Designers make dissolvable textiles from gelatin

Am I the only one wondering what happens if your textiles start dissolving early? This excerpt from a June 17, 2024 news item on ScienceDaily announcing the research does not address my quandary,

Introducing the fashion of the future: A T-shirt that you can wear a few times, then, when you get bored with it, dissolve and recycle to make a new shirt.

Researchers at the ATLAS Institute at the University of Colorado Boulder are now one step closer to that goal. In a new study, the team of engineers and designers developed a DIY machine that spins textile fibers made of materials like sustainably sourced gelatin. The group’s “biofibers” feel a bit like flax fiber and dissolve in hot water in minutes to an hour.

The quandary is addressed in a manner of speaking in a June 17, 2024 University of Colorado at Boulder news release (also on EurekAlert) by Daniel Strain, which originated the news item, that also gives more context for the research and explains what the researchers are hoping to achieve, Note: A link has been removed,

“When you don’t want these textiles anymore, you can dissolve them and recycle the gelatin to make more fibers,” said Michael Rivera, a co-author of the new research and assistant professor in the ATLAS Institute and Department of Computer Science.

The study tackles a growing problem around the world: In 2018 alone, people in the United States added more than 11 million tons of textiles to landfills, according to the Environmental Protection Agency—nearly 8% of all municipal solid waste produced that year. 

The researchers envision a different path for fashion.

Their machine is small enough to fit on a desk and cost just $560 to build. Lázaro Vásquez [Eldy Lázaro Vásquez, doctoral student in the ATLAS Institute,] hopes the device will help designers around the world experiment with making their own biofibers.

“You could customize fibers with the strength and elasticity you want, the color you want,” she said. “With this kind of prototyping machine, anyone can make fibers. You don’t need the big machines that are only in university chemistry departments.”

Spinning threads

The study arrives as fashionistas, roboticists and more are embracing a trend known as “smart textiles.” Levi’s Trucker Jacket with Jacquard by Google, for example, looks like a denim coat but includes sensors that can connect to your smartphone. 

But such clothing of the future comes with a downside, Rivera said:

“That jacket isn’t really recyclable. It’s difficult to separate the denim from the copper yarns and the electronics.”

To imagine a new way of making clothes, the team started with gelatin. This springy protein is common in the bones and hooves of many animals, including pigs and cows. Every year, meat producers throw away large volumes of gelatin that doesn’t meet requirements for cosmetics or food products like Jell-O. (Lázaro Vásquez bought her own gelatin, which comes as a powder, from a local butcher shop).

She and her colleagues decided to turn that waste into wearable treasure.

The group’s machine uses a plastic syringe to heat up and squeeze out droplets of a liquid gelatin mixture. Two sets of rollers in the machine then tug on the gelatin, stretching it out into long, skinny fibers—not unlike a spider spinning a web from silk. In the process, the fibers also pass through liquid baths where the researchers can introduce bio-based dyes or other additives to the material. Adding a little bit of genipin, an extract from fruit, for example, makes the fibers stronger.

Dissolving duds

Lázaro Vásquez said designers may be able to do anything they can imagine with these sorts of textiles.

As a proof of concept, the researchers made small sensors out of gelatin fibers and cotton and conductive yarns, similar to the makeup of a Jacquard jacket. The team then submerged these patches in warm water. The gelatin dissolved, releasing the yarns for easy recycling and reuse.

Designers could tweak the chemistry of the fibers to make them a little more resilient, Lázaro Vásquez said—you wouldn’t want your jacket to disappear in the rain. [emphases mine] They could also play around with spinning similar fibers from other natural ingredients. Those materials include chitin, a component of crab shells, or agar-agar, which comes from algae.

“We’re trying to think about the whole lifecycle of our textiles,” Lázaro Vásquez said. “That begins with where the material is coming from. Can we get it from something that normally goes to waste?”

Here’s a link to and a citation for the paper,

Desktop Biofibers Spinning: An Open-Source Machine for Exploring Biobased Fibers and Their Application Towards Sustainable Smart Textile Design by Eldy S. Lazaro Vasquez, Mirela Alistar, Laura Devendorf, and Michael L. Rivera. CHI ’24: Proceedings of the CHI Conference on Human Factors in Computing Systems May 2024 Article No.: 856, Pages 1 – 18 DOI: https://doi.org/10.1145/3613904.3642387 Published: 11 May 2024

This paper is behind a paywall.

Let’s hope somebody (researcher or designer or ???) take a more extensive approach to solving the problem of fabrics that could dissolve prematurely.

Fashion, sustainability, and the protein threads that bind textiles and cosmetics

I’m starting with a somewhat enthusiastic overview of the role synthetic biology is playing in the world of clothing and cosmetics in The Scientist and following it up with some stories about fish leather, no synthetic biology involved but all of these stories are about sustainability and fashion and, in one case, cosmetics.

Fashionable synthetic biology

Meenakshi Prabhune’s June 14, 2024 article in The Scientist, in addition to the overview, provides information that explains how some of the work on textiles and leather is being used in the production of cosmetics. She starts with a little history/mythology and then launches into the synthetic biology efforts to produce silk and leather suitable for consumer use, Note: Links have been removed,

Once upon a time, circa 2700 BC in China, empress Xi Ling Shi was enjoying her afternoon tea under a mulberry tree, when a silkworm cocoon fell from the tree into her tea. She noticed that on contact with the hot beverage, the cocoon unraveled into a long silky thread. This happy accident inspired her to acquire these threads in abundance and fashion them into an elegant fabric. 

So goes the legend, according to the writings of Confucius, about the discovery of silk and the development of sericulture in ancient China. Although archaeological evidence from Chinese ruins dates the presence of silk to 8500 years ago, hinting that the royal discovery story was spun just like the silk fabric, one part of the legend rings true.1 The Chinese royals played a pivotal role in popularizing silk as a symbol of status and wealth. By 130 BC, emperors in the Ancient Civilizations across the world desired to be clad in silken garments, paving the Silk Road that opened trade routes from China to the West. 

While silk maintained its high-society status over the next thousands of years, the demand for easy-to-use materials grew among mass consumers. In the early 20th century, textile developers applied their new-found technological prowess to make synthetic materials: petrochemical-based polymer blended textiles with improved durability, strength, and convenience. 

In their quest to make silk powerful again, not by status but rather by thread strength, scientists turned to an arachnoid. Dragline silk, the thread by which the spider hangs itself from the web, is one of the strongest fibers; its tensile strength—a measure of how much a polymer deforms when strained—is almost thrice that of silkworm silk.2 

Beyond durable fashion garments, tough silk fibers are coveted in parachutes, military protective gear, and automobile safety belts, among other applications, so scientists are keen to pull on these threads. While traditional silk production relies on sericulture, arachnophobes can relax: spider farms are not a thing.

“Spiders make very little silk and are quite territorial. So, the only way to do it is to make microbes that make the protein,” said David Breslauer, cofounder and chief technology officer at Bolt Threads, a bio apparel company. 

For decades, researchers have coaxed microbes into churning their metabolites in large fermentation tanks, which they have harvested to solve dire crises in many areas. For instance, when pharmaceuticals struggled to meet the growing demand for insulin through the traditional methods of extraction from animal pancreas, researchers at Genentech sought the aid of E. coli to generate recombinant insulin for mass production in 1978.3  [emphases mine]

Prabhune’s June 14, 2024 article notes some difficulties with spider silk, Note: Links have been removed,

… researchers soon realized that producing spider silk in microbes was no easy feat. The spider silk protein, spidroin, is larger than 300 kDa in size—a huge jump from the small 6 kDa recombinant insulin. Bulky proteins impose a heavy metabolic load on the microbes and their production yield tanks. Also, spidroin consists of repeating regions of glycine and alanine amino acids that impart strength and elasticity to the material, but the host microbes struggle with protein folding and overexpression of the corresponding tRNA molecules.4  

… researchers had gotten close, but they hadn’t been able to synthesize the full spidroin protein. Since the molecular weight of the silk protein correlates with the strength of the silk thread, Zhang [Fuzhong Zhang, a synthetic biologist at Washington University in St. Louis] was determined to produce the entire protein to mimic the silk’s natural properties.5

To achieve this goal without pushing the metabolic limits of the bacteria, Zhang and his team literally broke down the problem. In 2018, they devised a recombinant spidroin by constructing two protein halves with split inteins—peptides known to catalyze ligation between proteins while splicing out their own residues—tagged at their ends. They synthesized the halves in separate E. coli cultures, mixed the two cultures, and ligated the proteins to yielded a recombinant spidroin of 556 kDa—a size that was previously considered unobtainable.6 The resulting silk fiber made from these recombinant spidroins matched the mechanical properties of natural spider silk fiber.

While synthesizing the high molecular weight protein validated their technical prowess and strategy, Zhang knew that the yield with this approach was going to be unavoidably low. “It was not even enough to make a simple shirt,” he said.

Zhang and his team did solve the problem of getting a higher yield but that led to another problem, from Prabhune’s June 14, 2024 article,

Breslauer echoed the importance of this step. He recalled how scaling up was the biggest challenge when he and his cofounder Dan Widmaier, chief executive officer at Bolt Threads, first set up shop in 2009. The duo met during their graduate studies. Breslauer, a material science student at the University of California, Berkeley, was fascinated by spider silk and sought help for synthesizing the protein in microbes. Luckily, he met Widmaier, a synthetic biology graduate student who was optimizing systems to study complex proteins.

When their collaboration to produce recombinant spider silk proteins in yeast yielded promising results, the duo decided to challenge the status quo in the textile industry by commercially producing bio-silk apparel, and Bolt Threads was born. The market transition, however, was not as smooth as the threads they produced. 

“There was so little innovation in the textile space, and brands were really eager to talk about innovation. It felt like there was demand there. Turns out, the desire for storytelling outweighed the desire for actual innovation with those brands,” Breslauer said. “We didn’t realize how adverse [sic] people were going to be to the idea because it was so unfamiliar.”

Prabhune’s June 14, 2024 article also covers leather and cosmetics, Note: Links have been removed,

David Williamson, a chemist and the chief operations officer at Modern Meadow and his team wanted to separate themselves from the herd. In their quest for sustainable alternatives, they went back to the basic biology and chemistry of the material. As leather is made from animal skin, it is rich in collagen, a structural protein abundant in the extracellular matrix of connective tissues. If the team could produce this primary component protein at scale, they would be able to process it into leather downstream. 

In about 2017, Williamson and his team developed a fermentation-based approach to produce collagen from yeast. While they achieved scalable production, there was one small hiccup. The protein properties of collagen alone did not yield the mechanical properties they needed for their leather-like material. 

The team went to the drawing board and analyzed the amino acid residues that contributed to collagen’s characteristics to look for a substitute protein. They found an alternative that had the desirable functional elements of collagen but was also sustainable and cost effective for industrial scale up: soy protein isolate. While tinkering with their recipes, they found the perfect combination for material strength by mixing in a bio-based polyurethane polymer with the protein to yield a refined bioalloy called Bio-VERA. 

As natural textiles are derived from animal skin, hair, or proteins, it is no surprise that many synthetic biologists in the textile space have also found a niche in cosmetics. Even as the Modern Meadow team transitioned away from their protein fermentation strategies to innovate Bio-VERA, they realized that they could still apply their expertise in skincare. While leathery is not an adjective one desires to associate with skin, collagen is an integral component in both. “When our bodies make collagen and build our extracellular matrices, one of the first proteins that they deposit is type three collagen. So, you can think of type three collagen almost like the structure or scaffold of a building,” explained Williamson.

To cater to the increasing demand for solutions to achieve younger looking skin, Williamson and his team engineered a recombinant collagen type three protein containing part of the protein sequence that is rich in binding domains for fibroblast interactions.9,10  “After you expose the extracellular matrix to this protein, it stimulates the fibroblasts to make more type three collagen. That type three collagen lays down type one collagen and elastin and fibronectin in a way that actually helps to turn back time, so to speak, to increase the ratio of type three collagen relative to type one collagen,” Williamson said. 

The Modern Meadow team are not the only ones to weave their textile strands into cosmetic applications. When Artur Cavaco-Paulo, a biological engineer at the University of Minho [Portugal], was studying wool fibers, he was struck by their structural similarities to human hair. “We decided that it would be a really good idea to transfer some of the knowledge that we had in wool textiles to human hair,” said Cavaco-Paulo. Particularly, he was interested in investigating solutions to fix hair strands damaged by highly alkaline chemical products. 

Over the next few years, Cavaco-Paulo developed […] shortlisted peptides into the K18 peptide product, which is now part of a commercially available leave-in conditioner. Cavaco-Paulo serves as the chief scientific officer at the biotech company K18. 

Although he started his career with textile research, Cavaco-Paulo favors the cosmetics sector with regards to returns on research and technology investment. “The personal care market is much more accustomed to innovation and has a much better and more fluid pipeline on innovation,” seconded Breslauer. “Whereas, [in] apparel, you really have to twist arms to get people to work with your material.” Bolt Threads ventured into the personal care space when Breslauer and his team serendipitously stumbled upon an alternative use for one of their textile proteins. 

While it’s not mentioned in Prabhune’s June 14, 2024 article, sustainability is mentioned on two of the company websites,

Bolt Threads

Bolt Threads is a material solutions company. With nature as our inspiration, we invent cutting-edge materials for the fashion and beauty industries to put us on a path toward a more sustainable future.

Through innovative collaborations with world-class brands and supply chain partners, we are on a mission to create way better materials for a way better world. Join us.

Modern Meadow

Modern Meadow is a climate-tech pioneer creating the future of materials through innovations in biology and material science.

​Our bio-materials technology platform with nature-inspired protein solutions delivers better performance, sustainability, scalability, and cost while reducing reliance on petrochemical and animal-based inputs.​

K18 has not adopted a ‘sustainability’ approach to marketing its hair care products.

Sustainability without synthetic biology: fish leather

In a January 3, 2022 posting I featured fish leather/skin in a story about the “Futures exhibition/festival” held at the Smithsonian Institute from November 20, 2021 to July 6, 2022.

Before getting to Futures, here’s a brief excerpt from a June 11, 2021 Smithsonian Magazine exhibition preview article by Gia Yetikyel about one of the contributors, Elisa Palomino-Perez (Note: A link has been removed),

Elisa Palomino-Perez sheepishly admits to believing she was a mermaid as a child. Growing up in Cuenca, Spain in the 1970s and ‘80s, she practiced synchronized swimming and was deeply fascinated with fish. Now, the designer’s love for shiny fish scales and majestic oceans has evolved into an empowering mission, to challenge today’s fashion industry to be more sustainable, by using fish skin as a material.

Luxury fashion is no stranger to the artist, who has worked with designers like Christian Dior, John Galliano and Moschino in her 30-year career. For five seasons in the early 2000s, Palomino-Perez had her own fashion brand, inspired by Asian culture and full of color and embroidery. It was while heading a studio for Galliano in 2002 that she first encountered fish leather: a material made when the skin of tuna, cod, carp, catfish, salmon, sturgeon, tilapia or pirarucu gets stretched, dried and tanned.

The history of using fish leather in fashion is a bit murky. The material does not preserve well in the archeological record, and it’s been often overlooked as a “poor person’s” material due to the abundance of fish as a resource. But Indigenous groups living on coasts and rivers from Alaska to Scandinavia to Asia have used fish leather for centuries. Icelandic fishing traditions can even be traced back to the ninth century. While assimilation policies, like banning native fishing rights, forced Indigenous groups to change their lifestyle, the use of fish skin is seeing a resurgence. Its rise in popularity in the world of sustainable fashion has led to an overdue reclamation of tradition for Indigenous peoples.

Brendan Jones provides an update of sorts in his Alaska-forward take in his February 22, 2024 article “Fish Leather Is Incredibly Strong and Beautiful. Can Makers ‘Scale Up’? Meet artisans in Alaska and BC who are sustaining, and advancing, an ancient art.” for The Tyee,

Fish leather artist June Pardue began her journey into the craft not knowing where to start. Which was a problem, considering that she had been given the job of demonstrating for tourists how to tan fish skin at the Alaska Native Heritage Center in Anchorage. “I couldn’t find anyone to teach me,” Pardue said with a laugh.

“One day a guy from Mississippi noticed me fumbling around. He kindly waited until everyone had left. Then he said, ‘Do you want me to share my grandpappy’s recipe for tanning snake skins?’”

His cocktail of alcohol and glycerin allowed her to soften the skins — as tourists looked on — for future use in clothing and bags. This worked fine until she began to grow uncomfortable dumping toxins down the drain. Now she uses plant-based tannins like those found in willow branches after the season’s first snowmelt. She harvests the branches gingerly, allowing the trees to survive for the next generation of fish tanners.

Pardue, who teaches at the University of Alaska, was born on Kodiak Island, off the southern coast of the state, in Old Harbor village. Alutiiq and Iñupiaq, she was raised in Akhiok, population about 50, and Old Harbor.

Following her bumpy start at the heritage center, Pardue has since gone on to become one of Alaska’s and Canada’s most celebrated instructors and practitioners in the field of fish leather, lighting the way for others in Alaska and Canada.

Among the people Pardue has advised is CEO and founder of 7 Leagues tannery Tasha Nathanson, who is based in Vancouver. She met with Pardue to share her idea of creating a business built on making fish leather into boots and other items for a large customer base.

Before making her move to open a business, Nathanson spent a year running the numbers, she said. In 2022, the global fish leather market was valued at US$36.22 million. As fish tanneries open their doors and fashion houses take notice, the number is expected to grow 16 per cent annually, topping $100 million by 2030.

“Salmon certainly don’t come to mind when you think of tanning, but people are catching on,” said Judith Lehmann, a Sitka-based expert in fish leather, who took Pardue’s class. (The Tyee reached Lehmann in Panama, where she was experimenting with skins of bonito and mahi mahi.)

Growing numbers of buyers are willing to pay for not only the beauty but also the remarkable durability fish leather can offer. California-based eco-fashion designer Hailey Harmon’s company Aitch Aitch sells the Amelia, a teal backpack made of panelled salmon leather, for $795.

One company in France has started to collect fish skins from restaurants — material that would otherwise end up in trash cans — to make luxury watch bands and accessories. Designers like Prada, Louis Vuitton and Christian Dior have incorporated fish leather into their lines. Even Nike introduced running shoes made of perch skin.

Whether they know it or not, today’s trendsetters are rooted in ancient history. “People have been working with fish skins for thousands of years,” Pardue said. “Ireland, Iceland, Norway, China, Japan — it’s an age-old practice.”

“On a molecular level, fibres in fish leather are cross-hatched, as opposed to cow leather, which is just parallel,” Nathanson explained. “So, pound for pound, this leather is stronger, which is great for shoes. And it’s more available, and eco-conscious. It’s a win across the board.”

Jones’s February 22, 2024 article has some wonderful embedded pictures and Beth Timmins’s May 1, 2019 article for the BBC (British Broadcasting Corporation), while a little dated, offers more information about the international scene.

Synthetic biology is a scientific practice that I find disconcerting at times. That said, I’m glad to see more work on sustainable products however they are derived. On that note I have a couple of recent stories:

  • “Three century long development of a scientific idea: body armor made from silk” is the title of my July 11, 2024 posting
  • “Grown from bacteria: plastic-free vegan leather that dyes itself” is the title of my June 26, 2024 posting

Enjoy!

Better (safer, cheaper) battery invented for wearable tech

A June 5, 2024 news item on phys.org announces new research into ‘aqueous’ wearable batteries,

Researchers have developed a safer, cheaper, better performing and more flexible battery option for wearable devices. A paper describing the “recipe” for their new battery type was published in the journal Nano Research Energy on June 3 [2024].

Fitness trackers. Smart watches. Virtual-reality headsets. Even smart clothing and implants. Wearable smart devices are everywhere these days. But for greater comfort, reliability and longevity, these devices will require greater levels of flexibility and miniaturization of their energy storage mechanisms, which are often frustratingly bulky, heavy and fragile. On top of this, any improvements cannot come at the expense of safety.

As a result, in recent years, a great deal of battery research has focused on the development of “micro” flexible energy storage devices, or MFESDs. A range of different structures and electrochemical foundations have been explored, and among them, aqueous micro batteries offer many distinct advantages.

A June 5, 2024 Tsinghua University press release on EurekAlert, which originated the news item, provides more detail,

Aqueous batteries—those that use a water-based solution as an electrolyte (the medium that allows transport of ions in the battery and thus creating an electric circuit) are nothing new. They have been around since the late 19th century. However, their energy density—or the amount of energy contained in the battery per unit of volume—is too low for use in things like electric vehicles as they would take up too much space. Lithium-ion batteries are far more appropriate for such uses.

At the same time, aqueous batteries are much less flammable, and thus safer, than lithium-ion batteries. They are also much cheaper. As a result of this more robust safety and low cost, aqueous options have increasingly been explored as one of the better options for MFESDs. These are termed aqueous micro batteries, or just AMBs.

“Up till now, sadly, AMBs have not lived up to their potential,” said Ke Niu, a materials scientist with the Guangxi Key Laboratory of Optical and Electronic Materials and Devices at the Guilin University of Technology—one of the lead researchers on the team. “To be able to be used in a wearable device, they need to withstand a certain degree of real-world bending and twisting. But most of those explored so far fail in the face of such stress.”

To overcome this, any fractures or failure points in an AMB would need to be self-healing following such stress. Unfortunately, the self-healing AMBs that have been developed so far have tended to depend on metallic compounds as the carriers of charge in the battery’s electric circuit. This has the undesirable side-effect of strong reaction between the metal’s ions and the materials that the electrodes (the battery’s positive and negative electrical conductors) are made out of. This in turn reduces the battery’s reaction rate (the speed at which the electrochemical reactions at the heart of any battery take place), drastically limiting performance.

“So we started investigating the possibility of non-metallic charge carriers, as these would not suffer from the same difficulties from interaction with the electrodes,” added Junjie Shi, another leading member of the team and a researcher with the School of Physics and Center zfor Nanoscale Characterization & Devices (CNCD) at the Huazhong University of Science and Technology in Wuhan.

The research team alighted upon ammonium ions, derived from abundantly available ammonium salts, as the optimal charge carriers. They are far less corrosive than other options and have a wide electrochemical stability window.

“But ammonium ions are not the only ingredient in the recipe needed to make our batteries self-healing,” said Long Zhang, the third leading member of the research team, also at CNCD.

For that, the team incorporated the ammonium salts into a hydrogel—a polymer material that can absorb and retain a large amount of water without disturbing its structure. This gives hydrogels impressive flexibility—delivering precisely the sort of self-healing character needed. Gelatin is probably the most well-known hydrogel, although the researchers in this case opted for a polyvinyl alcohol hydrogel (PVA) for its great strength and low cost.

To optimize compatibility with the ammonium electrolyte, titanium carbide—a ‘2D’ nanomaterial with only a single layer of atoms—was chosen for the anode (the negative electrode) material for its excellent conductivity. Meanwhile manganese dioxide, already commonly used in dry cell batteries, was woven into a carbon nanotube matrix (again to improve conductivity) for the cathode (the positive electrode).

Testing of the prototype self-healing battery showed it exhibited excellent energy density, power density, cycle life, flexibility, and self-healing even after ten self-healing cycles.

The team now aims to further develop and optimise their prototype in preparation for commercial production.


About Nano Research Energy

Nano Research Energy is launched by Tsinghua University Press and exclusively available via SciOpen, aiming at being an international, open-access and interdisciplinary journal. We will publish research on cutting-edge advanced nanomaterials and nanotechnology for energy. It is dedicated to exploring various aspects of energy-related research that utilizes nanomaterials and nanotechnology, including but not limited to energy generation, conversion, storage, conservation, clean energy, etc. Nano Research Energy will publish four types of manuscripts, that is, Communications, Research Articles, Reviews, and Perspectives in an open-access form.

About SciOpen

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

Here’s a link to and a citation for the paper,

A self-healing aqueous ammonium-ion micro batteries based on PVA-NH4Cl hydrogel electrolyte and MXene-integrated perylene anode by Ke Niu, Junjie Shi, Long Zhang, Yang Yue, Mengjie Wang, Qixiang Zhang, Yanan Ma, Shuyi Mo, Shaofei Li, Wenbiao Li, Li Wen, Yixin Hou, Fei Long, Yihua Gao. Nano Research Energy (2024)DOI: https://doi.org/10.26599/NRE.2024.9120127 Published: 03 June 2024

This paper is open access by means of a “Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.”

Back to school: Stanford University (California) brings nanoscience to teachers and Ingenium brings STEAM to school

I have two stories that fit into the ‘back to school’ theme, one from Stanford University and one from Ingenium (Canada’s Museums of Science and Innovation).

Stanford, nanoscience, and middle school teachers

h/t to Google Alert of August 27, 2024 (received via email) for information about a Stanford University programme for middle school teachers. From an August 27, 2024 article in the Stanford Report, Note: Links have been removed,

Crafting holographic chocolate, printing with the power of the sun, and seeing behind the scenes of cutting-edge research at the scale of one-billionth of a meter, educators participating in the Nanoscience Summer Institute for Middle School Teachers (NanoSIMST) got to play the role of students, for a change.

Teachers hailed from the Bay Area and Southern California – one had even come all the way from Arkansas – for the professional development program. NanoSIMST, run by nano@stanford, is designed to connect middle school teachers with activities, skills, and knowledge about science at the scale of molecules and atoms so they can incorporate it into their curriculum. NanoSIMST also prioritizes teachers from Title I schools, which are low-income schools with low-income student populations that receive federal funding to improve academic achievement.

Debbie Senesky, the site investigator and principal researcher on the nano@stanford project, highlighted the importance of nanoscience at the university. “It’s not just about focusing on research – we also have bigger impacts on entrepreneurs, start-ups, community colleges, and other educators who can use these facilities,” said Senesky, who is also an associate professor of aeronautics and astronautics and of electrical engineering. “We’re helping to train the next generation of people who can be a workforce in the nanotechnology and semiconductor industry.”

The program also supports education and outreach, including through NanoSIMST, which uniquely reaches out to middle school teachers due to the STEM education outcomes that occur at that age. According to a 2009 report by the Lemelson-MIT InvenTeam Initiative, even among teens who were interested in and felt academically prepared in their STEM studies, “nearly two-thirds of teens indicated that they may be discouraged from pursuing a career in science, technology, engineering or mathematics because they do not know anyone who works in these fields (31%) or understand what people in these fields do (28%).”

A teacher from the Oakland Unified School District, Thuon Chen, connected several other teachers from OUSD to attend NanoSIMST as a first-time group. He emphasized that young kids, especially in middle school, have a unique way of approaching new technologies. “Kids have this sense where they’re always pushing things and coming up with completely new uses, so introducing them to a new technology can give them a lot to work with.”

Over the course of four days in the summer, NanoSIMST provides teachers with an understanding of extremely small science and technology: they go through tours of the nano facilities, speak with scientists, perform experiments that can be conducted in the classroom, and learn about careers in nanotechnology and the semiconductor industry.

Tara Hodge, the teacher who flew all the way from Arkansas, was thrilled about bringing what she learned back with her. “I’m not a good virtual learner, honestly. That’s why I came here. And I’m really excited to learn about different hands-on activities. Anything I can get excited about, I know I can get my students excited about.”

They have provided a video,

One comment regarding the host, Daniella Duran, the director of education and outreach for nano@stanford, she comments about nano being everywhere and, then, says “… everything has a microchip in it.” I wish she’d been a little more careful with the wording. Granted those microchips likely have nanoscale structures.

Ingenium’s STEAM (science, technology, engineering, arts, and mathematics) programmes for teachers across Canada

An August 27, 2024 Ingenium newsletter (received via email) lists STEAM resources being made available for teachers across the country.

There appears to be a temporary copy of the August 27, 2024 Ingenium newsletter here,

STEAM lessons made simple!

Another school year is about to begin, and whether you’re an experienced teacher or leading your first class, Ingenium has what you need to make your STEAM (science, technology, engineering, arts and math) lessons fun! With three museums of science and innovation – the Canada Agriculture and Food Museum, the Canada Aviation and Space Museum and the Canada Science and Technology Museum – under one umbrella, we are uniquely positioned to help your STEAM lessons come to life.

Embark on an exciting adventure with our bilingual virtual field trips and meet the animals in our barns, explore aviation technology, and conduct amazing science experiments.

Or take advantage of our FREE lesson plans, activities and resources to simplify and animate your classroom, all available in English and French. With Ingenium, innovation is at your fingertips!

Bring the museum to your classroom with a virtual field trip!

Can’t visit in person? Don’t worry, Ingenium will bring the museum to you! All of our virtual field trips are led by engaging guides who will animate each subject with an entertaining and educational approach. Choose from an array of bilingual programs designed for all learners that cover the spectrum of STEAM subjects, including the importance of healthy soil, the genetic considerations of a dairy farm operation, the science of flight, simple machines, climate change and the various states of matter. There is so much to discover with Ingenium. Book your virtual field trip today!

Here’s a video introduction to Ingenium’s offerings,

To get a look at all the resources, check out this temporary copy of the August 27, 2024 Ingenium newsletter here.

Systemic gene silencing in crops with engineered nanocomplexes

Ultimately, the researchers are working on ways to make agriculture more sustainable but, in the meantime, there’s this June 7, 2024 news item on ScienceDaily describing this work,

Gene silencing in plants has faced significant challenges, primarily due to the difficulty of transporting RNA molecules across plant cell membranes and achieving systemic effects. Traditional genetic engineering methods are time-consuming and often limited by plant genotype. Due to these challenges, there is a pressing need for innovative solutions to facilitate efficient gene silencing and enhance crop productivity.

A June 7, 2024 news release, from Nanjing Agricultural University The Academy of Science (publisher of Horticulture Research), on EurekAlert, which originated the news item, goes on to describe the challenges and the proposed solution, Note: Links have been removed,

Gene silencing in plants has faced significant challenges, primarily due to the difficulty of transporting RNA molecules across plant cell membranes and achieving systemic effects. Traditional genetic engineering methods are time-consuming and often limited by plant genotype. Due to these challenges, there is a pressing need for innovative solutions to facilitate efficient gene silencing and enhance crop productivity.

Researchers from the University of Connecticut and Oak Ridge National Laboratory have developed an innovative method using cationized bovine serum albumin (cBSA) and double-stranded RNA (dsRNA) nanocomplexes to achieve effective systemic gene silencing in plants. Published (DOI: 10.1093/hr/uhae045) in Horticulture Research on February 22, 2024, this study demonstrates the potential of these nanocomplexes to overcome the limitations of traditional RNA delivery methods, offering a new tool for plant biotechnology.

The study presents the development of cBSA/dsRNA nanocomplexes for systemic gene silencing in tobacco and poplar plants. By modifying bovine serum albumin to carry a positive charge, researchers created nanocomplexes that bind dsRNA molecules, facilitating their transport and systemic gene silencing. Experiments demonstrated successful silencing of the DR5-GUS and 35S-GUS genes, achieving significant reductions in gene expression. This technology proved effective in delivering RNA molecules across plant cell membranes, overcoming the negative charge barrier of naked RNA applications. Offering a convenient, fast, and non-transgenic approach, this method holds promise for gene function characterization, crop improvement, and large-scale agricultural applications due to its scalability and cost-effectiveness.

Dr. Yi Li, a lead researcher on the project, stated, “The development of cBSA/dsRNA nanocomplexes represents a significant advancement in plant biotechnology. This technology not only facilitates efficient gene silencing but also offers a practical and scalable solution for improving crop productivity. We believe this method will pave the way for new applications in gene editing and agricultural research.”

The implications of this research are vast, offering a potential solution for transient gene silencing in field-grown crops, including orchard trees. This technology could enhance crop productivity by targeting genes that influence drought tolerance, fruit development, and stress resistance, all without the need for genetic modification. The scalable and inexpensive nature of this method could make it a game-changer for sustainable agriculture.

The research and the journal where it is published both have interesting pedigrees. From the June 7, 2024 news release,

Funding information

This work was supported by the USDA National Institute of Food and Agriculture SCRI (grant no. 2015-70016-23027) and the Connecticut-Storrs Agriculture Experimental Station.

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

You can add the UK to the US/China mix since the website hosting Horticulture Research is Oxford Academic,

Oxford Academic is Oxford University Press’s academic research platform, providing access to over 50,000 books and 500 journals

Finally, here’s a link to and a citation for the paper,

Engineered dsRNA–protein nanoparticles for effective systemic gene silencing in plants by Huayu Sun, Ankarao Kalluri, Dan Tang, Jingwen Ding, Longmei Zhai, Xianbin Gu, Yanjun Li, Huseyin Yer, Xiaohan Yang, Gerald A Tuskan, Zhanao Deng, Frederick G Gmitter Jr, Hui Duan, Challa Kumar, Yi Li. Horticulture Research, Volume 11, Issue 4, April 2024, uhae045, DOI: https://doi.org/10.1093/hr/uhae045
Published online: 22 February 2024

This paper is open access.

Nano-treatment could help save mangroves from deadly disease

Seems to be my week for coastal erosion. First, there was my August 23, 2024 posting “Electricity (electrodeposition) could help fight coastal (beach) erosion” and today, August 30, 2024, I’m featuring news I got about a month ago (late July 2024) regarding a special formula to help save mangroves on the Florida coast and other coasts where they are found.

A July 26, 2024 news item on ScienceDaily features news from the University of Central Florida, Note: Links have been removed,

Mangroves and palm trees are hallmarks of the Sunshine State not just for their beauty but for their immense importance to Florida’s coastlines.

Mangroves are crucial because they naturally protect coastal shores from storm damage and serve as vital wildlife habitats around the world.

Scientists at the University of Central Florida are working to preserve mangroves in Florida and across the world from an increasingly prevalent disease-causing variety of fungi that lies dormant but becomes active when the tree is exposed to stressors such as temperature fluctuation, pests or other diseases.

A July 26, 2024 University of Central Florida (UCF) news release by Eddy Duryea (also on EurekAlert), which originated the news item, describes the disease (which hasn’t yet been formally named) and gives some details about the proposed treatment, Note: Links have been removed,

The disease does not yet have an official name, but it is being referred to by scientists as “Mangrove CNP.” It is caused by a group of fungal pathogens, including Curvularia, Neopestalotiopsis, and Pestalotiopsis, that causes yellowing and spots, and gradually weaken the mangrove until it ultimately dies.

Melissa Deinys, a UCF undergraduate researcher, and Jorge Pereira, a UCF graduate research assistant, are working to help turn the tide by developing and testing a promising nutritional cocktail comprised of nanoparticles to strengthen mangroves and counter the pathogens. The work is through UCF professor Swadeshmukul Santra’s Materials Innovation for Sustainable Agriculture (MISA) center at UCF, which is a U.S. Department of Agriculture-National Institute of Food and Agricultural recognized Center of Excellence.

Mangrove CNP in Florida was first identified as causing mangrove die-offs by Deinys in 2019 in Miami through her work with Fairchild Tropical Botanic Garden. Later, the Marine Resources Council, a non-profit organization dedicated to the protection and restoration of Florida’s Indian River Lagoon, verified and cited her efforts.

Deinys and collaborators with the MRC and Fairchild Tropical Botanic Garden have determined that about 80% of the mangroves they had sampled have tested positive for at least one of the fungal pathogen species. She says they have sampled over 130 mangroves between the Indian River Lagoon and Miami mangrove populations.

The researchers are treating the mangroves by soaking them in a nutrient solution called “Mag Sun” (MgSuN), which is comprised of magnesium and sulfur nanoparticles. The mixture is a refinement of a previous graduate student’s formula that destroyed bacteria on tomatoes, Pereira says.

“The reason why we choose magnesium is because it is more environmentally friendly, and plants need a lot of magnesium,” he says. “I combined our magnesium formulation with a sodium polysulfide. Sulfur is one of those elements that is ubiquitous in the environment, and the idea is that you can combine both to actually enhance the anti-microbial capacity for both bacteria and fungi and you also supply key nutrients to the plants so that they can grow greener and leafier.”

During lab tests, the researchers say they observed growth inhibition of up to 95% when treated with MgSuN at varying concentrations compared to the untreated control.

The formula acts as a sort of antibiotic and multivitamin, and it has shown great potential in bolstering the health of infected mangroves at nurseries across Florida, Pereira says.

“We’ve done some experiments, and we have tested both in vitro and in plants,” he says. “We’re working with the nurseries, and we’ve seen it does kill the pathogens with no detrimental effects to the mangroves while kickstarting their health. They look great after treatment.”

Deinys is continuing her work with the Fairchild Tropical Botanic Garden, MRC and nurseries across Florida while staying the course on her path to graduation and furthering her research at UCF.

She began studying the fungal pathogens in 2018 in Miami prior to being enrolled at UCF and has seen the mangroves become increasingly affected by the pathogens’ opportunistic nature.

“Back at the botanical gardens where I started, I would see the plants have these pathogens but not to a detrimental effect where we now see these organisms collapsing,” she says. “A mangrove nursery [The Marine Resources Council] had reached out to us, and they told us they had an insect infestation and then the whole population got wiped out by the pathogen. We’re also getting reports from places like Tampa that say areas that have more runoff are having more pathogen-related deterioration compared to 10 years ago.”

The fungi have been well-documented for some time, but volatile temperature changes, frequent storms and other increasing stressors open the door to the fungi taking a hold of the mangroves, Deinys says.

“They’re called opportunistic, and they’re called that for a reason,” she says. “They see a change in the plant and that’s when they start to take effect.”

How the pathogens are acquired is something that remains unclear, Deinys says. Researchers hypothesize it may be introduced through water, wind or insects, but further studies are needed to determine how it is acquired since it poses threat to mangrove health.

“You have to study all possibilities to determine what is the vector,” Deinys says. “We’ve seen papers and literature in other countries that have shown these pathogens for a long time. It’s been difficult because there is a disconnect in mangrove communities because we’re worlds apart and with different languages.”

The MgSuN nutrient solution is a treatment, but not a cure, Deinys says. There still are ample stressors that should be managed and mitigated, such as human-caused habitat destruction, in addition to treating the pathogens.

“I think there’s a big restoration effort to repopulate mangroves,” she says. “But first we need to look at the health of these mangroves and the health of the ecosystem before we determine what more we should do. We’re working with mangrove nurseries to see if we can together develop solutions.”

Maintaining and restoring mangroves is an essential component of ecological stewardship, and it’s a passion that Deinys hopes to continue throughout her career.

“I started this project my freshman year,” she says. “I didn’t want to leave what I was doing, and I came here with a mission. I met with Dr. Santra, our PI, and he wanted to help. He gave me a lot of freedom, and I’m really grateful.”

Deinys says that her research at UCF has been incredibly gratifying.

“There is a sense of community here that I found,” she says. “I joined the lab, and it felt like I found my family and that’s one of the best things to have come out of this experience. This has been one of my life’s passions, and I hope I’ll always stay with this project even after.”

Santra is encouraged by the research conducted by Pereira and Deinys, and he is hopeful it continues to bolster mangrove ecosystems.

“The UCF MISA center is dedicated to solving global problems that threaten agricultural sustainability,” he says. “We are excited to have another crop protection tool in our toolbox for protecting mangroves. I see the future of MagSun as a broad-spectrum fungicide, where GRAS (Generally Recognized As Safe) materials are empowered through nanotechnology.”

Further studies are needed to pinpoint which stressors are affecting the mangroves the most so that scientists can better preserve them, Pereira says.

“It’s very important to understand the stressors, and we need to really address if it’s a change in temperature, if it’s runoff or if it’s an additional pathogen,” he says. “In the meantime, we need to do something to prevent this damage from occurring.”

Researchers’ Credentials

Deinys graduated from BioTECH @ Richmond Heights High School, a conservation biology magnet school, where she began her research journey at Fairchild Tropical Botanic Garden and specialized in botany. In Fall 2022, Deinys joined UCF and became a member of the Santra Lab the following spring. She is an undergraduate research assistant working towards her bachelor’s degree in biotechnology.

Pereira graduated from Universidad Nacional Autónoma de Honduras with a degree in industrial chemistry. He joined Santra’s lab in 2020 and is currently a graduate research assistant and working toward his doctoral degree in chemistry.

Santra holds a doctorate in chemistry from the Indian Institute of Technology Kanpur. After graduating, he worked at the University of Florida (UF) as a postdoctoral researcher and later as a research assistant professor at the UF Department of Neurological Surgery and Particle Engineering Research Center. In 2005, Santra joined UCF as an assistant professor at the NanoScience Technology Center, the Department of Chemistry and the Burnett School of Biomedical Sciences. He is the director of the UCF Materials Innovation for Sustainable Agriculture center, a USDA-NIFA-recognized Center of Excellence.

They don’t seem to have published a paper about their work but there is this video,

Using a new computer program to ‘paint’ the structure of molecules in the style of a famous Dutch artist

Figure 2: a) “Neoplastic” diagram of the porphyrin core of the classic nonplanar 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrin (CCDC: RONROB), alongside two representations of this same molecule—b) the crystal structure thermal ellipsoid plot and (c) skeletal model.28 This porphyrin shape is primarily saddled and a little ruffled, resulting in S4 symmetry … [downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ange.202403754]

A July 12, 2024 news item on ScienceDaily describes a fascinating computer program developed by scientists at Trinity College Dublin,

Scientists from Trinity College Dublin have created a computer program that “paints” the structure of molecules in the style of famous Dutch artist, Piet Mondrian, whose beautiful artworks will be instantly recognizable to many.

Mondrian’s style, whereby he used blocks of primary colors separated by lines of various widths on a white background, has been extensively copied or used as an inspiration in modern culture. But his deceptively simple artworks have also fascinated scientists for decades, finding niche applications in mathematics and statistics.

And now, researchers from the School of Chemistry are opening eyes and minds to the beauty of molecular structure, as well as posing new questions about the form and function of the molecules themselves.

A July 15, 2024 Trinity College Dublin press release (also on EurekAlert but published July 12, 2024), which originated the news item, provides more details about the work,

Their computer program, which can be accessed at http://www.sengegroup.eu/nsd, produces a Mondrianesque plot of any molecule. It does so by following an artistic algorithm that marries the laws of chemistry that describe the 3D structure of a molecule based on its components with the 2D style of one of the most influential painters of the Modern era.

For the scientist, it helps to rapidly assess and demonstrate molecular symmetry, allowing for deeper insights than would emerge from traditional representations. And for the artist, it provides a visually pleasing image of contrasting interpretations of symmetry, hopefully providing inspiration for the incorporation of scientific ideas into work. 

Mathias O Senge, Professor of Organic Chemistry in Trinity and Hans Fischer Senior Fellow at the Institute for Advanced Study of TU Munich [Technische Universität München or Technical University of Munich] is the senior author of a just-published article in the leading international journal, Angewandte Chemie, in which this creation is shared with the world. He said:

“For some years we have been working on this project, initially for fun, to output the structure of a molecule in an artistically pleasing manner as a painting in the style of Mondrian. The ‘paintings’ obtained are unique for each molecule and juxtapose what Mondrian and others aimed to do with the De Stijl artistic movement.

“Symmetry and shape are essential aspects of molecular structure and how we interpret molecules and their properties, but very often relationships between chemical structure and derived values are obscured. Taking our inspiration from Mondrian’s Compositions, we have depicted the symmetry information encoded within 3D data as blocks of colour, to show clearly how chemical arguments may contribute to symmetry.” 

Christopher Kingsbury, postdoctoral researcher in TBSI, who conceived the project, is first author of the journal article. He said: “In chemistry, it is useful to have a universal way of displaying molecular structure, so as to help ‘blueprint’ how a molecule is likely to behave in different environments and how it may react and change shape when in the presence of other molecules. But a certain amount of nuance is inevitably lost.

“This concept of increasing abstraction by removing minor details and trying to present a general form is mimicked by the early work of Mondrian and in some senses this is what scientists intuitively do when reducing complex phenomena to a ‘simpler truth’. Thanks to our new approach very complex science is fed through an artistic lens, which might make it more accessible to a wider range of people.”  

In recent years Professor Senge and his team have greatly enhanced our understanding of porphyrins, a unique class of intensely coloured pigments – also known as the “colours of life”. In one piece of work they created a suite of new biological sensors by chemically re-engineering these pigments to act like tiny Venus flytraps and grab specific molecules, such as pollutants. And now the new direction, in which science and art collide, may further develop our understanding of how porphyrins work.

“Great art gives us a new perspective on the world,” added Prof. Senge. “As a pastiche, this art may allow us to look at familiar molecules, such as porphyrins, in a new light, and help us to better understand how their shape and properties are intertwined. More generally, we believe that contemporary initiatives in ‘Art and Science’ require a transformative break of discipline boundaries and merger to ‘ArtScience’. There is a subtle interplay between science and art and mixing of both aspects in our respective fields of endeavour and this should be a focus for future developments in both areas.”

Here’s a link to and a citation for the paper,

Molecular Symmetry and Art: Visualizing the Near-Symmetry of Molecules in Piet Mondrian’s De Stijl by Dr. Christopher J. Kingsbury, Prof. Dr. Mathias O. Senge. Angewandte Chemie DOI: https://doi.org/10.1002/ange.202403754 Volume 136, Issue 25 June 17, 2024 e202403754 First published: 15 April 2024

This paper is open access.

Spontaneous assembly of nanocubes in water lock like tiny floating checkerboards

This is what the tiny checkerboards look like,

SEM image of a checkerboard pattern created by self-assembly of the nanocubes. Scale bar = 500 nm, inset = 100 nm. Image by Wang et al., Nature Communications [downloaded from https://today.ucsd.edu/story/nanosized-blocks-spontaneously-assemble-in-water-to-create-tiny-floating-checkerboards]

A June 13, 2024 news item on ScienceDaily announces the research that resulted in the checkerboards,

Researchers have engineered nanosized cubes that spontaneously form a two-dimensional checkerboard pattern when dropped on the surface of water. The work, published in Nature Communications, presents a simple approach to create complex nanostructures through a technique called self-assembly.

“It’s a cool way to get materials to build themselves,” said study co-senior author Andrea Tao, a professor in the Aiiso Yufeng Li Family Department of Chemical and Nano Engineering at the University of California San Diego. “You don’t have to go into a nanofabrication lab and do all these complex and precise manipulations.”

A June 13, 2024 University of California – San Diego news release (also on EurekAlert) by Liezel Labios, which originated the news item, provides more detail about the work, Note: A link has been removed,

Each nanocube is composed of a silver crystal with a mixture of hydrophobic (oily) and hydrophilic (water-loving) molecules attached to the surface. When a suspension of these nanocubes is introduced to a water surface, they arrange themselves such that they touch at their corner edges. This arrangement creates an alternating pattern of solid cubes and empty spaces, resulting in a checkerboard pattern.

The self-assembly process is driven by the surface chemistry of the nanocubes. A high density of hydrophobic molecules on the surface brings the cubes together to minimize their interaction with water. Meanwhile, the long chains of hydrophilic molecules cause enough repulsion to create voids between the cubes, creating the checkerboard pattern.

To fabricate the structure, researchers applied drops of the nanocube suspension onto a petri dish containing water. The resulting checkerboard can be easily transferred to a substrate by dipping the substrate into the water and slowly withdrawing it, allowing the nanostructure to coat it.

This study stems from a collaborative effort between multiple research groups that are part of the UC San Diego Materials Research Science and Engineering Center (MRSEC). The work featured a synergistic combination of computational and experimental techniques. “We’ve built a continuous feedback loop between our computations and experiments,” said Tao. “We used computer simulations to help us design the materials at the nanoscale and predict how they will behave. We also used our experimental results in the lab to validate the simulations, fine tune them and build a better model.”

In designing the material, researchers chose silver crystal nanocubes due to the Tao lab’s expertise in their synthesis. Determining the optimal surface chemistry required extensive computational experimentation, which was led by Gaurav Arya, a professor in the Department of Mechanical Engineering and Materials Science at Duke University and co-senior author of the study. The simulations identified the best molecules to attach to the nanocubes and predicted how the cubes would interact and assemble on the water surface. The simulations were iteratively refined using experimental data obtained by Tao’s lab. Electron microscopy performed by the lab of study co-author Alex Frañó, a professor in the Department of Physics at UC San Diego, confirmed the formation of the desired checkerboard structures.

Tao envisions applications for the nanocube checkerboard in optical sensing. “Such a nanostructure can manipulate light in interesting ways,” she explained. “The spaces between the cubes, particularly near the corner edges where the cubes connect, can act as tiny hotspots that focus or trap light. That could be useful for making new types of optical elements like nanoscale filters or waveguides.”

The researchers plan to explore the optical properties of the checkerboard in future studies.

Here’s a link to and a citation for the paper,

Self-assembly of nanocrystal checkerboard patterns via non-specific interactions by Yufei Wang, Yilong Zhou, Quanpeng Yang, Rourav Basak, Yu Xie, Dong Le, Alexander D. Fuqua, Wade Shipley, Zachary Yam, Alex Frano, Gaurav Arya & Andrea R. Tao. Nature Communications volume 15, Article number: 3913 (2024) DOI: https://doi.org/10.1038/s41467-024-47572-2 Published0: 9 May 2024

This paper is open access.

After sugar-free meals, soil bacteria respire more CO2

Scientists have found out more about how carbon cycles through the environment in a June 11, 2024 news item on ScienceDaily,

When soil microbes eat plant matter, the digested food follows one of two pathways. Either the microbe uses the food to build its own body, or it respires its meal as carbon dioxide (CO2) into the atmosphere.

Now, a Northwestern University [Illinois, US]-led research team has, for the first time, tracked the pathways of a mixture of plant waste as it moves through bacteria’s metabolism to contribute to atmospheric CO2. The researchers discovered that microbes respire three times as much CO2 from lignin carbons (non-sugar aromatic units) compared to cellulose carbons (glucose sugar units), which both add structure and support to plants’ cellular walls.

These findings help disentangle the role of microbes in soil carbon cycling — information that could help improve predictions of how carbon in soil will affect climate change.

Caption: Image of soil with a close-up of a bacterium and the cellular pathways involved in carbon dioxide productions. Available substrates from soil organic matter are processed through specific pathways with different amount of carbon dioxide output flux.. Credit: Aristilde Lab/Northwestern University

A June 11, 2024 Northwestern University news release (also received via email and on EurekAlert), which originated the news item, explains what this research means, Note: Links have been removed,

“The carbon pool that’s stored in soil is about 10 times the amount that’s in the atmosphere,” said Northwestern University’s Ludmilla Aristilde, who led the study. “What happens to this reservoir will have an enormous impact on the planet. Because microbes can unlock this carbon and turn it into atmospheric CO2, there is a huge interest in understanding how they metabolize plant waste. As temperatures rise, more organic matter of different types will become available in soil. That will affect the amount of CO2 that is emitted from microbial activities.”

An expert in the dynamics of organics in environmental processes, Aristilde is an associate professor of civil and environmental engineering at Northwestern’s McCormick School of Engineering and is a member of the Center for Synthetic Biology and of the Paula M. Trienens Institute for Sustainability and Energy. Caroll Mendonca, a former Ph.D. candidate in Aristilde’s laboratory, is the paper’s first author. The study includes collaborators from the University of Chicago.

‘Not all pathways are created equally’

The new study builds upon ongoing work in Aristilde’s laboratory to understand how soil stores — or releases — carbon. Although previous researchers typically tracked how broken-down compounds from plant matter move individually through bacteria, Aristilde’s team instead used a mixture of these compounds to represent what bacteria are exposed to in the natural environment. Then, to track how different plant derivatives moved through a bacterium’s metabolism, the researchers tagged individual carbon atoms with isotope labels.

“Isotope labeling allowed us to track carbon atoms specific to each compound type inside the cell,” Aristilde said. “By tracking the carbon routes, we were able to capture their paths in the metabolism. That is important because not all pathways are created equally in terms of producing carbon dioxide.”

Sugar carbons in cellulose, for example, traveled through glycolytic and pentose-phosphate pathways. These pathways lead to metabolic reactions that convert digested matter into carbons to make DNA and proteins, which build the microbe’s own biomass. But aromatic, non-sugar carbons from lignin traveled a different route — through the tricarboxylic acid cycle.

“The tricarboxylic acid cycle exists in all forms of life,” Aristilde said. “It exists in plants, microbes, animals and humans. While this cycle also produces precursors for proteins, it contains several reactions that produce CO2. Most of the CO2 that gets respired from metabolism comes from this pathway.”

Expanding the findings

After tracking the routes of metabolism, Aristilde and her team performed quantitative analysis to determine the amount of CO2 produced from different types of plant matter. After consuming a mixture of plant matter, microbes respired three times as much CO2 from carbons derived from lignin compared to carbons derived from cellulose.

“Even though microbes consume these carbons at the same time, the amount of CO2 generated from each carbon type is disproportionate,” Aristilde said. “That’s because the carbon is processed via two different metabolic pathways.”

In the initial experiments, Aristilde and her team used Pseudomonas putida, a common soil bacterium with a versatile metabolism. Curious to see if their findings applied to other bacteria, the researchers studied data from previous experiments in scientific literature. They found the same relationship they discovered among plant matter, metabolism and CO2 manifested in other soil bacteria.

“We propose a new metabolism-guided perspective for thinking about how different carbon structures accessible to soil microbes are processed,” Aristilde said. “That will be key in helping us predict what will happen with the soil carbon cycle with a changing climate.”

The study, “Disproportionate carbon dioxide efflux in bacterial metabolic pathways for different organic substrates leads to variable contribution to carbon use efficiency,” was supported by the National Science Foundation (grant numbers CBET-1653092 and CBET-2022854).

Here’s a link to and a citation for the paper,

Disproportionate Carbon Dioxide Efflux in Bacterial Metabolic Pathways for Different Organic Substrates Leads to Variable Contribution to Carbon-Use Efficiency by Caroll M. Mendonca, Lichun Zhang, Jacob R. Waldbauer, and Ludmilla Aristilde. Environ. Sci. Technol. 2024, 58, 25, 11041–11052 DOI: https://doi.org/10.1021/acs.est.4c01328 Publication Date:June 11, 2024 Copyright © 2024 The Authors. Published by American Chemical Society.

This paper is open access and has a Creative Commons licence: CC-BY-NC-ND 4.0..

New approach to cartilage regeneration

Not long after announcing their new work on cartilage and ‘dancing molecules’, Samuel I. Stupp and his team at Northwestern University (Chicago, Illinois) have announced work with a new material that does not have dancing molecules in a study using animal models. It’s here in an August 5, 02024 Northwestern University news release (also on EurekAlert and on SciTechDaily and received by email) by Amanda Morris, Note: Links have been removed,

Northwestern University scientists have developed a new bioactive material that successfully regenerated high-quality cartilage in the knee joints of a large-animal model.

Although it looks like a rubbery goo, the material is actually a complex network of molecular components, which work together to mimic cartilage’s natural environment in the body. 

In the new study, the researchers applied the material to damaged cartilage in the animals’ knee joints. Within just six months, the researchers observed evidence of enhanced repair, including the growth of new cartilage containing the natural biopolymers (collagen II and proteoglycans), which enable pain-free mechanical resilience in joints.

With more work, the researchers say the new material someday could potentially be used to prevent full knee replacement surgeries, treat degenerative diseases like osteoarthritis and repair sports-related injuries like ACL [anterior cruciate ligament] tears.

The study will be published during the week of August 5 [2024] in the Proceedings of the National Academy of Sciences.

“Cartilage is a critical component in our joints,” said Northwestern’s Samuel I. Stupp, who led the study. “When cartilage becomes damaged or breaks down over time, it can have a great impact on people’s overall health and mobility. The problem is that, in adult humans, cartilage does not have an inherent ability to heal. Our new therapy can induce repair in a tissue that does not naturally regenerate. We think our treatment could help address a serious, unmet clinical need.”

A pioneer of regenerative nanomedicine, Stupp is Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering at Northwestern, where he is founding director of the Simpson Querrey Institute for BioNanotechnology and its affiliated center, the Center for Regenerative Nanomedicine. Stupp has appointments in the McCormick School of Engineering, Weinberg College of Arts and Sciences and Feinberg School of Medicine. Jacob Lewis, a former Ph.D. student in Stupp’s laboratory, is the paper’s first author.

What’s in the material?

The new study follows recently published work from the Stupp laboratory, in which the team used “dancing molecules” to activate human cartilage cells to boost the production of proteins that build the tissue matrix. Instead of using dancing molecules, the new study evaluates a hybrid biomaterial also developed in Stupp’s lab. The new biomaterial comprises two components: a bioactive peptide that binds to transforming growth factor beta-1 (TGFb-1) — an essential protein for cartilage growth and maintenance — and modified hyaluronic acid, a natural polysaccharide present in cartilage and the lubricating synovial fluid in joints. 

“Many people are familiar with hyaluronic acid because it’s a popular ingredient in skincare products,” Stupp said. “It’s also naturally found in many tissues throughout the human body, including the joints and brain. We chose it because it resembles the natural polymers found in cartilage.”

Stupp’s team integrated the bioactive peptide and chemically modified hyaluronic acid particles to drive the self-organization of nanoscale fibers into bundles that mimic the natural architecture of cartilage. The goal was to create an attractive scaffold for the body’s own cells to regenerate cartilage tissue. Using bioactive signals in the nanoscale fibers, the material encourages cartilage repair by the cells, which populate the scaffold.

Clinically relevant to humans

To evaluate the material’s effectiveness in promoting cartilage growth, the researchers tested it in sheep with cartilage defects in the stifle joint, a complex joint in the hind limbs similar to the human knee. This work was carried out in the laboratory of Mark Markel in the School of Veterinary Medicine at the University of Wisconsin–Madison. 

According to Stupp, testing in a sheep model was vital. Much like humans, sheep cartilage is stubborn and incredibly difficult to regenerate. Sheep stifles and human knees also have similarities in weight bearing, size and mechanical loads.

“A study on a sheep model is more predictive of how the treatment will work in humans,” Stupp said. “In other smaller animals, cartilage regeneration occurs much more readily.”

In the study, researchers injected the thick, paste-like material into cartilage defects, where it transformed into a rubbery matrix. Not only did new cartilage grow to fill the defect as the scaffold degraded, but the repaired tissue was consistently higher quality compared to the control.

A lasting solution

In the future, Stupp imagines the new material could be applied to joints during open-joint or arthroscopic surgeries. The current standard of care is microfracture surgery, during which surgeons create tiny fractures in the underlying bone to induce new cartilage growth.

“The main issue with the microfracture approach is that it often results in the formation of fibrocartilage — the same cartilage in our ears — as opposed to hyaline cartilage, which is the one we need to have functional joints,” Stupp said. “By regenerating hyaline cartilage, our approach should be more resistant to wear and tear, fixing the problem of poor mobility and joint pain for the long term while also avoiding the need for joint reconstruction with large pieces of hardware.”

The study, “A bioactive supramolecular and covalent polymer scaffold for cartilage repair in a sheep model,” was supported by the Mike and Mary Sue Shannon Family Fund for Bio-Inspired and Bioactive Materials Systems for Musculoskeletal Regeneration.

Here’s a link to and a citation for the paper,

A bioactive supramolecular and covalent polymer scaffold for cartilage repair in a sheep model by Jacob A. Lewis, Brett Nemke, Yan Lu, Nicholas A. Sather, Mark T. McClendon, Michael Mullen, Shelby C. Yuan, Sudheer K. Ravuri, Jason A. Bleedorn, Marc J. Philippon, Johnny Huard, Mark D. Markel, and Samuel I. Stupp. Proceedings ot the National Academy of Sciences (PNAS) 121 (33) e2405454121 DOI: https://doi.org/10.1073/pnas.2405454121 August 6, 2024

This paper is behind a paywall.