Tag Archives: Texas A&M University

Get your curcumin delivered by nanoparticles

Curcumin is a constituent of turmeric (used in cooking and as a remedy in Ayurvedic medicine). It’s been a while since I’ve stumbled across a curcumin story (scientists have been trying to find a way to exploit its therapeutic qualities for years). The latest news comes from Australia, which is a little unexpected as most of the ‘curcumin research stories’ previously on this blog have come from India.

A March 5, 2020 news item on ScienceDaily announces new research on curcumin therapeutic possibilities,

For years, curry lovers have sworn by the anti-inflammatory properties of turmeric, but its active compound, curcumin, has long frustrated scientists hoping to validate these claims with clinical studies.

The failure of the body to easily absorb curcumin has been a thorn in the side of medical researchers seeking scientific proof that curcumin can successfully treat cancer, heart disease, Alzheimer’s and many other chronic health conditions.

Now, researchers from the University of South Australia (UniSA), McMaster University in Canada and Texas A&M University have shown that curcumin can be delivered effectively into human cells via tiny nanoparticles.

Over three years ago on December 2, 2016, researchers from McMaster University made this video about Alzheimer’s and curcumin research available,

From the McMaster University, Centre for Health Economics & Policy Analysis, December 2, 2016 news webpage,

This video investigates the therapeutic potential of curcumin, a substance found in turmeric, to prevent Alzheimer’s disease. The information presented in this video has integrated research including in vitro studies that aimed to observe the influence of curcumin based interventions in the neuropathology of Alzheimer’s disease. From mechanisms for neurogenesis to the disintegration of beta amyloid plaques, this video highlights that there are many pathways by which curcumin can elicit its effects. However, there are currently not enough human trials to support the mouse-model studies for turmeric’s ability to prevent Alzheimer’s.

Back to the latest work, a March 5, 2020 UniSA press release (also on EurekAlert), which originated the news item, describes curcumin research that focuses on STI’s (sexually transmitted infections), also mentioned is earlier work on Alzheimer’s Disease,

Sanjay Garg, a professor of pharmaceutical science at UniSA, and his colleague Dr Ankit Parikh are part of an international team that has developed a nano formulation which changes curcumin’s behaviour to increase its oral bioavailability by 117 per cent.

The researchers have shown in animal experiments that nanoparticles containing curcumin not only prevents cognitive deterioration but also reverses the damage. This finding paves the way for clinical development trials for Alzheimer’s.

Co-author Professor Xin-Fu Zhou, a UniSA neuroscientist, says the new formulation offers a potential solution for Alzheimer’s disease.

“Curcumin is a compound that suppresses oxidative stress and inflammation, both key pathological factors for Alzheimer’s, and it also helps remove amyloid plaques, small fragments of protein that clump together in the brains of Alzheimer disease patients,” Prof Zhou says.

The same delivery method is now being tested to show that curcumin can also prevent the spread of genital herpes.

“To treat genital herpes (HSV-2) you need a form of curcumin that is better absorbed, which is why it needs to be encapsulated in a nano formulation,” Prof Garg says.

“Curcumin can stop the genital herpes virus, it helps in reducing the inflammation and makes it less susceptible to HIV and other STIs,” Prof Garg says.

Women are biologically more vulnerable to genital herpes as bacterial and viral infections in the female genital tract (FGT) impair the mucosal barrier. Curcumin, however, can minimize genital inflammation and control against HSV-2 infection, which would assist in the prevention of HIV infection in the FGT.

Here’s a link to and a citation for the latest paper,

Curcumin Can Decrease Tissue Inflammation and the Severity of HSV-2 Infection in the Female Reproductive Mucosa by Danielle Vitali, Puja Bagri, Jocelyn M. Wessels, Meenakshi Arora, Raghu Ganugula, Ankit Parikh, Talveer Mandur, Allison Felker, Sanjay Garg, M.N.V. Ravi Kumar, and Charu Kaushic. Int. J. Mol. Sci. 2020, 21(1), 337; DOI: https://doi.org/10.3390/ijms21010337 Published: 4 January 2020

This is an open access paper and is part of the journal’s Special Issue Curcumin in Health and Disease: New Knowledge)

For anyone interested in the earlier work on Alzheimer’s Disease, here are links to two papers that were published in 2018 by a team led by Sanjay Garg,

Curcumin-loaded self-nanomicellizing solid dispersion system: part I: development, optimization, characterization, and oral bioavailability by Ankit Parikh, Krishna Kathawala, Yunmei Song, Xin-Fu Zhou & Sanjay Garg. Drug Delivery and Translational Research volume 8, pages 1389–1405 (2018) DOI: https://doi.org/10.1007/s13346-018-0543-3 Issue Date: October 2018

Curcumin-loaded self-nanomicellizing solid dispersion system: part II: in vivo safety and efficacy assessment against behavior deficit in Alzheimer disease by Ankit Parikh, Krishna Kathawala, Jintao Li, Chi Chen, Zhengnan Shan, Xia Cao, Xin-Fu Zhou & Sanjay Garg. Drug Delivery and Translational Research volume 8, pages 1406–1420 (2018) DOI: https://doi.org/10.1007/s13346-018-0570-0 Issue Date: October 2018

Neither of these paper is open access but you can gain access by contacting sanjay.garg@unisa.edu.au

This looks like exciting work, bearing in mind the latest curcumin research on an STI was performed on female mice. As for the Alzheimer’s papers, that curcumin research was also performed on animals, presumably mice. As the press release noted, “This finding paves the way for clinical development trials for Alzheimer’s.” Oddly, there’s no mention of clinical trials for STI’s.

A lipid-based memcapacitor,for neuromorphic computing

Caption: Researchers at ORNL’s Center for Nanophase Materials Sciences demonstrated the first example of capacitance in a lipid-based biomimetic membrane, opening nondigital routes to advanced, brain-like computation. Credit: Michelle Lehman/Oak Ridge National Laboratory, U.S. Dept. of Energy

The last time I wrote about memcapacitors (June 30, 2014 posting: Memristors, memcapacitors, and meminductors for faster computers), the ideas were largely theoretical; I believe this work is the first research I’ve seen on the topic. From an October 17, 2019 news item on ScienceDaily,

Researchers at the Department of Energy’s Oak Ridge National Laboratory ]ORNL], the University of Tennessee and Texas A&M University demonstrated bio-inspired devices that accelerate routes to neuromorphic, or brain-like, computing.

Results published in Nature Communications report the first example of a lipid-based “memcapacitor,” a charge storage component with memory that processes information much like synapses do in the brain. Their discovery could support the emergence of computing networks modeled on biology for a sensory approach to machine learning.

An October 16, 2019 ORNL news release (also on EurekAlert but published Oct. 17, 2019), which originated the news item, provides more detail about the work,

“Our goal is to develop materials and computing elements that work like biological synapses and neurons—with vast interconnectivity and flexibility—to enable autonomous systems that operate differently than current computing devices and offer new functionality and learning capabilities,” said Joseph Najem, a recent postdoctoral researcher at ORNL’s Center for Nanophase Materials Sciences, a DOE Office of Science User Facility, and current assistant professor of mechanical engineering at Penn State.

The novel approach uses soft materials to mimic biomembranes and simulate the way nerve cells communicate with one another.

The team designed an artificial cell membrane, formed at the interface of two lipid-coated water droplets in oil, to explore the material’s dynamic, electrophysiological properties. At applied voltages, charges build up on both sides of the membrane as stored energy, analogous to the way capacitors work in traditional electric circuits.

But unlike regular capacitors, the memcapacitor can “remember” a previously applied voltage and—literally—shape how information is processed. The synthetic membranes change surface area and thickness depending on electrical activity. These shapeshifting membranes could be tuned as adaptive filters for specific biophysical and biochemical signals.

“The novel functionality opens avenues for nondigital signal processing and machine learning modeled on nature,” said ORNL’s Pat Collier, a CNMS staff research scientist.

A distinct feature of all digital computers is the separation of processing and memory. Information is transferred back and forth from the hard drive and the central processor, creating an inherent bottleneck in the architecture no matter how small or fast the hardware can be.

Neuromorphic computing, modeled on the nervous system, employs architectures that are fundamentally different in that memory and signal processing are co-located in memory elements—memristors, memcapacitors and meminductors.

These “memelements” make up the synaptic hardware of systems that mimic natural information processing, learning and memory.

Systems designed with memelements offer advantages in scalability and low power consumption, but the real goal is to carve out an alternative path to artificial intelligence, said Collier.

Tapping into biology could enable new computing possibilities, especially in the area of “edge computing,” such as wearable and embedded technologies that are not connected to a cloud but instead make on-the-fly decisions based on sensory input and past experience.

Biological sensing has evolved over billions of years into a highly sensitive system with receptors in cell membranes that are able to pick out a single molecule of a specific odor or taste. “This is not something we can match digitally,” Collier said.

Digital computation is built around digital information, the binary language of ones and zeros coursing through electronic circuits. It can emulate the human brain, but its solid-state components do not compute sensory data the way a brain does.

“The brain computes sensory information pushed through synapses in a neural network that is reconfigurable and shaped by learning,” said Collier. “Incorporating biology—using biomembranes that sense bioelectrochemical information—is key to developing the functionality of neuromorphic computing.”

While numerous solid-state versions of memelements have been demonstrated, the team’s biomimetic elements represent new opportunities for potential “spiking” neural networks that can compute natural data in natural ways.

Spiking neural networks are intended to simulate the way neurons spike with electrical potential and, if the signal is strong enough, pass it on to their neighbors through synapses, carving out learning pathways that are pruned over time for efficiency.

A bio-inspired version with analog data processing is a distant aim. Current early-stage research focuses on developing the components of bio-circuitry.

“We started with the basics, a memristor that can weigh information via conductance to determine if a spike is strong enough to be broadcast through a network of synapses connecting neurons,” said Collier. “Our memcapacitor goes further in that it can actually store energy as an electric charge in the membrane, enabling the complex ‘integrate and fire’ activity of neurons needed to achieve dense networks capable of brain-like computation.”

The team’s next steps are to explore new biomaterials and study simple networks to achieve more complex brain-like functionalities with memelements.

Here’s a link to and a citation for the paper,

Dynamical nonlinear memory capacitance in biomimetic membranes by Joseph S. Najem, Md Sakib Hasan, R. Stanley Williams, Ryan J. Weiss, Garrett S. Rose, Graham J. Taylor, Stephen A. Sarles & C. Patrick Collier. Nature Communications volume 10, Article number: 3239 (2019) DOI: DOIhttps://doi.org/10.1038/s41467-019-11223-8 Published July 19, 2019

This paper is open access.

One final comment, you might recognize one of the authors (R. Stanley Williams) who in 2008 helped launch ‘memristor’ research.

Superhydrophobic nanoflowers

I’m getting to the science but first this video of what looks like jiggling jello,

In actuality, it’s a superhydrophobic coating demonstration and a July 2, 2019 news item on phys.org provides more information,

Plant leaves have a natural superpower—they’re designed with water repelling characteristics. Called a superhydrophobic surface, this trait allows leaves to cleanse themselves from dust particles. Inspired by such natural designs, a team of researchers at Texas A&M University has developed an innovative way to control the hydrophobicity of a surface to benefit to the biomedical field.

Researchers in Dr. Akhilesh K. Gaharwar’s lab in the Department of Biomedical Engineering have developed a “lotus effect” by incorporating atomic defects in nanomaterials, which could have widespread applications in the biomedical field including biosensing, lab-on-a-chip, blood-repellent, anti-fouling and self-cleaning applications.

A July 2, 2019 Texas A&M University news release (also on EurekAlert) by Jennifer Reiley, which originated the news item, expands on the theme,

Superhydrophobic materials are used extensively for self-cleaning characteristic of devices. However, current materials require alteration to the chemistry or topography of the surface to work. This limits the use of superhydrophobic materials.

“Designing hydrophobic surfaces and controlling the wetting behavior has long been of great interest, as it plays crucial role in accomplishing self-cleaning ability,” Gaharwar said. “However, there are limited biocompatible approach to control the wetting behavior of the surface as desired in several biomedical and biotechnological applications.”

The Texas A&M design adopts a ‘nanoflower-like’ assembly of two-dimensional (2D) atomic layers to protect the surface from wetting. The team recently released a study published in Chemical Communications. 2D nanomaterials are an ultrathin class of nanomaterials and have received considerable attention in research. Gaharwar’s lab used 2D molybdenum disulfide (MoS2), a new class of 2D nanomaterials that has shown enormous potential in nanoelectronics, optical sensors, renewable energy sources, catalysis and lubrication, but has not been investigated for biomedical applications. This innovative approach demonstrates applications of this unique class of materials to the biomedical industry.

“These 2D nanomaterials with their hexagonal packed layer repel water adherence, however, a missing atom from the top layer can allow easy access to water molecules by the next layer of atoms underneath making it transit from hydrophobic to hydrophilic,” said lead author of the study, Dr. Manish Jaiswal, a senior research associate in Gaharwar’s lab.

This innovative technique opens many doors for expanded applications in several scientific and technological areas. The superhydrophobic coating can be easily applied over various substrates such as glass, tissue paper, rubber or silica using the solvent evaporation method. These superhydrophobic coatings have wide-spread applications, not only in developing self-cleaning surfaces in nanoelectronics devices, but also for biomedical applications.

Specifically, the study demonstrated that blood and cell culture media containing proteins do not adhere to the surface, which is very promising. In addition, the team is currently exploring the potential applications of controlled hydrophobicity in stem cell fate.

Here’s a link to and a citation for the paper,

Superhydrophobic states of 2D nanomaterials controlled by atomic defects can modulate cell adhesion by Manish K. Jaiswal, Kanwar Abhay Singh, Giriraj Lokhande and Akhilesh K. Gaharwar. Chem. Commun., 2019, Advance Article DOI: 10.1039/C9CC00547A First published on 07 Jun 2019

This paper is open access.

A fire-retardant coating made of renewable nanocellulose materials

Firefighters everywhere are likely to appreciate the efforts of researchers at Texas A&M University (US) to a develop a non-toxic fire retardant coating. From a February 12, 2019 news item on Nanowerk (Note: A link has been removed),

Texas A&M University researchers are developing a new kind of flame-retardant coating using renewable, nontoxic materials readily found in nature, which could provide even more effective fire protection for several widely used materials.

Dr. Jaime Grunlan, the Linda & Ralph Schmidt ’68 Professor in the J. Mike Walker ’66 Department of Mechanical Engineering at Texas A&M, led the recently published research that is featured on the cover of a recent issue of the journal Advanced Materials Interfaces (“Super Gas Barrier and Fire Resistance of Nanoplatelet/Nanofibril Multilayer Thin Films”).

Successful development and implementation of the coating could provide better fire protection to materials including upholstered furniture, textiles and insulation.

“These coatings offer the opportunity to reduce the flammability of the polyurethane foam used in a variety of furniture throughout most people’s homes,” Grunlan noted.

A February 8, 2019 Texas A&M University news release (also on EurekAlert) by Steve Kuhlmann, which originated the news item, describes the work being done in collaboration with a Swedish team in more detail,

The project is a result of an ongoing collaboration between Grunlan and a group of researchers at KTH Royal Institute of Technology in Stockholm, Sweden, led by Lars Wagberg. The group, which specializes in utilizing nanocellulose, provided Grunlan with the ingredients he needed to complement his water-based coating procedure.

In nature, both the cellulose – a component of wood and various sea creatures – and clay – a component in soil and rock formations – act as mechanical reinforcements for the structures in which they are found.

“The uniqueness in this current study lies in the use of two naturally occurring nanomaterials, clay nanoplatelets and cellulose nanofibrils,” Grunlan said. “To the best of our knowledge, these ingredients have never been used to make a heat shielding or flame-retardant coating as a multilayer thin film deposited from water.”

Among the benefits gained from using this method include the coating’s ability to create an excellent oxygen barrier to plastic films – commonly used for food packaging – and better fire protection at a lower cost than other, more toxic ingredients traditionally used flame-retardant treatments.

To test the coatings, Grunlan and his colleagues applied the flexible polyurethane foam – often used in furniture cushions – and exposed it to fire using a butane torch to determine the level of protection the compounds provided.

While uncoated polyurethane foam immediately melts when exposed to flame, the foam treated with the researchers’ coating prevented the fire from damaging any further than surface level, leaving the foam underneath undamaged.

“The nanobrick wall structure of the coating reduces the temperature experienced by the underlying foam, which delays combustion,” Grunlan said. “This coating also serves to promote insulating char formation and reduces the release of fumes that feed a fire.”

With the research completed, Grunlan said the next step for the overall flame-retardant project is to transition the methods into industry for implementation and further development. 

Here’s a link to and a citation for the paper,

Super Gas Barrier and Fire Resistance of Nanoplatelet/Nanofibril Multilayer Thin Films by Shuang Qin, Maryam Ghanad Pour, Simone Lazar, Oruç Köklükaya, Joseph Gerringer, Yixuan Song, Lars Wågberg, Jaime C. Grunlan. Advanced Materials Interfaces Volume 6, Issue 2 January 23, 2019 1801424 DOI: https://doi.org/10.1002/admi.201801424 First published online: 16 November 2018

This paper is behind a paywall.

Nanostructured materials and radiation

If you’re planning on using nanostructured materials in a nuclear facility, you might want to check out this work (from a June 8, 2018 Purdue University (Indiana, US) news release by Brian L. Huchel,

A professor in the Purdue College of Engineering examined the potential use of various materials in nuclear reactors in an extensive review article in the journal Progress in Materials Science.

The article, titled “Radiation Damage in Nanostructured Materials,” was led by Xinghang Zhang, a professor of materials engineering. It will be published in the July issue of the journal.

Zhang said there is a significant demand for advanced materials that can survive high temperature and high doses of radiation. These materials contain significant amount of internal changes, called defect sinks, which are too small to be seen with the naked eye, but may form the next generation of materials used in nuclear reactors.

“Nanostructured materials with abundant internal defect sinks are promising as these materials have shown significantly improved radiation tolerance,” he said. “However, there are many challenges and fundamental science questions that remain to be solved before these materials can have applications in advanced nuclear reactors.”

The 100-page article, which took two years to write, focuses on metallic materials and metal-ceramic compounds and reviews types of internal material defects on the reduction of radiation damage in nanostructured materials.

Under the extreme radiation conditions, a large number of defects and their clusters are generated inside materials, and such significant microstructure damage often leads to degradation of the mechanical and physical properties of the materials

The article discusses the usage of a combination of defect sink networks to collaboratively improve the radiation tolerance of nanomaterials, while pointing out the need to improve the thermal and radiation stabilities of the defect sinks.

“The field of radiation damage in nanostructured materials is an exciting and rapidly evolving arena, enriched with challenges and opportunities,” Zhang said. “The integration of extensive research effort, resources and expertise in various fields may eventually lead to the design of advanced nanomaterials with unprecedented radiation tolerance.”

Jin Li, co-author of the review article and a postdoctoral fellow in the School of Materials Engineering, said researchers with different expertise worked collaboratively on the article, which contains more than 100 pages, 100 figures and 700 references.

The team involved in the research article included researchers from Purdue, Texas A&M University, Drexel University, the University of Nebraska-Lincoln and China University of Petroleum-Beijing, as well as Sandia National Laboratory, Los Alamos National Laboratory and Idaho National Laboratory.

Here’s an image illustrating the work,

Various imperfections in nanostructures, call defect sinks, can enhance the material’s tolerance to radiation. (Photo/Xinghang Zhang)

Here’s a link to and a citation for the paper,

Radiation damage in nanostructured materials by Xinghang Zhang, Khalid Hattar, Youxing Chen, Lin Shao, Jin Li, Cheng Sun, Kaiyuan Yu, Nan Li, Mitra L.Taheri, Haiyan Wang, Jian Wang, Michael Nastasi. Progress in Materials Science Volume 96, July 2018, Pages 217-321 https://doi.org/10.1016/j.pmatsci.2018.03.002

This paper is behind a paywall.

ht/ to June 8, 2018 Nanowerk news item.

Injectable bandages for internal bleeding and hydrogel for the brain

This injectable bandage could be a gamechanger (as they say) if it can be taken beyond the ‘in vitro’ (i.e., petri dish) testing stage. A May 22, 2018 news item on Nanowerk makes the announcement (Note: A link has been removed),

While several products are available to quickly seal surface wounds, rapidly stopping fatal internal bleeding has proven more difficult. Now researchers from the Department of Biomedical Engineering at Texas A&M University are developing an injectable hydrogel bandage that could save lives in emergencies such as penetrating shrapnel wounds on the battlefield (Acta Biomaterialia, “Nanoengineered injectable hydrogels for wound healing application”).

A May 22, 2018 US National Institute of Biomedical Engineering and Bioengiineering news release, which originated the news item, provides more detail (Note: Links have been removed),

The researchers combined a hydrogel base (a water-swollen polymer) and nanoparticles that interact with the body’s natural blood-clotting mechanism. “The hydrogel expands to rapidly fill puncture wounds and stop blood loss,” explained Akhilesh Gaharwar, Ph.D., assistant professor and senior investigator on the work. “The surface of the nanoparticles attracts blood platelets that become activated and start the natural clotting cascade of the body.”

Enhanced clotting when the nanoparticles were added to the hydrogel was confirmed by standard laboratory blood clotting tests. Clotting time was reduced from eight minutes to six minutes when the hydrogel was introduced into the mixture. When nanoparticles were added, clotting time was significantly reduced, to less than three minutes.

In addition to the rapid clotting mechanism of the hydrogel composite, the engineers took advantage of special properties of the nanoparticle component. They found they could use the electric charge of the nanoparticles to add growth factors that efficiently adhered to the particles. “Stopping fatal bleeding rapidly was the goal of our work,” said Gaharwar. “However, we found that we could attach growth factors to the nanoparticles. This was an added bonus because the growth factors act to begin the body’s natural wound healing process—the next step needed after bleeding has stopped.”

The researchers were able to attach vascular endothelial growth factor (VEGF) to the nanoparticles. They tested the hydrogel/nanoparticle/VEGF combination in a cell culture test that mimics the wound healing process. The test uses a petri dish with a layer of endothelial cells on the surface that create a solid skin-like sheet. The sheet is then scratched down the center creating a rip or hole in the sheet that resembles a wound.

When the hydrogel containing VEGF bound to the nanoparticles was added to the damaged endothelial cell wound, the cells were induced to grow back and fill-in the scratched region—essentially mimicking the healing of a wound.

“Our laboratory experiments have verified the effectiveness of the hydrogel for initiating both blood clotting and wound healing,” said Gaharwar. “We are anxious to begin tests in animals with the hope of testing and eventual use in humans where we believe our formulation has great potential to have a significant impact on saving lives in critical situations.”

The work was funded by grant EB023454 from the National Institute of Biomedical Imaging and Bioengineering (NIBIB), and the National Science Foundation. The results were reported in the February issue of the journal Acta Biomaterialia.

The paper was published back in April 2018 and there was an April 2, 2018 Texas A&M University news release on EurekAlert making the announcement (and providing a few unique details),

A penetrating injury from shrapnel is a serious obstacle in overcoming battlefield wounds that can ultimately lead to death.Given the high mortality rates due to hemorrhaging, there is an unmet need to quickly self-administer materials that prevent fatality due to excessive blood loss.

With a gelling agent commonly used in preparing pastries, researchers from the Inspired Nanomaterials and Tissue Engineering Laboratory have successfully fabricated an injectable bandage to stop bleeding and promote wound healing.

In a recent article “Nanoengineered Injectable Hydrogels for Wound Healing Application” published in Acta Biomaterialia, Dr. Akhilesh K. Gaharwar, assistant professor in the Department of Biomedical Engineering at Texas A&M University, uses kappa-carrageenan and nanosilicates to form injectable hydrogels to promote hemostasis (the process to stop bleeding) and facilitate wound healing via a controlled release of therapeutics.

“Injectable hydrogels are promising materials for achieving hemostasis in case of internal injuries and bleeding, as these biomaterials can be introduced into a wound site using minimally invasive approaches,” said Gaharwar. “An ideal injectable bandage should solidify after injection in the wound area and promote a natural clotting cascade. In addition, the injectable bandage should initiate wound healing response after achieving hemostasis.”

The study uses a commonly used thickening agent known as kappa-carrageenan, obtained from seaweed, to design injectable hydrogels. Hydrogels are a 3-D water swollen polymer network, similar to Jell-O, simulating the structure of human tissues.

When kappa-carrageenan is mixed with clay-based nanoparticles, injectable gelatin is obtained. The charged characteristics of clay-based nanoparticles provide hemostatic ability to the hydrogels. Specifically, plasma protein and platelets form blood adsorption on the gel surface and trigger a blood clotting cascade.

“Interestingly, we also found that these injectable bandages can show a prolonged release of therapeutics that can be used to heal the wound” said Giriraj Lokhande, a graduate student in Gaharwar’s lab and first author of the paper. “The negative surface charge of nanoparticles enabled electrostatic interactions with therapeutics thus resulting in the slow release of therapeutics.”

Nanoparticles that promote blood clotting and wound healing (red discs), attached to the wound-filling hydrogel component (black) form a nanocomposite hydrogel. The gel is designed to be self-administered to stop bleeding and begin wound-healing in emergency situations. Credit: Lokhande, et al. 1

Here’s a link to and a citation for the paper,

Nanoengineered injectable hydrogels for wound healing application by Giriraj Lokhande, James K. Carrow, Teena Thakur, Janet R. Xavier, Madasamy Parani, Kayla J. Bayless, Akhilesh K. Gaharwar. Acta Biomaterialia Volume 70, 1 April 2018, Pages 35-47
https://doi.org/10.1016/j.actbio.2018.01.045

This paper is behind a paywall.

Hydrogel and the brain

It’s been an interesting week for hydrogels. On May 21, 2018 there was a news item on ScienceDaily about a bioengineered hydrogel which stimulated brain tissue growth after a stroke (mouse model),

In a first-of-its-kind finding, a new stroke-healing gel helped regrow neurons and blood vessels in mice with stroke-damaged brains, UCLA researchers report in the May 21 issue of Nature Materials.

“We tested this in laboratory mice to determine if it would repair the brain in a model of stroke, and lead to recovery,” said Dr. S. Thomas Carmichael, Professor and Chair of neurology at UCLA. “This study indicated that new brain tissue can be regenerated in what was previously just an inactive brain scar after stroke.”

The brain has a limited capacity for recovery after stroke and other diseases. Unlike some other organs in the body, such as the liver or skin, the brain does not regenerate new connections, blood vessels or new tissue structures. Tissue that dies in the brain from stroke is absorbed, leaving a cavity, devoid of blood vessels, neurons or axons, the thin nerve fibers that project from neurons.

After 16 weeks, stroke cavities in mice contained regenerated brain tissue, including new neural networks — a result that had not been seen before. The mice with new neurons showed improved motor behavior, though the exact mechanism wasn’t clear.

Remarkable stuff.

Of musical parodies, Despacito, and evolution

What great timing, I just found out about a musical science parody featuring evolution and biology and learned of the latest news about the study of evolution on one of the islands in the Galapagos (where Charles Darwin made some of his observations). Thanks to Stacey Johnson for her November 24, 2017 posting on the Signals blog for featuring Evo-Devo (Despacito Biology Parody), an A Capella Science music video from Tim Blais,

Now, for the latest regarding the Galapagos and evolution (from a November 24, 2017 news item on ScienceDaily),

The arrival 36 years ago of a strange bird to a remote island in the Galapagos archipelago has provided direct genetic evidence of a novel way in which new species arise.

In this week’s issue of the journal Science, researchers from Princeton University and Uppsala University in Sweden report that the newcomer belonging to one species mated with a member of another species resident on the island, giving rise to a new species that today consists of roughly 30 individuals.

The study comes from work conducted on Darwin’s finches, which live on the Galapagos Islands in the Pacific Ocean. The remote location has enabled researchers to study the evolution of biodiversity due to natural selection.

The direct observation of the origin of this new species occurred during field work carried out over the last four decades by B. Rosemary and Peter Grant, two scientists from Princeton, on the small island of Daphne Major.

A November 23, 2017 Princeton University news release on EurekAlert, which originated the news item, provides more detail,

“The novelty of this study is that we can follow the emergence of new species in the wild,” said B. Rosemary Grant, a senior research biologist, emeritus, and a senior biologist in the Department of Ecology and Evolutionary Biology. “Through our work on Daphne Major, we were able to observe the pairing up of two birds from different species and then follow what happened to see how speciation occurred.”

In 1981, a graduate student working with the Grants on Daphne Major noticed the newcomer, a male that sang an unusual song and was much larger in body and beak size than the three resident species of birds on the island.

“We didn’t see him fly in from over the sea, but we noticed him shortly after he arrived. He was so different from the other birds that we knew he did not hatch from an egg on Daphne Major,” said Peter Grant, the Class of 1877 Professor of Zoology, Emeritus, and a professor of ecology and evolutionary biology, emeritus.

The researchers took a blood sample and released the bird, which later bred with a resident medium ground finch of the species Geospiz fortis, initiating a new lineage. The Grants and their research team followed the new “Big Bird lineage” for six generations, taking blood samples for use in genetic analysis.

In the current study, researchers from Uppsala University analyzed DNA collected from the parent birds and their offspring over the years. The investigators discovered that the original male parent was a large cactus finch of the species Geospiza conirostris from Española island, which is more than 100 kilometers (about 62 miles) to the southeast in the archipelago.

The remarkable distance meant that the male finch was not able to return home to mate with a member of his own species and so chose a mate from among the three species already on Daphne Major. This reproductive isolation is considered a critical step in the development of a new species when two separate species interbreed.

The offspring were also reproductively isolated because their song, which is used to attract mates, was unusual and failed to attract females from the resident species. The offspring also differed from the resident species in beak size and shape, which is a major cue for mate choice. As a result, the offspring mated with members of their own lineage, strengthening the development of the new species.

Researchers previously assumed that the formation of a new species takes a very long time, but in the Big Bird lineage it happened in just two generations, according to observations made by the Grants in the field in combination with the genetic studies.

All 18 species of Darwin’s finches derived from a single ancestral species that colonized the Galápagos about one to two million years ago. The finches have since diversified into different species, and changes in beak shape and size have allowed different species to utilize different food sources on the Galápagos. A critical requirement for speciation to occur through hybridization of two distinct species is that the new lineage must be ecologically competitive — that is, good at competing for food and other resources with the other species — and this has been the case for the Big Bird lineage.

“It is very striking that when we compare the size and shape of the Big Bird beaks with the beak morphologies of the other three species inhabiting Daphne Major, the Big Birds occupy their own niche in the beak morphology space,” said Sangeet Lamichhaney, a postdoctoral fellow at Harvard University and the first author on the study. “Thus, the combination of gene variants contributed from the two interbreeding species in combination with natural selection led to the evolution of a beak morphology that was competitive and unique.”

The definition of a species has traditionally included the inability to produce fully fertile progeny from interbreeding species, as is the case for the horse and the donkey, for example. However, in recent years it has become clear that some closely related species, which normally avoid breeding with each other, do indeed produce offspring that can pass genes to subsequent generations. The authors of the study have previously reported that there has been a considerable amount of gene flow among species of Darwin’s finches over the last several thousands of years.

One of the most striking aspects of this study is that hybridization between two distinct species led to the development of a new lineage that after only two generations behaved as any other species of Darwin’s finches, explained Leif Andersson, a professor at Uppsala University who is also affiliated with the Swedish University of Agricultural Sciences and Texas A&M University. “A naturalist who came to Daphne Major without knowing that this lineage arose very recently would have recognized this lineage as one of the four species on the island. This clearly demonstrates the value of long-running field studies,” he said.

It is likely that new lineages like the Big Birds have originated many times during the evolution of Darwin’s finches, according to the authors. The majority of these lineages have gone extinct but some may have led to the evolution of contemporary species. “We have no indication about the long-term survival of the Big Bird lineage, but it has the potential to become a success, and it provides a beautiful example of one way in which speciation occurs,” said Andersson. “Charles Darwin would have been excited to read this paper.”

Here’s a link to and a citation for the paper,

Rapid hybrid speciation in Darwin’s finches by Sangeet Lamichhaney, Fan Han, Matthew T. Webster, Leif Andersson, B. Rosemary Grant, Peter R. Grant. Science 23 Nov 2017: eaao4593 DOI: 10.1126/science.aao4593

This paper is behind a paywall.

Happy weekend! And for those who love their Despacito, there’s this parody featuring three Italians in a small car (thanks again to Stacey Johnson’s blog posting),

Teslaphoresis; self-assembling materials from a distance

Getting carbon nanotubes to self-assemble from a distance is possible according to an April 14, 2016 news item on ScienceDaily,

Scientists at Rice University have discovered that the strong force field emitted by a Tesla coil causes carbon nanotubes to self-assemble into long wires, a phenomenon they call “Teslaphoresis.”

An April 14, 2016 Rice University (US) news release, (also on EurekAlert) which originated the news item, expands on the theme,

Cherukuri [Rice chemist Paul Cherukuri] sees this research as setting a clear path toward scalable assembly of nanotubes from the bottom up.

The system works by remotely oscillating positive and negative charges in each nanotube, causing them to chain together into long wires. Cherukuri’s specially designed Tesla coil even generates a tractor beam-like effect as nanotube wires are pulled toward the coil over long distances.

This force-field effect on matter had never been observed on such a large scale, Cherukuri said, and the phenomenon was unknown to Nikola Tesla, who invented the coil in 1891 with the intention of delivering wireless electrical energy.

“Electric fields have been used to move small objects, but only over ultrashort distances,” Cherukuri said. “With Teslaphoresis, we have the ability to massively scale up force fields to move matter remotely.”

The researchers discovered that the phenomenon simultaneously assembles and powers circuits that harvest energy from the field. In one experiment, nanotubes assembled themselves into wires, formed a circuit connecting two LEDs and then absorbed energy from the Tesla coil’s field to light them.

Cherukuri realized a redesigned Tesla coil could create a powerful force field at distances far greater than anyone imagined. His team observed alignment and movement of the nanotubes several feet away from the coil. “It is such a stunning thing to watch these nanotubes come alive and stitch themselves into wires on the other side of the room,” he said.

Nanotubes were a natural first test material, given their heritage at Rice, where the HiPco production process was invented. But the researchers envision many other nanomaterials can be assembled as well.

Lindsey Bornhoeft, the paper’s lead author and a biomedical engineering graduate student at Texas A&M University, said the directed force field from the bench-top coil at Rice is restricted to just a few feet. To examine the effects on matter at greater distances would require larger systems that are under development. Cherukuri suggested patterned surfaces and multiple Tesla coil systems could create more complex self-assembling circuits from nanoscale-sized particles.

Cherukuri and his wife, Tonya, also a Rice alum and a co-author of the paper, noted that their son Adam made some remarkable observations while watching videos of the experiment. “I was surprised that he noticed patterns in nanotube movements that I didn’t see,” Cherukuri said. “I couldn’t make him an author on the paper, but both he and his little brother John are acknowledged for helpful discussions.”

Cherukuri knows the value of youthful observation — and imagination — since he started designing Tesla coils as a teen. “I would have never thought, as a 14-year-old kid building coils, that it was going to be useful someday,” he said.

Cherukuri and his team self-funded the work, which he said made it more meaningful for the group. “This was one of the most exciting projects I’ve ever done, made even more so because it was an all-volunteer group of passionate scientists and students. But because Rice has this wonderful culture of unconventional wisdom, we were able to make an amazing discovery that pushes the frontiers of nanoscience.”

The teammates look forward to seeing where their research leads. “These nanotube wires grow and act like nerves, and controlled assembly of nanomaterials from the bottom up may be used as a template for applications in regenerative medicine,” Bornhoeft said.

“There are so many applications where one could utilize strong force fields to control the behavior of matter in both biological and artificial systems,” Cherukuri said. “And even more exciting is how much fundamental physics and chemistry we are discovering as we move along. This really is just the first act in an amazing story.”

Rice University has produced a video featuring the research and the researchers,

Here’s a link to and a citation for the paper,

Teslaphoresis of Carbon Nanotubes by Lindsey R. Bornhoeft, Aida C. Castillo, Preston R. Smalley, Carter Kittrell, Dustin K. James, Bruce E. Brinson, Thomas R. Rybolt, Bruce R. Johnson, Tonya K. Cherukuri†, and Paul Cherukuri. ACS Nano, Article ASAP DOI: 10.1021/acsnano.6b02313 Publication Date (Web): April 13, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

The Tesla coil was created by Nikola Tesla, a renowned Serbian-American scientist and engineer.

Nanotwinned copper materials with nanovoids are damage-tolerant with regard to radiation

The research comes out of the Texas A&M University, from a May 29, 2015 news item on Azonano,

Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation in metallic materials typically induces significant damage in the form of dislocation loops and continuous void growth, manifested as void swelling. In certain metallic materials with low-to-intermediate stacking fault energy, such as Cu [copper] and austenitic stainless steels, void swelling can be significant and lead to substantial degradation of mechanical properties.

By using in situ heavy ion irradiation in a transmission electron microscope (in collaboration with M.A. Kirk at IVEM facility at Argonne National Lab), Zhang’s [Xinghang Zhang] student, Dr. Youxing Chen, reported a surprising phenomena: during radiation of nanotwinned Cu, preexisting nanovoids disappeared.

A May 28, 2015 Texas A & M University news release, which originated the news item, expands on the theme,

The self-healing capability of Cu arises from the existence of three-dimensional coherent and incoherent twin boundary networks. Such a network enables capture and rapid transportation of radiation induced point defects and their clusters to nanovoids (as evidenced by in situ radiation experiments and molecular dynamics simulations performed in collaboration with Jian Wang at Los Alamos National Laboratory), and thus lead to the mutual elimination of defect clusters and nanovoids.

This study also introduces the concept that deliberate introduction of nanovoids in conjunction with nanotwins may enable unprecedented radiation tolerance in metallic materials. [emphasis mine] The mobile twin boundaries are swift carriers that load and transfer “customers” (defect clusters), and nanovoids are also necessary to accommodate these “customers.” The in situ radiation study also shows that after annihilation of nanovoids, the self-healing capability of nanotwinned Cu is degraded, highlighting the significance of nanovoids. The concept developed from this study, the combination of nanovoids with nanotwin networks, may also stimulate the design of damage tolerant materials in general that are subjected other extreme environments, such as high stress and high pressure impact.

Here’s a link to and a citation for the paper,

Damage-tolerant nanotwinned metals with nanovoids under radiation environments by Y. Chen, K Y. Yu, Y. Liu, S. Shao, H. Wang, M. A. Kirk, J. Wang, & X. Zhang. Nature Communications 6, Article number: 7036 doi:10.1038/ncomms8036 Published 24 April 2015

This paper is open access.

Oh so cute! Baby nanotubes!

Scientists from the US National Institute of Standards and Technology and from two US universities have successfully filmed the formation of single-walled carbon nanotubes (SWCNTs) according to a Dec. 2, 2014 news item on Nanowerk,

Single-walled carbon nanotubes are loaded with desirable properties. In particular, the ability to conduct electricity at high rates of speed makes them attractive for use as nanoscale transistors. But this and other properties are largely dependent on their structure, and their structure is determined when the nanotube is just beginning to form.

In a step toward understanding the factors that influence how nanotubes form, researchers at the National Institute of Standards and Technology (NIST), the University of Maryland, and Texas A&M have succeeded in filming them when they are only a few atoms old. These nanotube “baby pictures” give crucial insight into how they germinate and grow, potentially opening the way for scientists to create them en masse with just the properties that they want.

A Dec. 1, 2014 NIST news release, which originated the news item, explains how scientists managed to make movies of SWCNTs as they formed,

To better understand how carbon nanotubes grow and how to grow the ones you want, you need to understand the very beginning of the growth process, called nucleation. To do that, you need to be able to image the nucleation process as it happens. However, this is not easy because it involves a small number of fast-moving atoms, meaning you have to take very high resolution pictures very quickly.

Because fast, high-resolution cameras are expensive, NIST scientists instead slowed the growth rate by lowering the pressure inside their instrument, an environmental scanning transmission electron microscope. Inside the microscope’s chamber, under high heat and low pressure, the team watched as carbon atoms generated from acetylene rained down onto 1.2-nanometer bits of cobalt carbide, where they attached, formed into graphene, encircled the nanoparticle, and began to grow into nanotubes.

“Our observations showed that the carbon atoms attached only to the pure metal facets of the cobalt carbide nanoparticle, and not those facets interlaced with carbon atoms,” says NIST chemist Renu Sharma, who led the research effort. “The burgeoning tube then grew above the cobalt-carbon facets until it found another pure metal surface to attach to, forming a closed cap. Carbon atoms continued to attach at the cobalt facets, pushing the previously formed graphene along toward the cap in a kind of carbon assembly line and lengthening the tube. This whole process took only a few seconds.”

According to Sharma, the carbon atoms seek out the most energetically favorable configurations as they form graphene on the cobalt carbide nanoparticle’s surface. While graphene has a mostly hexagonal, honeycomb-type structure, the geometry of the nanoparticle forces the carbon atoms to arrange themselves into pentagonal shapes within the otherwise honeycomb lattice. Crucially, these pentagonal irregularities in the graphene’s structure are what allows the graphene to curve and become a nanotube.

Because the nanoparticles’ facets also appear to play a deciding role in the nanotube’s diameter and chirality, or direction of twist, the group’s next step will be to measure the chirality of the nanotubes as they grow. The group also plans to use metal nanoparticles with different facets to study their adhesive properties to see how they affect the tubes’ chirality and diameter.

The researchers have made one of their movies available for viewing, but, despite my efforts, I cannot find a way to embed the silent movie. Happily, you can find the ‘baby carbon nanotube’ movie alongside NIST’s Dec. 1, 2014 NIST news release,

As for the research paper, here’s a link and a citation for it,

Nucleation of Graphene and Its Conversion to Single-Walled Carbon Nanotubes by Matthieu Picher, Pin Ann Lin, Jose L. Gomez-Ballesteros, Perla B. Balbuena, and Renu Sharma. Nano Lett., 2014, 14 (11), pp 6104–6108 DOI: 10.1021/nl501977b Publication Date (Web): October 20, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.