research institutes, material science specialists and even the general public. We reach more than 50,000 people with an interest in this amazing material. 

Interestingly the council’s offices are located in the US state of North Carolina. (I would have guessed that its headquarters would be in the UK, given the ‘ownership’ the UK has been attempting to establish over graphene Let me clarify, by ownership I mean the Brits want to be recognized as dominant or preeminent in graphene research and commercialization.)

The council’s first verified graphene producer is a company based in the UK as can be seen in an April 1, 2019 posting by council director Terrance Barkan on the council’s blog,

The Graphene Council is pleased to announce that Versarien plc is the first graphene company in the world to successfully complete the Verified Graphene Producer™ program, an independent, third party verification system that involves a physical inspection of the production facilities, a review of the entire production process, a random sample of product material and rigorous characterization and testing by a first class, international materials laboratory.

The Verified Graphene Producer™ program is an important step to bring transparency and clarity to a rapidly changing and opaque market for graphene materials, providing graphene customers with a level of confidence that has not existed before.

“We are pleased to have worked with the National Physical Laboratory (NPL) in the UK, regarded as one of the absolute top facilities for metrology and graphene characterization in the world.
 
They have provided outstanding analytical expertise for the materials testing portion of the program including Raman Spectroscopy, XPS, AFM and SEM testing services.” stated Terrance Barkan CAE, Executive Director of The Graphene Council.
 
Andrew Pollard, Science Area Leader of the Surface Technology Group, National Physical Laboratory, said: “In order to develop real-world products that can benefit from the ‘wonder material’, graphene, we first need to fully understand its properties, reliably and reproducibly.
 
“Whilst international measurement standards are currently being developed, it is critical that material characterisation is performed to the highest possible level.
 
As the UK’s National Measurement Institute (NMI) with a focus on developing the metrology of graphene and related 2D materials, we aim to be an independent third party in the testing of graphene material for companies and associations around the world, such as The Graphene Council.” 
 
Neill Ricketts, CEO of Versarien said: “We are delighted that Versarien is the first graphene producer in the world to successfully complete the Graphene Council’s Verified Graphene Producer™ programme.”
 
“This is a huge validation of our technology and will enable our partners and potential customers to have confidence that the graphene we produce meets globally accepted standards.”
 
“There are many companies that claim to be graphene producers, but to enjoy the benefits that this material can deliver requires high quality, consistent product to be supplied.  The Verified Producer programme is designed to verify that our production facilities, processes and tested material meet the stringent requirements laid down by The Graphene Council.”

“I am proud that Versarien has been independently acclaimed as a Verified Graphene Producer™ and look forward to making further progress with our collaboration partners and numerous other parties that we are in discussions with.”

James Baker CEng FIET, the CEO of Graphene@Manchester (which includes coordinating the efforts of the National Graphene Institute and the Graphene Engineering and Innovation Centre [GEIC]) stated: “We applaud The Graphene Council for promoting independent third party verification for graphene producers that is supported by world class metrology and characterization services.”

“This is an important contribution to the commercialization of graphene as an industrial material and are proud to have The Graphene Council as an Affiliate Member of the Graphene Engineering and Innovation Centre (GEIC) here in Manchester ”.

Successful commercialization of graphene materials requires not only the ability to produce graphene to a declared specification but to be able to do so at a commercial scale.
It is nearly impossible for a graphene customer to verify the type of material they are receiving without going through an expensive and time consuming process of having sample materials fully characterized by a laboratory that has the equipment and expertise to test graphene.

The Verified Graphene Producer™ program developed by The Graphene Councilprovides a level of independent inspection and verification that is not available anywhere else.

As for the “Verified Graphene Product” programme mentioned in Dexter’s article (it’s not included in the excerpts here), I can’t find any sign of it ion the council’s website.

Science events and an exhibition concerning wind in the Vancouver (Canada) area for July 2019 and beyond

it’s not quite the bumper crop of science events that took place in May 2019, which may be a good thing if you’re eager to attend everything. First, here are the events and then, the exhibition.

Nerd Nite at the Movies

On July 10, 2019, a new series is being launched at the Vancouver International Film Festival (VIFF) Centre. Here’s the description from the Nerd Nite Vancouver SciFact vs SciFi: Nerd Nite Goes to the Movies event page,

SciFact vs SciFiction: Nerd Nite Goes to the Movies v1. Animal

This summer we’re trying something a little different. Our new summer series of talks – a collaboration between Nerd Nite and VIFF – examines the pseudo-science propagated by Hollywood, and seeks to sift real insights from fake facts, in a fun, playful but peer-approved format. Each show will feature clips from a variety of movies on a science theme with a featured scientist on hand all done Nerd Nite style with drinks! We begin with biology, and our first presenter is Dr Carin Bondar.

Dr Bondar has been the host of Science Channel’s Outrageous Acts of Science, and she’s the author of several books including “Wild Moms: The Science Behind Mating in the Animal Kingdom”. Tonight she’ll join Kaylee [Byers] and Michael [Unger] from Nerd Nite to discuss the sci-facts in a variety of clips from cinema. We’ll be discussing the science in Planet of the ApesThe BirdsArachnophobiaSnakes on a Plane, and more!

When: July 10 [2019]
Where: Vancouver International Film Centre
When: 7:30 – 8:30 – This talk will be followed by a screening of Alfred Hitchcock’s classic The Birds (9pm). Double bill price: $20
Tickets: Here!

The VIFF Centre’s SciFact vs SciFi: Animals According to Hollywood event page has much the same information plus this,

SciFact vs SciFi: Nerd Nite Goes to the Movies continues:

July 31 [2019] – Dr. Douglas Scott: The Universe According to Hollywood
Aug 14 [2019] – Mika McKinnon: Disaster According to Hollywood
Aug 28 [2019] – Greg Bole: Evolution According to Hollywood

This series put me in mind what was then the New York-based, ‘Science Goes to the Movies’. I first mentioned this series in a March 10, 2016 posting and it seems that since then, the series has lost a host and been embraced by public television (in the US). You can find the latest incarnation of Science Goes To The Movies here.

Getting back to Vancouver, no word as to which movies will accompany these future talks. If I had a vote, I’d love to see Gattaca accompany any talk on genetics.

That last sentence is both true and provides a neat segue to the next event.

Genetics at the Vancouver Public Library (VPL)

Coming up on July 23, 2019, a couple of graduate students at the University of British Columbia will be sharing some of the latest information on genetics. From the VPL events page,

Curiosities of the Natural World: Genetics – the Future of Medicine

Tuesday, July 23, 2019 (7:00 pm – 8:30 pm)
Central Library
Description

Since their discovery over a century ago, diabetes, multiple sclerosis, and Alzheimer’s have seemed like diseases without a cure. The advent of genetic treatments and biomarkers are changing the outcomes and treatments of these once impossible-to-treat conditions.

UBC researchers, Adam Ramzy and Maria-Elizabeth Baeva discuss the potential of genetic therapies for diabetes, and new biomarkers and therapeutics for Alzheimer ’s disease and multiple sclerosis.

This program is part of the Curiosities of the Natural World series in partnership with UBC Let’s Talk Science, the UBC Faculty of Science, and the UBC Public Scholars Initiative

Suitable for: Adults
Seniors

Additional Details:
Alma VanDusen and Peter Kaye Rooms, Lower Level

It’s hard to know how to respond to this as I loathe anything that has ‘future of medicine’ in it. Isn’t there always going to ***be*** ‘a’ future with medicine in it?

Also, there is at least one cautionary tale about this new era of ‘genetic medicine’: Glybera is a gene therapy that worked for people with a rare genetic disease. It is a **treatment**, the only one, and it is no longer available.

Kelly Crowe in a November 17, 2018 article for the CBC (Canadian Broadcasting Corporation) news writes about Glybera,

It is one of this country’s great scientific achievements.

The first drug ever approved that can fix a faulty gene.

It’s called Glybera, and it can treat a painful and potentially deadly genetic disorder with a single dose — a genuine made-in-Canada medical breakthrough.

But most Canadians have never heard of it.

A team of researchers at the University of British Columbia spent decades developing the treatment for people born with a genetic mutation that causes lipoprotein lipase disorder (LPLD).

LPLD affects communities in the Saguenay region of northeastern Quebec at a higher rate than anywhere else in the world.

Glybera was never sold in North America and was available in Europe for just two years, beginning in 2015. During that time, only one patient received the drug. Then it was abandoned by the company that held its European licensing rights.

The problem was the price.

The world’s first gene therapy, a remarkable discovery by a dedicated team of scientists who came together in a Vancouver lab, had earned a second, more dubious distinction:

The world’s most expensive drug.

It cost $1M for a single treatment and that single treatment is good for at least 10 years.

Pharmaceutical companies make their money from repeated use of their medicaments and Glybera required only one treatment so the company priced it according to how much they would have gotten for repeated use, $100,000 per year over a 10 year period. The company was not able to persuade governments and/or individuals to pay the cost.

In the end, 31 people got the treatment, most of them received it for free through clinical trials.

Crowe has written an exceptionally good story (November 17, 2018 article) about Glybera and I encourage you to read in its entirety. I warn you it’s heartbreaking.

I wrote about money and genetics in an April 26, 2019 posting (Gene editing and personalized medicine: Canada). Scroll down to the subsection titled ‘Cost/benefit analysis’ for a mention of Goldman Sachs, an American global investment banking, securities and investment management firm, and its conclusion that personalized medicine is not a viable business model. I wonder if part of their analysis included the Glybera experience.

Getting back to the July 23, 2019 talk at the VPL’s central branch, I have no doubt the researchers will be discussing some exciting work but the future might not be as rosy as one might hope.

I wasn’t able to find much information about either Adan Ramzy or Maria-Elizabeth Baeva. There’s this for Ramzy (scroll down to Class of 2021) and this for Baeva (scroll down to Scholarships).

WINDS from June 22 to September 29, 2019

This show or exhibition is taking place in New Westminster (part of the Metro Vancouver area) at the Anvil Centre’s New Media Gallery. From the Anvil Centre’s WINDS event page,

WINDS
New Media Gallery Exhibition
June 22  – September 29
Opening Reception + Artist Talk  is on June 21st at 6:30pm
 
Chris Welsby (UK)
Spencer Finch (UK)
David Bowen (USA)
Nathalie Miebach (Germany/USA)
 
Our summer exhibition features four exciting, multi-media installations by four international artists from UK and USA.  Each artist connects with the representation, recreation and manifestation of wind through physical space and time.  Each suggests how our perception and understanding of wind can be created through pressure, sound, data, pattern, music and motion and then further appreciated in poetic or metaphoric ways that might connect us with how the wind influences language, imagination or our understanding of historic events.
 
All the artists use sound as a key element ; to emphasize or recreate the sonic experience of different winds and their effects, to trigger memory or emotion, or to heighten certain effects that might prompt the viewer to consider significant philosophical questions. Common objects are used in all the works; discarded objects, household or readymade objects and everyday materials; organic, synthetic, natural and manmade. The viewer will find connections with past winds and events both recent and distant.  There is an attempt to capture or allude to a moment in time which brings with it suggestions of mortality,  thereby transforming the works into poignant memento-mori.

Dates
June 22 – September 29, 2019

Price
Complimentary

Location
777 Columbia Street. New Media Gallery.

The New Media Gallery’s home page features ‘winds’ (yes, it’s all in lower case),

Landscape and weather have long shared an intimate connection with the arts.  Each of the works here is a landscape: captured, interpreted and presented through a range of technologies. The four artists in this exhibition have taken, as their material process, the movement of wind through physical space & time. They explore how our perception and understanding of landscape can be interpreted through technology. 

These works have been created by what might be understood as a sort of scientific method or process that involves collecting data, acute observation, controlled experiments and the incorporation of measurements and technologies that control or collect motion, pressure, sound, pattern and the like. The artists then take us in other directions; allowing technology or situations to render visible that which is invisible, creating and focussing on peculiar or resonant qualities of sound, light or movement in ways that seem to influence emotion or memory, dwelling on iconic places and events, or revealing in subtle ways, the subjective nature of time.  Each of these works suggest questions related to the nature of illusive experience and how or if it can be captured, bringing inevitable connections to authorship, loss, memory and memento mori

David Bowen
tele-present wind
Image
Biography
Credits

Spencer Finch (USA)
2 hours, 2 minutes, 2 seconds (Wind at Walden Pond, March 12, 2007)
Image
Biography
Credits

Nathalie Miebach (USA)
Hurricane Noel III
Image
Biography
Credits

Chris Welsby (UK)
Wind Vane
Image
Biography
Credits

Hours
10:00am – 5:00pm Tuesday – Sunday
10:00am – 8:00pm Thursdays
Closed Monday

Address
New Media Gallery
3rd Floor Anvil Centre
777 Columbia Street
New Westminster, BC V3M 1B6

If you want to see the images and biographies for the artists participating in ‘winds’, please go here..

So there you have it, science events and an exhibition in the Vancouver* area for July 2019.

*July 23, 2019 Correction: The word ‘and’ was removed from the final sentence for grammatical correctness.

**July 23, 2019 Correction: I changed the word ‘cure’ to ‘treatment’ so as to be more accurate. The word ‘cure’ suggests permanence and Glybera is supposed to be effective for 10 years or longer but no one really knows.

***Added the word ‘be’ for grammatical correctness on Nov. 30, 2020.