Featured post

Brief note about changes

June 19,2019: Hello! I apologize for this site’s unavailability over the last 10 days or so (June 7 – 18, 2019). Moving to a new web hosting service meant that the ‘law of unintended consequences’ came into play. Fingers crossed that all the problems have been resolved.

On another matter, I’ve accumulated quite a backlog of postings, which I will be resizing (publishing) over the next few months. I’ve been trying to bring that backlog down to a reasonable size for quite some time now but I see more drastic, focused action is required. I will continue posting some more recent news items along with my older pieces.

Memristor-based neural network and the biosimilar principle of learning

Once you get past the technical language (there’s a lot of it), you’ll find that they make the link between biomimicry and memristors explicit. Admittedly I’m not an expert but if I understand the research correctly, the scientists are suggesting that the algorithms used in machine learning today cannot allow memristors to be properly integrated for use in true neuromorphic computing and this work from Russia and Greece points to a new paradigm. If you understand it differently, please do let me know in the comments.

A July 12, 2019 news item on Nanowerk kicks things off (Note: A link has been removed),

Lobachevsky University scientists together with their colleagues from the National Research Center “Kurchatov Institute” (Moscow) and the National Research Center “Demokritos” (Athens) are working on the hardware implementation of a spiking neural network based on memristors.

The key elements of such a network, along with pulsed neurons, are artificial synaptic connections that can change the strength (weight) of connection between neurons during the learning (Microelectronic Engineering, “Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications”).

For this purpose, memristive devices based on metal-oxide-metal nanostructures developed at the UNN Physics and Technology Research Institute (PTRI) are suitable, but their use in specific spiking neural network architectures developed at the Kurchatov Institute requires demonstration of biologically plausible learning principles.

Caption: Cross-section image of the metal-oxide-metal memristive structure based on ZrO2(Y) polycrystalline film (a); corresponding schematic view of the cross-point memristive device (b); STDP dependencies of memristive device conductance changes for different delay values between pre- and postsynaptic neuron spikes (c); photographs of a microchip and an array of memristive devices in a standard cermet casing (d); the simplest spiking neural network architecture learning on the basis of local rules for changing memristive weights (e). Credit: Lobachevsky University

A July 12, 2019 (?) Lobachevsky University press release (also on EurekAlert), which originated the news item, delves further into the work,

The biological mechanism of learning of neural systems is described by Hebb’s rule, according to which learning occurs as a result of an increase in the strength of connection  (synaptic weight) between simultaneously active neurons, which indicates the presence of a causal relationship in their excitation. One of the clarifying forms of this fundamental rule is plasticity, which depends on the time of arrival of pulses (Spike-Timing Dependent Plasticity – STDP).

In accordance with STDP, synaptic weight increases if the postsynaptic neuron generates a pulse (spike) immediately after the presynaptic one, and vice versa, the synaptic weight decreases if the postsynaptic neuron generates a spike right before the presynaptic one. Moreover, the smaller the time difference Δt between the pre- and postsynaptic spikes, the more pronounced the weight change will be.

According to one of the researchers, Head of the UNN PTRI laboratory Alexei Mikhailov, in order to demonstrate the STDP principle, memristive nanostructures based on yttria-stabilized zirconia (YSZ) thin films were used. YSZ is a well-known solid-state electrolyte with high oxygen ion mobility.

“Due to a specified concentration of oxygen vacancies, which is determined by the controlled concentration of yttrium impurities, and the heterogeneous structure of the films obtained by magnetron sputtering, such memristive structures demonstrate controlled bipolar switching between different resistive states in a wide resistance range. The switching is associated with the formation and destruction of conductive channels along grain boundaries in the polycrystalline ZrO2 (Y) film,” notes Alexei Mikhailov.

An array of memristive devices for research was implemented in the form of a microchip mounted in a standard cermet casing, which facilitates the integration of the array into a neural network’s analog circuit. The full technological cycle for creating memristive microchips is currently implemented at the UNN PTRI. In the future, it is possible to scale the devices down to the minimum size of about 50 nm, as was established by Greek partners.
Our studies of the dynamic plasticity of the memoristive devices, continues Alexey Mikhailov, have shown that the form of the conductance change depending on Δt is in good agreement with the STDP learning rules. It should be also noted that if the initial value of the memristor conductance is close to the maximum, it is easy to reduce the corresponding weight while it is difficult to enhance it, and in the case of a memristor with a minimum conductance in the initial state, it is difficult to reduce its weight, but it is easy to enhance it.

According to Vyacheslav Demin, director-coordinator in the area of nature-like technologies of the Kurchatov Institute, who is one of the ideologues of this work, the established pattern of change in the memristor conductance clearly demonstrates the possibility of hardware implementation of the so-called local learning rules. Such rules for changing the strength of synaptic connections depend only on the values ​​of variables that are present locally at each time point (neuron activities and current weights).

“This essentially distinguishes such principle from the traditional learning algorithm, which is based on global rules for changing weights, using information on the error values ​​at the current time point for each neuron of the output neural network layer (in a widely popular group of error back propagation methods). The traditional principle is not biosimilar, it requires “external” (expert) knowledge of the correct answers for each example presented to the network (that is, they do not have the property of self-learning). This principle is difficult to implement on the basis of memristors, since it requires controlled precise changes of memristor conductances, as opposed to local rules. Such precise control is not always possible due to the natural variability (a wide range of parameters) of memristors as analog elements,” says Vyacheslav Demin.

Local learning rules of the STDP type implemented in hardware on memristors provide the basis for autonomous (“unsupervised”) learning of a spiking neural network. In this case, the final state of the network does not depend on its initial state, but depends only on the learning conditions (a specific sequence of pulses). According to Vyacheslav Demin, this opens up prospects for the application of local learning rules based on memristors when solving artificial intelligence problems with the use of complex spiking neural network architectures.

Here’s a link to and a citation for the paper,

Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications by A. V. Emelyanov, K. E. Nikiruy, A. Demin, V. V. Rylkov, A. I. Belov, D. S. Korolev, E. G. Gryaznov, D. A. Pavlov, O. N. Gorshkov, A. N. Mikhaylov, P. Dimitrakis. Microelectronic Engineering Volume 215, 15 July 2019, 110988 First available online 16 May 2019

This paper is behind a paywall.

A deep look at atomic switches

A July 19, 2019 news item on phys.org describes research that may result in a substantive change for information technology,

A team of researchers from Tokyo Institute of Technology has gained unprecedented insight into the inner workings of an atomic switch. By investigating the composition of the tiny metal ‘bridge’ that forms inside the switch, their findings may spur the design of atomic switches with improved performance.

A July 22, 2019 Tokyo Institute of Technology press release (also on EurekAlert but published July 19, 2019), which originated the news item, explains how this research could have such an important impact,

Atomic switches are hailed as the tiniest of electrochemical switches that could change the face of information technology. Due to their nanoscale dimensions and low power consumption, they hold promise for integration into next-generation circuits that could drive the development of artificial intelligence (AI) and Internet of Things (IoT) devices.

Although various designs have emerged, one intriguing question concerns the nature of the metallic filament, or bridge, that is key to the operation of the switch. The bridge forms inside a metal sulfide layer sandwiched between two electrodes [see figure below], and is controlled by applying a voltage that induces an electrochemical reaction. The formation and annihilation of this bridge determines whether the switch is on or off.

Now, a research group including Akira Aiba and Manabu Kiguchi and colleagues at Tokyo Institute of Technology’s Department of Chemistry has found a useful way to examine precisely what the bridge is composed of.

By cooling the atomic switch enough so as to be able to investigate the bridge using a low-temperature measurement technique called point contact spectroscopy (PCS) [2], their study revealed that the bridge is made up of metal atoms from both the electrode and the metal sulfide layer. This surprising finding controverts the prevailing notion that the bridge derives from the electrode only, Kiguchi explains.

The team compared atomic switches with different combinations of electrodes (Pt and Ag, or Pt and Cu) and metal sulfide layers (Cu2S and Ag2S). In both cases, they found that the bridge is mainly composed of Ag.

The reason behind the dominance of Ag in the bridge is likely due to “the higher mobility of Ag ions compared to Cu ions”, the researchers say in their paper published in ACS Applied Materials & Interfaces.

They conclude that “it would be better to use metals with low mobility” for designing atomic switches with higher stability.

Much remains to be explored in the advancement of atomic switch technologies, and the team is continuing to investigate which combination of elements would be the most effective in improving performance.

###

Technical terms
[1] Atomic switch: The idea behind an atomic switch — one that can be controlled by the motion of a single atom — was introduced by Donald Eigler and colleagues at the IBM Almaden Research Center in 1991. Interest has since focused on how to realize and harness the potential of such extremely small switches for use in logic circuits and memory devices. Over the past two decades, researchers in Japan have taken a world-leading role in the development of atomic switch technologies.
[2] Point contact spectroscopy: A method of measuring the properties or excitations of single atoms at low temperature.

Caption: The ‘bridge’ that forms within the metal sulfide layer, connecting two metal electrodes, results in the atomic switch being turned on. Credit: Manabu Kiguchi

Here’s a link to and a citation for the paper,

Investigation of Ag and Cu Filament Formation Inside the Metal Sulfide Layer of an Atomic Switch Based on Point-Contact Spectroscopy by A. Aiba, R. Koizumi, T. Tsuruoka, K. Terabe, K. Tsukagoshi, S. Kaneko, S. Fujii, T. Nishino, M. Kiguchi. ACS Appl. Mater. Interfaces 2019 XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/acsami.9b05523 Publication Date:July 5, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

For anyone who might need a bit of a refresher for the chemical elements, Pt is platinum, Ag is silver, and Cu is copper. So, with regard to the metal sulfide layers Cu2S is copper sulfide and Ag2S is silver sulfide.

Touchy robots and prosthetics

I have briefly speculated about the importance of touch elsewhere (see my July 19, 2019 posting regarding BlocKit and blockchain; scroll down about 50% of the way) but this upcoming news bit and the one following it put a different spin on the importance of touch.

Exceptional sense of touch

Robots need a sense of touch to perform their tasks and a July 18, 2019 National University of Singapore press release (also on EurekAlert) announces work on an improved sense of touch,

Robots and prosthetic devices may soon have a sense of touch equivalent to, or better than, the human skin with the Asynchronous Coded Electronic Skin (ACES), an artificial nervous system developed by a team of researchers at the National University of Singapore (NUS).

The new electronic skin system achieved ultra-high responsiveness and robustness to damage, and can be paired with any kind of sensor skin layers to function effectively as an electronic skin.

The innovation, achieved by Assistant Professor Benjamin Tee and his team from the Department of Materials Science and Engineering at the NUS Faculty of Engineering, was first reported in prestigious scientific journal Science Robotics on 18 July 2019.

Faster than the human sensory nervous system

“Humans use our sense of touch to accomplish almost every daily task, such as picking up a cup of coffee or making a handshake. Without it, we will even lose our sense of balance when walking. Similarly, robots need to have a sense of touch in order to interact better with humans, but robots today still cannot feel objects very well,” explained Asst Prof Tee, who has been working on electronic skin technologies for over a decade in hope of giving robots and prosthetic devices a better sense of touch.

Drawing inspiration from the human sensory nervous system, the NUS team spent a year and a half developing a sensor system that could potentially perform better. While the ACES electronic nervous system detects signals like the human sensor nervous system, it is made up of a network of sensors connected via a single electrical conductor, unlike the nerve bundles in the human skin. It is also unlike existing electronic skins which have interlinked wiring systems that can make them sensitive to damage and difficult to scale up.

Elaborating on the inspiration, Asst Prof Tee, who also holds appointments in the NUS Department of Electrical and Computer Engineering, NUS Institute for Health Innovation & Technology (iHealthTech), N.1 Institute for Health and the Hybrid Integrated Flexible Electronic Systems (HiFES) programme, said, “The human sensory nervous system is extremely efficient, and it works all the time to the extent that we often take it for granted. It is also very robust to damage. Our sense of touch, for example, does not get affected when we suffer a cut. If we can mimic how our biological system works and make it even better, we can bring about tremendous advancements in the field of robotics where electronic skins are predominantly applied.”

ACES can detect touches more than 1,000 times faster than the human sensory nervous system. For example, it is capable of differentiating physical contacts between different sensors in less than 60 nanoseconds – the fastest ever achieved for an electronic skin technology – even with large numbers of sensors. ACES-enabled skin can also accurately identify the shape, texture and hardness of objects within 10 milliseconds, ten times faster than the blinking of an eye. This is enabled by the high fidelity and capture speed of the ACES system.

The ACES platform can also be designed to achieve high robustness to physical damage, an important property for electronic skins because they come into the frequent physical contact with the environment. Unlike the current system used to interconnect sensors in existing electronic skins, all the sensors in ACES can be connected to a common electrical conductor with each sensor operating independently. This allows ACES-enabled electronic skins to continue functioning as long as there is one connection between the sensor and the conductor, making them less vulnerable to damage.

Smart electronic skins for robots and prosthetics

ACES’ simple wiring system and remarkable responsiveness even with increasing numbers of sensors are key characteristics that will facilitate the scale-up of intelligent electronic skins for Artificial Intelligence (AI) applications in robots, prosthetic devices and other human machine interfaces.

“Scalability is a critical consideration as big pieces of high performing electronic skins are required to cover the relatively large surface areas of robots and prosthetic devices,” explained Asst Prof Tee. “ACES can be easily paired with any kind of sensor skin layers, for example, those designed to sense temperatures and humidity, to create high performance ACES-enabled electronic skin with an exceptional sense of touch that can be used for a wide range of purposes,” he added.

For instance, pairing ACES with the transparent, self-healing and water-resistant sensor skin layer also recently developed by Asst Prof Tee’s team, creates an electronic skin that can self-repair, like the human skin. This type of electronic skin can be used to develop more realistic prosthetic limbs that will help disabled individuals restore their sense of touch.

Other potential applications include developing more intelligent robots that can perform disaster recovery tasks or take over mundane operations such as packing of items in warehouses. The NUS team is therefore looking to further apply the ACES platform on advanced robots and prosthetic devices in the next phase of their research.

For those who like videos, the researchers have prepared this,

Here’s a link to and a citation for the paper,

A neuro-inspired artificial peripheral nervous system for scalable electronic skins by Wang Wei Lee, Yu Jun Tan, Haicheng Yao, Si Li, Hian Hian See, Matthew Hon, Kian Ann Ng, Betty Xiong, John S. Ho and Benjamin C. K. Tee. Science Robotics Vol 4, Issue 32 31 July 2019 eaax2198 DOI: 10.1126/scirobotics.aax2198 Published online first: 17 Jul 2019:

This paper is behind a paywall.

Picking up a grape and holding his wife’s hand

This story comes from the Canadian Broadcasting Corporation (CBC) Radio with a six minute story embedded in the text, from a July 25, 2019 CBC Radio ‘As It Happens’ article by Sheena Goodyear,

The West Valley City, Utah, real estate agent [Keven Walgamott] lost his left hand in an electrical accident 17 years ago. Since then, he’s tried out a few different prosthetic limbs, but always found them too clunky and uncomfortable.

Then he decided to work with the University of Utah in 2016 to test out new prosthetic technology that mimics the sensation of human touch, allowing Walgamott to perform delicate tasks with precision — including shaking his wife’s hand. 

“I extended my left hand, she came and extended hers, and we were able to feel each other with the left hand for the first time in 13 years, and it was just a marvellous and wonderful experience,” Walgamott told As It Happens guest host Megan Williams. 

Walgamott, one of seven participants in the University of Utah study, was able to use an advanced prosthetic hand called the LUKE Arm to pick up an egg without cracking it, pluck a single grape from a bunch, hammer a nail, take a ring on and off his finger, fit a pillowcase over a pillow and more. 

While performing the tasks, Walgamott was able to actually feel the items he was holding and correctly gauge the amount of pressure he needed to exert — mimicking a process the human brain does automatically.

“I was able to feel something in each of my fingers,” he said. “What I feel, I guess the easiest way to explain it, is little electrical shocks.”

Those shocks — which he describes as a kind of a tingling sensation — intensify as he tightens his grip.

“Different variations of the intensity of the electricity as I move my fingers around and as I touch things,” he said. 

To make that [sense of touch] happen, the researchers implanted electrodes into the nerves on Walgamott’s forearm, allowing his brain to communicate with his prosthetic through a computer outside his body. That means he can move the hand just by thinking about it.

But those signals also work in reverse.

The team attached sensors to the hand of a LUKE Arm. Those sensors detect touch and positioning, and send that information to the electrodes so it can be interpreted by the brain.

For Walgamott, performing a series of menial tasks as a team of scientists recorded his progress was “fun to do.”

“I’d forgotten how well two hands work,” he said. “That was pretty cool.”

But it was also a huge relief from the phantom limb pain he has experienced since the accident, which he describes as a “burning sensation” in the place where his hand used to be.

A July 24, 2019 University of Utah news release (also on EurekAlert) provides more detail about the research,

Keven Walgamott had a good “feeling” about picking up the egg without crushing it.

What seems simple for nearly everyone else can be more of a Herculean task for Walgamott, who lost his left hand and part of his arm in an electrical accident 17 years ago. But he was testing out the prototype of a high-tech prosthetic arm with fingers that not only can move, they can move with his thoughts. And thanks to a biomedical engineering team at the University of Utah, he “felt” the egg well enough so his brain could tell the prosthetic hand not to squeeze too hard.

That’s because the team, led by U biomedical engineering associate professor Gregory Clark, has developed a way for the “LUKE Arm” (so named after the robotic hand that Luke Skywalker got in “The Empire Strikes Back”) to mimic the way a human hand feels objects by sending the appropriate signals to the brain. Their findings were published in a new paper co-authored by U biomedical engineering doctoral student Jacob George, former doctoral student David Kluger, Clark and other colleagues in the latest edition of the journal Science Robotics. A copy of the paper may be obtained by emailing robopak@aaas.org.

“We changed the way we are sending that information to the brain so that it matches the human body. And by matching the human body, we were able to see improved benefits,” George says. “We’re making more biologically realistic signals.”

That means an amputee wearing the prosthetic arm can sense the touch of something soft or hard, understand better how to pick it up and perform delicate tasks that would otherwise be impossible with a standard prosthetic with metal hooks or claws for hands.

“It almost put me to tears,” Walgamott says about using the LUKE Arm for the first time during clinical tests in 2017. “It was really amazing. I never thought I would be able to feel in that hand again.”

Walgamott, a real estate agent from West Valley City, Utah, and one of seven test subjects at the U, was able to pluck grapes without crushing them, pick up an egg without cracking it and hold his wife’s hand with a sensation in the fingers similar to that of an able-bodied person.

“One of the first things he wanted to do was put on his wedding ring. That’s hard to do with one hand,” says Clark. “It was very moving.”

Those things are accomplished through a complex series of mathematical calculations and modeling.

The LUKE Arm

The LUKE Arm has been in development for some 15 years. The arm itself is made of mostly metal motors and parts with a clear silicon “skin” over the hand. It is powered by an external battery and wired to a computer. It was developed by DEKA Research & Development Corp., a New Hampshire-based company founded by Segway inventor Dean Kamen.

Meanwhile, the U’s team has been developing a system that allows the prosthetic arm to tap into the wearer’s nerves, which are like biological wires that send signals to the arm to move. It does that thanks to an invention by U biomedical engineering Emeritus Distinguished Professor Richard A. Normann called the Utah Slanted Electrode Array. The array is a bundle of 100 microelectrodes and wires that are implanted into the amputee’s nerves in the forearm and connected to a computer outside the body. The array interprets the signals from the still-remaining arm nerves, and the computer translates them to digital signals that tell the arm to move.

But it also works the other way. To perform tasks such as picking up objects requires more than just the brain telling the hand to move. The prosthetic hand must also learn how to “feel” the object in order to know how much pressure to exert because you can’t figure that out just by looking at it.

First, the prosthetic arm has sensors in its hand that send signals to the nerves via the array to mimic the feeling the hand gets upon grabbing something. But equally important is how those signals are sent. It involves understanding how your brain deals with transitions in information when it first touches something. Upon first contact of an object, a burst of impulses runs up the nerves to the brain and then tapers off. Recreating this was a big step.

“Just providing sensation is a big deal, but the way you send that information is also critically important, and if you make it more biologically realistic, the brain will understand it better and the performance of this sensation will also be better,” says Clark.

To achieve that, Clark’s team used mathematical calculations along with recorded impulses from a primate’s arm to create an approximate model of how humans receive these different signal patterns. That model was then implemented into the LUKE Arm system.

Future research

In addition to creating a prototype of the LUKE Arm with a sense of touch, the overall team is already developing a version that is completely portable and does not need to be wired to a computer outside the body. Instead, everything would be connected wirelessly, giving the wearer complete freedom.

Clark says the Utah Slanted Electrode Array is also capable of sending signals to the brain for more than just the sense of touch, such as pain and temperature, though the paper primarily addresses touch. And while their work currently has only involved amputees who lost their extremities below the elbow, where the muscles to move the hand are located, Clark says their research could also be applied to those who lost their arms above the elbow.

Clark hopes that in 2020 or 2021, three test subjects will be able to take the arm home to use, pending federal regulatory approval.

The research involves a number of institutions including the U’s Department of Neurosurgery, Department of Physical Medicine and Rehabilitation and Department of Orthopedics, the University of Chicago’s Department of Organismal Biology and Anatomy, the Cleveland Clinic’s Department of Biomedical Engineering and Utah neurotechnology companies Ripple Neuro LLC and Blackrock Microsystems. The project is funded by the Defense Advanced Research Projects Agency and the National Science Foundation.

“This is an incredible interdisciplinary effort,” says Clark. “We could not have done this without the substantial efforts of everybody on that team.”

Here’s a link to and a citation for the paper,

Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand by J. A. George, D. T. Kluger, T. S. Davis, S. M. Wendelken, E. V. Okorokova, Q. He, C. C. Duncan, D. T. Hutchinson, Z. C. Thumser, D. T. Beckler, P. D. Marasco, S. J. Bensmaia and G. A. Clark. Science Robotics Vol. 4, Issue 32, eaax2352 31 July 2019 DOI: 10.1126/scirobotics.aax2352 Published online first: 24 Jul 2019

This paper is definitely behind a paywall.

The University of Utah researchers have produced a video highlighting their work,

Awe, science, and God

Having been brought up in a somewhat dogmatic religion, I was a bit resistant when I saw ‘religion’ mentioned in the news release but it seems I am being dogmatic. Here’s a definition from the Religion Wikipedia entry (Note: Links have been removed),

Religion is a social-cultural system of designated behaviors and practices, morals, worldviews, texts, sanctified places, prophecies, ethics, or organizations, that relates humanity to supernatural, transcendental, or spiritual elements. However, there is no scholarly consensus over what precisely constitutes a religion.[1][2]

This research into science and God suggests that the two ‘belief’ systems are not antithetical. From a July 18, 2019 Arizona State University (ASU) news release (also on EurekAlert but published on July 17, 2019) by Kimberlee D’Ardenne,

Most Americans believe science and religion are incompatible, but a recent study suggests that scientific engagement can actually promote belief in God.

Researchers from the Arizona State University Department of Psychology found that scientific information can create a feeling of awe, which leads to belief in more abstract views of God. The work will be published in the September 2019 issue of the Journal of Experimental Social Psychology and is now available online.

“There are many ways of thinking about God. Some see God in DNA, some think of God as the universe, and others think of God in Biblical, personified terms,” said Kathryn Johnson, associate research professor at ASU and lead author on the study. “We wanted to know if scientific engagement influenced beliefs about the existence or nature of God.”

Though science is often thought of in terms of data and experiments, ASU psychology graduate student Jordan Moon, who was a coauthor on the paper, said science might be more to some people. To test how people connect with science and the impact it had on their beliefs about God, the researchers looked at two types of scientific engagement: logical thinking or experiencing the feeling of awe.

The team first surveyed participants about how interested they were in science, how committed they were to logical thinking and how often they felt awe. Reporting a commitment to logic was associated with unbelief. The participants who reported both a strong commitment to logic and having experienced awe, or a feeling of overwhelming wonder that often leads to open-mindedness, were more likely to report believing in God. The most common description of God given by those participants was not what is commonly found in houses of worship: They reported believing in an abstract God described as mystical or limitless.

“When people are awed by the complexity of life or the vastness of the universe, they were more inclined to think in more spiritual ways,” Johnson said. “The feeling of awe might make people more open to other ways of conceptualizing God.”

In another experiment, the research team had the participants engage with science by watching videos. While a lecture about quantum physics led to unbelief or agnosticism, watching a music video about how atoms are both particles and waves led people to report feeling awe. Those who felt awe also were more likely to believe in an abstract God.

“A lot of people think science and religion do not go together, but they are thinking about science in too simplistic a way and religion in too simplistic a way,” said Adam Cohen, professor of psychology and senior author on the paper. “Science is big enough to accommodate religion, and religion is big enough to accommodate science.”

Cohen added that the work could lead to broader views of both science and religion.

Morris Okun, Matthew Scott and Holly O’Rourke from ASU and Joshua Hook from the University of North Texas also contributed to the work. The study was funded by the John Templeton Foundation.

Here’s a link to and a citation for the paper,

Science, God, and the cosmos: Science both erodes (via logic) and promotes (via awe) belief in God by Kathryn A.Johnson, Jordan W.Moon, Morris A.Okun, Matthew J.Scott, Holly P.O’Rourke, Joshua N.Hook, Adam B. Cohen. Journal of Experimental Social Psychology
Volume 84, September 2019, 103826 DOI: https://doi.org/10.1016/j.jesp.2019.103826

This paper is behind a paywall.

I noted the funding from the John Templeton Foundation and recalled they have a prize that relates to this topic.

2019 Templeton Prize winner

A March 20, 2019 article by Lee Billings for Scientific American offers a profile of the 2019 Templeton Prize winner,

Marcelo Gleiser, a 60-year-old Brazil-born theoretical physicist at Dartmouth College and prolific science popularizer, has won this year’s Templeton Prize. Valued at just under $1.5 million, the award from the John Templeton Foundation annually recognizes an individual “who has made an exceptional contribution to affirming life’s spiritual dimension.” [emphasis mine] Its past recipients include scientific luminaries such as Sir Martin Rees and Freeman Dyson, as well as religious or political leaders such as Mother Teresa, Desmond Tutu and the Dalai Lama.

Across his 35-year scientific career, Gleiser’s research has covered a wide breadth of topics, ranging from the properties of the early universe to the behavior of fundamental particles and the origins of life. But in awarding him its most prestigious honor, the Templeton Foundation chiefly cited his status as a leading public intellectual revealing “the historical, philosophical and cultural links between science, the humanities and spirituality.” He is also the first Latin American to receive the prize.

Scientific American spoke with Gleiser about the award, how he plans to advance his message of consilience, the need for humility in science, why humans are special, and the fundamental source of his curiosity as a physicist.

You’ve written and spoken eloquently about nature of reality and consciousness, the genesis of life, the possibility of life beyond Earth, the origin and fate of the universe, and more. How do all those disparate topics synergize into one, cohesive message for you

To me, science is one way of connecting with the mystery of existence. And if you think of it that way, the mystery of existence is something that we have wondered about ever since people began asking questions about who we are and where we come from. So while those questions are now part of scientific research, they are much, much older than science. I’m not talking about the science of materials, or high-temperature superconductivity, which is awesome and super important, but that’s not the kind of science I’m doing. I’m talking about science as part of a much grander and older sort of questioning about who we are in the big picture of the universe. To me, as a theoretical physicist and also someone who spends time out in the mountains, this sort of questioning offers a deeply spiritual connection with the world, through my mind and through my body. Einstein would have said the same thing, I think, with his cosmic religious feeling.

If you’re interested, this is a wide ranging profile touching on one of the big questions in physics, Is there a theory of everything?

For anyone curious about the Templeton Foundation, you can find out more here.

Dial-a-frog?

Frog and phone – Credit: Marta Yebra Alvarez

There is a ‘frogphone’ but you won’t be talking or communicating directly with frogs, instead you will get data about them, according to a December 6, 2019 British Ecological Society press release (also on EurekAlert),

Researchers have developed the ‘FrogPhone’, a novel device which allows scientists to call up a frog survey site and monitor them in the wild. The FrogPhone is the world’s first solar-powered remote survey device that relays environmental data to the observer via text messages, whilst conducting real-time remote acoustic surveys over the phone. These findings are presented in the British Ecological Society Journal Methods in Ecology and Evolution today [December 6, 2019].

The FrogPhone introduces a new concept that allows researchers to “call” a frog habitat, any time, from anywhere, once the device has been installed. The device has been developed at the University of New South Wales (UNSW) Canberra and the University of Canberra in collaboration with the Australian Capital Territory (ACT) and Region Frogwatch Program and the Australian National University.

The FrogPhone utilises 3G/4G cellular mobile data coverage and capitalises on the characteristic wideband audio of mobile phones, which acts as a carrier for frog calls. Real time frog calls can be transmitted across the 3G/4G network infrastructure, directly to the user’s phone. This supports clear sound quality and minimal background noise, allowing users to identify the calls of different frog species.

“We estimate that the device with its current microphone can detect calling frogs from a 100-150m radius” said lead author Dr. Adrian Garrido Sanchis, Associate Lecturer at UNSW Canberra. “The device allows us to monitor the local frog population with more frequency and ease, which is significant as frog species are widely recognised as indicators of environmental health” said the ACT and Region Frogwatch coordinator and co-author, Anke Maria Hoefer.

The FrogPhone unifies both passive acoustic and active monitoring methods, all in a waterproof casing. The system has a large battery capacity coupled to a powerful solar panel. It also contains digital thermal sensors to automatically collect environmental data such as water and air temperature in real-time. The FrogPhone uses an open-source platform which allows any researcher to adapt it to project-specific needs.

The system simulates the main features of a mobile phone device. The FrogPhone accepts incoming calls independently after three seconds. These three seconds allow time to activate the temperature sensors and measure the battery storage levels. All readings then get automatically texted to the caller’s phone.

Acoustic monitoring of animals generally involves either site visits by a researcher or using battery-powered passive acoustic devices, which record calls and store them locally on the device for later analysis. These often require night-time observation, when frogs are most active. Now, when researchers dial a device remotely, the call to the FrogPhone can be recorded indirectly and analysed later.

Ms. Hoefer remarked that “The FrogPhone will help to drastically reduce the costs and risks involved in remote or high intensity surveys. Its use will also minimize potential negative impacts of human presence at survey sites. These benefits are magnified with increasing distance to and inaccessibility of a field site.”

A successful field trial of the device was performed in Canberra from August 2017 to March 2018. Researchers used spectrograms, graphs which allow the visual comparison of the spectrum of frequencies of frog signals over time, to test the recording capabilities of the FrogPhone.

Ms. Hoefer commented that “The spectrogram comparison between the FrogPhone and the standard direct mobile phone methodology in the lab, for the calls of 9 different frog species, and the field tests have proven that the FrogPhone can be successfully used as a new alternative to conduct frog call surveys.”

The use of the current FrogPhone is limited to areas with adequate 3G/4G phone coverage. Secondly, to listen to frogs in a large area, several survey devices would be needed. In addition, it relies on exposure to sunlight.

Future additions to the FrogPhone could include a satellite communications module for poor signal areas, or the use of multidirectional microphones for large areas. Lead author Garrido Sanchis emphasized that “In densely vegetated areas the waterproof case of the FrogPhone allows the device to be installed as a floating device in the middle of a pond, to maximise solar access to recharge the batteries”.

Dr. Garrido Sanchis said “While initially tested in frogs, the technology used for the FrogPhone could easily be extended to capture other animal vocalisation (e.g. insects and mammals), expanding the applicability to a wide range of biodiversity conservation studies”.

Here’s what the FrogPhone looks like onsite,

The FrogPhone installed at the field site. Credit: Kumudu Munasinghe

Here’s a link to and a citation for the paper,

The FrogPhone: A novel device for real‐time frog call monitoring by Adrian, Garrido Sanchis, Lorenzo Bertolelli, Anke Maria Hoefer, Marta Yebra Alvarez, Kumudu Munasinghe. Methods in Ecology and Evolution https://doi.org/10.1111/2041-210X.13332 First published [online]: 04 December 2019

This paper is open access.

Animating a paper doll with a crystalline muscle

She does sit-ups!

I love those opening scenes (Hint: It was a dark and stormy night …). Now for the science, from a July 17, 2019 news item on Nanowerk,

Scary movies about dolls that can move, like Anabelle and Chucky, are popular at theaters this summer. Meanwhile, a much less menacing animated doll has chemists talking. Researchers have given a foil “paper doll” the ability to move and do sit-ups with a new material called polymer covalent organic frameworks (polyCOFs). …

A July 17, 2019 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, provides technical detail,

Scientists make conventional COFs by linking simple organic building blocks, such as carbon-containing molecules with boric acid or aldehyde groups, with covalent bonds. The ordered, porous structures show great potential for various applications, including catalysis, gas storage and drug delivery. However, COFs typically exist as nano- or micro-sized crystalline powders that are brittle and can’t be made into larger sheets or membranes that would be useful for many practical applications. Yao Chen, Shengqian Ma, Zhenjie Zhang and colleagues wondered if they could improve COFs’ mechanical properties by using linear polymers as building blocks.

The researchers based their polyCOF on an existing COF structure, but during the compound’s synthesis, they added polyethylene glycol (PEG) to the reactants. The PEG chains bridged the pore space of the COF, making a more compact, cohesive and stable structure. In contrast to the original COF, the polyCOF could be incorporated into flexible membranes that were repeatedly bent, twisted or stretched without damage. To demonstrate how polyCOFs could be used as an artificial muscle, the team made a doll containing the membrane as the waist and aluminum foil as its other parts. Upon exposure to ethanol vapors, the doll sat up; when the vapors were withdrawn, it laid down. The researchers repeated these actions several times, making the doll do “sit-ups.” The expansion of polyCOF pores upon binding the gas likely explains the doll’s calisthenics, the researchers say.

Here’s a link to and a citation for the paper,

PolyCOFs: A New Class of Freestanding Responsive Covalent Organic Framework Membranes with High Mechanical Performance by Zhifang Wang, Qi Yu, Yubo Huang. Hongde An, Yu Zhao, Yifan Feng, Xia Li, Xinlei Shi, Jiajie Liang, Fusheng Pan, Peng Cheng, Yao Chen, Shengqian Ma, Zhenjie Zhang. ACS Cent. Sci.2019XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/acscentsci.9b00212 Publication Date: June 25, 2019 Copyright © 2019 American Chemical Society

This paper appears to be open access.

Using light to manipulate neurons

There are three (or more?) possible applications including neuromorphic computing for this new optoelectronic technology which is based on black phophorus. A July 16, 2019 news item on Nanowerk announces the research,

Researchers from RMIT University [Australia] drew inspiration from an emerging tool in biotechnology – optogenetics – to develop a device that replicates the way the brain stores and loses information.

Optogenetics allows scientists to delve into the body’s electrical system with incredible precision, using light to manipulate neurons so that they can be turned on or off.

The new chip is based on an ultra-thin material that changes electrical resistance in response to different wavelengths of light, enabling it to mimic the way that neurons work to store and delete information in the brain.

Caption: The new chip is based on an ultra-thin material that changes electrical resistance in response to different wavelengths of light. Credit: RMIT University

A July 17, 2019 RMIT University press release (also on EurekAlert but published on July 16, 2019), which originated the news item, expands on the theme,

Research team leader Dr Sumeet Walia said the technology moves us closer towards artificial intelligence (AI) that can harness the brain’s full sophisticated functionality.

“Our optogenetically-inspired chip imitates the fundamental biology of nature’s best computer – the human brain,” Walia said.

“Being able to store, delete and process information is critical for computing, and the brain does this extremely efficiently.

“We’re able to simulate the brain’s neural approach simply by shining different colours onto our chip.

“This technology takes us further on the path towards fast, efficient and secure light-based computing.

“It also brings us an important step closer to the realisation of a bionic brain – a brain-on-a-chip that can learn from its environment just like humans do.”

Dr Taimur Ahmed, lead author of the study published in Advanced Functional Materials, said being able to replicate neural behavior on an artificial chip offered exciting avenues for research across sectors.

“This technology creates tremendous opportunities for researchers to better understand the brain and how it’s affected by disorders that disrupt neural connections, like Alzheimer’s disease and dementia,” Ahmed said.

The researchers, from the Functional Materials and Microsystems Research Group at RMIT, have also demonstrated the chip can perform logic operations – information processing – ticking another box for brain-like functionality.

Developed at RMIT’s MicroNano Research Facility, the technology is compatible with existing electronics and has also been demonstrated on a flexible platform, for integration into wearable electronics.

How the chip works:

Neural connections happen in the brain through electrical impulses. When tiny energy spikes reach a certain threshold of voltage, the neurons bind together – and you’ve started creating a memory.

On the chip, light is used to generate a photocurrent. Switching between colors causes the current to reverse direction from positive to negative.

This direction switch, or polarity shift, is equivalent to the binding and breaking of neural connections, a mechanism that enables neurons to connect (and induce learning) or inhibit (and induce forgetting).

This is akin to optogenetics, where light-induced modification of neurons causes them to either turn on or off, enabling or inhibiting connections to the next neuron in the chain.

To develop the technology, the researchers used a material called black phosphorus (BP) that can be inherently defective in nature.

This is usually a problem for optoelectronics, but with precision engineering the researchers were able to harness the defects to create new functionality.

“Defects are usually looked on as something to be avoided, but here we’re using them to create something novel and useful,” Ahmed said.

“It’s a creative approach to finding solutions for the technical challenges we face.”

Here’s a link and a citation for the paper,

Multifunctional Optoelectronics via Harnessing Defects in Layered Black Phosphorus by Taimur Ahmed, Sruthi Kuriakose, Sherif Abbas,, Michelle J. S. Spencer, Md. Ataur Rahman, Muhammad Tahir, Yuerui Lu, Prashant Sonar, Vipul Bansal, Madhu Bhaskaran, Sharath Sriram, Sumeet Walia. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.201901991 First published (online): 17 July 2019

This paper is behind a paywall.

Red wine for making wearable electronics?

Courtesy: University of Manchester [1920_stock-photo-red-wine-pouring-58843885-927462.jpg]

A July 12, 2019 news item on Nanowerk may change how you view that glass of red wine,

A team of scientists are seeking to kick-start a wearable technology revolution by creating flexible fibres and adding acids from red wine.

Extracting tannic acid from red wine, coffee or black tea, led a team of scientists from The University of Manchester to develop much more durable and flexible wearable devices. The addition of tannins improved mechanical properties of materials such as cotton to develop wearable sensors for rehabilitation monitoring, drastically increasing the devices lifespan.

A July 11, 2019 University of Manchester press release, which originated the news item, describes how this new approach could affect the scientists’ previous work,

The team have developed wearable devices such as capacitive breath sensors and artificial hands for extreme conditions by improving the durability of flexible sensors. Previously, wearable technology has been subject to fail after repeated bending and folding which can interrupt the conductivity of such devices due to tiny micro cracks. Improving this could open the door to more long-lasting integrated technology.

Dr Xuqing Liu who led the research team said: “We are using this method to develop new flexible, breathable, wearable devices. The main research objective of our group is to develop comfortable wearable devices for flexible human-machine interface.

“Traditional conductive material suffers from weak bonding to the fibers which can result in low conductivity. When red wine, or coffee, or black tea, is spilled on a dress, it’s difficult to get rid of these stains. The main reason is that they all contain tannic acid, which can firmly adsorb the material on the surface of the fiber. This good adhesion is exactly what we need for durable wearable, conductive devices.”

The new research published in the journal Small demonstrated that without this layer of tannic acid, the conductivity is several hundred times, or even thousands of times, less than traditional conductive material samples as the conductive coating becomes easily detached from the textile surface through repeated bending and flexing.

Here’s a link to and a citation for the paper,

A Nature‐Inspired, Flexible Substrate Strategy for Future Wearable Electronics by Chuang Zhu, Evelyn Chalmers, Liming Chen, Yuqi Wang, Ben Bin Xu, Yi Li, Xuqing Liu. Small Online Version of Record before inclusion in an issue 1902440 DOI: https://doi.org/10.1002/smll.201902440 First published: 19 June 2019

This paper is behind a paywall.

More of the ‘blackest black’

There’s a very good November 11, 2019 article by Natalie Angier for the New York Times on carbon nanotubes (CNTs) and the colour black,

On a laboratory bench at the National Institute of Standards and Technology was a square tray with two black disks inside, each about the width of the top of a Dixie cup. Both disks were undeniably black, yet they didn’t look quite the same.

Solomon Woods, 49, a trim, dark-haired, soft-spoken physicist, was about to demonstrate how different they were, and how serenely voracious a black could be.

“The human eye is extraordinarily sensitive to light,” Dr. Woods said. Throw a few dozen photons its way, a few dozen quantum-sized packets of light, and the eye can readily track them.

Dr. Woods pulled a laser pointer from his pocket. “This pointer,” he said, “puts out 100 trillion photons per second.” He switched on the laser and began slowly sweeping its bright beam across the surface of the tray.

On hitting the white background, the light bounced back almost unimpeded, as rude as a glaring headlight in a rearview mirror.

The beam moved to the first black disk, a rondel of engineered carbon now more than a decade old. The light dimmed significantly, as a sizable tranche of the incident photons were absorbed by the black pigment, yet the glow remained surprisingly strong.

Finally Dr. Woods trained his pointer on the second black disk, and suddenly the laser’s brilliant beam, its brash photonic probe, simply — disappeared. Trillions of light particles were striking the black disk, and virtually none were winking back up again. It was like watching a circus performer swallow a sword, or a husband “share” your plate of French fries: Hey, where did it all go?

N.I.S.T. disk number two was an example of advanced ultra-black technology: elaborately engineered arrays of tiny carbon cylinders, or nanotubes, designed to capture and muzzle any light they encounter. Blacker is the new black, and researchers here and abroad are working to create ever more efficient light traps, which means fabricating materials that look ever darker, ever flatter, ever more ripped from the void.

The N.I.S.T. ultra-black absorbs at least 99.99 percent of the light that stumbles into its nanotube forest. But scientists at the Massachusetts Institute of Technology reported in September the creation of a carbon nanotube coating that they claim captures better than 99.995 of the incident light.

… The more fastidious and reliable the ultra-black, the more broadly useful it will prove to be — in solar power generators, radiometers, industrial baffles and telescopes primed to detect the faintest light fluxes as a distant planet traverses the face of its star.

Psychology and metaphors

It’s not all technical, Angier goes on to mention the psychological and metaphorical aspects,

Psychologists have gathered evidence that black is among the most metaphorically loaded of all colors, and that we absorb our often contradictory impressions about black at a young age.

Reporting earlier this year in the Quarterly Journal of Experimental Psychology, Robin Kramer and Joanne Prior of the University of Lincoln in the United Kingdom compared color associations in a group of 104 children, aged 5 to 10, with those of 100 university students.

The researchers showed subjects drawings in which a lineup of six otherwise identical images differed only in some aspect of color. The T-shirt of a boy taking a test, for example, was switched from black to blue to green to red to white to yellow. The same for a businessman’s necktie, a schoolgirl’s dress, a dog’s collar, a boxer’s gloves.

Participants were asked to link images with traits. Which boy was likeliest to cheat on the test? Which man was likely to be in charge at work? Which girl was the smartest in her class, which dog the scariest?

Again and again, among both children and young adults, black pulled ahead of nearly every color but red. Black was the color of cheating, and black was the color of cleverness. A black tie was the mark of a boss, a black collar the sign of a pit bull. Black was the color of strength and of winning. Black was the color of rage.

Art

Then, there is the world of art,

For artists, black is basal and nonnegotiable, the source of shadow, line, volume, perspective and mood. “There is a black which is old and a black which is fresh,” Ad Reinhardt, the abstract expressionist artist, said. “Lustrous black and dull black, black in sunlight and black in shadow.”

So essential is black to any aesthetic act that, as David Scott Kastan and Stephen Farthing describe in their scholarly yet highly entertaining book, “On Color,” modern artists have long squabbled over who pioneered the ultimate visual distillation: the all-black painting.

Was it the Russian Constructivist Aleksandr Rodchenko, who in 1918 created a series of eight seemingly all-black canvases? No, insisted the American artist Barnett Newman: Those works were very dark brown, not black. He, Mr. Newman, deserved credit for his 1949 opus, “Abraham,” which in 1966 he described as “the first and still the only black painting in history.”

But what about Kazimir Malevich’s “Black Square” of 1915? True, it was a black square against a white background, but the black part was the point. Then again, the English polymath Robert Fludd had engraved a black square in a white border back in 1617.

Clearly, said Alfred H. Barr, Jr., the first director of the Museum of Modern Art, “Each generation must paint its own black square.”

Structural colour

Solomon and his NIST colleagues and the MIT scientists are all trying to create materials with structural colour, in this case, black. Angier goes on to discuss structural colour in nature mentioning bird feathers and spiders as examples of where you might find superblacks. For anyone unfamiliar with structural colour, the colour is not achieved with pigment or dye but with tiny structures, usually measured at the nanoscale, on a bird’s wing, a spider’s belly, a plant leaf, etc. Structural colour does not fade or change . Still, it’s possible to destroy the structures, i.e., the colour, but light and time will not have any effect since it’s the tiny structures and their optical properties which are producing the colour . (Even after all these years, my favourite structural colour story remains a Feb. 1, 2013 article, Color from Structure, by Cristina Luiggi for The Scientist magazine. For a shorter version, I excerpted parts of Luiggi’s story for my February 7, 2013 posting.)

The examples of structural colour in Angier’s article were new to me. However, there are many, many examples elsewhere,. You can find some here by using the terms ‘structural colour’ or ‘structural color’ in the blog’s search engine.

Angier’s is a really good article and I strongly recommend reading it if you have time but I’m a little surprised she doesn’t mention Vantablack and the artistic feud. More about that in a moment,

Massachusetts Institute of Technology and a ‘blacker black’

According to MIT (Massachusetts Institute of Technology), they have the blackest black. It too is courtesy of carbon nanotubes.

The Redemption of Vanity, is a work of art by MIT artist in residence Diemut Strebe that has been realized together with Brian L. Wardle, Professor of Aeronautics and Astronautics and Director of necstlab and Nano- Engineered Composite aerospace STructures (NECST) Consortium and his team Drs. Luiz Acauan and Estelle Cohen. Strebe’s residency at MIT is supported by the Center for Art, Science & Technology (CAST). Image: Diemut Strebe

What you see in the above ‘The Redemption of Vanity’ was on show at the New York Stock Exchange (NYSE) from September 13 – November 29, 2019. It’s both an art piece and a demonstration of MIT’s blackest black.

There are two new releases from MIT. The first is the more technical one. From a Sept. 12, 2019 MIT news release,

With apologies to “Spinal Tap,” it appears that black can, indeed, get more black.

MIT engineers report today that they have cooked up a material that is 10 times blacker than anything that has previously been reported. The material is made from vertically aligned carbon nanotubes, or CNTs — microscopic filaments of carbon, like a fuzzy forest of tiny trees, that the team grew on a surface of chlorine-etched aluminum foil. The foil captures at least 99.995 percent* of any incoming light, making it the blackest material on record.

The researchers have published their findings today in the journal ACS-Applied Materials and Interfaces. They are also showcasing the cloak-like material as part of a new exhibit today at the New York Stock Exchange, titled “The Redemption of Vanity.”

The artwork, conceived by Diemut Strebe, an artist-in-residence at the MIT Center for Art, Science, and Technology, in collaboration with Brian Wardle, professor of aeronautics and astronautics at MIT, and his group, and MIT Center for Art, Science, and Technology artist-in-residence Diemut Strebe, features a 16.78-carat natural yellow diamond from LJ West Diamonds, estimated to be worth $2 million, which the team coated with the new, ultrablack CNT material. The effect is arresting: The gem, normally brilliantly faceted, appears as a flat, black void.

Wardle says the CNT material, aside from making an artistic statement, may also be of practical use, for instance in optical blinders that reduce unwanted glare, to help space telescopes spot orbiting exoplanets.

“There are optical and space science applications for very black materials, and of course, artists have been interested in black, going back well before the Renaissance,” Wardle says. “Our material is 10 times blacker than anything that’s ever been reported, but I think the blackest black is a constantly moving target. Someone will find a blacker material, and eventually we’ll understand all the underlying mechanisms, and will be able to properly engineer the ultimate black.”

Wardle’s co-author on the paper is former MIT postdoc Kehang Cui, now a professor at Shanghai Jiao Tong University.

Into the void

Wardle and Cui didn’t intend to engineer an ultrablack material. Instead, they were experimenting with ways to grow carbon nanotubes on electrically conducting materials such as aluminum, to boost their electrical and thermal properties.

But in attempting to grow CNTs on aluminum, Cui ran up against a barrier, literally: an ever-present layer of oxide that coats aluminum when it is exposed to air. This oxide layer acts as an insulator, blocking rather than conducting electricity and heat. As he cast about for ways to remove aluminum’s oxide layer, Cui found a solution in salt, or sodium chloride.

At the time, Wardle’s group was using salt and other pantry products, such as baking soda and detergent, to grow carbon nanotubes. In their tests with salt, Cui noticed that chloride ions were eating away at aluminum’s surface and dissolving its oxide layer.

“This etching process is common for many metals,” Cui says. “For instance, ships suffer from corrosion of chlorine-based ocean water. Now we’re using this process to our advantage.”

Cui found that if he soaked aluminum foil in saltwater, he could remove the oxide layer. He then transferred the foil to an oxygen-free environment to prevent reoxidation, and finally, placed the etched aluminum in an oven, where the group carried out techniques to grow carbon nanotubes via a process called chemical vapor deposition.

By removing the oxide layer, the researchers were able to grow carbon nanotubes on aluminum, at much lower temperatures than they otherwise would, by about 100 degrees Celsius. They also saw that the combination of CNTs on aluminum significantly enhanced the material’s thermal and electrical properties — a finding that they expected.

What surprised them was the material’s color.

“I remember noticing how black it was before growing carbon nanotubes on it, and then after growth, it looked even darker,” Cui recalls. “So I thought I should measure the optical reflectance of the sample.

“Our group does not usually focus on optical properties of materials, but this work was going on at the same time as our art-science collaborations with Diemut, so art influenced science in this case,” says Wardle.

Wardle and Cui, who have applied for a patent on the technology, are making the new CNT process freely available to any artist to use for a noncommercial art project.

“Built to take abuse”

Cui measured the amount of light reflected by the material, not just from directly overhead, but also from every other possible angle. The results showed that the material absorbed at least 99.995 percent of incoming light, from every angle. In other words, it reflected 10 times less light than all other superblack materials, including Vantablack. If the material contained bumps or ridges, or features of any kind, no matter what angle it was viewed from, these features would be invisible, obscured in a void of black.  

The researchers aren’t entirely sure of the mechanism contributing to the material’s opacity, but they suspect that it may have something to do with the combination of etched aluminum, which is somewhat blackened, with the carbon nanotubes. Scientists believe that forests of carbon nanotubes can trap and convert most incoming light to heat, reflecting very little of it back out as light, thereby giving CNTs a particularly black shade.

“CNT forests of different varieties are known to be extremely black, but there is a lack of mechanistic understanding as to why this material is the blackest. That needs further study,” Wardle says.

The material is already gaining interest in the aerospace community. Astrophysicist and Nobel laureate John Mather, who was not involved in the research, is exploring the possibility of using Wardle’s material as the basis for a star shade — a massive black shade that would shield a space telescope from stray light.

“Optical instruments like cameras and telescopes have to get rid of unwanted glare, so you can see what you want to see,” Mather says. “Would you like to see an Earth orbiting another star? We need something very black. … And this black has to be tough to withstand a rocket launch. Old versions were fragile forests of fur, but these are more like pot scrubbers — built to take abuse.”

[Note] An earlier version of this story stated that the new material captures more than 99.96 percent of incoming light. That number has been updated to be more precise; the material absorbs at least 99.995 of incoming light.

Here’s an August 29, 2019 news release from MIT announcing the then upcoming show. Usually I’d expect to see a research paper associated with this work but this time it seems to an art exhibit only,

The MIT Center for Art, Science &Technology (CAST) and the New York Stock Exchange (NYSE) will present The Redemption of Vanity,created by artist Diemut Strebe in collaboration with MIT scientist Brian Wardle and his lab, on view at the New York Stock Exchange September 13, 2019 -November 25, 2019. For the work, a 16.78 carat natural yellow diamond valued at $2 million from L.J.West was coated using a new procedure of generating carbon nanotubes (CNTs), recently measured to be the blackest black ever created, which makes the diamond seem to disappear into an invisible void. The patented carbon nanotube technology (CNT) absorbs more than 99.96% of light and was developed by Professor Wardle and his necstlablab at MIT.

“Any object covered with this CNT material loses all its plasticity and appears entirely flat, abbreviated/reduced to a black silhouette. In outright contradiction to this we see that a diamond,while made of the very same element (carbon) performs the most intense reflection of light on earth.Because of the extremely high light absorbtive qualities of the CNTs, any object, in this case a large diamond coated with CNT’s, becomes a kind of black hole absent of shadows,“ explains Strebe.“The unification of extreme opposites in one object and the particular aesthetic features of the CNTs caught my imagination for this art project.”

“Strebe’s art-science collaboration caused us to look at the optical properties of our new CNT growth, and we discovered that these particular CNTs are blacker than all other reported materials by an order of magnitude across the visible spectrum”, says Wardle. The MIT team is offering the process for any artist to use. “We do not believe in exclusive ownership of any material or idea for any artwork and have opened our method to any artist,” say Strebe and Wardle.“

The project explores material and immaterial value attached to objects and concepts in reference to luxury, society and to art. We are presenting the literal devaluation of a diamond, which is highly symbolic and of high economic value.It presents a challenge to art market mechanisms on the one hand, while expressing at the same time questions of the value of art in a broader way. In this sense it manifests an inquiry into the significance of the value of objects of art and the art market,” says Strebe. “We are honored to present this work at The New York Stock Exchange, which I believe to be a most fitting location to consider the ideas embedded in The Redemption of Vanity.”

“The New York Stock Exchange, a center of financial and technological innovation for 227 years, is the perfect venue to display Diemut Strebe and Professor Brian Wardle’s collaboration. Their work brings together cutting-edge nanotube technology and a natural diamond, which is a symbol of both value and longevity,” said John Tuttle, NYSE Group Vice Chairman & Chief Commercial Officer.

“We welcome all scientists and artists to venture into the world of natural color diamonds. The Redemption of Vanity exemplifies the bond between art, science, and luxury. The 16-carat vivid yellow diamond in the exhibit spent millions of years in complete darkness, deep below the earth’s surface. It was only recently unearthed —a once-in-a-lifetime discovery of exquisite size and color. Now the diamond will relive its journey to darkness as it is covered in the blackest of materials. Once again, it will become a reminder that something rare and beautiful can exist even in darkness,”said Larry West.

The “disappearing” diamond in The Redemption of Vanity is a $2 Million Fancy Vivid Yellow SI1 (GIA), Radiant shape, from color diamond specialist, L.J. West Diamonds Inc. of New York.

The Redemption of Vanity, conceived by Diemut Strebe, has been realized with Brian L. Wardle, Professor of Aeronautics and Astronautics and Director of necstlab and Nano-Engineered Composite aerospace STructures (NECST) Consortium and his team Drs. Luiz Acauan and Estelle Cohen, in conjunction with Strebe’s residency at MIT supported by the Center for Art, Science & Technology (CAST).

ABOUT THE ARTISTS

Diemut Strebe is a conceptual artist based in Boston, MA and a MIT CAST Visiting Artist. She has collaborated with several MIT faculty, including Noam Chomsky and Robert Langer on Sugababe (2014), Litmus (2014) and Yeast Expression(2015); Seth Lloyd and Dirk Englund on Wigner’s Friends(2014); Alan Guth on Plötzlich! (2018); researchers in William Tisdale’s Lab on The Origin of the Works of Art(2018); Regina Barzilay and Elchanan Mossel on The Prayer (2019); and Ken Kamrin and John Brisson on The Gymnast (2019). Strebe is represented by the Ronald Feldman Gallery.

Brian L. Wardle is a Professor of Aeronautics and Astronautics at MIT and the director of the necstlab research group and MIT’s Nano-Engineered Composite aerospace STructures (NECST) Consortium. Wardle previously worked with CAST Visiting Artist Trevor Paglen on The Last Picturesproject (2012).

ABOUT THE MIT CENTER FOR ART, SCIENCE & TECHNOLOGY

A major cross-school initiative, the MIT Center for Art, Science & Technology (CAST) creates new opportunities for art, science and technology to thrive as interrelated, mutually informing modes of exploration, knowledge and discovery. CAST’s multidisciplinary platform presents performing and visual arts programs, supports research projects for artists working with science and engineering labs, and sponsors symposia, classes, workshops, design studios, lectures and publications. The Center is funded in part by a generous grant from the Andrew W. Mellon Foundation. Evan Ziporyn is the Faculty Director and Leila W. Kinney is the Executive Director.Since its inception in 2012, CAST has been the catalyst for more than 150 artist residencies and collaborative projects with MIT faculty and students, including numerous cross-disciplinary courses, workshops, concert series, multimedia projects, lectures and symposia. The visiting artists program is a cornerstone of CAST’s activities, which encourages cross-fertilization among disciplines and intensive interaction with MIT’s faculty and students. More info at https://arts.mit.edu/cast/ .

HISTORY OF VISITING ARTISTS AT MIT

Since the late 1960s, MIT has been a leader in integrating the arts and pioneering a model for collaboration among artists, scientists and engineers in a research setting. CAST’s Visiting Artists Program brings internationally acclaimed artists to engage with MIT’s creative community in ways that are mutually enlightening for the artists and for faculty, students and research staff at the Institute. Artists who have worked extensively at MIT include Mel Chin, Olafur Eliasson, Rick Lowe, Vik Muniz, Trevor Paglen, Tomás Saraceno, Maya Beiser, Agnieszka Kurant, and Anicka Yi.

ABOUT L.J. WEST DIAMONDS

L.J. West Diamonds is a three generation natural color diamond whole sale rfounded in the late 1970’s by Larry J. West and based in New York City. L.J. West has established itself as one of the world’s prominent houses for some of the most rare and important exotic natural fancy color diamonds to have ever been unearthed. This collection includes a vast color spectrum of rare pink, blue, yellow, green, orange and red diamonds. L.J. West is an expert in every phase of the jewelry process –from sourcing to the cutting, polishing and final design. Each exceptional jewel is carefully set to become a unique work of art.The Redemption of Vanity is on view at the New York Stock Exchange by appointment only.

Press viewing: September 13, 2019 at 3pmNew York Stock Exchange, 11 Wall Street, New York, NY 10005RSVP required. Please check-in at the blue tent at 2 Broad Street(at the corner of Wall and Broad Streets). All guests are required to show a government issued photo ID and go through airport-like security upon entering the NYSE.NYSE follows a business casual dress code -jeans & sneakers are not permitted.

No word yet if there will be other showings.

An artistic feud (of sorts)

Earlier this year, I updated a story on Vantablack. It was the blackest black, blocking 99.8% of light when I featured it in a March 14, 2016 posting. The UK company making the announcement, Surrey NanoSystems, then laid the groundwork for an artistic feud when it granted exclusive rights to their carbon nanotube-based coating, Vantablack, to Sir Anish Kapoor mentioned here in an April 16, 2016 posting.

This exclusivity outraged some artists notably, Stuart Semple. In his first act of defiance, he created the pinkest pink. Next, came a Kickstarter campaign to fund Semple’s blackest black, which would be available to all artists except Anish Kapoor. You can read all about the pinkest pink and blackest black as per Semple in my February 21, 2019 posting. You can also get a bit of an update in an Oct. 17, 2019 Stuart Semple proffile by Berenice Baker for Verdict,

… so I managed to hire a scientist, Jemima, to work in the studio with me. She got really close to a super black, and we made our own pigment to this recipe and it was awesome, but we couldn’t afford to put it into manufacture because it cost £25,000.”

Semple launched a Kickstarter campaign and was amazed to raise half a million pounds, making it the second most-supported art Kickstarter of all time.

The ‘race to the blackest’ is well underway, with MIT researchers recently announcing a carbon nanotube-based black whose light absorption they tested by coasting a diamond. But Semple is determined that his black should be affordable by all artists and work like a paint, not only perform in laboratory conditions. He’s currently working with Jemima and two chemists to upgrade the recipe for Black 3.2.

I don’t know how Semple arrived at his blackest black. I think it’s unlikely that he achieved the result by working with carbon nanotubes since my understanding is that CNTs aren’t that easy to produce.

Finally

Interesting, eh? In just a few years scientists have progressed from achieving a 99.8% black to 99.999%. It doesn’t seem like that big a difference to me but with Solomon Woods, at the beginning of this post, making the point that our eyes are very sensitive to light, an artistic feud, and a study uncovering deep emotions, getting the blackest black is a much more artistically fraught endeavour than I had imagined.