Caption: Advancing Surgical Sutures: The Promise of Cellulose-Based Materials. Credit: CAS Key Laboratory of Biobased Materials, Qingdao New Energy Shandong Laboratory, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
A recent review published in the Journal of Bioresources and Bioproducts examines the state of cellulose-based sutures, focusing on materials, fabrication methods, and application performance. The study underscores the potential of these sutures as eco-friendly alternatives to traditional synthetic sutures, with significant advancements in biocompatibility and biodegradability.
Surgical sutures are critical in wound closure and healing, with traditional materials like cotton and synthetic polymers dominating the market. However, the rise of sustainable and biocompatible materials has led researchers to explore cellulose-based sutures as a viable alternative. A comprehensive review published in the Journal of Bioresources and Bioproducts provides an in-depth look at the current state of cellulose-based sutures, their fabrication methods, and potential applications.
Cellulose, the most abundant natural polymer on Earth, offers several advantages for surgical sutures, including non-toxicity, biocompatibility, and mechanical strength. The review covers various types of cellulose-based sutures, including natural cellulose, nanocellulose, and regenerated cellulose. Each type offers unique properties, with nanocellulose showing particular promise due to its high strength and flexibility. For instance, cellulose nanofibrils (CNF) have been used to create sutures with tensile strengths comparable to traditional materials, while maintaining excellent biocompatibility.
The review also highlights innovative fabrication methods such as wet spinning and interfacial polyelectrolyte complexation (IPC) spinning. Wet spinning is a traditional method used to create strong and flexible fibers, while IPC spinning allows for the creation of composite fibers with enhanced properties. These methods enable the production of sutures with tailored mechanical properties, biodegradability, and antibacterial characteristics.
One of the key challenges identified in the review is the need for consistent quality and improved biocompatibility in cellulose-based sutures. While natural cellulose fibers like cotton have been used historically, their quality can vary, leading to inconsistent performance. In contrast, nanocellulose and oxidized regenerated cellulose (ORC) offer more uniform properties and can be engineered for specific applications. For example, ORC sutures have demonstrated significant biodegradability, losing over 50% of their strength within 14 days, making them suitable for absorbable sutures.
The review also emphasizes the importance of multifunctional sutures that integrate antibacterial properties and growth factors to enhance wound healing. For instance, CNF/chitosan composite sutures have shown excellent antibacterial activity against common pathogens like Escherichia coli and Staphylococcus aureus, while maintaining high cell viability in vitro and in vivo.
Looking ahead, the review suggests that cellulose-based sutures could become the next generation of high-end medical sutures, driven by advancements in materials science and a growing focus on sustainability. Future research should focus on optimizing fabrication processes, enhancing mechanical properties, and conducting clinical trials to validate their performance.
Here’s a link to and a citation for the paper,
Cellulose-based suture: State of art, challenge, and future outlook by Meiyan Wu, Lei Ding, Xiaoying Bai, Yuxiang Cao, Mehdi Rahmaninia, Bing Li, Bin Li. Journal of Bioresources and Bioproducts Available online 15 December 2024 In Press, Corrected Proof DOI: https://doi.org/10.1016/j.jobab.2024.11.006
In addition to the competition to develop commercial quantum computing, there’s the competition to develop commercial nuclear fusion energy. I have four stories about nuclear fusion, one from Spain, one from Chine, one from the US, and one from Vancouver. There are also a couple of segues into history and the recently (April 2, 2025) announced US tariffs (chaos has since ensued as these have become ‘on again/off again’ tariffs) but the bulk of this posting is focused on the latest (January – early April 2025) in fusion energy.
Fission nuclear energy, where atoms are split, is better known; fusion nuclear energy is released when a star is formed. For anyone unfamiliar with the word tokamak as applied to nuclear fusion (which is mentioned in all the stories), you can find out more in the Tokamak Wikipedia entry.
In a pioneering approach to achieve fusion energy, the SMART device has successfully generated its first tokamak plasma. This step brings the international fusion community closer to achieving sustainable, clean, and virtually limitless energy through controlled fusion reactions.
The SMART tokamak, a state-of-the-art experimental fusion device designed, constructed and operated by the Plasma Science and Fusion Technology Laboratory of the University of Seville, is a worldwide unique spherical tokamak due to its flexible shaping capabilities. SMART has been designed to demonstrate the unique physics and engineering properties of Negative Triangularity shaped plasmas towards compact fusion power plants based on Spherical Tokamaks.
Prof. Manuel García Muñoz, Principal Investigator of the SMART tokamak, stated: “This is an important achievement for the entire team as we are now entering the operational phase of SMART. The SMART approach is a potential game changer with attractive fusion performance and power handling for future compact fusion reactors. We have exciting times ahead! Prof. Eleonora Viezzer, co-PI of the SMART project, adds: “We were all very excited to see the first magnetically confined plasma and are looking forward to exploiting the capabilities of the SMART device together with the international scientific community. SMART has awoken great interest worldwide.
When negative becomes positive and compact
The triangularity describes the shape of the plasma. Most tokamaks operate with positive triangularity, meaning that the plasma shape looks like a D. When the D is mirrored (as shown in the figure on the right), the plasma has negative triangularity.
Negative triangularity plasma shapes feature enhanced performance as it suppresses instabilities that expel particles and energy from the plasma, preventing severe damage to the tokamak wall. Besides offering high fusion performance, negative triangularity also feature attractive power handling solutions, given that it covers a larger divertor area for distributing the heat exhaust. This also facilitates the engineering design for future compact fusion power plants.
Fusion2Grid aimed at developing the foundation for the most compact fusion power plant
SMART is the first step in the Fusion2Grid strategy led by the PSFT team and, in collaboration with the international fusion community, is aimed at the most compact and most efficient magnetically confined fusion power plant based on Negative Triangularity shaped Spherical Tokamaks.
SMART will be the first compact spherical tokamak operating at fusion temperatures with negative triangularity shaped plasmas.
The objective of SMART is to provide the physics and engineering basis for the most compact design of a fusion power plant based on high-field Spherical Tokamaks combined with Negative Triangularity. The solenoid-driven plasma represents a major achievement in the timeline of getting SMART online and advancing towards the most compact fusion device.
The Plasma Science and Fusion Technology Lab of the University of Seville hosts the SMall Aspect Ratio Tokamak (SMART) and leads several worldwide efforts on energetic particles and plasma transport and stability towards the development of magnetically confined fusion energy.
Caption: The Experimental Advanced Superconducting Tokamak achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds. Credit: Image by HFIPS ( Hefei Institutes of Physical Science at the Chinese Academy of Sciences)
China has made a business announcement and there is no academic paper mentioned in their January 21, 2025 press release on EurekAlert (also available on phys.org as a January 21, 2025 news item), Note: A link has been removed,
The Experimental Advanced Superconducting Tokamak (EAST), commonly known as China’s “artificial sun,” has achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds. This accomplishment, reached on Monday, sets a new world record and marks a significant breakthrough in the pursuit of fusion power generation.
The duration of 1,066 seconds is a critical advancement in fusion research. This milestone, achieved by the Institute of Plasma Physics (ASIPP) at Hefei Institutes of Physical Scienece [sic] (HFIPS) of the Chinese Academy of Sciences, far surpasses the previous world record of 403 seconds, also set by EAST in 2023.
The ultimate goal of developing an artificial sun is to replicate the nuclear fusion processes that occurr [sci] in the sun, providing humanity with a limitless and clean energy source, and enabling exploration beyond our solar system.
Scientists worldwide have dedicated over 70 years to this ambitious goal. However, generating electricity from a nuclear fusion device involves overcoming key challenges, including reaching temperatures exceeding 100 million degrees Celsius, maintaining stable long-term operation, and ensuring precise control of the fusion process.
“A fusion device must achieve stable operation at high efficiency for thousands of seconds to enable the self-sustaining circulation of plasma, which is essential for the continuous power generation of future fusion plants,” said SONG Yuntao, ASIPP director and also vice president of HFIPS. He said that the recent record is monumental, marking a critical step toward realizing a functional fusion reactor.
According to GONG Xianzu, head of the EAST Physics and Experimental Operations division, several systems of the EAST device have been upgraded since the last round of experiments. For example, the heating system, which previously operated at the equivalent power of nearly 70,000 household microwave ovens, has now doubled its power output while maintaining stability and continuity.
Since its inception in 2006, EAST has served as an open testing platform for both Chinese and international scientists to conduct fusion-related experiments and research.
China officially joined the International Thermonuclear Experimental Reactor (ITER) program in 2006 as its seventh member. Under the agreement, China is responsible for approximately 9 percent of the project’s construction and operation, with ASIPP serving as the primary institution for the Chinese mission.
ITER, currently under construction in southern France, is set to become the world’s largest magnetic confinement plasma physics experiment and the largest experimental tokamak nuclear fusion reactor upon completion.
In recent years, EAST has consistently achieved groundbreaking advancements in high-confinement mode, a fundamental operational mode for experimental fusion reactors like ITER and the future China Fusion Engineering Test Reactor (CFETR). These accomplishments provide invaluable insights and references for the global development of fusion reactors.
“We hope to expand international collaboration via EAST and bring fusion energy into practical use for humanity,” said SONG.
In Hefei, Anhui Province, China, where EAST is loacated [sic], a new generation of experimental fusion research facilities is currently under construction. These facilities aim to further accelerate the development and application of fusion energy.
I always feel a little less confident about the information when there are mistakes. Three typos in the same press release? Maybe someone forgot to give it a final once over?
Successfully harnessing the power of fusion energy could lead to cleaner and safer energy for all – and contribute substantially to combatting [UK spelling] the climate crisis. Towards this goal, Type One Energy has published a comprehensive, self-consistent, and robust physics basis for a practical fusion pilot power plant.
This groundbreaking research is presented in a series of six peer-reviewed scientific papers in a special issue of the prestigious Journal of Plasma Physics (JPP), published by Cambridge University Press.
The articles serve as the foundation for the company’s first fusion power plant project, which Type One Energy is developing with the Tennessee Valley Authority utility in the United States.
Alex Schekochihin, Professor of Theoretical Physics at the University of Oxford and Editor of the JPP, spoke with enthusiasm about this development:
“JPP is very proud to provide a platform for rigorous peer review and publication of the papers presenting the physics basis of the Infinity Two stellarator — an innovative and ground-breaking addition to the expanding family of proposed fusion power plant designs.
“Fusion science and technology are experiencing a period of very rapid development, driven by both public and private enthusiasm for fusion power. In this environment of creative and entrepreneurial ferment, it is crucial that new ideas and designs are both publicly shared and thoroughly scrutinised by the scientific community — Type One Energy and JPP are setting the gold standard for how this is done (as we did with Commonwealth Fusion Systems 5 years ago for their SPARC physics basis).”
The new physics design basis for the pilot power plant is a robust effort to consider realistically the complex relationship between challenging, competing requirements that all need to function together for fusion energy to be possible.
This new physics solution also builds on the operating characteristics of high-performing stellarator fusion technology – a stellarator being a machine that uses complex, helical magnetic fields to confine the plasma, thereby enabling scientists to control it and create suitable conditions for fusion. This technology is already being used with success on the world’s largest research stellarator, the Wendelstein 7-X, located in Germany, but the challenge embraced by Type One Energy’s new design is how to scale it up to a pilot plant.
Building the future of energy
Functional fusion technology could offer limitless clean energy. As global energy demands increase and energy security is front of mind, too, this new physics design basis comes at an excellent time.
Christofer Mowry, CEO of Type One Energy, is cognisant of the landmark nature of his company’s achievement and proud of its strong, real-world foundations.
“The physics basis for our new fusion power plant is grounded in Type One Energy’s expert knowledge about reliable, economic, electrical generation for the power grid. We have an organisation that understands this isn’t only about designing a science project.”
This research was developed collaboratively between Type One Energy and a broad coalition of scientists from national laboratories and universities around the world. Collaborating organisations included the US Department of Energy, for using their supercomputers, such as the exascale Frontier machine at Oak Ridge National Laboratory, to perform its physics simulations.
While commercial fusion energy has yet to move from theory into practice, this new research marks an important and promising milestone. Clean and abundant energy may yet become reality.
This is not directly related to fusion energy, so, you might want to skip this section.
Caption: Type One Energy employees at the Bull Run [emphasis mine] Fossil Plant, soon to be home to the prototype Infinity One. Credit: Type One Energy
I wonder if anyone argued for a change of name given how charged the US history associated with ‘Bull Run’ is, from the the First Battle of Bull Run Wikipedia entry, Note: Links have been removed,
The First Battle of Bull Run, called the Battle of First Manassas[1] by Confederate forces, was the first major battle of the American Civil War. The battle was fought on July 21, 1861, in Prince William County, Virginia, just north of what is now the city of Manassas and about thirty miles west-southwest of Washington, D.C. The Union Army was slow in positioning themselves, allowing Confederate reinforcements time to arrive by rail. Each side had about 18,000 poorly trained and poorly led troops. The battle was a Confederate victory and was followed by a disorganized post-battle retreat of the Union forces.
…
A Confederate victory the first time and the second time (Second Battle of Bull Run Wikipedia entry)? For anyone unfamiliar with the history, the US Civil War was fought from 1861 to 1865 between Union and Confederate forces. The Confederate states had seceded from the union (US) and were fighting to retain their slavery-based economy and they lost the war.
Had anyone consulted me I would have advised changing the name from Bull Run to some thing less charged (pun noted) to host your prototype fusion energy pilot plant.
Back to the usual programme.
Type One Energy
Type One Energy issued a March 27, 2025 news release about the special issue of the Journal of Plasma Physics (JPP), Note 1: Some of this redundant; Note 2: Links have been removed,
Type One Energy announced today publication of the world’s first comprehensive, self-consistent, and robust physics basis, with conservative design margins, for a practical fusion pilot power plant. This physics basis is presented in a series of seven peer-reviewed scientific papers in a special issue of the prestigious Journal of Plasma Physics (JPP). They serve as the foundation for the company’s first Infinity Two stellarator fusion power plant project, which Type One Energy is developing for the Tennessee Valley Authority (TVA) utility in the U.S.
The Infinity Two fusion pilot power plant physics design basis realistically considers, for the first time, the complex relationship between competing requirements for plasma performance, power plant startup, construction logistics, reliability, and economics utilizing actual power plant operating experience. This Infinity Two baseline physics solution makes use of the inherently favorable operating characteristics of highly optimized stellarator fusion technology using modular superconducting magnets, as was so successfully proven on the W7-X science machine in Germany.
“Why are we the first private fusion company with an agreement to develop a potential fusion power plant project for an energy utility? Because we have a design anchored in reality,” said Christofer Mowry, CEO of Type One Energy. “The physics basis for Infinity Two is grounded in the knowledge of what is required for application to, and performance in, the demanding environment of reliable electrical generation for the power grid. We have an organization that understands this isn’t about designing a science project.”
Led by Chris Hegna, widely recognized as a leading theorist in modern stellarators, Type One Energy performed high-fidelity computational plasma physics analyses to substantially reduce the risk of meeting Infinity Two power plant functional and performance requirements. This unique and transformational achievement is the result of a global development program led by the Type One Energy plasma physics and stellarator engineering organization, with significant contributions from a broad coalition of scientists from national laboratories and universities around the world. The company made use of a spectrum of high-performance computing facilities, including access to the highest-performance U.S. Department of Energy supercomputers such as the exascale Frontier machine at Oak Ridge National Laboratory (ORNL), to perform its stellarator physics simulations.
“We committed to this ambitious fusion commercialization milestone two years ago and today we delivered,” said John Canik, Chief Science and Engineering Officer for Type One Energy. “The team was able to efficiently develop deep plasma physics insights to inform the design of our Infinity Two stellarator, by taking advantage of our access to high performance computing resources. This enabled the Type One Energy team to demonstrate a realistic, integrated stellarator design that moves far beyond conventional thinking and concepts derived from more limited modeling capabilities.”
The consistent and robust physics solution for Infinity Two results in a deuterium-tritium (D-T) fueled, burning plasma stellarator with 800 MW of fusion power and delivers a nominal 350 MWe to the power grid. It is characterized by fusion plasma with resilient and stable behavior across a broad range of operating conditions, very low heat loss due to turbulent transport, as well as tolerable direct energy losses to the stellarator first wall. The Infinity Two stellarator has sufficient room for both adequately sized island divertors to exhaust helium ash and a blanket which provides appropriate shielding and tritium breeding. Type One Energy has high confidence that this essential physics solution provides a good baseline stellarator configuration for the Infinity Two fusion pilot power plant.
“The articles in this issue [of JPP] represent an important step towards a fusion reactor based on the stellarator concept. Thanks to decades of experiments and theoretical research, much of the latter published in JPP, it has become possible to lay out the physics basis for a stellarator power plant in considerable detail,” said Per Helander, head of Stellarator Theory Division at the Max Planck Institute for Plasma Physics. “JPP is very happy to publish this series of papers from Type One Energy, where this has been accomplished in a way that sets new standards for the fidelity and confidence level in this context.”
Important to successful fusion power plant commercialization, this stellarator configuration has enabled Type One Energy to architect a maintenance solution which supports good power plant Capacity Factors (CF) and associated Levelized Cost of Electricity (LCOE). It also supports favorable regulatory requirements for component manufacturing and power plant construction methods essential to achieving a reasonable Over-Night Cost (ONC) for Infinity Two.
About Type One Energy
Type One Energy Group is mission-driven to provide sustainable, affordable fusion power to the world. Established in 2019 and venture-backed in 2023, the company is led by a team of globally recognized fusion scientists with a strong track record of building state-of-the-art stellarator fusion machines, together with veteran business leaders experienced in scaling companies and commercializing energy technologies. Type One Energy applies proven advanced manufacturing methods, modern computational physics and high-field superconducting magnets to develop its optimized stellarator fusion energy system. Its FusionDirect development program pursues the lowest-risk, shortest-schedule path to a fusion power plant over the coming decade, using a partner-intensive and capital-efficient strategy. Type One Energy is committed to community engagement in the development and deployment of its clean energy technology. For more information, visit www.typeoneenergy.com or follow us on LinkedIn.
While the company is currently headquartered in Knoxville, Tennessee, it was originally a spinoff company from the University of Wisconsin-Madison according to a March 30, 2023 posting on the university’s College of Engineering website,
Type One Energy, a Middleton, Wisconsin-based fusion energy company with roots in the University of Wisconsin-Madison’s College of Engineering, recently announced its first round of seed funding, raising $29 million from investors. The company has also onboarded a new, highly experienced CEO [Christofer Mowry].
Type One, founded in 2019 by a team of globally recognized fusion scientists and business leaders, is hoping to commercialize stellarator technology over the next decade. Stellarators are a type of fusion reactor that uses powerful magnets to confine ultra-hot streams of plasma in order to create the conditions for fusion reactions. Energy from fusion promises to be clean, safe, renewable power. The company is using advanced manufacturing methods, modern computational physics and high-field superconducting magnets to develop its stellarator through an initiative called FusionDirect.
…
According to the Type One Energy’s About page, there are four offices with the headquarters in Tennessee,
Madison 316 W Washington Ave. Suite 300 Madison, WI 53703
Boston 299 Washington St. Suites C & E Woburn, MA 01801
Vancouver 1140 West Pender St. Vancouver, BC V6E 4G1
The mention of an office in Vancouver, Canada piqued my curiosity but before getting to that, I’m going to include some informative excerpts about nuclear energy (both fission and fusion) from this August 31, 2023 article written by Tina Tosukhowong on behalf of TDK Ventures, which was posted on Medium,
Fusion power is the key to the energy transformation that humanity needs to drive decarbonization, clean, and baseload energy production that is inherently fail-safe, with no risk of long-lived radioactive waste, while also delivering on ever-growing energy-consumption demands at the global scale. Fusion is hard and requires exceptional conditions for sustained reaction (which is part of what makes it so safe), which has long served as a deterrent for technical maturation and industrial viability. …
…
The current reality of our world is monumental fossil-fuel dependence. This, coupled with unprecedented levels of energy demand has resulted in the over 136,700 TWh (that’s 10¹²) of energy consumed via fossil fuels annually [1]. Chief repercussion among the many consequences of this dependence is the now very looming threat of climate catastrophe, which will soon be irreversible if global temperature rise is not abated and held to within 1.5 °C of pre-industrial levels. To do so, the nearly 40 gigatons of CO2 emissions generated each year must be steadily reduced and eventually mitigated entirely [2]. A fundamental shift in how power is generated globally is the only way forward. Humanity needs an energy transformation — the right energy transformation.
Alternative energy-generation techniques, such as wind, solar, geothermal, and hydroelectric approaches have all made excellent strides, and indeed in just the United States electricity generated by renewable methods doubled from 10 to 20% of total between 2010 and 2020 [3–4]. These numbers are incredibly encouraging and give significant credence in the journey to net-zero emission energy generation. However, while these standard renewable approaches should be championed, wind and solar are intermittent and require a large amount of land to deploy, while geothermal and hydroelectric are not available in every geography.
By far the most viable candidates for continuous clean energy generation to replace coal-fired power plants are nuclear-driven technologies, i.e. nuclear fission or nuclear fusion. Nuclear fission has been a proven effective method ever since it was first demonstrated almost 80 years ago underneath the University of Chicago football Stadium by Nobel Laureate Enrico Fermi [5]. Heavier atomic elements, in most cases Uranium-235, are exposed to and bombarded by neutrons. This causes the Uranium to split resulting in two slightly less-heavy elements (like Barium and Krypton). This in turn causes energy to be released and more neutrons to be ejected and bombard other nearby Uranium-235, at which point the process cascades into a chain reaction. The released energy (heat) is utilized in the same way coal is burned in a traditional power plant, being subsequently used to generate electricity usually via the creation of steam to drive a turbine [6]. While already having reached viable commercial maturity, fission carries inherent and nontrivial safety concerns. An unhampered chain reaction can quickly lead to meltdown with disastrous consequences, and, even when properly managed, the end reaction does generate radioactive waste whose half-life can last hundreds of thousands of years.
Figure 1. Breakdown of a nuclear fission reaction [6]. Incident neutron bombards a fissile heavy element, splitting it and release energy and more nuclei setting off a chain reaction.
Especially given modernization efforts and meteoric gains in safety (thanks to advents in material science like ceramic coatings), fission will continue to be a critical piece to better, greener energy transformation. However, in extending our vision to an even brighter future with no such concerns — carbon emissions or safety — nuclear fusion is humanity’s silver bullet. Instead of breaking down atoms leading to a chain reaction, fusion is the combining of atoms (usually isotopes of Hydrogen) into heavier elements which also results in energy release / heat generation [7]. Like fission, fusion can be designed to be a continuous energy source that can serve as a permanent backbone to the power grid. It is extremely energy dense, with 1 kg of fusion fuel producing the same amount of energy as 1,000,000 kg of coal, and it is inherently fail-safe with no long-term radioactive waste.
…
As a concept, if fusion is a silver bullet to answer humanity’s energy transformation needs, then why haven’t we done so already? The appeal seems so obvious, what’s the hold up? Simply put, nuclear fusion is hard for the very same reason the process is inherently safe. Atoms in the process must have enough energy to overcome electrostatic repulsive forces between the two positive charges of their nuclei to fuse. The key figure of merit to evaluate fusion is the so-called “Lawson Triple Product.” Essentially, this means in order to generate energy by fusion more than the rate of energy oss to the environment, the nuclei must be very close together (as represented by n — the plasma density), kept at a high enough temperature (as represented by T — temperature), and for long enough time to sustain fusion (as represented by τ — the confinement time). The triple product required to achieve fusion “ignition” (the state where the rate of energy production is higher than the rate of loss) depends on the fuel type and occurs within a plasma state. A deuterium and tritium (D-T) system has the lowest Lawson Triple product requirement, where fusion can achieve a viable threshold for ignition when the density of the fuel atoms, n, multiplied by the fuel temperature, T, multiplied by the confinement time, τ, is greater than 5×10²¹ (nTτ > 5×10²¹ keV-s/m³) [8–9]. For context, the temperature alone in this scenario must be higher than 100-million degrees Celsius.
Figure 2. (Left) Conceptual illustration of a fusion reaction with Deuterium (²H) and Tritium (³H) forming an Alpha particle (⁴He) and free neutron along with energy released as heat (Right). To initiate fusion, repelling electrostatic charge must be overcome via conditions meeting the minimum Lawson Triple Product threshold
…
Tosukhowong’s August 31, 2023 article provides a good overview keeping in mind that it is slanted to justify TDK’s investment in Type One Energy.
Why a Vancouver, Canada office?
As for Type One Energy’s Vancouver (British Columbia, Canada) connection, I was reminded of General Fusion, a local fusion energy company while speculating about the connection. First speculative question: could Type One Energy’s presence in Canada allow it to access Canadian government funds for its research? Second speculative question: do they want to have access to people who might hesitate to move to the US or might want to move out of the US but would move to Canada?
The US is currently in an unstable state as suggested in this April 3, 2025 opinion piece by Les Leyne for vancouverisawsome.com
Les Leyne: Trump’s incoherence makes responding to tariff wall tricky
Trump’s announcement was so incoherent that much of the rest of the world had to scramble to grasp even the basic details
B.C. officials were guarded Wednesday [April 2, 2025] about the impact on Canada of the tariff wall U.S. President Donald Trump erected around the U.S., but it appears it could have been worse.
Trump’s announcement was so incoherent that much of the rest of the world had to scramble to grasp even the basic details. So cabinet ministers begged for more time to check the impacts.
“It’s still very uncertain,” said Housing Minister Ravi Kahlon, who chairs the “war room” committee responsible for countering tariff threats. “It’s hard to make sense from President Trump’s speech.” [emphasis mine]
Kahlon said the challenge is that tariff policies change hour by hour, “and anything can happen.”
…
On April 2, 2025 US President Donald Trump announced tariffs (then paused some of the tariffs on April 9, 2025) and some of the targets seemed a bit odd, from an April 2, 2025 article by Alex Galbraith for salon.com, Note: Links have been removed,
“Trade war with penguins”: Trump places 10% tariff on uninhabited Antarctic islands
Planned tariffs shared by the White House included a 10% duty on imports from the barren Heard and McDonald Islands
For once in his life, Donald Trump underpromised and over-delivered.
The president announced a 10% duty on all imports on Wednesday [April 2, 2025], along with a raft of reciprocal tariffs on U.S. trading partners. An extensive graphic released by the White House showed how far Trump was willing to take his tit-for-tat trade war, including a shocking levy of 10% on all imports from the Heard and McDonald Islands.
If you haven’t heard of this powerhouse of global trade and territory of Australia, you aren’t alone. Few have outside of Antarctic researchers and seals. These extremely remote islands about 1,000 miles north of Antarctica consist mostly of barren tundra. They’re also entirely uninhabited.
The news that we were starting a trade war with penguins spread quickly after Trump’s announcement. …
U.S. stock futures crumbled following the news of Trump’s widespread tariffs. Dow futures fell by nearly 1,000 points while NASDAQ and S&P futures fell by 3 to 4%. American companies’ stock values rapidly tumbled after the announcement, with large retail importers seeing significant losses. …
No word from the penguins about the ‘pause’. I’m assuming Donald Trump’s next book will be titled, “The art of negotiating trade deals with penguins.” Can’t wait to read it.
(Perhaps someone should tell him there are no penguins in the Arctic so he can’t bypass Canadians or Greenlanders to make a deal.)
Now for the local story.
General Fusion
There’ve been two recent developments at General Fusion. Most recently, an April 2, 2025 General Fusion news release announces a new hire, Note: Links have been removed,
Bob Smith is joining General Fusion as a strategic advisor. Smith brings more than 35 years of experience developing, scaling, and launching world-changing technologies, including spearheading new products and innovation in the aerospace industry at United Space Alliance, Sandia Labs, and Honeywell before serving as CEO of Blue Origin. He joins General Fusion as the company’s Lawson Machine 26 (LM26) fusion demonstration begins operations and progresses toward transformative technical milestones on the path to commercialization.
“I’ve been watching the fusion energy industry closely for my entire career. Fusion is the last energy source humanity will ever need, and I believe its impact as a zero-carbon energy source will transform the global energy supply at the time needed to fight the worst consequences of climate change,” said Smith. “I am thrilled to work with General Fusion. Their novel approach has inherent and distinctive benefits for the generation of commercially competitive fusion power. It’s exciting to join at a time when the team is about to demonstrate the fundamental physics behind their system and move to scaling up to a pilot plant.”
The LM26 program marks a significant step towards commercialization, as the company’s unique Magnetized Target Fusion (MTF) approach makes the path to powering the grid with fusion energy more straightforward than other technologies—because it practically addresses barriers to fusion commercialization, such as neutron material degradation, sustainable fuel production, and efficient energy extraction. As a strategic advisor, Smith will leverage his experience advancing game-changing technologies to help guide General Fusion’s technology development and strategic growth.
“Bob’s insights and experience will be invaluable as we execute the LM26 program and look beyond it to propel our practical technology to powering the grid by the mid-2030s,” said Greg Twinney, CEO, General Fusion. “We are grateful for his commitment of his in-demand time and expertise to our mission and look forward to working together to make fusion power a reality!”
About Bob Smith:
Bob is an experienced business leader in the aerospace and defense industry with extensive technical and operational expertise across the sector. He worked at and managed federal labs, led developments at a large government contractor, grew businesses at a Fortune 100 multinational, and scaled up a launch and space systems startup. Bob also has extensive international experience and has worked with suppliers and OEMs in all the major aerospace regions, including establishing new sites and factories in Europe, India, China, and Puerto Rico.
Bob’s prior leadership roles include Chairman and Chief Executive Officer of Blue Origin, President of Mechanical Systems & Components at Honeywell Aerospace, Chief Technology Officer at Honeywell Aerospace, Chairman of NTESS (Sandia Labs), and Executive Director of Space Shuttle Upgrades at United Space Alliance.
Bob holds a Bachelor of Science degree in aerospace engineering from Texas A&M, a Master of Science degree in engineering/applied mathematics from Brown University, a doctorate from the University of Texas in aerospace engineering, and a business degree from MIT’s Sloan School of Management. Bob is also a Fellow of the Royal Aeronautical Society, a Fellow of the American Institute of Aeronautics and Astronautics, and an Academician in the International Academy of Astronautics.
Quick Facts:
Fusion energy is the ultimate clean energy solution—it is the energy source that powers the sun and stars. Fusion is the process by which two light nuclei merge to form a heavier one, producing a massive amount of energy.
General Fusion’s Magnetized Target Fusion (MTF) technology is designed to scale for cost-efficient power plants. It uses mechanical compression to create fusion conditions in short pulses, eliminating the need for expensive lasers or superconducting magnets. An MTF power plant is designed to produce its own fuel and inherently includes a method to extract the energy and put it to work.
Lawson Machine 26 (LM26) is a world-first Magnetized Target Fusion demonstration. Launched, designed, and assembled in just 16 months, the machine is now forming magnetized plasmas regularly at 50 per cent commercial scale. It is advancing towards a series of results that will demonstrate MTF in a commercially relevant way: 10 million degrees Celsius (1 keV), 100 million degrees Celsius (10 keV), and scientific breakeven equivalent (100% Lawson).
About General Fusion General Fusion is pursuing a fast and practical approach to commercial fusion energy and is headquartered in Richmond, Canada. The company was established in 2002 and is funded by a global syndicate of leading energy venture capital firms, industry leaders, and technology pioneers. Learn more at www.generalfusion.com.
…
Bob Smith and Blue Origin: things did not go well
Sometimes you end up in a job and things do not work out well and that seems to have been the case at Blue Origin according to a September 25, 2023 article by Eric Berger for Ars Tecnica,
After six years of running Blue Origin, Bob Smith announced in a company-wide email on Monday that he will be “stepping aside” as chief executive of the space company founded by Jeff Bezos.
“It has been my privilege to be part of this great team, and I am confident that Blue Origin’s greatest achievements are still ahead of us,” Smith wrote in an email. “We’ve rapidly scaled this company from its prototyping and research roots to a large, prominent space business.”
Shortly after Smith’s email, a Blue Origin spokesperson said the company’s new chief executive will be Dave Limp, who stepped down as Amazon’s vice president of devices and services last month.
…
To put things politely, Smith has had a rocky tenure as Blue Origin’s chief executive. After being personally vetted and hired by Bezos, Smith took over from Rob Meyerson in 2017. The Honeywell engineer was given a mandate to transform Blue Origin into a large and profitable space business.
He did succeed in growing Blue Origin. The company had about 1,500 employees when Smith arrived, and the company now employs nearly 11,000 people. But he has been significantly late on a number of key programs, including the BE-4 rocket engine and the New Glenn rocket.
As a space reporter, I have spoken with dozens of current and former Blue Origin employees, and virtually none of them have had anything positive to say about Smith’s tenure as chief executive. I asked one current employee about the hiring of Limp on Monday afternoon, and their response was, “Anything is better than Bob.”
Although it is very far from an exact barometer, Smith has received consistently low ratings on Glassdoor for his performance as chief executive of Blue Origin. And two years ago, a group of current and former Blue Origin employees wrote a blistering letter about the company under Smith. “In our experience, Blue Origin’s culture sits on a foundation that ignores the plight of our planet, turns a blind eye to sexism, is not sufficiently attuned to safety concerns, and silences those who seek to correct wrongs,” the essay authors wrote.
With any corporate culture, there will be growing pains, of course. But Smith brought a traditional aerospace mindset into a company that had hitherto been guided by a new space vision, leading to a high turnover rate. And Blue Origin remains significantly underwater, financially. It is likely that Bezos is still providing about $2 billion a year to support the company’s cash needs.
Crucially, as Blue Origin meandered under Smith’s tenure, SpaceX soared, launching hundreds of rockets and thousands of satellites. Smith, clearly, was not the leader Blue Origin needed to make the company more competitive with SpaceX in launch and other spaceflight activities. It became something of a parlor game in the space industry to guess when Bezos would finally get around to firing Smith.
…
On the technical front, a March 27, 2025 General Fusion news release announces “Peer-reviewed publication confirms General Fusion achieved plasma energy confinement time required for its LM26 large-scale fusion machine,” Note: Links have been removed,
New results published in Nuclear Fusionconfirm General Fusion successfully created magnetized plasmas that achieved energy confinement times exceeding 10 milliseconds. The published energy confinement time results were achieved on General Fusion’s PI3 plasma injector — the world’s largest and most powerful plasma injector of its kind. Commissioned in 2017, PI3 formed approximately 20,000 plasmas in a machine of 50 per cent commercial scale. The plasma injector is now integrated into General Fusion’s Lawson Machine 26 (LM26) — a world-first Magnetized Target Fusion demonstration tracking toward game-changing technical milestones that will advance the company’s ultimate mission: generating zero-carbon fusion energy for the grid in the next decade.
The 10-millisecond energy confinement time is the duration required to compress plasmas in LM26 to achieve key temperature thresholds of 1 keV, 10 keV, and, ultimately, scientific breakeven equivalent (100% Lawson). These results were imperative to de-risking LM26. The demonstration machine is now forming plasmas regularly, and the company is optimizing its plasma performance in preparation for compressing plasmas to create fusion and heating from compression.
Key Findings:
The plasma injector now integrated into General Fusion’s LM26 achieved energy confinement times exceeding 10 milliseconds, the pre-compression confinement time required for LM26’s targeted technical milestones. These results were achieved without requiring active magnetic stabilization or auxiliary heating. This means the results were achieved without superconducting magnets, demonstrating the company’s cost-effective approach.
The plasma’s energy confinement time improved when the plasma injector vessel was coated with natural lithium. A key differentiator in General Fusion’s commercial approach is its use of a liquid lithium wall to compress plasmas during compression. In addition to the confinement time advantages shown in this paper, the liquid lithium wall will also protect a commercial MTF machine from neutron damage, enable the machine to breed its own fuel, and provide an efficient method for extracting energy from the machine.
The maximum energy confinement time achieved by PI3 was approximately 12 milliseconds. The machine’s maximum plasma density was approximately 6×1019 m-3, and maximum plasma temperatures exceeded 400 eV. These strong pre-compression results support LM26’s transformative targets.
Quotes:
“LM26 is designed to achieve a series of results that will demonstrate MTF in a commercially relevant way. Following LM26’s results, our unique approach makes the path to powering the grid with fusion energy more straightforward than other technologies because we have front-loaded the work to address the barriers to commercialization.”
Dr. Michel Laberge Founder and Chief Science Officer
“For over 16 years, I have worked hand in hand with Michel to advance General Fusion’s practical technology. This company is entrepreneurial at its core. We pride ourselves on building real machines that get results that matter, and I’m thrilled to have the achievements recognized in Nuclear Fusion.”
Mike Donaldson Senior Vice President, Technology Development
For anyone curious about General Fusion, I have a brief overview and history of the company and their particular approach to fusion energy in my February 6, 2024 posting (scroll down to ‘The Canadians’).
A September 7, 2024 news item on phys.org offers some intriguing information about nanoscale silver and its self-healing abilities, Note: A link has been removed,
As an innovative concept in materials science and engineering, the inspiration for self-healing materials comes from living organisms that have the innate ability to self-heal. Along this line, the search for self-healing materials has been generally focused on “soft” materials like polymers and hydrogels. For solid-state metals, one may intuitively imagine that any form of self-healing will be much more difficult to achieve.
While a few past studies have showcased the self-healing behavior in metals that more or less requires the assistance of external triggers (e.g., by heating, mechanical stimulus, or electron beam irradiation), whether the autonomous self-healing can occur in metal solids without any external intervention remains a scientific curiosity.
Now in a new study published in Matter, researchers from the Institute of Physics (IOP) of the Chinese Academy of Sciences have discovered that such an intrinsic and autonomous self-healing phenomenon can occur in nanoscale silver (Ag).
This study, which combines advanced in-situ transmission electron microscopy (TEM) with molecular dynamics (MD) simulations, reveals that nanoscale Ag can autonomously repair itself from structural damages such as nanocracks and nanopores without external intervention.
This remarkable ability is observed not only at room temperature but also at frigid temperatures as low as 173 K.
Notably, over the same damaging area, the repeated reversible self-healing cycles can also be achieved with the same level of efficiency.
The experiments were performed inside an atomic-resolution TEM by utilizing single-crystalline Ag nanosheets as testing specimens. Both nanopores and nanocracks were purposefully fabricated through in-situ drilling by TEM electron beam.
To avoid any possible intervention to the healing process, Ag nanosheet specimen was afterwards kept at a “beam-off” state all through until each moment for interval TEM imaging.
As an interesting and perhaps surprising result, the two representative kinds of structural damages were observed to undergo rapid self-healing autonomously within several to dozens of minutes, with the healed regions perfectly restoring the crystal lattice of Ag with atomically precise ordering.
Unlike Ag, gold (Au) did not show similar self-healing behavior at room temperature, despite the fact that Au is the most relevant element to Ag in the Periodic Table and they share many similarities in physical and chemical properties.
Further MD simulation results well reproduce the experimental observations, especially regarding the difference in the healing behavior between Ag and Au. What sets Ag apart from Au is its high mobility of surface diffusion, a trait not commonly found in other metal solids.
By employing TEM, the researchers were able to in-situ track the trajectories of healing process in Ag at the atomic level. With a combination of atomistic imaging and theoretical simulation results, the research highlights that self-healing is enabled by the surface-mediated self-diffusion of Ag atoms as driven by chemical potential imbalance due to Gibbs-Thomson effect.
When a nascent damage structure (either nanopore or nanocrack) begins its existence in Ag nanosheet, there will create a concave site with the negative local curvature. Due to the general curvature-dependence of chemical potential, the concave damage site will thereby have smaller chemical potential relative to the undamaged areas of the nanosheet. This built-in imbalance of chemical potential drives Ag atoms to migrate and repair the damage autonomously, showcasing a sophisticated form of material self-maintenance in negative feedback way.
The ability of Ag to autonomously self-heal nanoscale damages at room temperature and below shows promising possibility for developing damage-tolerant components and devices at the sub-micrometer length scale.
Perhaps more importantly, in a broader term, this unusual finding at a mechanistic level may provide a guiding framework for deeper understanding of the self-healing phenomena and concepts in metal solids in general.
Barely audible to human ears, healthy soils produce a cacophony of sounds in many forms—a bit like an underground rave concert of bubble pops and clicks.
Special recordings made by Flinders University ecologists in Australia show that this chaotic mixture of soundscapes can be a measure of the diversity of tiny living animals in the soil, which create sounds as they move and interact with their environment.
…
An August 16, 2024 Flinders University press release (also on EurekAlert), which originated the news item, describes a newish (more about newish later) field of research ‘eco-acoustics’ and technical details about the researchers’ work, Note: A link has been removed,
With 75% of the world’s soils degraded, the future of the teeming community of living species that live underground face a dire future without restoration, says microbial ecologist Dr Jake Robinson, from theFrontiers of Restoration Ecology Lab in the College of Science and Engineering at Flinders University.
This new field of research aims to investigate the vast, teeming hidden ecosystems where almost 60% of the Earth’s species live, he says.
“Restoring and monitoring soil biodiversity has never been more important.
“Although still in its early stages, ‘eco-acoustics’ is emerging as a promising tool to detect and monitor soil biodiversity and has now been used in Australian bushland and other ecosystems in the UK.
“The acoustic complexity and diversity are significantly higher in revegetated and remnant plots than in cleared plots, both in-situ and in sound attenuation chambers.
“The acoustic complexity and diversity are also significantly associated with soil invertebrate abundance and richness.”
The latest study, including Flinders University expert Associate Professor Martin Breed and Professor Xin Sun from the Chinese Academy of Sciences, compared results from acoustic monitoring of remnant vegetation to degraded plots and land that was revegetated 15 years ago.
The passive acoustic monitoring used various tools and indices to measure soil biodiversity over five days in the Mount Bold region in the Adelaide Hills in South Australia. A below-ground sampling device and sound attenuation chamber were used to record soil invertebrate communities, which were also manually counted.
“It’s clear acoustic complexity and diversity of our samples are associated with soil invertebrate abundance – from earthworms, beetles to ants and spiders – and it seems to be a clear reflection of soil health,” says Dr Robinson.
“All living organisms produce sounds, and our preliminary results suggest different soil organisms make different sound profiles depending on their activity, shape, appendages and size.
“This technology holds promise in addressing the global need for more effective soil biodiversity monitoring methods to protect our planet’s most diverse ecosystems.”
This is a copy of the research paper’s graphical abstract,
Caption: Acoustic monitoring was carried out on soil in remnant vegetation as well as degraded plots and land that was revegetated 15 years ago. Credit: Flinders University
Like a lot of newish scientific terms, eco-acoustics, appears to be evolving. A search for the term led me to the Acoustic ecology entry on Wikipedia, Note: Links have been removed,
Acoustic ecology, sometimes called ecoacoustics or soundscape studies, is a discipline studying the relationship, mediated through sound, between human beings and their environment.[1] Acoustic ecology studies started in the late 1960s with R. Murray Schafer a musician, composer and former professor of communication studies at Simon Fraser University (Vancouver, British Columbia, Canada) with the help of his team there[2] as part of the World Soundscape Project. The original WSP team included Barry Truax and Hildegard Westerkamp, Bruce Davies and Peter Huse, among others. The first study produced by the WSP was titled The Vancouver Soundscape. This innovative study raised the interest of researchers and artists worldwide, creating enormous growth in the field of acoustic ecology. In 1993, the members of the by now large and active international acoustic ecology community formed the World Forum for Acoustic Ecology.[3]
…
Soundscapes are composed of the anthrophony, geophony and biophony of a particular environment. They are specific to location and change over time.[12] Acoustic ecology aims to study the relationship between these things, i.e. the relationship between humans, animals and nature, within these soundscapes. These relationships are delicate and subject to disruption by natural or man-made means.[9]
…
The acoustic niche hypothesis, as proposed by acoustic ecologist Bernie Krause in 1993,[23] refers to the process in which organisms partition the acoustic domain, finding their own niche in frequency and/or time in order to communicate without competition from other species. The theory draws from the ideas of niche differentiation and can be used to predict differences between young and mature ecosystems. Similar to how interspecific competition can place limits on the number of coexisting species that can utilize a given availability of habitats or resources, the available acoustic space in an environment is a limited resource that is partitioned among those species competing to utilize it.[24]
In mature ecosystems, species will sing at unique bandwidths and specific times, displaying a lack of interspecies competition in the acoustic environment. Conversely, in young ecosystems, one is more likely to encounter multiple species using similar frequency bandwidths, which can result in interference between their respective calls, or a complete lack of activity in uncontested bandwidths. Biological invasions can also result in interference in the acoustic niche, with non-native species altering the dynamics of the native community by producing signals that mask or degrade native signals. This can cause a variety of ecological impacts, such as decreased reproduction, aggressive interactions, and altered predator-prey dynamics.[25] The degree of partitioning in an environment can be used to indicate ecosystem health and biodiversity.
…
Earlier bioacoustic research at Flinders University has been mentioned in a June 14, 2023 posting “The sound of dirt.” Finally, whether you spell it eco-acoustics or ecoacoustics or call it acoustic ecology, it is a fascinating way of understanding the natural and not-so-natural world we live in.
It seems like there’s graphene on the moon according to an August 1, 2024 news item on phys.org , Note: A link has been removed,
A study, published in National Science Review, reveals the existence of naturally formed few-layer graphene, a substance consisting of carbon atoms in a special, thin-layered structure.
The team, led by professors Meng Zou, Wei Zhang and senior engineer Xiujuan Li from Jilin University and Wencai Ren from the Chinese Academy of Sciences’ Institute of Metal Research, analyzed an olive-shaped sample of lunar soil, about 2.9 millimeters by 1.6 mm, retrieved from the Chang’e 5 mission in 2020.
According to the team, scientists generally believe that some 1.9 percent of interstellar carbon exists in the form of graphene, with its shape and structure determined by the process of its formation.
Using a special spectrometer, researchers found an iron compound that is closely related to the formation of graphene in a carbon-rich section of the sample. They then used advanced microscopic and mapping technologies to confirm that the carbon content in the sample comprised “flakes” that have two to seven layers of graphene.
The team proposed that the few-layer graphene may have formed in volcanic activity in the early stages of the moon’s existence, and been catalyzed by solar winds that can stir up lunar soil and iron-containing minerals that helped transform the carbon atoms’ structure. They added that impact processes from meteorites, which create high-temperature and high-pressure environments, may also have led to the formation of graphene.
On Earth, graphene is becoming a star in materials sciences due to its special features in optics, electrics and mechanics. The team believes their study could help develop ways to produce the material inexpensively and expand its use.
“The mineral-catalyzed formation of natural graphene sheds light on the development of low-cost scalable synthesis techniques of high-quality graphene,” the paper said. “Therefore, a new lunar exploration program may be promoted, and some forthcoming breakthroughs can be expected.”
Here’s a link to and a citation for the paper,
Discovery of natural few-layer graphene on the Moon by Wei Zhang, Qing Liang, Xiujuan Li, Lai-Peng Ma, Xinyang Li, Zhenzhen Zhao, Rui Zhang, Hongtao Cao, Zizhun Wang, Wenwen Li, Yanni Wang, Meiqi Liu, Nailin Yue, Hongyan Li, Zhenyu Hu, Li Liu, Qiang Zhou, Fangfei Li, Weitao Zheng, Wencai Ren, Meng Zou. National Science Review, nwae211, DOI: https://doi.org/10.1093/nsr/nwae211 Published:: 17 June 2024
This paper is open access and the National Science Review looks like another China-backed journal published by Oxford Academic. If not China-backed, it’s certainly China forward, from the About page,
National Science Review is an open access, peer-reviewed journal aimed at reporting cutting-edge developments across science and technology in China and around the world. The journal covers all areas of the natural sciences, including physics and mathematics, chemistry, life sciences, earth sciences, materials science, and information sciences.
I just realized that I haven’t seen anything recently about which country or countries are the leading the science race. Going by the recent rate of publication, China is doing quite well.
Credit: by Xiao Fu, Tangxin Li, Bin Caid, Jinshui Miao, Gennady N. Panin, Xinyu Ma, Jinjin Wang, Xiaoyong Jiang, Qing Lia, Yi Dong, Chunhui Hao, Juyi Sun, Hangyu Xu, Qixiao Zhao, Mengjia Xia, Bo Song, Fansheng Chen, Xiaoshuang Chen, Wei Lu, Weida Hu
it took a while to get there but the February 13, 2023 news item on phys.org announced research into extending memristors from tunable conductance to reconfigurable photo-response,
In traditional vision systems, the optical information is captured by a frame-based digital camera, and then the digital signal is processed afterwards using machine-learning algorithms. In this scenario, a large amount of data (mostly redundant) has to be transferred from a standalone sensing elements to the processing units, which leads to high latency and power consumption.
To address this problem, much effort has been devoted to developing an efficient approach, where some of the memory and computational tasks are offloaded to sensor elements that can perceive and process the optical signal simultaneously.
In a new paper published in Light: Science & Applications, a team of scientists, led by Professor Weida Hu from School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China, and co-workers have developed a non-volatile photo-memristor, in which the reconfigurable responsivity can be modulated by the charge and/or photon flux through it and further stored in the device.
The non-volatile photo-memristor has a simple two-terminal architecture, in which photoexcited carriers and oxygen-related ions are coupled, leading to a displaced and pinched hysteresis in the current-voltage characteristics. For the first time, non-volatile photo-memristors implement computationally complete logic with photoresponse-stateful operations, for which the same photo-memristor serves as both a logic gate and memory, using photoresponse as a physical state variable instead of light, voltage and memresistance. Polarity reversal of photo-memristors shows great potential for in-memory sensing and computing with feature extraction and image recognition for neuromorphic vision.
The photo-memristor demonstrates tunable short-circuit current in a non-volatile mode under illumination. By mimicking the biological functionalities of the human retina and designing specific device structures, the devices can act as neural network for neuromorphic visual processing and implementation of completely photoresponse-stateful logic operations triggered by electrical and light stimuli together. It can support various kinds of sensing tasks with all-in-one sensing-memory-computing approaches. These scientists summarize the operational principle and feature of their device:
“We design[ed] a two-terminal device with MoS2-xOx and specific graphene for three purposes in one: (1) to provide low barrier energy for the migration of oxygen ions; (2) to perform as geometry-asymmetric metal–semiconductor–metal van der Waals heterostructures with multi-photoresponse states; and (3) as an extension of a memristor, this device not only provides tunable conductance, but also demonstrates reconfigurable photoresponse for reading at zero bias voltage.”
“Moreover, the tunable short-circuit photocurrent and photoresponse can be increased to 889.8 nA and 98.8 mA/W, respectively, which are much higher than that of other reconfigurable phototransistors based on 2D materials. To reverse the channel polarity and obtain a gate-tunable short-circuit photocurrent, the channel semiconductor must be thin enough. Thus, it is difficult to use the thick film needed to absorb enough light to get a large signal. In our case, the mechanism of the two-terminal device rearrangement is based on ion migration, which is not limited by the thickness. We can increase the thickness of the film to absorb more photons and get a large short-circuit photocurrent.” they added.
“This new concept of a two-terminal photo-memristor not only enables all-in-one sensing-memory-computing approaches for neuromorphic vision hardware, but also brings great convenience for high-density integration.” the scientists forecast.
Here’s a link to and a citation for the paper,
Graphene/MoS2−xOx/graphene photomemristor with tunable non-volatile responsivities for neuromorphic vision processing by Xiao Fu, Tangxin Li, Bin Caid, Jinshui Miao, Gennady N. Panin, Xinyu Ma, Jinjin Wang, Xiaoyong Jiang, Qing Lia, Yi Dong, Chunhui Hao, Juyi Sun, Hangyu Xu, Qixiao Zhao, Mengjia Xia, Bo Song, Fansheng Chen, Xiaoshuang Chen, Wei Lu, Weida Hu. Light: Science & Applications volume 12, Article number: 39 (2023) DOI: https://doi.org/10.1038/s41377-023-01079-5 Published: 07 February 2023
It turns out there’s also a hydrogel aspect to this story about a flexible sweat sensor. As for cellulose nanocrystals (CNC), Canada played a leading role in the development of this nanomaterial and I have a bit more about the Canadian CNC scene later in this posting following the link and citation for the research paper. On to the research,
Highly elastic hydrogels constructed by heat-induced hydrogen bond remodeling can switch between wet and dry states (Image by ZHANG Fusheng and LI Qiongya)
A May 8, 2023 news item on phys.org features this work from the Dalian Institute of Chemical Physics of the Chinese Academy Sciences,
Cellulose nanocrystal (CNC), an emerging bio-based material, has been widely applied in fields such as electronics, bioplastics and energy. However, the functional failure of such materials in wet or liquid environments inevitably impairs their development in biomedicine, membrane separation, environmental monitoring, and wearable devices.
Now, a research group led by Prof. Qing Guangyan from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences [CAS] reported a sustainable, insoluble, and chiral photonic cellulose nanocrystal patch for calcium ion (Ca2+) sensing in sweat.
The researchers developed a simple and efficient method to fabricate insoluble CNC-based hydrogels. They found that by utilizing intermolecular hydrogen bond reconstruction, thermal dehydration enabled the optimized CNC composite photonic film to form a stable hydrogel network in an aqueous solution. Moreover, they indicated that the hydrogel could be reversibly switched between dry and wet states, which was convenient for specific functionalization.
The introduction of functionalized molecules by adsorption swelling in a liquid environment resulted in a hydrogel with freeze resistance (–20°C), strong adhesion, good biocompatibility, and high sensitivity to Ca2+.
“This work is expected to facilitate the application of sustainable cellulose sensors to monitor other metabolites (i.e., glucose, urea, and vitamins, etc.),” said Prof. QING. “It also lays foundation for digitally controlled hydrogel systems operating in environment monitoring, membrane separation, and wearable devices.”
FPInnovations is a Canadian research and development (R&D) not-for profit organization that was instrumental in the development of CNC. (If memory serves, they are a spinoff from the University of British Columbia.) There are two Canadian CNC production facilities (that I know of): CelluForce in Québec and Blue Goose Biorefineries in Saskatchewan. I get more information about research into applications for CNC from other parts of the world while the Canadian scene remains mostly silent.
I imagine this wearable technology would also be useful for the military too. However, the focus for these researchers from China is firefighting. (Given the situation with the Canadian wildfires in June 2023, we have 10x more than the average at this time in the season over the last 10 years, it’s good to see some work focused on safety for firefighters.) From a January 17, 2023 news item on phys.org,
Firefighting may look vastly different in the future thanks to intelligent fire suits and masks developed by multiple research institutions in China.
Researchers published results showing breathable electrodes woven into fabric used in fire suits have proven to be stable at temperatures over 520ºC. At these temperatures, the fabric is found to be essentially non-combustible with high rates of thermal protection time.
…
Caption: Scientists from multiple institutions address the challenges and limitations of current fire-fighting gear by introducing wearable, breathable sensors and electrodes to better serve firefighters. Credit: Nano Research, Tsinghua University Press
The results show the efficacy and practicality of Janus graphene/poly(p-phenylene benzobisoxazole), or PBO, woven fabric in making firefighting “smarter” with the main goal being to manufacture products on an industrial scale that are flame-retardant but also intelligent enough to warn the firefighter of increased risks while traversing the flames.
“Conventional firefighting clothing and fire masks can ensure firemen’s safety to a certain extent,” said Wei Fan, professor at the School of Textile Science and Engineering at Xi’an Polytechnic University. “However, the fire scene often changes quickly, sometimes making firefighters trapped in the fire for failing to judge the risks in time. At this situation, firefighters also need to be rescued.”
The key here is the use of Janus graphene/PBO, woven fabrics. While not the first of its kind, the introduction of PBO fibers offers better strength and fire protection than other similar fibers, such as Kevlar. The PBO fibers are first woven into a fabric that is then irradiated using a CO2 infrared laser. From here, the fabric becomes the Janus graphene/PBO hybrid that is the focus of the study.
The mask also utilizes a top and bottom layer of Janus graphene/PBO with a piezoelectric layer in between that acts as a way to convert mechanical pressures to electricity.
“The mask has a good smoke particle filtration effect, and the filtration efficiency of PM2.5 and PM3.0 reaches 95% and 100%, respectively. Meanwhile, the mask has good wearing comfort as its respiratory resistance (46.8 Pa) is lower than 49 Pa of commercial masks. Besides, the mask is sensitive to the speed and intensity of human breathing, which can dynamically monitor the health of the firemen” said Fan.
Flame-retardant electronics featured in these fire suits are flexible, heat resistant, quick to make and low-cost which makes scaling for industrial production a tangible achievement. This makes it more likely that the future of firefighting suits and masks will be able to effectively use this technology. Quick, effective responses can also reduce economic losses attributed to fires.
“The graphene/PBO woven fabrics-based sensors exhibit good repeatability and stability in human motion monitoring and NO2 gas detection, the main toxic gas in fires, which can be applied to firefighting suits to help firefighters effectively avoiding danger” Fan said. Being able to detect sharp increases in NO2 gas can help firefighters change course in an instant if needed and could be a lifesaving addition to firefighter gear.
Major improvements can be made in the firefighting field to better protect the firefighters by taking advantage of graphene/PBO woven and nonwoven fabrics. Widescale use of this technology can help the researchers reach their ultimate goal of reducing mortality and injury to those who risk their lives fighting fires.
Yu Luo and Yaping Miao of the School of Textile Science and Engineering at Xi’an Polytechnic University contributed equally to this work. Professor Wei Fan is the corresponding author. Yingying Zhang and Huimin Wang of the Department of Chemistry at Tsinghua University, Kai Dong of the Beijing Institute of Nanoenergy and Nanosystems at the Chinese Academy of Sciences, and Lin Hou and Yanyan Xu of Shaanxi Textile Research Institute Co., LTD, Weichun Chen and Yao Zhang of the School of Textile Science and Engineering at Xi’an Polytechnic University contributed to this research.
This work was supported by the National Natural Science Foundation of China, Textile Vision Basic Research Program of China, Key Research and Development Program of Xianyang Science and Technology Bureau, Key Research and Development Program of Shaanxi Province, Natural Science Foundation of Shaanxi Province, and Scientific Research Project of Shaanxi Provincial Education Department.
Here are two links and a citation for the same paper,
I have one research announcement from China and another from the Netherlands, both of which concern memristors and oxides.
China
A May 17, 2021 news item on Nanowerk announces work, which suggests that memristors may not need to rely solely on oxides but could instead utilize light more gainfully,
Scientists are getting better at making neuron-like junctions for computers that mimic the human brain’s random information processing, storage and recall. Fei Zhuge of the Chinese Academy of Sciences and colleagues reviewed the latest developments in the design of these ‘memristors’ for the journal Science and Technology of Advanced Materials …
Computers apply artificial intelligence programs to recall previously learned information and make predictions. These programs are extremely energy- and time-intensive: typically, vast volumes of data must be transferred between separate memory and processing units. To solve this issue, researchers have been developing computer hardware that allows for more random and simultaneous information transfer and storage, much like the human brain.
Electronic circuits in these ‘neuromorphic’ computers include memristors that resemble the junctions between neurons called synapses. Energy flows through a material from one electrode to another, much like a neuron firing a signal across the synapse to the next neuron. Scientists are now finding ways to better tune this intermediate material so the information flow is more stable and reliable.
…
I had no success locating the original news release, which originated the news item, but have found this May 17, 2021 news item on eedesignit.com, which provides the remaining portion of the news release.
“Oxides are the most widely used materials in memristors,” said Zhuge. “But oxide memristors have unsatisfactory stability and reliability. Oxide-based hybrid structures can effectively improve this.”
Memristors are usually made of an oxide-based material sandwiched between two electrodes. Researchers are getting better results when they combine two or more layers of different oxide-based materials between the electrodes. When an electrical current flows through the network, it induces ions to drift within the layers. The ions’ movements ultimately change the memristor’s resistance, which is necessary to send or stop a signal through the junction.
Memristors can be tuned further by changing the compounds used for electrodes or by adjusting the intermediate oxide-based materials. Zhuge and his team are currently developing optoelectronic neuromorphic computers based on optically-controlled oxide memristors. Compared to electronic memristors, photonic ones are expected to have higher operation speeds and lower energy consumption. They could be used to construct next generation artificial visual systems with high computing efficiency.
Now for a picture that accompanied the news release, which follows,
Fig. The all-optically controlled memristor developed for optoelectronic neuromorphic computing (Image by NIMTE)
A research group led by Prof. ZHUGE Fei at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) developed an all-optically controlled (AOC) analog memristor, whose memconductance can be reversibly tuned by varying only the wavelength of the controlling light.
As the next generation of artificial intelligence (AI), neuromorphic computing (NC) emulates the neural structure and operation of the human brain at the physical level, and thus can efficiently perform multiple advanced computing tasks such as learning, recognition and cognition.
Memristors are promising candidates for NC thanks to the feasibility of high-density 3D integration and low energy consumption. Among them, the emerging optoelectronic memristors are competitive by virtue of combining the advantages of both photonics and electronics. However, the reversible tuning of memconductance depends highly on the electric excitation, which have severely limited the development and application of optoelectronic NC.
To address this issue, researchers at NIMTE proposed a bilayered oxide AOC memristor, based on the relatively mature semiconductor material InGaZnO and a memconductance tuning mechanism of light-induced electron trapping and detrapping.
The traditional electrical memristors require strong electrical stimuli to tune their memconductance, leading to high power consumption, a large amount of Joule heat, microstructural change triggered by the Joule heat, and even high crosstalk in memristor crossbars.
On the contrary, the developed AOC memristor does not involve microstructure changes, and can operate upon weak light irradiation with light power density of only 20 μW cm-2, which has provided a new approach to overcome the instability of the memristor.
Specifically, the AOC memristor can serve as an excellent synaptic emulator and thus mimic spike-timing-dependent plasticity (STDP) which is an important learning rule in the brain, indicating its potential applications in AOC spiking neural networks for high-efficiency optoelectronic NC.
Moreover, compared to purely optical computing, the optoelectronic computing using our AOC memristor showed higher practical feasibility, on account of the simple structure and fabrication process of the device.
The study may shed light on the in-depth research and practical application of optoelectronic NC, and thus promote the development of the new generation of AI.
This work was supported by the National Natural Science Foundation of China (No. 61674156 and 61874125), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB32050204), and the Zhejiang Provincial Natural Science Foundation of China (No. LD19E020001).
Classic computers use binary values (0/1) to perform. By contrast, our brain cells can use more values to operate, making them more energy-efficient than computers. This is why scientists are interested in neuromorphic (brain-like) computing.
Physicists from the University of Groningen (the Netherlands) have used a complex oxide to create elements comparable to the neurons and synapses in the brain using spins, a magnetic property of electrons.
…
The press release, which follows, was accompanied by this image illustrating the work,
Caption: Schematic of the proposed device structure for neuromorphic spintronic memristors. The write path is between the terminals through the top layer (black dotted line), the read path goes through the device stack (red dotted line). The right side of the figure indicates how the choice of substrate dictates whether the device will show deterministic or probabilistic behaviour. Credit: Banerjee group, University of Groningen
Although computers can do straightforward calculations much faster than humans, our brains outperform silicon machines in tasks like object recognition. Furthermore, our brain uses less energy than computers. Part of this can be explained by the way our brain operates: whereas a computer uses a binary system (with values 0 or 1), brain cells can provide more analogue signals with a range of values.
Thin films
The operation of our brains can be simulated in computers, but the basic architecture still relies on a binary system. That is why scientist look for ways to expand this, creating hardware that is more brain-like, but will also interface with normal computers. ‘One idea is to create magnetic bits that can have intermediate states’, says Tamalika Banerjee, Professor of Spintronics of Functional Materials at the Zernike Institute for Advanced Materials, University of Groningen. She works on spintronics, which uses a magnetic property of electrons called ‘spin’ to transport, manipulate and store information.
In this study, her PhD student Anouk Goossens, first author of the paper, created thin films of a ferromagnetic metal (strontium-ruthenate oxide, SRO) grown on a substrate of strontium titanate oxide. The resulting thin film contained magnetic domains that were perpendicular to the plane of the film. ‘These can be switched more efficiently than in-plane magnetic domains’, explains Goossens. By adapting the growth conditions, it is possible to control the crystal orientation in the SRO. Previously, out-of-plane magnetic domains have been made using other techniques, but these typically require complex layer structures.
Magnetic anisotropy
The magnetic domains can be switched using a current through a platinum electrode on top of the SRO. Goossens: ‘When the magnetic domains are oriented perfectly perpendicular to the film, this switching is deterministic: the entire domain will switch.’ However, when the magnetic domains are slightly tilted, the response is probabilistic: not all the domains are the same, and intermediate values occur when only part of the crystals in the domain have switched.
By choosing variants of the substrate on which the SRO is grown, the scientists can control its magnetic anisotropy. This allows them to produce two different spintronic devices. ‘This magnetic anisotropy is exactly what we wanted’, says Goossens. ‘Probabilistic switching compares to how neurons function, while the deterministic switching is more like a synapse.’
The scientists expect that in the future, brain-like computer hardware can be created by combining these different domains in a spintronic device that can be connected to standard silicon-based circuits. Furthermore, probabilistic switching would also allow for stochastic computing, a promising technology which represents continuous values by streams of random bits. Banerjee: ‘We have found a way to control intermediate states, not just for memory but also for computing.’
By FotoosRobin – originally posted to Flickr as Lotus root, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4826529
The lotus (Nelumbo nucifera) rhizome (mass of roots) is not the prettiest part of the lotus but its fibers (and presumably fiber from other parts of the lotus plant) served as inspiration for a hydrogel that might be used as a surgical suture according to a Jan. 14, 2021 news item on phys.org (Note: Links have been removed),
“The lotus roots may break, but the fiber remains joined”—an old Chinese saying that reflects the unique structure and mechanical properties of the lotus fiber. The outstanding mechanical properties of lotus fibers can be attributed to their unique spiral structure, which provides an attractive model for biomimetic design of artificial fibers.
In a new study published in Nano Letters, a team led by Prof. Yu Shuhong from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) reported a bio-inspired lotus-fiber-mimetic spiral structure bacterial cellulose (BC) hydrogel fiber with high strength, high toughness, excellent biocompatibility, good stretchability, and high energy dissipation.
Unlike polymer-based hydrogel, the newly designed biomimetic hydrogel fiber (BHF) is based on the BC hydrogel with 3D cellulose nanofiber networks produced by bacteria. The cellulose nanofibers provide the reversible hydrogen bonding network that results in unique mechanical properties.
The researchers applied a constant tangential force to the pretreated BC hydrogel along the cross-sectional direction. Then, the two sides of the hydrogel were subjected to opposite tangential forces, and local plastic deformation occurred.
The hydrogen bonds in the 3D network of cellulose nanofibers were broken by the tangential force, causing the hydrogel strip to twist spirally and the network to slip and deform. When the tangential force was removed, the hydrogen bonds reformed between the nanofibers, and the spiral structure of the fiber was fixed.
Benefited from lotus-fiber-mimetic spiral structure, the toughness of BHF can reach ?116.3 MJ m-3, which is more than nine times higher than those of non-spiralized BC hydrogel fiber. Besides, once the BHF is stretched, it is nearly non-resilient.
Combining outstanding mechanical properties with excellent biocompatibility derived from BC, BHF is a promising hydrogel fiber for biomedical material, especially for surgical suture, a commonly used structural biomedical material for wound repair.
Compared with commercial surgical suture with higher modulus, the BHF has similar modulus and strength to soft tissue, like skin. The outstanding stretchability and energy dissipation of BHF allow it to absorb energy from the tissue deformation around a wound and effectively protect the wound from rupture, which makes BHF an ideal surgical suture.
What’s more, the porous structure of BHF also allows it to adsorb functional small molecules, such as antibiotics or anti-inflammatory compounds, and sustainably release them on wounds. With an appropriate design, BHF would be a powerful platform for many medical applications.