Tag Archives: memristors

Brain cell-like nanodevices

Given R. Stanley Williams’s presence on the author list, it’s a bit surprising that there’s no mention of memristors. If I read the signs rightly the interest is shifting, in some cases, from the memristor to a more comprehensive grouping of circuit elements referred to as ‘neuristors’ or, more likely, ‘nanocirucuit elements’ in the effort to achieve brainlike (neuromorphic) computing (engineering). (Williams was the leader of the HP Labs team that offered proof and more of the memristor’s existence, which I mentioned here in an April 5, 2010 posting. There are many, many postings on this topic here; try ‘memristors’ or ‘brainlike computing’ for your search terms.)

A September 24, 2020 news item on ScienceDaily announces a recent development in the field of neuromorphic engineering,

In the September [2020] issue of the journal Nature, scientists from Texas A&M University, Hewlett Packard Labs and Stanford University have described a new nanodevice that acts almost identically to a brain cell. Furthermore, they have shown that these synthetic brain cells can be joined together to form intricate networks that can then solve problems in a brain-like manner.

“This is the first study where we have been able to emulate a neuron with just a single nanoscale device, which would otherwise need hundreds of transistors,” said Dr. R. Stanley Williams, senior author on the study and professor in the Department of Electrical and Computer Engineering. “We have also been able to successfully use networks of our artificial neurons to solve toy versions of a real-world problem that is computationally intense even for the most sophisticated digital technologies.”

In particular, the researchers have demonstrated proof of concept that their brain-inspired system can identify possible mutations in a virus, which is highly relevant for ensuring the efficacy of vaccines and medications for strains exhibiting genetic diversity.

A September 24, 2020 Texas A&M University news release (also on EurekAlert) by Vandana Suresh, which originated the news item, provides some context for the research,

Over the past decades, digital technologies have become smaller and faster largely because of the advancements in transistor technology. However, these critical circuit components are fast approaching their limit of how small they can be built, initiating a global effort to find a new type of technology that can supplement, if not replace, transistors.

In addition to this “scaling-down” problem, transistor-based digital technologies have other well-known challenges. For example, they struggle at finding optimal solutions when presented with large sets of data.

“Let’s take a familiar example of finding the shortest route from your office to your home. If you have to make a single stop, it’s a fairly easy problem to solve. But if for some reason you need to make 15 stops in between, you have 43 billion routes to choose from,” said Dr. Suhas Kumar, lead author on the study and researcher at Hewlett Packard Labs. “This is now an optimization problem, and current computers are rather inept at solving it.”

Kumar added that another arduous task for digital machines is pattern recognition, such as identifying a face as the same regardless of viewpoint or recognizing a familiar voice buried within a din of sounds.

But tasks that can send digital machines into a computational tizzy are ones at which the brain excels. In fact, brains are not just quick at recognition and optimization problems, but they also consume far less energy than digital systems. Hence, by mimicking how the brain solves these types of tasks, Williams said brain-inspired or neuromorphic systems could potentially overcome some of the computational hurdles faced by current digital technologies.

To build the fundamental building block of the brain or a neuron, the researchers assembled a synthetic nanoscale device consisting of layers of different inorganic materials, each with a unique function. However, they said the real magic happens in the thin layer made of the compound niobium dioxide.

When a small voltage is applied to this region, its temperature begins to increase. But when the temperature reaches a critical value, niobium dioxide undergoes a quick change in personality, turning from an insulator to a conductor. But as it begins to conduct electric currents, its temperature drops and niobium dioxide switches back to being an insulator.

These back-and-forth transitions enable the synthetic devices to generate a pulse of electrical current that closely resembles the profile of electrical spikes, or action potentials, produced by biological neurons. Further, by changing the voltage across their synthetic neurons, the researchers reproduced a rich range of neuronal behaviors observed in the brain, such as sustained, burst and chaotic firing of electrical spikes.

“Capturing the dynamical behavior of neurons is a key goal for brain-inspired computers,” said Kumar. “Altogether, we were able to recreate around 15 types of neuronal firing profiles, all using a single electrical component and at much lower energies compared to transistor-based circuits.”

To evaluate if their synthetic neurons [neuristor?] can solve real-world problems, the researchers first wired 24 such nanoscale devices together in a network inspired by the connections between the brain’s cortex and thalamus, a well-known neural pathway involved in pattern recognition. Next, they used this system to solve a toy version of the viral quasispecies reconstruction problem, where mutant variations of a virus are identified without a reference genome.

By means of data inputs, the researchers introduced the network to short gene fragments. Then, by programming the strength of connections between the artificial neurons within the network, they established basic rules about joining these genetic fragments. The jigsaw puzzle-like task for the network was to list mutations in the virus’ genome based on these short genetic segments.

The researchers found that within a few microseconds, their network of artificial neurons settled down in a state that was indicative of the genome for a mutant strain.

Williams and Kumar noted this result is proof of principle that their neuromorphic systems can quickly perform tasks in an energy-efficient way.

The researchers said the next steps in their research will be to expand the repertoire of the problems that their brain-like networks can solve by incorporating other firing patterns and some hallmark properties of the human brain like learning and memory. They also plan to address hardware challenges for implementing their technology on a commercial scale.

“Calculating the national debt or solving some large-scale simulation is not the type of task the human brain is good at and that’s why we have digital computers. Alternatively, we can leverage our knowledge of neuronal connections for solving problems that the brain is exceptionally good at,” said Williams. “We have demonstrated that depending on the type of problem, there are different and more efficient ways of doing computations other than the conventional methods using digital computers with transistors.”

If you look at the news release on EurekAlert, you’ll see this informative image is titled: NeuristerSchematic [sic],

Caption: Networks of artificial neurons connected together can solve toy versions the viral quasispecies reconstruction problem. Credit: Texas A&M University College of Engineering

(On the university website, the image is credited to Rachel Barton.) You can see one of the first mentions of a ‘neuristor’ here in an August 24, 2017 posting.

Here’s a link to and a citation for the paper,

Third-order nanocircuit elements for neuromorphic engineering by Suhas Kumar, R. Stanley Williams & Ziwen Wang. Nature volume 585, pages518–523(2020) DOI: https://doi.org/10.1038/s41586-020-2735-5 Published: 23 September 2020 Issue Date: 24 September 2020

This paper is behind a paywall.

Energy-efficient artificial synapse

This is the second neuromorphic computing chip story from MIT this summer in what has turned out to be a bumper crop of research announcements in this field. The first MIT synapse story was featured in a June 16, 2020 posting. Now, there’s a second and completely different team announcing results for their artificial brain synapse work in a June 19, 2020 news item on Nanowerk (Note: A link has been removed),

Teams around the world are building ever more sophisticated artificial intelligence systems of a type called neural networks, designed in some ways to mimic the wiring of the brain, for carrying out tasks such as computer vision and natural language processing.

Using state-of-the-art semiconductor circuits to simulate neural networks requires large amounts of memory and high power consumption. Now, an MIT [Massachusetts Institute of Technology] team has made strides toward an alternative system, which uses physical, analog devices that can much more efficiently mimic brain processes.

The findings are described in the journal Nature Communications (“Protonic solid-state electrochemical synapse for physical neural networks”), in a paper by MIT professors Bilge Yildiz, Ju Li, and Jesús del Alamo, and nine others at MIT and Brookhaven National Laboratory. The first author of the paper is Xiahui Yao, a former MIT postdoc now working on energy storage at GRU Energy Lab.

That description of the work is one pretty much every team working on developing memristive (neuromorphic) chips could use.

On other fronts, the team has produced a very attractive illustration accompanying this research (aside: Is it my imagination or has there been a serious investment in the colour pink and other pastels for science illustrations?),

A new system developed at MIT and Brookhaven National Lab could provide a faster, more reliable and much more energy efficient approach to physical neural networks, by using analog ionic-electronic devices to mimic synapses.. Courtesy of the researchers

A June 19, 2020 MIT news release, which originated the news item, provides more insight into this specific piece of research (hint: it’s about energy use and repeatability),

Neural networks attempt to simulate the way learning takes place in the brain, which is based on the gradual strengthening or weakening of the connections between neurons, known as synapses. The core component of this physical neural network is the resistive switch, whose electronic conductance can be controlled electrically. This control, or modulation, emulates the strengthening and weakening of synapses in the brain.

In neural networks using conventional silicon microchip technology, the simulation of these synapses is a very energy-intensive process. To improve efficiency and enable more ambitious neural network goals, researchers in recent years have been exploring a number of physical devices that could more directly mimic the way synapses gradually strengthen and weaken during learning and forgetting.

Most candidate analog resistive devices so far for such simulated synapses have either been very inefficient, in terms of energy use, or performed inconsistently from one device to another or one cycle to the next. The new system, the researchers say, overcomes both of these challenges. “We’re addressing not only the energy challenge, but also the repeatability-related challenge that is pervasive in some of the existing concepts out there,” says Yildiz, who is a professor of nuclear science and engineering and of materials science and engineering.

“I think the bottleneck today for building [neural network] applications is energy efficiency. It just takes too much energy to train these systems, particularly for applications on the edge, like autonomous cars,” says del Alamo, who is the Donner Professor in the Department of Electrical Engineering and Computer Science. Many such demanding applications are simply not feasible with today’s technology, he adds.

The resistive switch in this work is an electrochemical device, which is made of tungsten trioxide (WO3) and works in a way similar to the charging and discharging of batteries. Ions, in this case protons, can migrate into or out of the crystalline lattice of the material,  explains Yildiz, depending on the polarity and strength of an applied voltage. These changes remain in place until altered by a reverse applied voltage — just as the strengthening or weakening of synapses does.

The mechanism is similar to the doping of semiconductors,” says Li, who is also a professor of nuclear science and engineering and of materials science and engineering. In that process, the conductivity of silicon can be changed by many orders of magnitude by introducing foreign ions into the silicon lattice. “Traditionally those ions were implanted at the factory,” he says, but with the new device, the ions are pumped in and out of the lattice in a dynamic, ongoing process. The researchers can control how much of the “dopant” ions go in or out by controlling the voltage, and “we’ve demonstrated a very good repeatability and energy efficiency,” he says.

Yildiz adds that this process is “very similar to how the synapses of the biological brain work. There, we’re not working with protons, but with other ions such as calcium, potassium, magnesium, etc., and by moving those ions you actually change the resistance of the synapses, and that is an element of learning.” The process taking place in the tungsten trioxide in their device is similar to the resistance modulation taking place in biological synapses, she says.

“What we have demonstrated here,” Yildiz says, “even though it’s not an optimized device, gets to the order of energy consumption per unit area per unit change in conductance that’s close to that in the brain.” Trying to accomplish the same task with conventional CMOS type semiconductors would take a million times more energy, she says.

The materials used in the demonstration of the new device were chosen for their compatibility with present semiconductor manufacturing systems, according to Li. But they include a polymer material that limits the device’s tolerance for heat, so the team is still searching for other variations of the device’s proton-conducting membrane and better ways of encapsulating its hydrogen source for long-term operations.

“There’s a lot of fundamental research to be done at the materials level for this device,” Yildiz says. Ongoing research will include “work on how to integrate these devices with existing CMOS transistors” adds del Alamo. “All that takes time,” he says, “and it presents tremendous opportunities for innovation, great opportunities for our students to launch their careers.”

Coincidentally or not a University of Massachusetts at Amherst team announced memristor voltage use comparable to human brain voltage use (see my June 15, 2020 posting), plus, there’s a team at Stanford University touting their low-energy biohybrid synapse in a XXX posting. (June 2020 has been a particularly busy month here for ‘artificial brain’ or ‘memristor’ stories.)

Getting back to this latest MIT research, here’s a link to and a citation for the paper,

Protonic solid-state electrochemical synapse for physical neural networks by Xiahui Yao, Konstantin Klyukin, Wenjie Lu, Murat Onen, Seungchan Ryu, Dongha Kim, Nicolas Emond, Iradwikanari Waluyo, Adrian Hunt, Jesús A. del Alamo, Ju Li & Bilge Yildiz. Nature Communications volume 11, Article number: 3134 (2020) DOI: https://doi.org/10.1038/s41467-020-16866-6 Published: 19 June 2020

This paper is open access.

Of sleep, electric sheep, and thousands of artificial synapses on a chip

A close-up view of a new neuromorphic “brain-on-a-chip” that includes tens of thousands of memristors, or memory transistors. Credit: Peng Lin Courtesy: MIT

It’s hard to believe that a brain-on-a-chip might need sleep but that seems to be the case as far as the US Dept. of Energy’s Los Alamos National Laboratory is concerned. Before pursuing that line of thought, here’s some work from the Massachusetts Institute of Technology (MIT) involving memristors and a brain-on-a-chip. From a June 8, 2020 news item on ScienceDaily,

MIT engineers have designed a “brain-on-a-chip,” smaller than a piece of confetti, that is made from tens of thousands of artificial brain synapses known as memristors — silicon-based components that mimic the information-transmitting synapses in the human brain.

The researchers borrowed from principles of metallurgy to fabricate each memristor from alloys of silver and copper, along with silicon. When they ran the chip through several visual tasks, the chip was able to “remember” stored images and reproduce them many times over, in versions that were crisper and cleaner compared with existing memristor designs made with unalloyed elements.

Their results, published today in the journal Nature Nanotechnology, demonstrate a promising new memristor design for neuromorphic devices — electronics that are based on a new type of circuit that processes information in a way that mimics the brain’s neural architecture. Such brain-inspired circuits could be built into small, portable devices, and would carry out complex computational tasks that only today’s supercomputers can handle.

This ‘metallurgical’ approach differs somewhat from the protein nanowire approach used by the University of Massachusetts at Amherst team mentioned in my June 15, 2020 posting. Scientists are pursuing multiple pathways and we may find that we arrive with not ‘a single artificial brain but with many types of artificial brains.

A June 8, 2020 MIT news release (also on EurekAlert) provides more detail about this brain-on-a-chip,

“So far, artificial synapse networks exist as software. We’re trying to build real neural network hardware for portable artificial intelligence systems,” says Jeehwan Kim, associate professor of mechanical engineering at MIT. “Imagine connecting a neuromorphic device to a camera on your car, and having it recognize lights and objects and make a decision immediately, without having to connect to the internet. We hope to use energy-efficient memristors to do those tasks on-site, in real-time.”

Wandering ions

Memristors, or memory transistors [Note: Memristors are usually described as memory resistors; this is the first time I’ve seen ‘memory transistor’], are an essential element in neuromorphic computing. In a neuromorphic device, a memristor would serve as the transistor in a circuit, though its workings would more closely resemble a brain synapse — the junction between two neurons. The synapse receives signals from one neuron, in the form of ions, and sends a corresponding signal to the next neuron.

A transistor in a conventional circuit transmits information by switching between one of only two values, 0 and 1, and doing so only when the signal it receives, in the form of an electric current, is of a particular strength. In contrast, a memristor would work along a gradient, much like a synapse in the brain. The signal it produces would vary depending on the strength of the signal that it receives. This would enable a single memristor to have many values, and therefore carry out a far wider range of operations than binary transistors.

Like a brain synapse, a memristor would also be able to “remember” the value associated with a given current strength, and produce the exact same signal the next time it receives a similar current. This could ensure that the answer to a complex equation, or the visual classification of an object, is reliable — a feat that normally involves multiple transistors and capacitors.

Ultimately, scientists envision that memristors would require far less chip real estate than conventional transistors, enabling powerful, portable computing devices that do not rely on supercomputers, or even connections to the Internet.

Existing memristor designs, however, are limited in their performance. A single memristor is made of a positive and negative electrode, separated by a “switching medium,” or space between the electrodes. When a voltage is applied to one electrode, ions from that electrode flow through the medium, forming a “conduction channel” to the other electrode. The received ions make up the electrical signal that the memristor transmits through the circuit. The size of the ion channel (and the signal that the memristor ultimately produces) should be proportional to the strength of the stimulating voltage.

Kim says that existing memristor designs work pretty well in cases where voltage stimulates a large conduction channel, or a heavy flow of ions from one electrode to the other. But these designs are less reliable when memristors need to generate subtler signals, via thinner conduction channels.

The thinner a conduction channel, and the lighter the flow of ions from one electrode to the other, the harder it is for individual ions to stay together. Instead, they tend to wander from the group, disbanding within the medium. As a result, it’s difficult for the receiving electrode to reliably capture the same number of ions, and therefore transmit the same signal, when stimulated with a certain low range of current.

Borrowing from metallurgy

Kim and his colleagues found a way around this limitation by borrowing a technique from metallurgy, the science of melding metals into alloys and studying their combined properties.

“Traditionally, metallurgists try to add different atoms into a bulk matrix to strengthen materials, and we thought, why not tweak the atomic interactions in our memristor, and add some alloying element to control the movement of ions in our medium,” Kim says.

Engineers typically use silver as the material for a memristor’s positive electrode. Kim’s team looked through the literature to find an element that they could combine with silver to effectively hold silver ions together, while allowing them to flow quickly through to the other electrode.

The team landed on copper as the ideal alloying element, as it is able to bind both with silver, and with silicon.

“It acts as a sort of bridge, and stabilizes the silver-silicon interface,” Kim says.

To make memristors using their new alloy, the group first fabricated a negative electrode out of silicon, then made a positive electrode by depositing a slight amount of copper, followed by a layer of silver. They sandwiched the two electrodes around an amorphous silicon medium. In this way, they patterned a millimeter-square silicon chip with tens of thousands of memristors.

As a first test of the chip, they recreated a gray-scale image of the Captain America shield. They equated each pixel in the image to a corresponding memristor in the chip. They then modulated the conductance of each memristor that was relative in strength to the color in the corresponding pixel.

The chip produced the same crisp image of the shield, and was able to “remember” the image and reproduce it many times, compared with chips made of other materials.

The team also ran the chip through an image processing task, programming the memristors to alter an image, in this case of MIT’s Killian Court, in several specific ways, including sharpening and blurring the original image. Again, their design produced the reprogrammed images more reliably than existing memristor designs.

“We’re using artificial synapses to do real inference tests,” Kim says. “We would like to develop this technology further to have larger-scale arrays to do image recognition tasks. And some day, you might be able to carry around artificial brains to do these kinds of tasks, without connecting to supercomputers, the internet, or the cloud.”

Here’s a link to and a citation for the paper,

Alloying conducting channels for reliable neuromorphic computing by Hanwool Yeon, Peng Lin, Chanyeol Choi, Scott H. Tan, Yongmo Park, Doyoon Lee, Jaeyong Lee, Feng Xu, Bin Gao, Huaqiang Wu, He Qian, Yifan Nie, Seyoung Kim & Jeehwan Kim. Nature Nanotechnology (2020 DOI: https://doi.org/10.1038/s41565-020-0694-5 Published: 08 June 2020

This paper is behind a paywall.

Electric sheep and sleeping androids

I find it impossible to mention that androids might need sleep without reference to Philip K. Dick’s 1968 novel, “Do Androids Dream of Electric Sheep?”; its Wikipedia entry is here.

June 8, 2020 Intelligent machines of the future may need to sleep as much as we do. Intelligent machines of the future may need to sleep as much as we do. Courtesy: Los Alamos National Laboratory

As it happens, I’m not the only one who felt the need to reference the novel, from a June 8, 2020 news item on ScienceDaily,

No one can say whether androids will dream of electric sheep, but they will almost certainly need periods of rest that offer benefits similar to those that sleep provides to living brains, according to new research from Los Alamos National Laboratory.

“We study spiking neural networks, which are systems that learn much as living brains do,” said Los Alamos National Laboratory computer scientist Yijing Watkins. “We were fascinated by the prospect of training a neuromorphic processor in a manner analogous to how humans and other biological systems learn from their environment during childhood development.”

Watkins and her research team found that the network simulations became unstable after continuous periods of unsupervised learning. When they exposed the networks to states that are analogous to the waves that living brains experience during sleep, stability was restored. “It was as though we were giving the neural networks the equivalent of a good night’s rest,” said Watkins.

A June 8, 2020 Los Alamos National Laboratory (LANL) news release (also on EurekAlert), which originated the news item, describes the research team’s presentation,

The discovery came about as the research team worked to develop neural networks that closely approximate how humans and other biological systems learn to see. The group initially struggled with stabilizing simulated neural networks undergoing unsupervised dictionary training, which involves classifying objects without having prior examples to compare them to.

“The issue of how to keep learning systems from becoming unstable really only arises when attempting to utilize biologically realistic, spiking neuromorphic processors or when trying to understand biology itself,” said Los Alamos computer scientist and study coauthor Garrett Kenyon. “The vast majority of machine learning, deep learning, and AI researchers never encounter this issue because in the very artificial systems they study they have the luxury of performing global mathematical operations that have the effect of regulating the overall dynamical gain of the system.”

The researchers characterize the decision to expose the networks to an artificial analog of sleep as nearly a last ditch effort to stabilize them. They experimented with various types of noise, roughly comparable to the static you might encounter between stations while tuning a radio. The best results came when they used waves of so-called Gaussian noise, which includes a wide range of frequencies and amplitudes. They hypothesize that the noise mimics the input received by biological neurons during slow-wave sleep. The results suggest that slow-wave sleep may act, in part, to ensure that cortical neurons maintain their stability and do not hallucinate.

The groups’ next goal is to implement their algorithm on Intel’s Loihi neuromorphic chip. They hope allowing Loihi to sleep from time to time will enable it to stably process information from a silicon retina camera in real time. If the findings confirm the need for sleep in artificial brains, we can probably expect the same to be true of androids and other intelligent machines that may come about in the future.

Watkins will be presenting the research at the Women in Computer Vision Workshop on June 14 [2020] in Seattle.

The 2020 Women in Computer Vition Workshop (WICV) website is here. As is becoming standard practice for these times, the workshop was held in a virtual environment. Here’s a link to and a citation for the poster presentation paper,

Using Sinusoidally-Modulated Noise as a Surrogate for Slow-Wave Sleep to
Accomplish Stable Unsupervised Dictionary Learning in a Spike-Based Sparse Coding Model
by Yijing Watkins, Edward Kim, Andrew Sornborger and Garrett T. Kenyon. Women in Computer Vision Workshop on June 14, 2020 in Seattle, Washington (state)

This paper is open access for now.

Neuromorphic computing with voltage usage comparable to human brains

Part of neuromorphic computing’s appeal is the promise of using less energy because, as it turns out, the human brain uses small amounts of energy very efficiently. A team of researchers at the University of Massachusetts at Amherst have developed function in the same range of voltages as the human brain. From an April 20, 2020 news item on ScienceDaily,

Only 10 years ago, scientists working on what they hoped would open a new frontier of neuromorphic computing could only dream of a device using miniature tools called memristors that would function/operate like real brain synapses.

But now a team at the University of Massachusetts Amherst has discovered, while on their way to better understanding protein nanowires, how to use these biological, electricity conducting filaments to make a neuromorphic memristor, or “memory transistor,” device. It runs extremely efficiently on very low power, as brains do, to carry signals between neurons. Details are in Nature Communications.

An April 20, 2020 University of Massachusetts at Amherst news release (also on EurekAlert), which originated the news items, dives into detail about how these researchers were able to achieve bio-voltages,

As first author Tianda Fu, a Ph.D. candidate in electrical and computer engineering, explains, one of the biggest hurdles to neuromorphic computing, and one that made it seem unreachable, is that most conventional computers operate at over 1 volt, while the brain sends signals called action potentials between neurons at around 80 millivolts – many times lower. Today, a decade after early experiments, memristor voltage has been achieved in the range similar to conventional computer, but getting below that seemed improbable, he adds.

Fu reports that using protein nanowires developed at UMass Amherst from the bacterium Geobacter by microbiologist and co-author Derek Lovely, he has now conducted experiments where memristors have reached neurological voltages. Those tests were carried out in the lab of electrical and computer engineering researcher and co-author Jun Yao.

Yao says, “This is the first time that a device can function at the same voltage level as the brain. People probably didn’t even dare to hope that we could create a device that is as power-efficient as the biological counterparts in a brain, but now we have realistic evidence of ultra-low power computing capabilities. It’s a concept breakthrough and we think it’s going to cause a lot of exploration in electronics that work in the biological voltage regime.”

Lovely points out that Geobacter’s electrically conductive protein nanowires offer many advantages over expensive silicon nanowires, which require toxic chemicals and high-energy processes to produce. Protein nanowires also are more stable in water or bodily fluids, an important feature for biomedical applications. For this work, the researchers shear nanowires off the bacteria so only the conductive protein is used, he adds.

Fu says that he and Yao had set out to put the purified nanowires through their paces, to see what they are capable of at different voltages, for example. They experimented with a pulsing on-off pattern of positive-negative charge sent through a tiny metal thread in a memristor, which creates an electrical switch.

They used a metal thread because protein nanowires facilitate metal reduction, changing metal ion reactivity and electron transfer properties. Lovely says this microbial ability is not surprising, because wild bacterial nanowires breathe and chemically reduce metals to get their energy the way we breathe oxygen.

As the on-off pulses create changes in the metal filaments, new branching and connections are created in the tiny device, which is 100 times smaller than the diameter of a human hair, Yao explains. It creates an effect similar to learning – new connections – in a real brain. He adds, “You can modulate the conductivity, or the plasticity of the nanowire-memristor synapse so it can emulate biological components for brain-inspired computing. Compared to a conventional computer, this device has a learning capability that is not software-based.”

Fu recalls, “In the first experiments we did, the nanowire performance was not satisfying, but it was enough for us to keep going.” Over two years, he saw improvement until one fateful day when his and Yao’s eyes were riveted by voltage measurements appearing on a computer screen.

“I remember the day we saw this great performance. We watched the computer as current voltage sweep was being measured. It kept doing down and down and we said to each other, ‘Wow, it’s working.’ It was very surprising and very encouraging.”

Fu, Yao, Lovely and colleagues plan to follow up this discovery with more research on mechanisms, and to “fully explore the chemistry, biology and electronics” of protein nanowires in memristors, Fu says, plus possible applications, which might include a device to monitor heart rate, for example. Yao adds, “This offers hope in the feasibility that one day this device can talk to actual neurons in biological systems.”

That last comment has me wondering about why you would want to have your device talk to actual neurons. For neuroprosthetics perhaps?

Here’s a link to and a citation for the paper,

Bioinspired bio-voltage memristors by Tianda Fu, Xiaomeng Liu, Hongyan Gao, Joy E. Ward, Xiaorong Liu, Bing Yin, Zhongrui Wang, Ye Zhuo, David J. F. Walker, J. Joshua Yang, Jianhan Chen, Derek R. Lovley & Jun Yao. Nature Communications volume 11, Article number: 1861 (2020) DOI: https://doi.org/10.1038/s41467-020-15759-y Published: 20 April 2020

This paper is open access.

There is an illustration of the work

Caption: A graphic depiction of protein nanowires (green) harvested from microbe Geobacter (orange) facilitate the electronic memristor device (silver) to function with biological voltages, emulating the neuronal components (blue junctions) in a brain. Credit: UMass Amherst/Yao lab

Brain-inspired electronics with organic memristors for wearable computing

I went down a rabbit hole while trying to figure out the difference between ‘organic’ memristors and standard memristors. I have put the results of my investigation at the end of this post. First, there’s the news.

An April 21, 2020 news item on ScienceDaily explains why researchers are so focused on memristors and brainlike computing,

The advent of artificial intelligence, machine learning and the internet of things is expected to change modern electronics and bring forth the fourth Industrial Revolution. The pressing question for many researchers is how to handle this technological revolution.

“It is important for us to understand that the computing platforms of today will not be able to sustain at-scale implementations of AI algorithms on massive datasets,” said Thirumalai Venkatesan, one of the authors of a paper published in Applied Physics Reviews, from AIP Publishing.

“Today’s computing is way too energy-intensive to handle big data. We need to rethink our approaches to computation on all levels: materials, devices and architecture that can enable ultralow energy computing.”

An April 21, 2020 American Institute of Physics (AIP) news release (also on EurekAlert), which originated the news item, describes the authors’ approach to the problems with organic memristors,

Brain-inspired electronics with organic memristors could offer a functionally promising and cost- effective platform, according to Venkatesan. Memristive devices are electronic devices with an inherent memory that are capable of both storing data and performing computation. Since memristors are functionally analogous to the operation of neurons, the computing units in the brain, they are optimal candidates for brain-inspired computing platforms.

Until now, oxides have been the leading candidate as the optimum material for memristors. Different material systems have been proposed but none have been successful so far.

“Over the last 20 years, there have been several attempts to come up with organic memristors, but none of those have shown any promise,” said Sreetosh Goswami, lead author on the paper. “The primary reason behind this failure is their lack of stability, reproducibility and ambiguity in mechanistic understanding. At a device level, we are now able to solve most of these problems,”

This new generation of organic memristors is developed based on metal azo complex devices, which are the brainchild of Sreebata Goswami, a professor at the Indian Association for the Cultivation of Science in Kolkata and another author on the paper.

“In thin films, the molecules are so robust and stable that these devices can eventually be the right choice for many wearable and implantable technologies or a body net, because these could be bendable and stretchable,” said Sreebata Goswami. A body net is a series of wireless sensors that stick to the skin and track health.

The next challenge will be to produce these organic memristors at scale, said Venkatesan.

“Now we are making individual devices in the laboratory. We need to make circuits for large-scale functional implementation of these devices.”

Caption: The device structure at a molecular level. The gold nanoparticles on the bottom electrode enhance the field enabling an ultra-low energy operation of the molecular device. Credit Sreetosh Goswami, Sreebrata Goswami and Thirumalai Venky Venkatesan

Here’s a link to and a citation for the paper,

An organic approach to low energy memory and brain inspired electronics by Sreetosh Goswami, Sreebrata Goswami, and T. Venkatesan. Applied Physics Reviews 7, 021303 (2020) DOI: https://doi.org/10.1063/1.5124155

This paper is open access.

Basics about memristors and organic memristors

This undated article on Nanowerk provides a relatively complete and technical description of memristors in general (Note: A link has been removed),

A memristor (named as a portmanteau of memory and resistor) is a non-volatile electronic memory device that was first theorized by Leon Ong Chua in 1971 as the fourth fundamental two-terminal circuit element following the resistor, the capacitor, and the inductor (IEEE Transactions on Circuit Theory, “Memristor-The missing circuit element”).

Its special property is that its resistance can be programmed (resistor function) and subsequently remains stored (memory function). Unlike other memories that exist today in modern electronics, memristors are stable and remember their state even if the device loses power.

However, it was only almost 40 years later that the first practical device was fabricated. This was in 2008, when a group led by Stanley Williams at HP Research Labs realized that switching of the resistance between a conducting and less conducting state in metal-oxide thin-film devices was showing Leon Chua’s memristor behavior. …

The article on Nanowerk includes an embedded video presentation on memristors given by Stanley Williams (also known as R. Stanley Williams).

Mention of an ‘organic’memristor can be found in an October 31, 2017 article by Ryan Whitwam,

The memristor is composed of the transition metal ruthenium complexed with “azo-aromatic ligands.” [emphasis mine] The theoretical work enabling this material was performed at Yale, and the organic molecules were synthesized at the Indian Association for the Cultivation of Sciences. …

I highlighted ‘ligands’ because that appears to be the difference. However, there is more than one type of ligand on Wikipedia.

First, there’s the Ligand (biochemistry) entry (Note: Links have been removed),

In biochemistry and pharmacology, a ligand is a substance that forms a complex with a biomolecule to serve a biological purpose. …

Then, there’s the Ligand entry,

In coordination chemistry, a ligand[help 1] is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex …

Finally, there’s the Ligand (disambiguation) entry (Note: Links have been removed),

  • Ligand, an atom, ion, or functional group that donates one or more of its electrons through a coordinate covalent bond to one or more central atoms or ions
  • Ligand (biochemistry), a substance that binds to a protein
  • a ‘guest’ in host–guest chemistry

I did take a look at the paper and did not see any references to proteins or other biomolecules that I could recognize as such. I’m not sure why the researchers are describing their device as an ‘organic’ memristor but this may reflect a shortcoming in the definitions I have found or shortcomings in my reading of the paper rather than an error on their parts.

Hopefully, more research will be forthcoming and it will be possible to better understand the terminology.

New design directions to increase variety, efficiency, selectivity and reliability for memristive devices

A May 11, 2020 news item on ScienceDaily provides a description of the current ‘memristor scene’ along with an announcement about a piece of recent research,

Scientists around the world are intensively working on memristive devices, which are capable in extremely low power operation and behave similarly to neurons in the brain. Researchers from the Jülich Aachen Research Alliance (JARA) and the German technology group Heraeus have now discovered how to systematically control the functional behaviour of these elements. The smallest differences in material composition are found crucial: differences so small that until now experts had failed to notice them. The researchers’ design directions could help to increase variety, efficiency, selectivity and reliability for memristive technology-based applications, for example for energy-efficient, non-volatile storage devices or neuro-inspired computers.

Memristors are considered a highly promising alternative to conventional nanoelectronic elements in computer Chips [sic]. Because of the advantageous functionalities, their development is being eagerly pursued by many companies and research institutions around the world. The Japanese corporation NEC installed already the first prototypes in space satellites back in 2017. Many other leading companies such as Hewlett Packard, Intel, IBM, and Samsung are working to bring innovative types of computer and storage devices based on memristive elements to market.

Fundamentally, memristors are simply “resistors with memory,” in which high resistance can be switched to low resistance and back again. This means in principle that the devices are adaptive, similar to a synapse in a biological nervous system. “Memristive elements are considered ideal candidates for neuro-inspired computers modelled on the brain, which are attracting a great deal of interest in connection with deep learning and artificial intelligence,” says Dr. Ilia Valov of the Peter Grünberg Institute (PGI-7) at Forschungszentrum Jülich.

In the latest issue of the open access journal Science Advances, he and his team describe how the switching and neuromorphic behaviour of memristive elements can be selectively controlled. According to their findings, the crucial factor is the purity of the switching oxide layer. “Depending on whether you use a material that is 99.999999 % pure, and whether you introduce one foreign atom into ten million atoms of pure material or into one hundred atoms, the properties of the memristive elements vary substantially” says Valov.

A May 11, 2020 Forschungszentrum Juelich press release (also on EurekAlert), which originated the news item, delves into the theme of increasing control over memristive systems,

This effect had so far been overlooked by experts. It can be used very specifically for designing memristive systems, in a similar way to doping semiconductors in information technology. “The introduction of foreign atoms allows us to control the solubility and transport properties of the thin oxide layers,” explains Dr. Christian Neumann of the technology group Heraeus. He has been contributing his materials expertise to the project ever since the initial idea was conceived in 2015.

“In recent years there has been remarkable progress in the development and use of memristive devices, however that progress has often been achieved on a purely empirical basis,” according to Valov. Using the insights that his team has gained, manufacturers could now methodically develop memristive elements selecting the functions they need. The higher the doping concentration, the slower the resistance of the elements changes as the number of incoming voltage pulses increases and decreases, and the more stable the resistance remains. “This means that we have found a way for designing types of artificial synapses with differing excitability,” explains Valov.

Design specification for artificial synapses

The brain’s ability to learn and retain information can largely be attributed to the fact that the connections between neurons are strengthened when they are frequently used. Memristive devices, of which there are different types such as electrochemical metallization cells (ECMs) or valence change memory cells (VCMs), behave similarly. When these components are used, the conductivity increases as the number of incoming voltage pulses increases. The changes can also be reversed by applying voltage pulses of the opposite polarity.

The JARA researchers conducted their systematic experiments on ECMs, which consist of a copper electrode, a platinum electrode, and a layer of silicon dioxide between them. Thanks to the cooperation with Heraeus researchers, the JARA scientists had access to different types of silicon dioxide: one with a purity of 99.999999 % – also called 8N silicon dioxide – and others containing 100 to 10,000 ppm (parts per million) of foreign atoms. The precisely doped glass used in their experiments was specially developed and manufactured by quartz glass specialist Heraeus Conamic, which also holds the patent for the procedure. Copper and protons acted as mobile doping agents, while aluminium and gallium were used as non-volatile doping.

Synapses, the connections between neurons, have the ability to transmit signals with varying degrees of strength when they are excited by a quick succession of electrical impulses. One effect of this repeated activity is to increase the concentration of calcium ions, with the result that more neurotransmitters are emitted. Depending on the activity, other effects cause long-term structural changes, which impact the strength of the transmission for several hours, or potentially even for the rest of the person’s life. Memristive elements allow the strength of the electrical transmission to be changed in a similar way to synaptic connections, by applying a voltage. In electrochemical metallization cells (ECMs), a metallic filament develops between the two metal electrodes, thus increasing conductivity. Applying voltage pulses with reversed polarity causes the filament to shrink again until the cell reaches its initial high resistance state. Copyright: Forschungszentrum Jülich / Tobias Schlößer

Record switching time confirms theory

Based on their series of experiments, the researchers were able to show that the ECMs’ switching times change as the amount of doping atoms changes. If the switching layer is made of 8N silicon dioxide, the memristive component switches in only 1.4 nanoseconds. To date, the fastest value ever measured for ECMs had been around 10 nanoseconds. By doping the oxide layer of the components with up to 10,000 ppm of foreign atoms, the switching time was prolonged into the range of milliseconds. “We can also theoretically explain our results. This is helping us to understand the physico-chemical processes on the nanoscale and apply this knowledge in the practice” says Valov. Based on generally applicable theoretical considerations, supported by experimental results, some also documented in the literature, he is convinced that the doping/impurity effect occurs and can be employed in all types memristive elements.

Top: In memristive elements (ECMs) with an undoped, high-purity switching layer of silicon oxide (SiO2), copper ions can move very fast. A filament of copper atoms forms correspondingly fast on the platinum electrode. This increases the total device conductivity respectively the capacity. Due to the high mobility of the ions, however, this filament is unstable at low forming voltages. Center: Gallium ions (Ga3+), which are introduced into the cell (non-volatile doping), bind copper ions (Cu2+) in the switching layer. The movement of the ions slows down, leading to lower switching times, but the filament, once formed remains longer stable. Bottom: Doping with aluminium ions (Al3+) slows down the process even more, since aluminium ions bind copper ions even stronger than gallium ions. Filament growth is even slower, while at the same time the stability of the filament is further increased. Depending on the chemical properties of the introduced doping elements, memristive cells – the artificial synapses – can be created with tailor-made switching and neuromorphic properties. Copyright: Forschungszentrum Jülich / Tobias Schloesser

Here’s a link to and a citation for the paper,

Design of defect-chemical properties and device performance in memristive systems by M. Lübben, F. Cüppers, J. Mohr, M. von Witzleben, U. Breuer, R. Waser, C. Neumann, and I. Valov. Science Advances 08 May 2020: Vol. 6, no. 19, eaaz9079 DOI: 10.1126/sciadv.aaz9079

This paper is open access.

For anyone curious about the German technology group, Heraeus, there’s a fascinating history in its Wikipedia entry. The technology company was formally founded in 1851 but it can be traced back to the 17th century and the founding family’s apothecary.

Connecting biological and artificial neurons (in UK, Switzerland, & Italy) over the web

Caption: The virtual lab connecting Southampton, Zurich and Padova. Credit: University of Southampton

A February 26, 2020 University of Southampton press release (also on EurekAlert) describes this work,

Research on novel nanoelectronics devices led by the University of Southampton enabled brain neurons and artificial neurons to communicate with each other. This study has for the first time shown how three key emerging technologies can work together: brain-computer interfaces, artificial neural networks and advanced memory technologies (also known as memristors). The discovery opens the door to further significant developments in neural and artificial intelligence research.

Brain functions are made possible by circuits of spiking neurons, connected together by microscopic, but highly complex links called ‘synapses’. In this new study, published in the scientific journal Nature Scientific Reports, the scientists created a hybrid neural network where biological and artificial neurons in different parts of the world were able to communicate with each other over the internet through a hub of artificial synapses made using cutting-edge nanotechnology. This is the first time the three components have come together in a unified network.

During the study, researchers based at the University of Padova in Italy cultivated rat neurons in their laboratory, whilst partners from the University of Zurich and ETH Zurich created artificial neurons on Silicon microchips. The virtual laboratory was brought together via an elaborate setup controlling nanoelectronic synapses developed at the University of Southampton. These synaptic devices are known as memristors.

The Southampton based researchers captured spiking events being sent over the internet from the biological neurons in Italy and then distributed them to the memristive synapses. Responses were then sent onward to the artificial neurons in Zurich also in the form of spiking activity. The process simultaneously works in reverse too; from Zurich to Padova. Thus, artificial and biological neurons were able to communicate bidirectionally and in real time.

Themis Prodromakis, Professor of Nanotechnology and Director of the Centre for Electronics Frontiers at the University of Southampton said “One of the biggest challenges in conducting research of this kind and at this level has been integrating such distinct cutting edge technologies and specialist expertise that are not typically found under one roof. By creating a virtual lab we have been able to achieve this.”

The researchers now anticipate that their approach will ignite interest from a range of scientific disciplines and accelerate the pace of innovation and scientific advancement in the field of neural interfaces research. In particular, the ability to seamlessly connect disparate technologies across the globe is a step towards the democratisation of these technologies, removing a significant barrier to collaboration.

Professor Prodromakis added “We are very excited with this new development. On one side it sets the basis for a novel scenario that was never encountered during natural evolution, where biological and artificial neurons are linked together and communicate across global networks; laying the foundations for the Internet of Neuro-electronics. On the other hand, it brings new prospects to neuroprosthetic technologies, paving the way towards research into replacing dysfunctional parts of the brain with AI [artificial intelligence] chips.”

I’m fascinated by this work and after taking a look at the paper, I have to say, the paper is surprisingly accessible. In other words, I think I get the general picture. For example (from the Introduction to the paper; citation and link follow further down),

… To emulate plasticity, the memristor MR1 is operated as a two-terminal device through a control system that receives pre- and post-synaptic depolarisations from one silicon neuron (ANpre) and one biological neuron (BN), respectively. …

If I understand this properly, they’ve integrated a biological neuron and an artificial neuron in a single system across three countries.

For those who care to venture forth, here’s a link and a citation for the paper,

Memristive synapses connect brain and silicon spiking neurons by Alexantrou Serb, Andrea Corna, Richard George, Ali Khiat, Federico Rocchi, Marco Reato, Marta Maschietto, Christian Mayr, Giacomo Indiveri, Stefano Vassanelli & Themistoklis Prodromakis. Scientific Reports volume 10, Article number: 2590 (2020) DOI: https://doi.org/10.1038/s41598-020-58831-9 Published 25 February 2020

The paper is open access.

Second order memristor

I think this is my first encounter with a second-order memristor. An August 28, 2019 news item on Nanowerk announces the research (Note: A link has been removed),

Researchers from the Moscow Institute of Physics and Technology [MIPT} have created a device that acts like a synapse in the living brain, storing information and gradually forgetting it when not accessed for a long time. Known as a second-order memristor, the new device is based on hafnium oxide and offers prospects for designing analog neurocomputers imitating the way a biological brain learns.

An August 28, 2019 MIPT press release (also on EurekAlert), which originated the news item, provides an explanation for neuromorphic computing (analog neurocomputers; brainlike computing), the difference between a first-order and second-order memristor, and an in depth view of the research,

Neurocomputers, which enable artificial intelligence, emulate the way the brain works. It stores data in the form of synapses, a network of connections between the nerve cells, or neurons. Most neurocomputers have a conventional digital architecture and use mathematical models to invoke virtual neurons and synapses.

Alternatively, an actual on-chip electronic component could stand for each neuron and synapse in the network. This so-called analog approach has the potential to drastically speed up computations and reduce energy costs.

The core component of a hypothetical analog neurocomputer is the memristor. The word is a portmanteau of “memory” and “resistor,” which pretty much sums up what it is: a memory cell acting as a resistor. Loosely speaking, a high resistance encodes a zero, and a low resistance encodes a one. This is analogous to how a synapse conducts a signal between two neurons (one), while the absence of a synapse results in no signal, a zero.

But there is a catch: In an actual brain, the active synapses tend to strengthen over time, while the opposite is true for inactive ones. This phenomenon known as synaptic plasticity is one of the foundations of natural learning and memory. It explains the biology of cramming for an exam and why our seldom accessed memories fade.

Proposed in 2015, the second-order memristor is an attempt to reproduce natural memory, complete with synaptic plasticity. The first mechanism for implementing this involves forming nanosized conductive bridges across the memristor. While initially decreasing resistance, they naturally decay with time, emulating forgetfulness.

“The problem with this solution is that the device tends to change its behavior over time and breaks down after prolonged operation,” said the study’s lead author Anastasia Chouprik from MIPT’s Neurocomputing Systems Lab. “The mechanism we used to implement synaptic plasticity is more robust. In fact, after switching the state of the system 100 billion times, it was still operating normally, so my colleagues stopped the endurance test.”

Instead of nanobridges, the MIPT team relied on hafnium oxide to imitate natural memory. This material is ferroelectric: Its internal bound charge distribution — electric polarization — changes in response to an external electric field. If the field is then removed, the material retains its acquired polarization, the way a ferromagnet remains magnetized.

The physicists implemented their second-order memristor as a ferroelectric tunnel junction — two electrodes interlaid with a thin hafnium oxide film (fig. 1, right). The device can be switched between its low and high resistance states by means of electric pulses, which change the ferroelectric film’s polarization and thus its resistance.

“The main challenge that we faced was figuring out the right ferroelectric layer thickness,” Chouprik added. “Four nanometers proved to be ideal. Make it just one nanometer thinner, and the ferroelectric properties are gone, while a thicker film is too wide a barrier for the electrons to tunnel through. And it is only the tunneling current that we can modulate by switching polarization.”

What gives hafnium oxide an edge over other ferroelectric materials, such as barium titanate, is that it is already used by current silicon technology. For example, Intel has been manufacturing microchips based on a hafnium compound since 2007. This makes introducing hafnium-based devices like the memristor reported in this story far easier and cheaper than those using a brand-new material.

In a feat of ingenuity, the researchers implemented “forgetfulness” by leveraging the defects at the interface between silicon and hafnium oxide. Those very imperfections used to be seen as a detriment to hafnium-based microprocessors, and engineers had to find a way around them by incorporating other elements into the compound. Instead, the MIPT team exploited the defects, which make memristor conductivity die down with time, just like natural memories.

Vitalii Mikheev, the first author of the paper, shared the team’s future plans: “We are going to look into the interplay between the various mechanisms switching the resistance in our memristor. It turns out that the ferroelectric effect may not be the only one involved. To further improve the devices, we will need to distinguish between the mechanisms and learn to combine them.”

According to the physicists, they will move on with the fundamental research on the properties of hafnium oxide to make the nonvolatile random access memory cells more reliable. The team is also investigating the possibility of transferring their devices onto a flexible substrate, for use in flexible electronics.

Last year, the researchers offered a detailed description of how applying an electric field to hafnium oxide films affects their polarization. It is this very process that enables reducing ferroelectric memristor resistance, which emulates synapse strengthening in a biological brain. The team also works on neuromorphic computing systems with a digital architecture.

MIPT has provided this image illustrating the research,

Caption: The left image shows a synapse from a biological brain, the inspiration behind its artificial analogue (right). The latter is a memristor device implemented as a ferroelectric tunnel junction — that is, a thin hafnium oxide film (pink) interlaid between a titanium nitride electrode (blue cable) and a silicon substrate (marine blue), which doubles up as the second electrode. Electric pulses switch the memristor between its high and low resistance states by changing hafnium oxide polarization, and therefore its conductivity. Credit: Elena Khavina/MIPT Press Office

Here’s a link to and a citation for the paper,

Ferroelectric Second-Order Memristor by Vitalii Mikheev, Anastasia Chouprik, Yury Lebedinskii, Sergei Zarubin, Yury Matveyev, Ekaterina Kondratyuk, Maxim G. Kozodaev, Andrey M. Markeev, Andrei Zenkevich, Dmitrii Negrov. ACS Appl. Mater. Interfaces 2019113532108-32114 DOI: https://doi.org/10.1021/acsami.9b08189 Publication Date:August 12, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

Memristor-based neural network and the biosimilar principle of learning

Once you get past the technical language (there’s a lot of it), you’ll find that they make the link between biomimicry and memristors explicit. Admittedly I’m not an expert but if I understand the research correctly, the scientists are suggesting that the algorithms used in machine learning today cannot allow memristors to be properly integrated for use in true neuromorphic computing and this work from Russia and Greece points to a new paradigm. If you understand it differently, please do let me know in the comments.

A July 12, 2019 news item on Nanowerk kicks things off (Note: A link has been removed),

Lobachevsky University scientists together with their colleagues from the National Research Center “Kurchatov Institute” (Moscow) and the National Research Center “Demokritos” (Athens) are working on the hardware implementation of a spiking neural network based on memristors.

The key elements of such a network, along with pulsed neurons, are artificial synaptic connections that can change the strength (weight) of connection between neurons during the learning (Microelectronic Engineering, “Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications”).

For this purpose, memristive devices based on metal-oxide-metal nanostructures developed at the UNN Physics and Technology Research Institute (PTRI) are suitable, but their use in specific spiking neural network architectures developed at the Kurchatov Institute requires demonstration of biologically plausible learning principles.

Caption: Cross-section image of the metal-oxide-metal memristive structure based on ZrO2(Y) polycrystalline film (a); corresponding schematic view of the cross-point memristive device (b); STDP dependencies of memristive device conductance changes for different delay values between pre- and postsynaptic neuron spikes (c); photographs of a microchip and an array of memristive devices in a standard cermet casing (d); the simplest spiking neural network architecture learning on the basis of local rules for changing memristive weights (e). Credit: Lobachevsky University

A July 12, 2019 (?) Lobachevsky University press release (also on EurekAlert), which originated the news item, delves further into the work,

The biological mechanism of learning of neural systems is described by Hebb’s rule, according to which learning occurs as a result of an increase in the strength of connection  (synaptic weight) between simultaneously active neurons, which indicates the presence of a causal relationship in their excitation. One of the clarifying forms of this fundamental rule is plasticity, which depends on the time of arrival of pulses (Spike-Timing Dependent Plasticity – STDP).

In accordance with STDP, synaptic weight increases if the postsynaptic neuron generates a pulse (spike) immediately after the presynaptic one, and vice versa, the synaptic weight decreases if the postsynaptic neuron generates a spike right before the presynaptic one. Moreover, the smaller the time difference Δt between the pre- and postsynaptic spikes, the more pronounced the weight change will be.

According to one of the researchers, Head of the UNN PTRI laboratory Alexei Mikhailov, in order to demonstrate the STDP principle, memristive nanostructures based on yttria-stabilized zirconia (YSZ) thin films were used. YSZ is a well-known solid-state electrolyte with high oxygen ion mobility.

“Due to a specified concentration of oxygen vacancies, which is determined by the controlled concentration of yttrium impurities, and the heterogeneous structure of the films obtained by magnetron sputtering, such memristive structures demonstrate controlled bipolar switching between different resistive states in a wide resistance range. The switching is associated with the formation and destruction of conductive channels along grain boundaries in the polycrystalline ZrO2 (Y) film,” notes Alexei Mikhailov.

An array of memristive devices for research was implemented in the form of a microchip mounted in a standard cermet casing, which facilitates the integration of the array into a neural network’s analog circuit. The full technological cycle for creating memristive microchips is currently implemented at the UNN PTRI. In the future, it is possible to scale the devices down to the minimum size of about 50 nm, as was established by Greek partners.
Our studies of the dynamic plasticity of the memoristive devices, continues Alexey Mikhailov, have shown that the form of the conductance change depending on Δt is in good agreement with the STDP learning rules. It should be also noted that if the initial value of the memristor conductance is close to the maximum, it is easy to reduce the corresponding weight while it is difficult to enhance it, and in the case of a memristor with a minimum conductance in the initial state, it is difficult to reduce its weight, but it is easy to enhance it.

According to Vyacheslav Demin, director-coordinator in the area of nature-like technologies of the Kurchatov Institute, who is one of the ideologues of this work, the established pattern of change in the memristor conductance clearly demonstrates the possibility of hardware implementation of the so-called local learning rules. Such rules for changing the strength of synaptic connections depend only on the values ​​of variables that are present locally at each time point (neuron activities and current weights).

“This essentially distinguishes such principle from the traditional learning algorithm, which is based on global rules for changing weights, using information on the error values ​​at the current time point for each neuron of the output neural network layer (in a widely popular group of error back propagation methods). The traditional principle is not biosimilar, it requires “external” (expert) knowledge of the correct answers for each example presented to the network (that is, they do not have the property of self-learning). This principle is difficult to implement on the basis of memristors, since it requires controlled precise changes of memristor conductances, as opposed to local rules. Such precise control is not always possible due to the natural variability (a wide range of parameters) of memristors as analog elements,” says Vyacheslav Demin.

Local learning rules of the STDP type implemented in hardware on memristors provide the basis for autonomous (“unsupervised”) learning of a spiking neural network. In this case, the final state of the network does not depend on its initial state, but depends only on the learning conditions (a specific sequence of pulses). According to Vyacheslav Demin, this opens up prospects for the application of local learning rules based on memristors when solving artificial intelligence problems with the use of complex spiking neural network architectures.

Here’s a link to and a citation for the paper,

Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications by A. V. Emelyanov, K. E. Nikiruy, A. Demin, V. V. Rylkov, A. I. Belov, D. S. Korolev, E. G. Gryaznov, D. A. Pavlov, O. N. Gorshkov, A. N. Mikhaylov, P. Dimitrakis. Microelectronic Engineering Volume 215, 15 July 2019, 110988 First available online 16 May 2019

This paper is behind a paywall.

Electronics begone! Enter: the light-based brainlike computing chip

At this point, it’s possible I’m wrong but I think this is the first ‘memristor’ type device (also called a neuromorphic chip) based on light rather than electronics that I’ve featured here on this blog. In other words, it’s not, technically speaking, a memristor but it does have the same properties so it is a neuromorphic chip.

Caption: The optical microchips that the researchers are working on developing are about the size of a one-cent piece. Credit: WWU Muenster – Peter Leßmann

A May 8, 2019 news item on Nanowerk announces this new approach to neuromorphic hardware (Note: A link has been removed),

Researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain.

The scientists produced a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses. The network is able to “learn” information and use this as a basis for computing and recognizing patterns. As the system functions solely with light and not with electrons, it can process data many times faster than traditional systems. …

A May 8, 2019 University of Münster press release (also on EurekAlert), which originated the news item, reveals the full story,

A technology that functions like a brain? In these times of artificial intelligence, this no longer seems so far-fetched – for example, when a mobile phone can recognise faces or languages. With more complex applications, however, computers still quickly come up against their own limitations. One of the reasons for this is that a computer traditionally has separate memory and processor units – the consequence of which is that all data have to be sent back and forth between the two. In this respect, the human brain is way ahead of even the most modern computers because it processes and stores information in the same place – in the synapses, or connections between neurons, of which there are a million-billion in the brain. An international team of researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have now succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists managed to produce a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses.

The researchers were able to demonstrate, that such an optical neurosynaptic network is able to “learn” information and use this as a basis for computing and recognizing patterns – just as a brain can. As the system functions solely with light and not with traditional electrons, it can process data many times faster. “This integrated photonic system is an experimental milestone,” says Prof. Wolfram Pernice from Münster University and lead partner in the study. “The approach could be used later in many different fields for evaluating patterns in large quantities of data, for example in medical diagnoses.” The study is published in the latest issue of the “Nature” journal.

The story in detail – background and method used

Most of the existing approaches relating to so-called neuromorphic networks are based on electronics, whereas optical systems – in which photons, i.e. light particles, are used – are still in their infancy. The principle which the German and British scientists have now presented works as follows: optical waveguides that can transmit light and can be fabricated into optical microchips are integrated with so-called phase-change materials – which are already found today on storage media such as re-writable DVDs. These phase-change materials are characterised by the fact that they change their optical properties dramatically, depending on whether they are crystalline – when their atoms arrange themselves in a regular fashion – or amorphous – when their atoms organise themselves in an irregular fashion. This phase-change can be triggered by light if a laser heats the material up. “Because the material reacts so strongly, and changes its properties dramatically, it is highly suitable for imitating synapses and the transfer of impulses between two neurons,” says lead author Johannes Feldmann, who carried out many of the experiments as part of his PhD thesis at the Münster University.

In their study, the scientists succeeded for the first time in merging many nanostructured phase-change materials into one neurosynaptic network. The researchers developed a chip with four artificial neurons and a total of 60 synapses. The structure of the chip – consisting of different layers – was based on the so-called wavelength division multiplex technology, which is a process in which light is transmitted on different channels within the optical nanocircuit.

In order to test the extent to which the system is able to recognise patterns, the researchers “fed” it with information in the form of light pulses, using two different algorithms of machine learning. In this process, an artificial system “learns” from examples and can, ultimately, generalise them. In the case of the two algorithms used – both in so-called supervised and in unsupervised learning – the artificial network was ultimately able, on the basis of given light patterns, to recognise a pattern being sought – one of which was four consecutive letters.

“Our system has enabled us to take an important step towards creating computer hardware which behaves similarly to neurons and synapses in the brain and which is also able to work on real-world tasks,” says Wolfram Pernice. “By working with photons instead of electrons we can exploit to the full the known potential of optical technologies – not only in order to transfer data, as has been the case so far, but also in order to process and store them in one place,” adds co-author Prof. Harish Bhaskaran from the University of Oxford.

A very specific example is that with the aid of such hardware cancer cells could be identified automatically. Further work will need to be done, however, before such applications become reality. The researchers need to increase the number of artificial neurons and synapses and increase the depth of neural networks. This can be done, for example, with optical chips manufactured using silicon technology. “This step is to be taken in the EU joint project ‘Fun-COMP’ by using foundry processing for the production of nanochips,” says co-author and leader of the Fun-COMP project, Prof. C. David Wright from the University of Exeter.

Here’s a link to and a citation for the paper,

All-optical spiking neurosynaptic networks with self-learning capabilities by J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran & W. H. P. Pernice. Nature volume 569, pages208–214 (2019) DOI: https://doi.org/10.1038/s41586-019-1157-8 Issue Date: 09 May 2019

This paper is behind a paywall.

For the curious, I found a little more information about Fun-COMP (functionally-scaled computer technology). It’s a European Commission (EC) Horizon 2020 project coordinated through the University of Exeter. For information with details such as the total cost, contribution from the EC, the list of partnerships and more there is the Fun-COMP webpage on fabiodisconzi.com.