Tag Archives: Francis Crick Institute

I hear the proteins singing

Points to anyone who recognized the paraphrasing of the title for the well-loved, Canadian movie, “I heard the mermaids singing.” In this case, it’s all about protein folding and data sonification (from an Oct. 20, 2016 news item on phys.org),

Transforming data about the structure of proteins into melodies gives scientists a completely new way of analyzing the molecules that could reveal new insights into how they work – by listening to them. A new study published in the journal Heliyon shows how musical sounds can help scientists analyze data using their ears instead of their eyes.

The researchers, from the University of Tampere in Finland, Eastern Washington University in the US and the Francis Crick Institute in the UK, believe their technique could help scientists identify anomalies in proteins more easily.

An Oct. 20, 2016 Elsevier Publishing press release on EurekAlert, which originated the news item, expands on the theme,

“We are confident that people will eventually listen to data and draw important information from the experiences,” commented Dr. Jonathan Middleton, a composer and music scholar who is based at Eastern Washington University and in residence at the University of Tampere. “The ears might detect more than the eyes, and if the ears are doing some of the work, then the eyes will be free to look at other things.”

Proteins are molecules found in living things that have many different functions. Scientists usually study them visually and using data; with modern microscopy it is possible to directly see the structure of some proteins.

Using a technique called sonification, the researchers can now transform data about proteins into musical sounds, or melodies. They wanted to use this approach to ask three related questions: what can protein data sound like? Are there analytical benefits? And can we hear particular elements or anomalies in the data?

They found that a large proportion of people can recognize links between the melodies and more traditional visuals like models, graphs and tables; it seems hearing these visuals is easier than they expected. The melodies are also pleasant to listen to, encouraging scientists to listen to them more than once and therefore repeatedly analyze the proteins.

The sonifications are created using a combination of Dr. Middleton’s composing skills and algorithms, so that others can use a similar process with their own proteins. The multidisciplinary approach – combining bioinformatics and music informatics – provides a completely new perspective on a complex problem in biology.

“Protein fold assignment is a notoriously tricky area of research in molecular biology,” said Dr. Robert Bywater from the Francis Crick Institute. “One not only needs to identify the fold type but to look for clues as to its many functions. It is not a simple matter to unravel these overlapping messages. Music is seen as an aid towards achieving this unraveling.”

The researchers say their molecular melodies can be used almost immediately in teaching protein science, and after some practice, scientists will be able to use them to discriminate between different protein structures and spot irregularities like mutations.

Proteins are the first stop, but our knowledge of other molecules could also benefit from sonification; one day we may be able to listen to our genomes, and perhaps use this to understand the role of junk DNA [emphasis mine].

About 97% of our DNA (deoxyribonucleic acid) has been known for some decades as ‘junk DNA’. In roughly 2012, that was notion was challenged as Stephen S. Hall wrote in an Oct. 1, 2012 article (Hidden Treasures in Junk DNA; What was once known as junk DNA turns out to hold hidden treasures, says computational biologist Ewan Birney) for Scientific American.

Getting back to  2016, here’s a link to and a citation for ‘protein singing’,

Melody discrimination and protein fold classification by  Robert P. Bywater, Jonathan N. Middleton. Heliyon 20 Oct 2016, Volume 2, Issue 10 DOI: 10.1016/j.heliyon.2016.e0017

This paper is open access.

Here’s what the proteins sound like,

Supplementary Audio 3 for file for Supplementary Figure 2 1r75 OHEL sonification full score. [downloaded from the previously cited Heliyon paper]

Joanna Klein has written an Oct. 21, 2016 article for the New York Times providing a slightly different take on this research (Note: Links have been removed),

“It’s used for the concert hall. It’s used for sports. It’s used for worship. Why can’t we use it for our data?” said Jonathan Middleton, the composer at Eastern Washington University and the University of Tampere in Finland who worked with Dr. Bywater.

Proteins have been around for billions of years, but humans still haven’t come up with a good way to visualize them. Right now scientists can shoot a laser at a crystallized protein (which can distort its shape), measure the patterns it spits out and simulate what that protein looks like. These depictions are difficult to sift through and hard to remember.

“There’s no simple equation like e=mc2,” said Dr. Bywater. “You have to do a lot of spade work to predict a protein structure.”

Dr. Bywater had been interested in assigning sounds to proteins since the 1990s. After hearing a song Dr. Middleton had composed called “Redwood Symphony,” which opens with sounds derived from the tree’s DNA, he asked for his help.

Using a process called sonification (which is the same thing used to assign different ringtones to texts, emails or calls on your cellphone) the team took three proteins and turned their folding shapes — a coil, a turn and a strand — into musical melodies. Each shape was represented by a bunch of numbers, and those numbers were converted into a musical code. A combination of musical sounds represented each shape, resulting in a song of simple patterns that changed with the folds of the protein. Later they played those songs to a group of 38 people together with visuals of the proteins, and asked them to identify similarities and differences between them. The two were surprised that people didn’t really need the visuals to detect changes in the proteins.

Plus, I have more about data sonification in a Feb. 7, 2014 posting regarding a duet based on data from Voyager 1 & 2 spacecraft.

Finally, I hope my next Steep project will include  sonification of data on gold nanoparticles. I will keep you posted on any developments.

What’s in your DNA (deoxyribonucleic acid)? an art auction at Christies

For this item, I have David Bruggeman’s Sept. 24, 2015 posting on his Pasco Phronesis blog to thank,

As part of a fundraising project for a building at the Francis Crick Institute, Christie’s will hold an auction for 30 double-helix sculptures on September 30 (H/T ScienceInsider).

David has embedded a video featuring some of the artists and their works in his posting. By contrast, here are a few pictures of the DNA (deoxyribonucleic acid) art objects from the Cancer Research UK’s DNA Trail page,

For our London Art trail, which ran from 29 June – 6 September 2015, we asked internationally renowned artists to design a beautiful double helix sculpture inspired by the question: What’s in your DNA? Take a look at their sculptures and find out more about the artists’ inspirations.

This one is called The Journey and is by Gary Portell,

DNA_The Journey

His inspiration is: “My design is based on two symbols, the swallow who shares my journey from Africa to England and the hand print. The hand print as a symbol of creation and the swallow reflects the traveller.

This one by Thiery Noir is titled Double Helix Noir.

DNA_DoubleHelixNoir

The inspiration is: For this sculpture, Noir wanted to pay tribute to the memory of his former assistant, Lisa Brown, who was affected by breast cancer and who passed away in July 2001, at the young age of 31 years old.

Growing Stem is by Orla Kiely,

CNA_GrowingStem

The inspiration is: I find inspiration in many things, but especially love nature with the abundance of colourful flowers, leaves, and stems. Applying our multi stem onto the DNA spiral seemed a natural choice as it represents positivity and growth: qualities that are so relevant for cancer research.

Double Dutch Delftblue DNA is by twins, Chris and Xand van Tulleken.

DNA_DoubleDutchDelftblue

The inspiration is: The recurrent motifs of Delft tiles reference those of DNA. Our inspiration was the combination of our family’s DNA, drawing on Dutch and Canadian origins, and the fact that twins have shared genomes.  (With thanks to Anthony van Tulleken)

Ted Baker’s Ted’s Helix of Haberdashery,

DNA_TedsHelixOfHaberdashery

Inspiration is: Always a fan of spinning a yarn, Ted Baker’s Helix of Haberdashery sculpture unravels the tale of his evolution from shirt specialist to global lifestyle brand. Ted’s DNA is represented as a cascading double helix of pearlescent buttons, finished with a typically playful story-telling flourish.

Finally, What Mad Pursuit is by Kindra Crick,

DNA_WhatMadPursuit

Inspiration is: What Mad Pursuit explores the creative possibilities achievable through the intermingling of art, science and imagination in the quest for knowledge. The piece is inspired by my family’s contribution to the discovery of the structure of DNA.

Aparna Vidyasagar interviewed Kindra Crick in a Sept. 24, 2015 Q&A for ScienceInsider (Note: Links have been removed),

Kindra Crick, granddaughter of Francis Crick, the co-discoverer of DNA’s structure, is one of more than 20 artists contributing sculptures to an auction fundraiser for a building at the new Francis Crick Institute. The auction is being organized by Cancer Research UK and will be held at Christie’s in London on 30 September. The auction will continue online until 13 October.

The new biomedical research institute, named for the Nobel laureate who died in 2004, aims to develop prevention strategies and treatments for diseases including cancer. It is a consortium of six partners, including Cancer Research UK.

Earlier this year, Cancer Research UK asked about two dozen artists—including Chinese superstar Ai Weiwei—to answer the question “What’s in your DNA?” through a sculpture based on DNA’s double helix structure. …

Q: “What’s in your DNA?” How did you build your sculpture around that question?

A: When I was given the theme, I thought this was a wonderful project for me, considering my family history. Also, in my own art practice I try to express the wonder and the process of scientific inquiry. This draws on my backgrounds; in molecular biology from when I was at Princeton [University], and in art while going to the School of the Art Institute of Chicago.

I was influenced by my grandparents, Francis Crick and Odile Crick. He was the scientist and she was the artist. My grandfather worked on elucidating the structure of DNA, and my grandmother, Odile, was the one to draw the first image of DNA. The illustration was used for the 1953 paper that my grandfather wrote with James Watson. So, there’s a rich history there that I can draw from, in terms of what’s in my DNA.

Should you be interested in bidding on one of the pieces, you can go to Christie’s What’s in your DNA webpage,

ONLINE AUCTION IS LIVE: 30 September – 13 October 2015

Good luck!

David Bruggeman has put in a request (from his Sept. 24, 2015 posting),

… if you become aware of human trials for 3D bioprinting, please give a holler.  I may now qualify.

Good luck David!