Tag Archives: BRAIN (Brain Research through Advancing Innovative Neurotechnologies)

US National Nanotechnology Initiative’s 2015 budget request shows a decrease of $200M

A March 27, 2014 news item on Nanowerk highlights the US National Nanotechnology Initiative’s (NNI) document titled “NNI Supplement to the President’s 2015 Budget” (86 pp. PDF; Note: A link has been removed),

This document (pdf) is a supplement to the President’s 2015 Budget request submitted to Congress on March 4, 2014. It gives a description of the activities underway in 2013 and 2014 and planned for 2015 by the Federal Government agencies participating in the National Nanotechnology Initiative (NNI), primarily from a programmatic and budgetary perspective.

The March 25, 2014 NNI announcement provides more details about the current request and funding over the years since the NNI’s inception,

The President’s 2015 Budget provides over $1.5 billion for the National Nanotechnology Initiative (NNI), a continued investment in support of the President’s priorities and innovation strategy. Cumulatively totaling nearly $21 billion since the inception of the NNI in 2001 (including the 2015 request), this support reflects nanotechnology’s potential to significantly improve our fundamental understanding and control of matter at the nanoscale and to translate that knowledge into solutions for critical national issues. The NNI investments in 2013 and 2014 and those proposed for 2015 continue the emphasis on accelerating the transition from basic R&D to innovations that support national priorities, while maintaining a strong base of foundational research, to provide a pipeline for future nanotechnology-based innovations.

The President’s 2015 Budget supports nanoscale science, engineering, and technology R&D at 11 agencies. Another 9 agencies have nanotechnology-related mission interests or regulatory responsibilities. The NNI Supplement to the President’s 2015 Budget documents progress of these NNI participating agencies in addressing the goals and objectives of the NNI. (See the Acronyms page for agency abbreviations.)

Courtesy: NNI [downloaded from http://www.nano.gov/node/1128]

Courtesy: NNI [downloaded from http://www.nano.gov/node/1128]

One significant change for the 2015 Budget, which is reflected in the figures provided in this document for 2013 and 2014, is a revision in the Program Component Areas (PCAs), budget categories under which the NNI investments are reported. Note that this represents an update of how NNI investments by the Federal Government are tabulated, but not a change in the overall scope of the Initiative. As outlined in the 2014 NNI Strategic Plan, the new PCAs are more broadly strategic, fully inclusive, and consistent with Federal research categories, while correlating well with the NNI goals and high-level objectives. Of particular note is the creation of a separate PCA for the Nanotechnology Signature Initiatives (NSIs), reflecting the high priority placed on NSIs in the 2015 OMB/OSTP R&D Priorities Memo.

The 2014 budget for the NNI was $1.7B (as per the NNI Supplement to the President’s 2014 Budget),

The President’s 2014 Budget provides over $1.7 billion for the National Nanotechnology Initiative (NNI), a sustained investment in support of the President’s priorities and innovation strategy. Cumulatively totaling almost $20 billion since the inception of the NNI in 2001 (including the 2014 request), …

So this year’s request represents a decrease of $200M. Coincidentally, the US BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative (originally named BAM for brain activity map) is going to have its budget doubled from $100M in 2014 to $200M in 2015 (as per David Bruggeman’s March 25, 2014 posting on his Pasco Phronesis blog),

The President’s Fiscal Year 2015 (which starts on October 1, but likely won’t get funded until next February) budget rollout includes doubling support for the BRAIN (Brain Research though Advancing Innovative Neurotechnologies) Initiative.  The $100 million multi-agency (National Institutes of Health, Defense Advanced Research Projects Agency and National Science Foundation) public-private effort will have some of its first funding awards later this year.

Interesting, non?

For anyone interested in more specifics about the 2015 NNI budget request but who doesn’t want to read the supplementary document, you can visit this page.

Controversial theory of consciousness confirmed (maybe)

There’s a very interesting event taking place today (Jan. 16, 2014) in Amsterdam, Netherlands titled: NEW PROOF OF REVOLUTIONARY THEORY OF CONSCIOUSNESS (programme).,which is one of a month’s worth of events themed around the brain (The Brainstorming Sessions).  The speakers at this event have recently published a paper and a Jan. 16, 2014 news item on ScienceDaily gives some insight into why theirbrainstorming session has the word revolutionary in the title,

A review and update of a controversial 20-year-old theory of consciousness published in Physics of Life Reviews claims that consciousness derives from deeper level, finer scale activities inside brain neurons. The recent discovery of quantum vibrations in “microtubules” inside brain neurons corroborates this theory, according to review authors Stuart Hameroff and Sir Roger Penrose. They suggest that EEG rhythms (brain waves) also derive from deeper level microtubule vibrations, and that from a practical standpoint, treating brain microtubule vibrations could benefit a host of mental, neurological, and cognitive conditions.

A Jan. 16, 2014 Elsevier press release,which originated the news item, provides more details about the theory,

The theory, called “orchestrated objective reduction” (‘Orch OR’), was first put forward in the mid-1990s by eminent mathematical physicist Sir Roger Penrose, FRS, Mathematical Institute and Wadham College, University of Oxford, and prominent anesthesiologist Stuart Hameroff, MD, Anesthesiology, Psychology and Center for Consciousness Studies, The University of Arizona, Tucson. They suggested that quantum vibrational computations in microtubules were “orchestrated” (“Orch”) by synaptic inputs and memory stored in microtubules, and terminated by Penrose “objective reduction” (‘OR’), hence “Orch OR.” Microtubules are major components of the cell structural skeleton.

Orch OR was harshly criticized from its inception, as the brain was considered too “warm, wet, and noisy” for seemingly delicate quantum processes. However, evidence has now shown warm quantum coherence in plant photosynthesis, bird brain navigation, our sense of smell, and brain microtubules. The recent discovery of warm temperature quantum vibrations in microtubules inside brain neurons by the research group led by Anirban Bandyopadhyay, PhD, at the National Institute of Material Sciences in Tsukuba, Japan (and now at MIT), corroborates the pair’s theory and suggests that EEG rhythms also derive from deeper level microtubule vibrations. In addition, work from the laboratory of Roderick G. Eckenhoff, MD, at the University of Pennsylvania, suggests that anesthesia, which selectively erases consciousness while sparing non-conscious brain activities, acts via microtubules in brain neurons.

“The origin of consciousness reflects our place in the universe, the nature of our existence. Did consciousness evolve from complex computations among brain neurons, as most scientists assert? Or has consciousness, in some sense, been here all along, as spiritual approaches maintain?” ask Hameroff and Penrose in the current review. “This opens a potential Pandora’s Box, but our theory accommodates both these views, suggesting consciousness derives from quantum vibrations in microtubules, protein polymers inside brain neurons, which both govern neuronal and synaptic function, and connect brain processes to self-organizing processes in the fine scale, ‘proto-conscious’ quantum structure of reality.”

After 20 years of skeptical criticism, “the evidence now clearly supports Orch OR,” continue Hameroff and Penrose. “Our new paper updates the evidence, clarifies Orch OR quantum bits, or “qubits,” as helical pathways in microtubule lattices, rebuts critics, and reviews 20 testable predictions of Orch OR published in 1998 – of these, six are confirmed and none refuted.”

An important new facet of the theory is introduced. Microtubule quantum vibrations (e.g. in megahertz) appear to interfere and produce much slower EEG “beat frequencies.” Despite a century of clinical use, the underlying origins of EEG rhythms have remained a mystery. Clinical trials of brief brain stimulation aimed at microtubule resonances with megahertz mechanical vibrations using transcranial ultrasound have shown reported improvements in mood, and may prove useful against Alzheimer’s disease and brain injury in the future.

Lead author Stuart Hameroff concludes, “Orch OR is the most rigorous, comprehensive and successfully-tested theory of consciousness ever put forth. From a practical standpoint, treating brain microtubule vibrations could benefit a host of mental, neurological, and cognitive conditions.

The review is accompanied by eight commentaries from outside authorities, including an Australian group of Orch OR arch-skeptics. To all, Hameroff and Penrose respond robustly.

The press release ends with this information about the event in Amsterdam,

Penrose, Hameroff and Bandyopadhyay will explore their theories during a session on “Microtubules and the Big Consciousness Debate” at the Brainstorm Sessions, a public three-day event at the Brakke Grond in Amsterdam, the Netherlands, January 16-18, 2014. They will engage skeptics in a debate on the nature of consciousness, and Bandyopadhyay and his team will couple microtubule vibrations from active neurons to play Indian musical instruments. “Consciousness depends on anharmonic vibrations of microtubules inside neurons, similar to certain kinds of Indian music, but unlike Western music which is harmonic,” Hameroff explains.

I wasn’t able to locate information about the three-day event in the press release but I did find this about the month-long series, The Brainstorm Sessions (Dutch language first, scroll down for English language version),

Europe and the USA are looking to completely unravel the secrets of our brains within the next ten years. Europe has designated 2014 as The Year of the Brain. We have decided to dedicate a month to the grey matter. A month in which guest curator Frank Theys – filmmaker, philosopher and visual artist – i.c.w. Damiaan Denys (neuroscientist, philosopher and professor of psychiatry at the AMC-UvA, the Amsterdam Medical Centre of the University of Amsterdam) will bring together elements he considers interesting from an artistic and philosophical viewpoint related to this theme.

Featuring an exhibition at the intersection between artistic and scientific experiments; the first ever performance by ‘stand-up scientist’ Damiaan Denys, Head of Psychiatry at the AMC hospital; a ‘neuro-concert’ by nanoscientist Anirban Bandyopadyay and a film programme in the Kriterion cinema in cooperation with Patricia Pisters, author of The Neuro-Image.

Fri 13 Dec – Sun 19 Jan: Exhibition Neurons Firing
Thur 09 Jan / 20h30: Sonic Soirée #22 a musical pillaging of the brain
Mon 13 Jan / 20h30: Lecture: Film and the Brain in Digital Era, by Patricia Pisters
Thu 16 Jan / 20h30: Lecture: Microtubules & the Big Consciousness Debate, by Roger Penrose & Anirban Bandyopadhyay
Fr 17 Jan / 20h30: Scientific demonstration Sapta Rishi (The Seven Stars)
Sa 18 Jan / 20h30: Scientific concert: Ajeya Chhandam – The Invincible Rhythm

I’m not sure what your chances are for attending the events on Jan. 17 or Jan. 18 but I wish you good luck! For those of us who weren’t able to attend the Jan.16, 2014 event featuring Penrose amd Hameroff, there are recently published papers.

First, the researchers offer a review of their theory along with some refinements,

Consciousness in the universe: A review of the ‘Orch OR’ theory by Stuart Hameroff and Roger Penrose. Physics of Life Reviews Available online 20 August 2013, Phys Life Rev. 2013 Aug 20. pii: S1571-0645(13)00118-8. doi: 10.1016/j.plrev.2013.08.002.

This paper is open access as of Jan. 16, 2014.

The next two papers have similar titles and were published at about the same time,

Reply to criticism of the ‘Orch OR qubit’ – ‘Orchestrated objective reduction’ is scientifically justified by Stuart Hameroff and Roger Penrose. Physics of Life Reviews Available online 12 December 2013. Phys Life Rev. 2013 Dec 12. pii: S1571-0645(13)00191-7. doi: 10.1016/j.plrev.2013.11.014.

Reply to seven commentaries on “Consciousness in the universe: Review of the ‘Orch OR’ theory by Stuart Hameroff and Roger Penrose. Physics of Life Reviews Available online 12 December 2013 Phys Life Rev. 2013 Dec 12. pii: S1571-0645(13)00190-5. doi: 10.1016/j.plrev.2013.11.013.

These papers are behind a paywall.

Two bits about the brain: fiction affects your brain and the US’s BRAIN Initiative is soliciting grant submissions

As a writer I love to believe my words have a lasting impact and while this research is focused on fiction, something I write more rarely than nonfiction, hope springs eternal that one day nonfiction too will be proved as having an impact (in a good way) on the brain. From a Jan. 3, 2014 news release on EurekAlert (or you can read the Dec. 17, 2013 Emory University news release by Carol Clark),

Many people can recall reading at least one cherished story that they say changed their life. Now researchers at Emory University have detected what may be biological traces related to this feeling: Actual changes in the brain that linger, at least for a few days, after reading a novel.

“Stories shape our lives and in some cases help define a person,” says neuroscientist Gregory Berns, lead author of the study and the director of Emory’s Center for Neuropolicy. “We want to understand how stories get into your brain, and what they do to it.”

His co-authors included Kristina Blaine and Brandon Pye from the Center for Neuropolicy, and Michael Prietula from Emory’s Goizueta Business School.

Neurobiological research using functional magnetic resonance imaging (fMRI) has begun to identify brain networks associated with reading stories. Most previous studies have focused on the cognitive processes involved in short stories, while subjects are actually reading them while they are in the fMRI scanner.

All of the study subjects read the same novel, “Pompeii,” a 2003 thriller by Robert Harris that is based on the real-life eruption of Mount Vesuvius in ancient Italy.

“The story follows a protagonist, who is outside the city of Pompeii and notices steam and strange things happening around the volcano,” Berns says. “He tries to get back to Pompeii in time to save the woman he loves. Meanwhile, the volcano continues to bubble and nobody in the city recognizes the signs.”

The researchers chose the book due to its page-turning plot. “It depicts true events in a fictional and dramatic way,” Berns says. “It was important to us that the book had a strong narrative line.”

For the first five days, the participants came in each morning for a base-line fMRI scan of their brains in a resting state. Then they were fed nine sections of the novel, about 30 pages each, over a nine-day period. They were asked to read the assigned section in the evening, and come in the following morning. After taking a quiz to ensure they had finished the assigned reading, the participants underwent an fMRI scan of their brain in a non-reading, resting state. After completing all nine sections of the novel, the participants returned for five more mornings to undergo additional scans in a resting state.

The results showed heightened connectivity in the left temporal cortex, an area of the brain associated with receptivity for language, on the mornings following the reading assignments. “Even though the participants were not actually reading the novel while they were in the scanner, they retained this heightened connectivity,” Berns says. “We call that a ‘shadow activity,’ almost like a muscle memory.”

Heightened connectivity was also seen in the central sulcus of the brain, the primary sensory motor region of the brain. Neurons of this region have been associated with making representations of sensation for the body, a phenomenon known as grounded cognition. Just thinking about running, for instance, can activate the neurons associated with the physical act of running.

“The neural changes that we found associated with physical sensation and movement systems suggest that reading a novel can transport you into the body of the protagonist,” Berns says. “We already knew that good stories can put you in someone else’s shoes in a figurative sense. Now we’re seeing that something may also be happening biologically.”

The neural changes were not just immediate reactions, Berns says, since they persisted the morning after the readings, and for the five days after the participants completed the novel.

“It remains an open question how long these neural changes might last,” Berns says. “But the fact that we’re detecting them over a few days for a randomly assigned novel suggests that your favorite novels could certainly have a bigger and longer-lasting effect on the biology of your brain.”

Here’s a link to and a citation for the paper,

Short- and Long-Term Effects of a Novel on Connectivity in the Brain by Gregory S. Berns, Kristina Blaine, Michael J. Prietula, and Brandon E. Pye. Brain Connectivity. 2013, 3(6): 590-600. doi:10.1089/brain.2013.0166.

This is an open access paper where you’ll notice the participants cover a narrow range of ages (from the Materials and Methods section of the paper,

A total of 21 participants were studied. Two were excluded from the fMRI analyses: one for insufficient attendance, and the other for image abnormalities. Before the experiment, participants were screened for the presence of medical and psychiatric diagnoses, and none were taking medications. There were 12 female and 9 male participants between the ages of 19 and 27 (mean 21.5). Emory University’s Institutional Review Board approved all procedures, and all participants gave written informed consent.

It’s always good to remember that university research often draws from student populations and the question one might want to ask is whether or not those results will remain the same, more or less, throughout someone’s life span.In any event, I find this research intriguing and hope they follow this up.

Currently known as the BRAIN (Brain Research through Advancing Innovative Neurotechnologies), I first wrote about the project under its old name BAM (Brain Activity Map) in two postings, first in a March 4, 2013 posting featuring brain-to-brain communication and other brain-related tidbits, then again, in an April 2, 2013 posting featuring an announcement about its federal funding. Today (Jan. 6, 2014), I stumbled across some BRAIN funding opportunities for researchers, from the BRAIN Initiative funding opportunities webpage,

NIH released six funding opportunity announcements in support of the President’s BRAIN Initiative. Collectively, these opportunities focus on building a new arsenal of tools and technologies for helping scientists unlock the mysteries of the brain. NIH [US National Institutes of Health] plans to invest $40 million in Fiscal Year 2014 through these opportunities, contingent upon the submission of a sufficient number of scientifically meritorious applications.

The opportunities currently available are as follows:

  • Transformative Approaches for Cell-Type Classification in the Brain (U01) (RFA-MH-14-215) – aims to pilot classification strategies to generate a systematic inventory/cell census of cell types in the brain, integrating molecular identity of cell types with connectivity, morphology, and location. These pilot projects and methodologies should be designed to demonstrate their utility and scalability to ultimately complete a comprehensive cell census of the human brain.
    Contact Email: BRAIN-info-NIMH@mail.nih.gov
    Application Receipt: March 13, 2014
  • Development and Validation of Novel Tools to Analyze Cell-Specific and Circuit-Specific Processes in the Brain (U01) (RFA-MH-14-216) – aims to develop and validate novel tools that possess a high degree of cell-type and/or circuit-level specificity to facilitate the detailed analysis of complex circuits and provide insights into cellular interactions that underlie brain function. A particular emphasis is the development of new genetic and non-genetic tools for delivering genes, proteins and chemicals to cells of interest; new approaches are also expected to target specific cell types and or circuits in the nervous system with greater precision and sensitivity than currently established methods.
    Contact Email: BRAIN-info-NIMH@mail.nih.gov
    Application Receipt: March 13, 2014
  • New Technologies and Novel Approaches for Large-Scale Recording and Modulation in the Nervous System (U01) (RFA-NS-14-007) – focuses on development and proof-of-concept testing of new technologies and novel approaches for large scale recording and manipulation of neural activity, with cellular resolution, at multiple spatial and/or temporal scales, in any region and throughout the entire depth of the brain. The proposed research may be high risk, but if successful could profoundly change the course of neuroscience research.
    Contact Email: NINDS-Brain-Initiative@nih.gov
    Application Receipt: March 24, 2014
  • Optimization of Transformative Technologies for Large Scale Recording and Modulation in the Nervous System (U01) (RFA-NS-14-008) – aims to optimize existing and emerging technologies and approaches that have the potential to address major challenges associated with recording and manipulating neural activity. This FOA is intended for the iterative refinement of emergent technologies and approaches that have already demonstrated their transformative potential through initial proof-of-concept testing, and are appropriate for accelerated engineering development with an end-goal of broad dissemination and incorporation into regular neuroscience research.
    Contact Email: NINDS-Brain-Initiative@nih.gov
    Application Receipt: March 24, 2014
  • Integrated Approaches to Understanding Circuit Function in the Nervous System (U01) (RFA-NS-14-009) – focuses onexploratory studies that use new and emerging methods for large scale recording and manipulation to elucidate the contributions of dynamic circuit activity to a specific behavioral or neural system. Applications should propose teams of investigators that seek to cross boundaries of interdisciplinary collaboration, for integrated development of experimental, analytic and theoretical capabilities in preparation for a future competition for large-scale awards.
    Contact Email: NINDS-Brain-Initiative@nih.gov
    Application Receipt: March 24, 2014
  • Planning for Next Generation Human Brain Imaging (R24) (RFA-MH-14-217) – aims to create teams of imaging scientist together with other experts from a range of disciplines such as engineering, material sciences, nanotechnology and computer science, to plan for a new generation of non-invasive imaging techniques that would be used to understand human brain function. Incremental improvements to existing technologies will not be funded under this announcement.
    Contact Email: sgrant@nida.nih.gov
    Application Receipt: March 13, 2014

For the interested, in the near future there will be some informational conference calls regarding these opportunities,

Informational Conference Calls for Prospective Applicants

NIH will be hosting a series of informational conference calls to address technical questions regarding applications to each of the RFAs released under the BRAIN Initiative.   Information on dates and contacts for each of the conference calls is as follows:

January 10, 2014, 2:00-3:00 PM EST
RFA-MH-14-215, Transformative Approaches for Cell-Type Classification in the Brain

For call-in information, contact Andrea Beckel-Mitchener at BRAIN-info-NIMH@mail.nih.gov.

January 13, 2014, 2:00-3:00 PM EST
RFA-MH-14-216, Development and Validation of Novel Tools to Analyze Cell-Specific and Circuit-Specific Processes in the Brain

For call-in information, contact Michelle Freund at BRAIN-info-NIMH@mail.nih.gov.

January 15, 2014, 1:00-2:00 PM EST
RFA-MH-14-217, Planning for Next Generation Human Brain Imaging

For call-in information, contact Greg Farber at BRAIN-info-NIMH@mail.nih.gov.

February 4, 2014, 1:00-2:30 PM EST
RFA-NS-14-007, New Technologies and Novel Approaches for Large-Scale Recording and Modulation in the Nervous System
RFA-NS-14-008, Optimization of Transformative Technologies for Large Scale Recording and Modulation in the Nervous System
RFA-NS-14-009, Integrated Approaches to Understanding Circuit Function in the Nervous System

For call-in information, contact Karen David at NINDS-Brain-Initiative@nih.gov.
In addition to accessing the information provided in the upcoming conference calls, applicants are strongly encouraged to consult with the Scientific/Research Contacts listed in each of the RFAs to discuss the alignment of their proposed work with the goals of the RFA to which they intend to apply.

Good luck!

It’s kind of fascinating to see this much emphasis on brains what with the BRAIN Initiative in the US and the Human Brain Project in Europe (my Jan. 28, 2013 posting announcing the European Union’s winning Future and Emerging Technologies (FET) research projects, The prizes (1B Euros to be paid out over 10 years to each winner) had been won by the Human Brain FET project and the Graphene FET project, respectively