Monthly Archives: November 2020

“Imagine Van Gogh” in Vancouver (Canada) in 2021

Here’s a video about “Imagine Van Gogh,” coming soon to Vancouver, they hope, but which opened first in Montréal in December 2019 where almost 200,000 visited the exhibit before it moved to Winnipeg in March 2020 (Note: There is an advertisement before the Canadian Broadcasting Corporation’s (CBC) segment begins),

The Dec. 7, 2019 CBC news item (where video was embedded), provides more details about the exhibit experience (Note: A link has been removed),

Brushstrokes appear several feet wide, as more than 200 works, such as Starry Night and The Yellow House, are blown up and split into panels, giving visitors a 360-degree view of the paintings projected onto the walls and floor.

Annabelle Mauger, one of the artistic directors behind the exhibit, titled Imagine Van Gogh, says she tests this type of exhibition by seeing how her young children react to it.

“When I saw them just running [at] the image, running into the paintings, I think, this is the most fantastic thing I can do,” she told CBC News.

Mauger said she wanted to create a space where people could experience van Gogh’s art in ways traditional museums don’t allow. Classical music plays as you move around the warehouse space, where you can reach out and touch the simulated canvas or sit on the floor and watch the artwork swirl around you.

That feeling of being surrounded by the artwork is building on French photographer Albert Plécy‘s concept of “image totale,” which Maugler studied while in Provence, France at the Cathédrale d’images.

The Montreal showing of Imagine Van Gogh is its North American debut, with 40,000 tickets sold before it opened at the Arsenal Contemporary Art centre on Dec. 5.

But not everyone is a fan of such immersive art exhibitions, which seek to attract audiences to contemplate works of art by presenting them in an accessible format.

Artist Joseph Nechvatal, reviewing a similar digital art exhibition in Paris titled “Van Gogh, Starry Night,” decried it as “a nasty bit of metaphorical necrophilia” that degrades van Gogh’s daring works.

He called the show “one of the greatest banalizations of painting I have ever seen, matched only by van Gogh kitchen hand towels now being sold around town.”

In that exhibit, the paintings came to life through the use of computer-generated animation. But in Imagine Van Gogh, they retain their static quality as they’re projected on the walls, which lets the art express motion, Mauger says, while still remaining immobile.

“I don’t want the birds flying, you know,” said Mauger. “I don’t want to see the [self]-portrait of van Gogh smoking. No, for me, this is nonsense.”

Hrag Vartanian, the Canadian-raised editor-in-chief and co-founder of the influential art criticism website Hyperallergic, is more generous than Nechvatal in his assessment of the growing trend of immersive digital art shows.

“A lot of these artworks are sometimes disappointing when you’re in a museum and you realize it’s much smaller than you imagined it, or there’s a huge crowd and you don’t get a moment of contemplation you were hoping for,” he said in an interview from New York.

As for the proposed “Imagine Van Gogh” in Vancouver exhibition, Kenneth Chan reveals details about the plans in his Nov. 26, 2020 article for the Daily Hive,

A massive immersive digital art exhibition that blankets tall walls and floors with the projections of works by Vincent van Gogh is slated for Vancouver Convention Centre starting in February 2021.

Plans to bring the exhibition to Vancouver were announced today, but a specific start and end date has yet to be established. The exhibition will operate under the latest public health guidelines in BC.

The exhibition footprint inside the convention centre is 30,000 sq. ft. For context, the total amount of exhibition space at the Vancouver Art Gallery is about 41,000 sq. ft.

There has been immense interest with Imagine Van Gogh in Canada. It received nearly 200,000 visitors in Montreal before it closed in March, and almost 75,000 in Quebec City this past summer during the pandemic. Currently, the exhibition is underway in Winnipeg, and it has been extended to the end of December due to “incredible demand.”

The exhibition is in partnership with France-based Encore Productions and Paquin Entertainment Group and Tandem Expositions.

Organizers are asking interested parties to pre-register. I think they’re trying to gauge the level of interest Vancouverites have in this proposed exhibition. Organizers are offering some incentives to pre-register (from the Vancouver Imagine Van Gogh presale website),

Register now and be the first to know when tickets go on sale, and gain access to an exclusive presale to get tickets before they are available to the general public.

You will also be entered to

win one of three Premiere Packages

for you and three friends to attend the opening of the Imagine Van Gogh exhibit.
 
Additionally, you will receive other exclusive offers from our partners.

Imagine Van Gogh 2020. (Imagine Van Gogh [downloaded from https://dailyhive.com/vancouver/imagine-van-gogh-vancouver-2021]

If you need more inspiration, check out Chan’s Nov. 26, 2020 article where you will find many more images. Enjoy!

Printing wearable circuits onto skin

It seems that this new technique for creating wearable electronics will be more like getting a permanent tattoo where the circuits are applied directly to your skin as opposed to being like a temporary tattoo where the circuits are printed onto a substrate and then applied to then, worn on your skin.

Caption: On-body sensors, such as electrodes and temperature sensors, were directly printed and sintered on the skin surface. Credit: Adapted from ACS Applied Materials & Interfaces 2020, DOI: 10.1021/acsami.0c11479

An Oct. 14, 2020 American Chemical Society (ACS) news release (also on EurekAlert) announced this latest development in wearable electronics,

Wearable electronics are getting smaller, more comfortable and increasingly capable of interfacing with the human body. To achieve a truly seamless integration, electronics could someday be printed directly on people’s skin. As a step toward this goal, researchers reporting in ACS Applied Materials & Interfaces have safely placed wearable circuits directly onto the surface of human skin to monitor health indicators, such as temperature, blood oxygen, heart rate and blood pressure.

The latest generation of wearable electronics for health monitoring combines soft on-body sensors with flexible printed circuit boards (FPCBs) for signal readout and wireless transmission to health care workers. However, before the sensor is attached to the body, it must be printed or lithographed onto a carrier material, which can involve sophisticated fabrication approaches. To simplify the process and improve the performance of the devices, Peng He, Weiwei Zhao, Huanyu Cheng and colleagues wanted to develop a room-temperature method to sinter metal nanoparticles onto paper or fabric for FPCBs and directly onto human skin for on-body sensors. Sintering — the process of fusing metal or other particles together — usually requires heat, which wouldn’t be suitable for attaching circuits directly to skin.

The researchers designed an electronic health monitoring system that consisted of sensor circuits printed directly on the back of a human hand, as well as a paper-based FPCB attached to the inside of a shirt sleeve. To make the FPCB part of the system, the researchers coated a piece of paper with a novel sintering aid and used an inkjet printer with silver nanoparticle ink to print circuits onto the coating. As solvent evaporated from the ink, the silver nanoparticles sintered at room temperature to form circuits. A commercially available chip was added to wirelessly transmit the data, and the resulting FPCB was attached to a volunteer’s sleeve. The team used the same process to sinter circuits on the volunteer’s hand, except printing was done with a polymer stamp. As a proof of concept, the researchers made a full electronic health monitoring system that sensed temperature, humidity, blood oxygen, heart rate, blood pressure and electrophysiological signals and analyzed its performance. The signals obtained by these sensors were comparable to or better than those measured by conventional commercial devices. 

Here’s a link to and a citation for the paper,

Wearable Circuits Sintered at Room Temperature Directly on the Skin Surface for Health Monitoring by Ling Zhang, Hongjun Ji, Houbing Huang, Ning Yi, Xiaoming Shi, Senpei Xie, Yaoyin Li, Ziheng Ye, Pengdong Feng, Tiesong Lin, Xiangli Liu, Xuesong Leng, Mingyu Li, Jiaheng Zhang, Xing Ma, Peng He, Weiwei Zhao, and Huanyu Cheng. ACS Appl. Mater. Interfaces 2020, 12, 40, 45504–45515 Publication Date:September 11, 2020 DOI: https://doi.org/10.1021/acsami.0c11479 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

Could synergistic action of engineered nanoparticles have a health impact?

Synergistic action can be difficult to study especially when you’re looking at nanoparticles which could be naturally occurring and/or engineered. I believe this study is focused on engineered nanoparticles (ENPs) and I think it’s the first one I’ve seen that examines synergistic action of any kind. So, bravo to the scientists for tackling a very ambitious project.

An October 1, 2020 news item on phys.org describes this work from Denmark,

Nanoparticles are used in a wide range of products and manufacturing processes because the properties of a material can change dramatically when the material comes in nano-form.

They can be used, for example, to purify wastewater and to transport medicine around the body. They are also added to, for example, socks, pillows, mattresses, phone covers and refrigerators to supply the items with an antibacterial surface.

Much research has been done on how nanoparticles affect humans and the environment and a number of studies have shown that nanoparticles can disrupt or damage our cells.

This is confirmed by a new study that has also looked at how cells react when exposed to more than one kind of nano particle at the same time.

An October 1, 2020 University of Southern Denmark press release (also on EurekAlert) by Birgitte Svennevig, which originated the news item, provides more insight into the research,

The lead author of the study is Barbara Korzeniowska from the Department of Biochemistry and Molecular Biology at SDU. The head of research is Professor Frank Kjeldsen from the same department.

His research into metal nanoparticles is supported by a European Research Grant of DKK 14 million.

“Throughout a lifetime, we are exposed to many different kinds of nano-particles, and we should investigate how the combination of different nano-particles affects us and also whether an accumulation through life can harm us,” says Barbara Korzeniowska.

She herself became interested in the subject when her little daughter one day was going in the bathtub and got a rubber duck as a toy.

– It turned out that it had been treated with nano-silver, probably to keep it free of bacteria, but small children put their toys in their mouths, and she could thus ingest nano-silver. That is highly worrying when research shows that nano-silver can damage human cells, she says.

In her new study, she looked at nano-silver and nano-platinum. She has investigated their individual effect and whether exposure of both types of nanoparticles results in a synergy effect in two types of brain cells.

– There are almost no studies of the synergy effect of nano particles, so it is important to get started with these studies, she says.

She chose nano-silver because it is already known to be able to damage cells and nano-platinum, because nano-platinum is considered to be so-called bio-inert; i.e. has a minimal interaction with human tissue.

The nanoparticles were tested on two types of brain cells: astrocytes and endothelial cells. Astrocytes are supporter cells in the central nervous system, which i.a. helps to supply the nervous system with nutrients and repair damage to the brain. Endothelial cells sit on the inside of the blood vessels and transport substances from the bloodstream to the brain.

When the endothelial cells were exposed to nano-platinum, nothing happened. When exposed to nano-silver, their ability to divide deteriorated. When exposed to both nano-silver and nano-platinum, the effect was amplified, and they died in large numbers. Furthermore, their defense mechanisms decreased, and they had difficulty communicating with each other.

– So even though nano-platinum alone does not do harm, something drastic happens when they are combined with a different kind of nano-particle, says Frank Kjeldsen.

The astrocytes were more hardy and reacted “only” with impaired ability to divide when exposed to both types of nano-particles.

An earlier study, conducted by Frank Kjeldsen, has shown a dramatic synergy effect of silver nanoparticles and cadmium ions, which are found naturally all around us on Earth.

In that study, 72 % of the cells died (in this study it was intestinal cells) as they were exposed to both nano-silver and cadmium ions. When they were only exposed to nano-silver, 25% died. When exposed to cadmium ions only, 12% died.

We are involuntarily exposed

– Little is known about how large concentrations of nano-particles are used in industrial products. We also do not know what size particles they use – size also has an effect on whether they can enter a cell, says Barbara Korzeniowska and continues:

– But we know that a lot of people are involuntarily exposed to nano-particles, and that there can be lifelong exposure.

There are virtually no restrictions on adding nanoparticles to products. In the EU, however, manufacturers must have an approval if they want to use nanoparticles in products with antibacterial properties. In Denmark, they must also declare nano-content in such products on the label.

Here’s a link to and a citation for the paper,

The Cytotoxicity of Metal Nanoparticles Depends on Their Synergistic Interactions by Barbara Korzeniowska, Micaella P. Fonseca, Vladimir Gorshkov, Lilian Skytte, Kaare L. Rasmussen, Henrik D. Schrøder, Frank Kjeldsen. Particle Volume 37, Issue 8, August 2020,. 2000135 DOI: https://doi.org/10.1002/ppsc.202000135 First published: 06 July 2020

This paper is behind a paywall.

Can tattoos warn you of health dangers?

I think I can safely say that Carson J. Bruns, a Professor at the University of Colorado Boulder, is an electronic tattoo enthusiast. His Sept. 24, 2020 essay on electronic tattoos for The Conversation (also found on Fast Company) outlines a very rosy view of a future where health monitoring is constant and visible on your skin (Note: Links have been removed),

In the sci-fi novel “The Diamond Age” by Neal Stephenson, body art has evolved into “constantly shifting mediatronic tattoos” – in-skin displays powered by nanotech robopigments. In the 25 years since the novel was published, nanotechnology has had time to catch up, and the sci-fi vision of dynamic tattoos is starting to become a reality.

The first examples of color-changing nanotech tattoos have been developed over the past few years, and they’re not just for body art. They have a biomedical purpose. Imagine a tattoo that alerts you to a health problem signaled by a change in your biochemistry, or to radiation exposure that could be dangerous to your health.

You can’t walk into a doctor’s office and get a dynamic tattoo yet, but they are on the way. …

In 2017, researchers tattooed pigskin, which had been removed from the pig, with molecular biosensors that use color to indicate sodium, glucose or pH levels in the skin’s fluids.

In 2019, a team of researchers expanded on that study to include protein sensing and developed smartphone readouts for the tattoos. This year, they also showed that electrolyte levels could be detected with fluorescent tattoo sensors.

In 2018, a team of biologists developed a tattoo made of engineered skin cells that darken when they sense an imbalance of calcium caused by certain cancers. They demonstrated the cancer-detecting tattoo in living mice.

My lab is looking at tech tattoos from a different angle. We are interested in sensing external harms, such as ultraviolet radiation. UV exposure in sunlight and tanning beds is the main risk factor for all types of skin cancer. Nonmelanoma skin cancers are the most common malignancies in the U.S., Australia and Europe.

I served as the first human test subject for these tattoos. I created “solar freckles” on my forearm – invisible spots that turned blue under UV exposure and reminded me when to wear sunscreen. My lab is also working on invisible UV-protective tattoos that would absorb UV light penetrating through the skin, like a long-lasting sunscreen just below the surface. We’re also working on “thermometer” tattoos using temperature-sensitive inks. Ultimately, we believe tattoo inks could be used to prevent and diagnose disease.

Temporary transfer tattoos are also undergoing a high-tech revolution. Wearable electronic tattoos that can sense electrophysiological signals like heart rate and brain activity or monitor hydration and glucose levels from sweat are under development. They can even be used for controlling mobile devices, for example shuffling a music playlist at the touch of a tattoo, or for luminescent body art that lights up the skin.

The advantage of these wearable tattoos is that they can use battery-powered electronics. The disadvantage is that they are much less permanent and comfortable than traditional tattoos. Likewise, electronic devices that go underneath the skin are being developed by scientists, designers and biohackers alike, but they require invasive surgical procedures for implantation.

Tattoos injected into the skin offer the best of both worlds: minimally invasive, yet permanent and comfortable. [emphasis mine] New needle-free tattooing methods that fire microscopic ink droplets into the skin are now in development. Once perfected they will make tattooing quicker and less painful.

The color-changing tattoos in development are also going to open the door to a new kind of dynamic body art. Now that tattoo colors can be changed by an electromagnetic signal, you’ll soon be able to “program” your tattoo’s design, or switch it on and off. You can proudly display your neck tattoo at the motorcycle rally and still have clear skin in the courtroom.

As researchers develop dynamic tattoos, they’ll need to study the safety [emphasis mine] of the high-tech inks. As it is, little is known about the safety of the more than 100 different pigments used in normal tattoo inks [emphasis mine]. The U.S. Food and Drug Administration has not exercised regulatory authority over tattoo pigments, citing other competing public health priorities and a lack of evidence of safety problems with the pigments. So U.S. manufacturers can put whatever they want in tattoo inks [emphasis mine] and sell them without FDA approval.

A wave of high-tech tattoos is slowly upwelling, and it will probably keep rising for the foreseeable future. When it arrives, you can decide to surf or watch from the beach. If you do climb on board, you’ll be able to check your body temperature or UV exposure by simply glancing at one of your tattoos.

There are definitely some interesting possibilities, artistic, health, and medical, offered by electronic tattoos. As you may have guessed, I’m not quite the enthusiast that Dr. Bruns seems to be but I could be persuaded, assuming there’s evidence to support the claims.

How do nanoscale crystals make volcanoes explode?

This research may have the answer as to why a supposedly peaceful volcano will suddenly explode violently. From a September 24, 2020 University of Bayreuth press release (also on EurekAlert),

Tiny crystals, ten thousand times thinner than a human hair, can cause explosive volcanic eruptions. This surprising connection has recently been discovered by a German-British research team led by Dr. Danilo Di Genova from the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) at the University of Bayreuth. The crystals increase the viscosity of the underground magma. As a result, a build-up of rising gases occurs. The continuously rising pressure finally discharges in massive eruptions. The scientists present the results of their nanogeoscientific research in the journal “Science Advances“.

“Exactly what causes the sudden and violent eruption of apparently peaceful volcanoes has always been a mystery in geology research. Nanogeoscience research has now allowed us to find an explanation. Tiny crystal grains containing mostly iron, silicon, and aluminium are the first link in a chain of cause and effect that can end in catastrophe for people living in the vicinity of a volcano. The most powerful volcanic eruption in human history was Mount Tambora in Indonesia in 1815”, says Dr. Danilo Di Genova. For the recently published study, he worked closely with scientists from the University of Bristol, the Clausthal University of Technology, and two European synchrotron radiation facilities.

Because of their diameter of a few nanometres, the crystals are also known as nanolites. Using spectroscopic and electron microscopy methods, the researchers have detected traces of these particles, invisible to the eye, in the ashes of active volcanoes. In the BGI’s laboratory, they were then able to describe these crystals and finally to demonstrate how they influence the properties of volcanic magma. The investigations focused on magma of low silicon oxide content cooling to form basalt on the earth’s surface after a volcanic eruption. Low silica magma is known for its low viscosity: It forms a thin lava that flows quickly and easily. The situation is different, however, if it contains a large number of nanolites. This makes the magma viscous – and far less permeable to gases rising from the earth’s interior. Instead of continuously escaping from the volcanic cone, the gases in the depths of the volcano become trapped in the hot magma. As a result, the magma is subjected to increasing pressure until it is finally ejected explosively from the volcano.

“Constant light plumes of smoke above a volcanic cone need not necessarily be interpreted as a sign of an imminent dangerous eruption. Conversely, however, the inactivity of apparently peaceful volcanoes can be deceptive. Rock analyses, written and archaeological sources suggest, for example, that people in the vicinity of Vesuvius were surprised by an extremely violent eruption of the volcano in 79 AD. Numerous fatalities and severe damage to buildings were the result”, says Di Genova. In his further research, the Bayreuth scientist hopes to use high-pressure facilites and computer simulation to model the geochemical processes that lead to such unexpected violent eruptions. The aim is to better understand these processes and thus also to reduce the risks for the population in the vicinity of volcanoes.

The researchers have included a nanocrystal image to illustrate their work,

Caption: A transmission electron microscopy image of a nano crystal (ca 25 nm in diameter) in a basaltic magma from Mt. Etna (Italy). The nano crystal is enriched in iron (Fe) and it was produced in a laboratory during at BGI. Credit Image: Nobuyoshi Miyajima.

Here’s a link to and a citation for the paper,

In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions by Danilo Di Genova, Richard A. Brooker, Heidy M. Mader, James W. E. Drewitt, Alessandro Longo, Joachim Deubener, Daniel R. Neuville, Sara Fanara, Olga Shebanova, Simone Anzellini, Fabio Arzilli, Emily C. Bamber, Louis Hennet, Giuseppe La Spina and Nobuyoshi Miyajima. Science Advances DOI: 10.1126/sciadv.abb0413 Vol. 6, no. 39, eabb0413 Published: 23 Sep 2020

This paper appears to be open access.

Skyrmions (nanoscale vortices) with a unique property

A Sept. 23, 2020 news item on Nanowerk describes both skyrmions and the latest in potentially practical ‘skyrmion research’ ,

Nanoscale vortices known as skyrmions can be created in many magnetic materials. For the first time, researchers at PSI [Paul Scherrer Institute] have managed to create and identify antiferromagnetic skyrmions with a unique property: critical elements inside them are arranged in opposing directions. Scientists have succeeded in visualising this phenomenon using neutron scattering. Their discovery is a major step towards developing potential new applications, such as more efficient computers.

Caption: Skyrmions are nanoscale vortices in the magnetic alignment of atoms. For the first time, PSI researchers have now created antiferromagnetic skyrmions in which critical spins are arranged in opposing directions. This state is shown in the artist’s impression above. Credit: Paul Scherrer Institute/Diego Rosales

That image makes me think of ‘op art’. For anyone unfamiliar with the art movement, there’s Bob Lansroth’s October 29, 2015 article (10 Op Art Artists Whose Work You Have to Follow) for widwalls.ch,

The nature of perception, optical effects, illusions and visual stimuli have been fascinating artists for many centuries. Optical Art, or Op Art, is relying on optical illusions and is sometimes even referred to as retinal art. Some critics would even call it a mathematically-themed form of Abstract Art, considering the use of repetitive forms and colors in order to create vibrating effects, foreground-background confusion and an exaggerated sense of depth.

Lansroth’s October 29, 2015 article is liberally illustrated with examples.

Getting back to the skyrmions at hand, a Sept. 23, 2020 Paul Scherrer Institute (PSI) press release (also on EurekAlert) by Laura Hennemann, which originated the news item, describes the research in more detail,

Whether a material is magnetic depends on the spins of its atoms. The best way to think of spins is as minute bar magnets. In a crystal structure where the atoms have fixed positions in a lattice, these spins can be arranged in criss-cross fashion or aligned all in parallel like the spears of a Roman legion, depending on the individual material and its state.

Under certain conditions it is possible to generate tiny vortices within the corps of spins. These are known as skyrmions. Scientists are particularly interested in skyrmions as a key component in future technologies, such as more efficient data storage and transfer. For example, they could be used as memory bits: a skyrmion could represent the digital one, and its absence a digital zero. As skyrmions are significantly smaller than the bits used in conventional storage media, data density is much higher and potentially also more energy efficient, while read and write operations would be faster as well. Skyrmions could therefore be useful both in classical data processing and in cutting-edge quantum computing.

Another interesting aspect for the application is that skyrmions can be created and controlled in many materials by applying an electrical current. “With existing skyrmions, however, it is tricky to move them systematically from A to B, as they tend to deviate from a straight path due to their inherent properties,” explains Oksana Zaharko, research group leader at PSI.

Working with researchers from other institutions, Dr Zaharko and her team have now created a new type of skyrmion and demonstrated a unique characteristic: in their interior, critical spins are arranged in opposite directions to one another. The researchers therefore describe their skyrmions as antiferromagnetic.

In a straight line from A to B

“One of the key advantages of antiferromagnetic skyrmions is that they are much simpler to control: if an electrical current is applied, they move in a simple straight line,” Zaharko comments. This is a major advantage: for skyrmions to be suitable for practical applications, it must be possible to selectively manipulate and position them.

The scientists created their new type of skyrmion by fabricating them in a customised antiferromagnetic crystal. Zaharko explains: “Antiferromagnetic means that adjacent spins are in an antiparallel arrangement, in other words one pointing upwards and the next pointing downwards. So what was initially observed as a property of the material we subsequently identified within the individual skyrmions as well.”

Several steps are still needed before antiferromagnetic skyrmions are mature enough for a technological application: PSI researchers had to cool the crystal down to around minus 272 degrees Celsius and apply an extremely strong magnetic field of three tesla – roughly 100,000 times the strength of the Earth’s magnetic field.

Neutron scattering to visualise the skyrmions

And the researchers have yet to create individual antiferromagnetic skyrmions. To verify the tiny vortices, the scientists are using the Swiss Spallation Neutron Source SINQ at PSI. “Here we can visualise skyrmions using neutron scattering if we have a lot of them in a regular pattern in a particular material”, Zaharko explains.

But the scientist is optimistic: “In my experience, if we manage to create skyrmions in a regular alignment, someone will soon manage to create such skyrmions individually.”

The general consensus in the research community is that once individual antiferromagnetic skyrmions can be created at room temperature, a practical application will not be far off.

Here’s a link to and a citation for the paper,

Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings by Shang Gao, H. Diego Rosales, Flavia A. Gómez Albarracín, Vladimir Tsurkan, Guratinder Kaur, Tom Fennell, Paul Steffens, Martin Boehm, Petr Čermák, Astrid Schneidewind, Eric Ressouche, Daniel C. Cabra, Christian Rüegg & Oksana Zaharko. Nature (2020) DOI: https://doi.org/10.1038/s41586-020-2716-8 Published: 23 September 2020

This paper is behind a paywall.

Scotland as an Arctic power? Hmmm

This is intriguing. The Woodrow Wilson International Center for Scholars’ (Wilson Center’s) Polar Institute is hosting a conversation about Scotland’s future role in the Arctic that will be livestreamed on Tuesday, November 24, 2020 12:30 pm ET (9:30 am PT).

Here’s more from the Oct. 29, 2020 Wilson Center announcement (received via email),

Scotland’s Offer to the Arctic

Scotland’s Shetland Archipelago is a mere 400 miles south of the Arctic Circle. Due in part to this proximity, Scotland is seeking to establish itself as a European gateway to the High North. Similar rural and demographic features mean that Scottish and Arctic communities share many present-day priorities, from strengthening rural resilience to improving connectivity and promoting sustainable economic growth.

Scotland’s engagement with the Arctic region has intensified steadily over recent years. Published in September 2019, the Scottish Government’s first Arctic policy framework sets out “Scotland’s offer to the Arctic,” a prospectus for cooperation and knowledge exchange around the issues and ambitions that Scotland has in common with the Arctic.

On November 24th [2020], join us for a conversation on the future of cooperation between Scotland, Europe, and the Arctic. The live webstream will begin at 12:30 PM EST.

You might find this contextual information about Scotland’s Arctic Policy Framework, BREXIT, and the European Union (EU) useful (from a Sept. 24, 2020 post by the Polar Research and Policy Initiative on the Polar Connection website,

While the EU, the UK and Scotland are navigating the complex dynamics of Brexit to understand its implications on the three entities and their present and future interrelationships and interactions, one stage where the question of their future interplay rears its head is the Arctic region where the three have cooperated greatly in the past.

… the UK’s updated [in 2018 after the UK voted to leave the EU, i.e., BREXIT] Arctic policy framework clarified that leaving the EU “will not diminish our cooperation with EU nations but will enhance the possibility for forging even closer ties with non-EU nations”. It also observed how Scotland shared especially rich economic, social and cultural links with the Arctic region due to its history and geography, and acknowledged Scotland’s commitment to addressing climate change, promoting climate justice, driving the transition to a global low-carbon economy, developing its own Arctic Strategy on devolved matters, and collaborating, along with Northern Ireland, with Euro-Arctic states through the Northern Periphery and Arctic Programme.

In recognition of its shared history, geography, opportunities and challenges with several Arctic states, the Scottish Government itself has taken great interest in the Arctic in recent years. …

As the northernmost near-Arctic non-Arctic state, the UK is currently the northernmost EU state with Arctic interests, apart from Finland, Sweden and the Kingdom of Denmark (though Greenland is not a member of the EU) that are also member states of the Arctic Council. As the northernmost region/country within the UK, it is principally from Scotland that the UK derives that strategic advantage. Furthermore, as Finland and Sweden do not have direct access to the Arctic Ocean, save through Norway or Russia, and Greenland is not a part of the EU, the Scottish ports in Shetland [emphasis mine] and Orkney are currently the northernmost ports in the EU with direct maritime access to the North Sea and the Arctic Ocean.

I highlighted Shetland as there has been a pertinent development since Sept. 2019 according to a Sept. 11, 2020 article by Colby Cosh for the (Canada) National Post,

The council of the Shetland Islands, in which one official SNP [Scottish Nationalist Party] member is outnumbered 21-1 by independents of various stripes, voted 18-2 on Wednesday in favour of a motion to “formally begin exploring options for achieving financial and political self-determination.” [emphasis mine] As the makeup of the council implies, Shetland, about 170 kilometres north of the Scots mainland, has never been comfortable with the SNP’s goal of an independent, sovereign Scotland. In 2014’s Scottish independence referendum, Shetland delivered a 64 per cent vote for No.

Without knowing much about the politics it’s difficult to know if this is a serious attempt at separation or if it’s a gambit designed to get Shetland more autonomy without losing any advantages associated with being part of a larger entity.

Nevertheless, all this ‘arctic action’ is intriguing especially in light of the current loss of arctic ice and the attempts by various jurisdictions (including Canada) to establish or re-establish territorial rights.

Brain cell-like nanodevices

Given R. Stanley Williams’s presence on the author list, it’s a bit surprising that there’s no mention of memristors. If I read the signs rightly the interest is shifting, in some cases, from the memristor to a more comprehensive grouping of circuit elements referred to as ‘neuristors’ or, more likely, ‘nanocirucuit elements’ in the effort to achieve brainlike (neuromorphic) computing (engineering). (Williams was the leader of the HP Labs team that offered proof and more of the memristor’s existence, which I mentioned here in an April 5, 2010 posting. There are many, many postings on this topic here; try ‘memristors’ or ‘brainlike computing’ for your search terms.)

A September 24, 2020 news item on ScienceDaily announces a recent development in the field of neuromorphic engineering,

In the September [2020] issue of the journal Nature, scientists from Texas A&M University, Hewlett Packard Labs and Stanford University have described a new nanodevice that acts almost identically to a brain cell. Furthermore, they have shown that these synthetic brain cells can be joined together to form intricate networks that can then solve problems in a brain-like manner.

“This is the first study where we have been able to emulate a neuron with just a single nanoscale device, which would otherwise need hundreds of transistors,” said Dr. R. Stanley Williams, senior author on the study and professor in the Department of Electrical and Computer Engineering. “We have also been able to successfully use networks of our artificial neurons to solve toy versions of a real-world problem that is computationally intense even for the most sophisticated digital technologies.”

In particular, the researchers have demonstrated proof of concept that their brain-inspired system can identify possible mutations in a virus, which is highly relevant for ensuring the efficacy of vaccines and medications for strains exhibiting genetic diversity.

A September 24, 2020 Texas A&M University news release (also on EurekAlert) by Vandana Suresh, which originated the news item, provides some context for the research,

Over the past decades, digital technologies have become smaller and faster largely because of the advancements in transistor technology. However, these critical circuit components are fast approaching their limit of how small they can be built, initiating a global effort to find a new type of technology that can supplement, if not replace, transistors.

In addition to this “scaling-down” problem, transistor-based digital technologies have other well-known challenges. For example, they struggle at finding optimal solutions when presented with large sets of data.

“Let’s take a familiar example of finding the shortest route from your office to your home. If you have to make a single stop, it’s a fairly easy problem to solve. But if for some reason you need to make 15 stops in between, you have 43 billion routes to choose from,” said Dr. Suhas Kumar, lead author on the study and researcher at Hewlett Packard Labs. “This is now an optimization problem, and current computers are rather inept at solving it.”

Kumar added that another arduous task for digital machines is pattern recognition, such as identifying a face as the same regardless of viewpoint or recognizing a familiar voice buried within a din of sounds.

But tasks that can send digital machines into a computational tizzy are ones at which the brain excels. In fact, brains are not just quick at recognition and optimization problems, but they also consume far less energy than digital systems. Hence, by mimicking how the brain solves these types of tasks, Williams said brain-inspired or neuromorphic systems could potentially overcome some of the computational hurdles faced by current digital technologies.

To build the fundamental building block of the brain or a neuron, the researchers assembled a synthetic nanoscale device consisting of layers of different inorganic materials, each with a unique function. However, they said the real magic happens in the thin layer made of the compound niobium dioxide.

When a small voltage is applied to this region, its temperature begins to increase. But when the temperature reaches a critical value, niobium dioxide undergoes a quick change in personality, turning from an insulator to a conductor. But as it begins to conduct electric currents, its temperature drops and niobium dioxide switches back to being an insulator.

These back-and-forth transitions enable the synthetic devices to generate a pulse of electrical current that closely resembles the profile of electrical spikes, or action potentials, produced by biological neurons. Further, by changing the voltage across their synthetic neurons, the researchers reproduced a rich range of neuronal behaviors observed in the brain, such as sustained, burst and chaotic firing of electrical spikes.

“Capturing the dynamical behavior of neurons is a key goal for brain-inspired computers,” said Kumar. “Altogether, we were able to recreate around 15 types of neuronal firing profiles, all using a single electrical component and at much lower energies compared to transistor-based circuits.”

To evaluate if their synthetic neurons [neuristor?] can solve real-world problems, the researchers first wired 24 such nanoscale devices together in a network inspired by the connections between the brain’s cortex and thalamus, a well-known neural pathway involved in pattern recognition. Next, they used this system to solve a toy version of the viral quasispecies reconstruction problem, where mutant variations of a virus are identified without a reference genome.

By means of data inputs, the researchers introduced the network to short gene fragments. Then, by programming the strength of connections between the artificial neurons within the network, they established basic rules about joining these genetic fragments. The jigsaw puzzle-like task for the network was to list mutations in the virus’ genome based on these short genetic segments.

The researchers found that within a few microseconds, their network of artificial neurons settled down in a state that was indicative of the genome for a mutant strain.

Williams and Kumar noted this result is proof of principle that their neuromorphic systems can quickly perform tasks in an energy-efficient way.

The researchers said the next steps in their research will be to expand the repertoire of the problems that their brain-like networks can solve by incorporating other firing patterns and some hallmark properties of the human brain like learning and memory. They also plan to address hardware challenges for implementing their technology on a commercial scale.

“Calculating the national debt or solving some large-scale simulation is not the type of task the human brain is good at and that’s why we have digital computers. Alternatively, we can leverage our knowledge of neuronal connections for solving problems that the brain is exceptionally good at,” said Williams. “We have demonstrated that depending on the type of problem, there are different and more efficient ways of doing computations other than the conventional methods using digital computers with transistors.”

If you look at the news release on EurekAlert, you’ll see this informative image is titled: NeuristerSchematic [sic],

Caption: Networks of artificial neurons connected together can solve toy versions the viral quasispecies reconstruction problem. Credit: Texas A&M University College of Engineering

(On the university website, the image is credited to Rachel Barton.) You can see one of the first mentions of a ‘neuristor’ here in an August 24, 2017 posting.

Here’s a link to and a citation for the paper,

Third-order nanocircuit elements for neuromorphic engineering by Suhas Kumar, R. Stanley Williams & Ziwen Wang. Nature volume 585, pages518–523(2020) DOI: https://doi.org/10.1038/s41586-020-2735-5 Published: 23 September 2020 Issue Date: 24 September 2020

This paper is behind a paywall.

Wood pulp and pomegranate peels as clothing

Lilly Smith’s Sept. 11, 2020 article for Fast Company profiles a new article of clothing from Volllebak (first mentioned here in a March 11, 2019 posting titled: It’s a very ‘carbony’ time: graphene jacket, graphene-skinned airplane, and schwarzite),

The Vollebak hoodie is made out of sustainably sourced eucalyptus and beech trees. The wood pulp from the trees is then turned into a fiber through a closed-loop production process (99% of the water and solvent used to turn pulp into fiber is recycled and reused). The fiber is then woven into the fabric you pull over your head.

The hoodie is a light green because it’s dyed with pomegranate peels, which typically are thrown out. The Vollebak team went with pomegranate as the natural dye for the hoodie for two reasons: It’s high in a biomolecule called tannin, which makes it easy to extract natural dye, and the fruit can withstand a range of climates (it loves heat but can tolerate temperatures as low as 10 degrees). Given that the material is “robust enough to survive our planet’s unpredictable future,” according to Vollebak cofounder Nick Tidball, it’s likely to remain a reliable part of the company’s supply chain even as global warming causes more extreme weather patterns.

… the hoodie won’t degrade from normal wear and tear—it needs fungus, bacteria, and heat in order to biodegrade (sweat doesn’t count). It will take about 8 weeks to decompose if buried in compost, and up to 12 if buried in the ground—the hotter the conditions, the faster it breaks down. “Every element is made from organic matter and left in its raw state,” says Steve Tidball, Vollebak’s other cofounder (and Nick’s twin brother). “There’s no ink or chemicals to leach into the soil. Just plants and pomegranate dye, which are organic matter. So when it disappears in 12 weeks, nothing is left behind.”

The article hosts a picture of the hoodie as does Vollebak website’s Product, Plant and Pomegranate Hoodie webpage,

Plant and Pomegranate Hoodie. Built from eucalyptus trees and dyed in a giant vat of fruit. The waiting list is now open.

5,000 years ago our ancestors made their clothes from nature, using grass, tree bark, animal skins and plants. We need to get back to the point where you could throw your clothes away in a forest and nature would take care of the rest. The Plant and Pomegranate Hoodie feels like a normal hoodie, looks like a normal hoodie, and lasts as long as a normal hoodie. The thing that makes it different is simply the way it starts and ends its life. All the materials we’ve used were grown in nature. Each hoodie is made from eucalyptus trees from sustainably managed forests before being submerged in a giant vat of pomegranate dye to give it its colour. As it’s made entirely from plants, the hoodie is fully biodegradable and compostable. When you decide your hoodie has reached the end of its life – whether that’s in 3 years’ time or 30 – you can put it out with the compost or bury it in your garden. Because the hoodie that starts its life in nature is designed to end up there too. Launching September 2020, the waiting list is now open.

Not much information, eh? I found the same dearth of detail the last time I looked for more technical information about a Vollebak product (their graphene jacket).

As for composting or burying the hoodies, how does that work? I live in an apartment building; I don’t think composting is allowed in my apartment and the building owners will likely get upset if I start digging holes in the front yard. There is a park nearby but it is city property and I’m pretty sure that digging into it to bury a hoodie will turn out to be illegal.

There is a recycling bin for organics but I don’t know if the businesses tasked with picking up the organic refuse and dealing with it will be familiar with biodegradable hoodies and I ‘m not sure hoodie disposal in the organics would be allowed by the city, which oversees the recycling programme.

These are not insurmountable problems but if people want to be mindful about their purchases and future disposal of said purchases, research may be needed.

Telling stories about artificial intelligence (AI) and Chinese science fiction; a Nov. 17, 2020 virtual event

[downloaded from https://www.berggruen.org/events/ai-narratives-in-contemporary-chinese-science-fiction/]

Exciting news: Chris Eldred of the Berggruen Institute sent this notice (from his Nov. 13, 2020 email)

Renowned science fiction novelists Hao Jingfang, Chen Qiufan, and Wang Yao (Xia Jia) will be featured in a virtual event next Tuesday, and I thought their discussion may be of interest to you and your readers. The event will explore how AI is used in contemporary Chinese science fiction, and the writers’ roundtable will address questions such as: How does Chinese sci-fi literature since the Reform and Opening-Up compare to sci-fi writing in the West? How does the Wandering Earth narrative and Chinese perspectives on home influence ideas about the impact of AI on the future?

Berggruen Fellow Hao Jingfang is an economist by training and an award-winning author (Hugo Award for Best Novelette). This event will be co-hosted with the University of Cambridge Leverhulme Centre for the Future of Intelligence. 

This event will be live streamed on Zoom (agenda and registration link here) on Tuesday, November 17th, from 8:30-11:50 AM GMT / 4:30-7:50 PM CST. Simultaneous English translation will be provided. 

The Berggruen Institute is offering a conversation with authors and researchers about how Chinese science fiction grapples with artificial intelligence (from the Berggruen Institute’s AI Narratives in Contemporary Chinese Science Fiction event page),

AI Narratives in Contemporary Chinese Science Fiction

November 17, 2020

Platform & Language:

Zoom (Chinese and English, with simultaneous translation)

Click here to register.

Discussion points:

1. How does Chinese sci-fi literature since the Reform and Opening-Up compare to sci-fi writing in the West?

2. How does the Wandering Earth narrative and Chinese perspectives on home influence ideas about the impact of AI on the future

About the Speakers:

WU Yan is a professor and PhD supervisor at the Humanities Center of Southern University of Science and Technology. He is a science fiction writer, vice chairman of the China Science Writers Association, recipient of the Thomas D Clareson Award of the American Science Fiction Research Association, and co-founder of the Xingyun (Nebula) Awards for Global Chinese Science Fiction. He is the author of science fictions such as Adventure of the Soul and The Sixth Day of Life and Death, academic works such as Outline of Science Fiction Literature, and textbooks such as Science and Fantasy – Training Course for Youth Imagination and Scientific Innovation.

Sanfeng is a science fiction researcher, visiting researcher of the Humanities Center of Southern University of Science and Technology, chief researcher of Shenzhen Science & Fantasy Growth Foundation, honorary assistant professor of the University of Hong Kong, Secretary-General of the World Chinese Science Fiction Association, and editor-in-chief of Nebula Science Fiction Review. His research covers the history of Chinese science fiction, development of science fiction industry, science fiction and urban development, science fiction and technological innovation, etc.

About the Event

Keynote 1 “Chinese AI Science Fiction in the Early Period of Reform and Opening-Up (1978-1983)”

(改革开放早期(1978-1983)的中国AI科幻小说)

Abstract: Science fiction on the themes of computers and robots emerged early but in a scattered manner in China. In the stories, the protagonists are largely humanlike assistants chiefly collecting data or doing daily manual labor, and this does not fall in the category of today’s artificial intelligence. Major changes took place after the reform and opening-up in 1978 in this regard. In 1979, the number of robot-themed works ballooned. By 1980, the quality of works also saw a quantum leap, and stories on the nature of artificial intelligence began to appear. At this stage, the AI works such as Spy Case Outside the Pitch, Dulles and Alice, Professor Shalom’s Misconception, and Riot on the Ziwei Island That Shocked the World describe how intelligent robots respond to activities such as adversarial ball games (note that these are not chess games), fully integrate into the daily life of humans, and launch collective riots beyond legal norms under special circumstances. The ideas that the growth of artificial intelligence requires a suitable environment, stable family relationship, social adaptation, etc. are still of important value.

Keynote 2 “Algorithm of the Soul: Narrative of AI in Recent Chinese Science Fiction”

(灵魂的算法:近期中国科幻小说中的AI叙事)

Abstract: As artificial intelligence has been applied to the fields of technology and daily life in the past decade, the AI narrative in Chinese science fiction has also seen seismic changes. On the one hand, young authors are aware that the “soul” of AI comes, to a large extent, from machine learning algorithms. As a result, their works often highlight the existence and implementation of algorithms, bringing maneuverability and credibility to the AI. On the other hand, the authors prefer to focus on the conflicts and contradictions in emotions, ethics, and morality caused by AI that penetrate into human life. If the previous AI-themed science fiction is like a distant robot fable, the recent AI narrative assumes contemporary and practical significance. This report focuses on exploring the AI-themed science fiction by several young authors (including Hao Jingfang’s [emphasis mine] The Problem of Love and Where Are You, Chen Qiufan’s Image Maker and Algorithm for Life, and Xia Jia’s Let’s Have a Talk and Shejiang, Baoshu’s Little Girl and Shuangchimu’s The Cock Prince, etc.) to delve into the breakthroughs and achievements in AI narratives.

Hao Jingfang, one of the authors mentioned in the abstract, is currently a fellow at the Berggruen Institute and she is scheduled to be a guest according to the co-host’s the University of Cambridge’s Leverhulme Centre for the Future of Intelligence (CFI) page: Workshop: AI Narratives in Contemporary Chinese Science Fiction programme description (I’ll try not to include too much repetitive information),

Workshop 2 – November 17, 2020

AI Narratives in Contemporary Chinese Science Fiction

Programme

16:30-16:40 CST (8:30-8:40 GMT)  Introductions

SONG Bing, Vice President, Co-Director, Berggruen Research Center, Peking University

Kanta Dihal, Postdoctoral Researcher, Project Lead on Global Narratives, Leverhulme Centre for the Future of Intelligence, University of Cambridge  

16:40-17:10 CST (8:40-9:10 GMT)  Talk 1 [Chinese AI SciFi and the early period]

17:10-17:40 CST (9:10-9:40 GMT)  Talk 2  [Algorithm of the soul]

17:40-18:10 CST (9:40-10:10 GMT)  Q&A

18:10-18:20 CST (10:10-10:20 GMT) Break

18:20-19:50 CST (10:20-11:50 GMT)  Roundtable Discussion

Host:

HAO Jingfang(郝景芳), author, researcher & Berggruen Fellow

Guests:

Baoshu (宝树), sci-fi and fantasy writer

CHEN Qiufan(陈楸帆), sci-fi writer, screenwriter & translator

Feidao(飞氘), sci-fi writer, Associate Professor in the Department of Chinese Language and Literature at Tsinghua University

WANG Yao(王瑶,pen name “Xia Jia”), sci-fi writer, Associate Professor of Chinese Literature at Xi’an Jiaotong University

Suggested Readings

ABOUT CHINESE [Science] FICTION

“What Makes Chinese Fiction Chinese?”, by Xia Jia and Ken Liu,

The Worst of All Possible Universes and the Best of All Possible Earths: Three Body and Chinese Science Fiction”, Cixin Liu, translated by Ken Liu

Science Fiction in China: 2016 in Review

SHORT NOVELS ABOUT ROBOTS/AI/ALGORITHM:

The Robot Who Liked to Tell Tall Tales”, by Feidao, translated by Ken Liu

Goodnight, Melancholy”, by Xia Jia, translated by Ken Liu

The Reunion”, by Chen Qiufan, translated by Emily Jin and Ken Liu, MIT Technology Review, December 16, 2018

Folding Beijing”, by Hao Jingfang, translated by Ken Liu

Let’s have a talk”, by Xia Jia

For those of us on the West Coast of North America the event times are: Tuesday, November 17, 2020, 1430 – 1750 or 2:30 – 5:50 pm. *Added On Nov.16.20 at 11:55 am PT: For anyone who can’t attend the live event, a full recording will be posted to YouTube.*

Kudos to all involved in organizing and participating in this event. It’s important to get as many viewpoints as possible on AI and its potential impacts.

Finally and for the curious, there’s another posting about Chinese science fiction here (May 31, 2019).