United Nations Virtual Worlds Day on June 14, 2024

So the United Nations (UN) organization is moving onto virtual worlds in addition to our current world? It makes a kind of sense when you realize the International Telecommunications Union (ITU) is a UN agency. Also, in my opinion, the UN has shown increasing interest in emerging technology and science over the last few years.

Here’s more about the UN’s interest in virtual worlds and their potential role in city life in a June 14, 2024 ITU press release (also received via email),

ITU and partners advance virtual worlds to shape future city living

First UN Virtual Worlds Day launches international effort on the CitiVerse

Geneva, 14 June 2024

A global initiative for virtual worlds to support sustainable development and enhance city life was announced today at the first UN Virtual Worlds Day at ITU headquarters in Geneva, Switzerland. 

The Global Initiative on Virtual Worlds – Discovering the CitiVerse will define norms and principles to guide the governance of metaverse solutions in cities for areas such as urban planning, education, and municipal services.

Led by the International Telecommunication Union (ITU), the UN International Computing Centre (UNICC) and Digital Dubai, the initiative will drive capacity development, facilitate sharing of best practices, and develop a sandbox environment for cities to simulate virtual world scenarios.

“By harnessing the transformative power of virtual worlds, we can accelerate progress on the UN Sustainable Development Goals, [SDGs]” said ITU Secretary-General Doreen Bogdan-Martin. “The virtual worlds initiative is an essential step on the path of metaverse innovation that can enrich the lives of people in cities around the world.”

Advancing progress on virtual worlds

UN Virtual Worlds Day highlights the transformative power of virtual worlds, including the metaverse and spatial computing, to accelerate the achievement of the UN Sustainable Development Goals (SDGs).

The new initiative launched at the event builds on the work of ITU’s Focus Group on metaverse, which has laid the groundwork for international standards to support an open, inclusive metaverse that drives progress towards the SDGs.

Established in late 2022, the focus group has identified compelling opportunities for the metaverse to support smart cities.

In urban planning and management, city leaders could simulate their innovations before implementation at scale. A virtual city space can also advance education and training, improve access to public services, and support participatory governance.

The Global Initiative on Virtual Worlds will complement the work of ITU’s standardization expert group for the Internet of Things and smart cities and communities, ITU-T Study Group 20. It will also work alongside United for Smart Sustainable Cities, a UN initiative supported by ITU together with 19 UN partners.

The initiative rests on three pillars that will bring the CitiVerse from concept to community:

  1. Bringing the CitiVerse to Life: Developing expert guidance, raising awareness around CitiVerse opportunities and challenges, and developing and adopting key performance indicators.
  2. Connecting Cities with the Virtual and Real Worlds: Advancing cities’ integration of emerging technologies, curating CitiVerse use cases, and developing a sandbox environment and related technical tools.
  3. Tunneling the CitiVerse: Fostering a community of practice to encourage collaboration among cities, organizing urban problem-solving competitions, and implementing training programmes to boost CitiVerse expertise.

Virtual worlds adding real value to city life

The launch of Global Initiative on Virtual Worlds – Discovering the CitiVerse, comes alongside a new UN Executive Briefing developed by ITU, the UN Agency for Digital Technologies, together with 17 UN partners, on the relevance of virtual worlds and the metaverse to the SDGs.

The UN Executive Briefing also stresses the essential factors – such as responsible technology governance, ethical considerations, and privacy and security concerns – that need to be addressed to ensure that the benefits of virtual worlds are fully realized.

If you’re interested in finding out more about this ITU initiative, there’s the Global Initiative on Virtual Worlds – Discovering the CitiVerse webspace.

Some thoughts about Vancouver (Canada) and ‘Discovering the CitiVerse’

What follows is pure self indulgence:

I hope there’s interest from Vancouver in this initiative especially given this description from the ITU Webinars Digital Transformation Episode no. 35,

Description

The citiverse is a concept for a network of interconnected virtual worlds that are synchronized with their physical counterparts. It is envisioned as a way to create more inclusive, sustainable, and participatory cities. [emphasis mine]

Smart city initiatives have often focused on technology for its own sake, rather than on how technology can be used to improve the lives of people. This has led to some smart city projects being expensive, inefficient, and even harmful.
It is important that we develop a people-centered citiverse, which is one that uses technology to solve real-world problems and improve the quality of life for all residents. This means that people should be at the heart of the city planning and development process.
For example, smart city platforms can allow residents to submit feedback on city services or vote on proposed projects. It can also improve the quality of life for residents in a number of ways, such as by reducing traffic congestion, improving air quality, and making it easier to access essential services. Also, it can help to attract new businesses and industries to the city, and they can also help to create new jobs in the citiverse related sector.
Overall, people-centered citiverse have the potential to make cities more livable, sustainable, and equitable for all residents.

I’m not too hopeful since Vancouver City Council (other municipalities have expressed opposition) recently voted in favour of a plan that provoked outrage over erosion of local democracy and serious concerns about the rush to build. Ostensibly, the initiative [mandated by the province of British Columbia] is intended to solve the homelessness crisis although there are doubts about the proposed solution. (If you’re curious, see this June 13, 2024 article by Elizabeth Murphy, formerly with the City of Vancouver’s housing and properties department,,for The Tyee: “Why BC’s Forced Rush to Rezone Neighbourhoods Is Wrong; The province’s push fails to promote democracy, local planning and once vibrant co-op funding.”)

Not present for the city council vote was Vancouver’s mayor Ken Sim who has a spotty attendance record for city council meetings, from a March 14, 2024 article by Lisa Steacy for CTV news online,

Vancouver’s mayor has been absent for nearly a third of votes at public council meetings since taking office, data shows.

The City of Vancouver’s database on voting records shows that members have voted on 777 items since being sworn in on Nov. 7, 2022. Mayor Ken Sim has been marked absent 222 times, including during the vote on one of his most significant campaign promises.

With a supermajority on council, the mayor’s vote isn’t needed to push forward the agenda that his ABC slate was elected on. However, Prest [Stewart Prest, a lecturer in political science at the University of British Columbia] says voting in and of itself is only a very small part of public meetings, which are opportunities for the mayor to hear feedback from constituents, debate with the opposition, and to tell the public and his colleagues where he stands on an issue and why.

“The mayor is still elected to represent constituents, to voice opinions and to exercise a leadership role at council. And to take that for granted, to assume other members of ABC can do it just as well in his absence, at a certain point, the question becomes: Well, why do we need Mayor Sim?” [quote from Stewart Prest]

Apparently, mayor Ken Sim was in London, England, from a June 13, 2024 article by Mike Howell for vancouverisawesome.com, Note: A link has been removed,

Council was scheduled to discuss June 11 [2024; the same day as the new rezoning/planning report was up for a vote] what a city staff report described as a “reallocation” of $80,000 from the city clerk’s department to Sim’s office budget, so he can hire an administrative assistant.

Postponement came after Coun. Peter Meiszner successfully moved a motion to defer debate to June 25. Meiszner’s rationale was that Sim was in London, England at a tech conference and would not be available to respond to questions.

There was a big technology conference in London, England on that date, London Tech Week June 10 -12, 2024, from the Why Attend page,

London Tech Week is the global tech ecosystem – where visionaries and entrepreneurs, investors and enterprise tech leaders come together in the right balance to accelerate the infinite cycle of tech innovation.

it’s not clear to me what value attending this event would have for the mayor of Vancouver who is not a technology entrepreneurr. For the record, Ken Sim is an accountant and the owner of a nursing business and a bagel business.

Fingers crossed, he made time to attend the’ UN Virtual Worlds Day’ on June 14, 2024 in Switzerland where they were considering issues that affect cities.

2024 Kavli Prize Laureates: in the fields of astrophysics, nanoscience and neuroscience

The Kavli Prize has yet to acquire the lustre of a Nobel Prize (first awarded in 1901 as per its Wikipedia entry). By comparison the Kavli Prize is relatively new (established in 2005 as per its Wikipedia entry) but it appears to be achieving big deal status in the US.

This year’s crop of prize winners was listed in a June 12, 2024 Kavli Foundation news release on EurekAlert,

Eight scientists from three countries are honored for their research that has broadened our understanding of the big, the small and the complex.

June 12, 2024 (Oslo, Norway) — The Norwegian Academy of Science and Letters today announced the 2024 Kavli Prize Laureates in the fields of astrophysics, nanoscience and neuroscience. Eight scientists from three countries are honored for their research that has broadened our understanding of the big, the small and the complex. The laureates in each field will share $1 million USD. 

The 2024 Kavli Prizes recognize groundbreaking science for the discovery and characterization of extra-solar planets and their atmospheres; foundational research integrating synthetic nanoscale materials for biomedical use; and the localization of areas in the brain specialized for face recognition and processing.  

The 2024 Kavli Prize Laureates are:  

  • Kavli Prize in Astrophysics: David Charbonneau (Canada/USA) and Sara Seager (Canada/USA) 
  • Kavli Prize in Nanoscience: Robert S. Langer (USA), Armand Paul Alivisatos (USA) and Chad A. Mirkin (USA) 
  • Kavli Prize in Neuroscience: Nancy Kanwisher (USA), Winrich Freiwald (Germany), and Doris Tsao (USA) 

“The Kavli Prize 2024 honors outstanding researchers doing fundamental science that moves the world forward. They are exploring planets outside our solar system; they have broadened the scientific field of nanoscience towards biomedicine; and they are adding to our understanding of the neurological basis of face recognition,” said Lise Øvreås, president at The Norwegian Academy of Science and Letters.  

Astrophysics: Searching for life beyond Earth  

The 2024 Kavli Prize in Astrophysics honors Sara Seager and David Charbonneau for discoveries of exoplanets and the characterization of their atmospheres. They pioneered methods for the detection of atomic species in planetary atmospheres and the measurement of their thermal infrared emission, setting the stage for finding the molecular fingerprints of atmospheres around both giant and rocky planets. Their contributions have been key to the enormous progress seen in the last 20 years in the exploration of myriad exo-planets.  

“Humans have always looked towards the stars for discoveries. The pivotal research conducted by Seager and Charbonneau has been an important first step towards finding new planets and strong evidence of life elsewhere in the universe,” remarked Viggo Hansteen, Chair of the Astrophysics Committee.  

David Charbonneau led the team that used the transit method to discover a giant exoplanet (HD 209458b). He pioneered the application of space-based observatories to perform the first studies of the atmosphere of giant extrasolar planets. This new method measures the tiny amount of light blocked by such a planet as it passes in front of its host star. Charbonneau has also used the transit method to study exoplanetary atmospheres, measuring molecular spectra using both filtered starlight and infrared emission from the planets themselves. He demonstrated these two approaches with observations from the Hubble Space Telescope in 2002 and the Spitzer Space Telescope three years later.  

Sara Seager pioneered the theoretical study of planetary atmospheres and predicted the presence of atomic and molecular species detectable by transit spectroscopy, most notably the alkali gases. She predicted how transits could be used to measure atomic and molecular characteristics in exoplanetary atmospheres, which is crucial for identifying biomarkers – signs of life. Seager made outstanding contributions to the understanding of planets with masses below that of Neptune. She also carried out extensive research on starshades – enormous petal-like structures designed to shield space observatories from the glare of a faraway Sun-like star – and was among the first to recognize their importance in detecting and characterizing the faint light from any Earth-like planet orbiting the star. 

Nanoscience: Integrating nanomaterials for biomedical advances 

The 2024 Kavli Prize in Nanoscience honors Robert S. Langer, Armand Paul Alivisatos and Chad A. Mirkin who each revolutionized the field of nanomedicine by demonstrating how engineering nanoscale materials can advance biomedical research and application. Their discoveries contributed foundationally to the development of therapeutics, vaccines, bioimaging and diagnostics.   

“The three scientists, Langer, Alivisatos and Mirkin, have broadened the scientific field of nanoscience, building from fundamental research. By scientific curiosity they have become inventors for the future of nanoscience and biomedicine,” stated Bodil Holst, Chair of the Nanoscience Committee.  

Robert S. Langer was the first to develop nano-engineered materials that enabled the controlled release, or regular flow, of drug molecules. This capability has had an immense impact for the treatment of a range of diseases, such as aggressive brain cancer, prostate cancer and schizophrenia. His work also showed that tiny particles, containing protein antigens, can be used in vaccination, and was instrumental in the development of the delivery of mRNA vaccines. 

Armand Paul Alivisatos demonstrated that semiconductor nanocrystals, or quantum dots (nanoparticles that possess bright, size-dependent light-emitting properties), can be used as multicolor probes in bioimaging. Essential to this achievement was the synthesis of biocompatible nanocrystals. Semiconductor nanocrystals became the basis for the widely used research and diagnostic tools such as live cell tracking, labelling and in vivo imaging. 

Chad A. Mirkin engineered spherical nucleic acids (SNA) using a gold nanoparticle as the core, and a cloud of radially distributed DNA or RNA strands as the shell. He was then able to show how SNAs can be combined to create larger structures and how they can be used in biodiagnostics. His discovery led to the development of fast, automated point-of-care medical diagnostic systems.  

Neuroscience: Understanding recognition of faces 

The 2024 Kavli Prize in Neuroscience honors Nancy Kanwisher, Doris Tsao and Winrich Freiwald for the discovery of a specialized system within the brain to recognize faces. Their discoveries have provided basic principles of neural organization and made the starting point for further research on how the processing of visual information is integrated with other cognitive functions.  

“Kanwisher, Freiwald and Tsao together discovered a localized and specialized neocortical system for face recognition. Their outstanding research will ultimately further our understanding of recognition not only of faces, but objects and scenes,” commented Kristine Walhovd, Chair of the Neuroscience Committee.  

Nancy Kanwisher was the first to prove that a specific area in the human neocortex is dedicated to recognizing faces, now called the fusiform face area. Using functional magnetic resonance imaging (fMRI) she found individual differences in the location of this area and devised an analysis technique to effectively localize specialized functional regions in the brain. This technique is now widely used and applied to domains beyond the face recognition system.  

Elaborating on Kanwisher’s findings, Winrich Freiwald and Doris Tsao studied macaques and mapped out six distinct brain regions, known as the face patch system, including these regions’ functional specialization and how they are connected. By recording the activity of individual brain cells, they revealed how cells in some face patches specialize in faces with particular views.  

Tsao proceeded to identify how the face patches work together to identify a face, through a specific code that enables single cells to identify faces by assembling information of facial features. For example, some cells respond to the presence of hair, others to the distance between the eyes. 

Freiwald uncovered that a separate brain region, called the temporal pole, accelerates our recognition of familiar faces, and that some cells are selectively responsive to familiar faces. 

There’s a video of the official 2024 Kavli Prize announcement which despite the Kavli Foundation being headquartered in California, US, was held (as noted in the news release) at the Norwegian Academy of Science and Letters where the organization’s president, Lise Øvreås, revealed the 2024 Kavli Prize laureates..(I’ll get back to that choice of location.)

The 2024 Kavli Prize in Nanoscience

There are many posts here featuring work from Robert S. Langer (or Robert Langer), Armand Paul Alivisatos (or Paul Alivisatos or A. Paul Alivisatos) and Chad A. Mirkin (or Chad Mirkin).

Northwestern University (Chicago, Illinois) issued a June 12, 2024 news release (also received via email) by Maria Paul that provides a few more details about the nanoscience winners (main focus: Chad Mirkin), the prize, and the Kavli Foundation. Note: A link has been removed,

Northwestern University nanoscientist Chad Mirkin has been awarded The 2024 Kavli Prize in Nanoscience by The Norwegian Academy of Science and Letters. Mirkin is the first Northwestern scientist to receive the prestigious award.

Mirkin is recognized for his discovery of spherical nucleic acids (SNAs), nanostructures comprised of a nanoparticle core and a shell of radially distributed DNA or RNA strands. These globular forms of nucleic acids have become the cornerstones of the burgeoning fields of nanomedicine and colloidal crystal engineering with DNA. They allow scientists to construct new forms of matter using particle “atoms” as the basic building blocks and DNA “bonds” as particle interconnects, and they are the basis for powerful tools that allow researchers and clinicians to track and treat disease in new ways. In particular, SNAs have led to the development of fast, automated point-of-care medical diagnostic systems and new experimental drugs for treating many forms of cancer, neurological disorders, and diseases of the skin.

Mirkin is one of three laureates in nanoscience recognized by The Norwegian Academy for revolutionizing the field of nanomedicine by demonstrating how engineering nanoscale structures can advance biomedical research and application. The other two are Robert Langer of the Massachusetts Institute of Technology and Paul Alivisatos of the University of Chicago [emphasis mine]. The scientists’ discoveries “contributed foundationally to the development of therapeutics, vaccines, bioimaging and diagnostics,” The Norwegian Academy said in a release. They will share the $1 million award.

“When I first found out I won The Kavli Prize, there was both excitement but also relief, because I consider Northwestern to be the ultimate center for nanotechnology research,” Mirkin said. “To be recognized with this award, along with my incredible co-awardees, was great validation of what we’ve been trying to do at Northwestern. While I’m proud of what we’ve accomplished, the best is yet to come.”

The laureates will be awarded the prize on Sept. 3 during a ceremony in Oslo, Norway, presided over the by The Royal Family. The Kavli Prizes thus far have honored 65 scientists from 13 countries. Ten laureates received the Nobel Prize after receiving The Kavli Prize. [emphasis mine]

“I am thrilled for Chad, for the International Institute for Nanotechnology and for Northwestern,” Northwestern President Michael Schill said. “Chad has earned this prestigious and influential award in a pathbreaking area of science that is aligned with two of the University’s key priorities — to lead in decarbonization, renewable energy and sustainability, and innovating in the biosciences to help prolong lives and make the world a healthier place.

“Through groundbreaking research and hard work, Chad and his team have made Northwestern a leading center for nanotechnology research and investment. The fact that he is sharing this award with President Alivisatos at U of C further emphasizes how the Chicago area has become an international hub for nano research.”

The vision for The Kavli Prize comes from Fred Kavli, a Norwegian-American entrepreneur and philanthropist [emphasis mine] who turned his lifelong fascination with science into a lasting legacy for recognizing scientific breakthroughs and supporting basic research.

Since the first awards in 2008, The Kavli Prize has recognized innovative scientific research — from the discovery of CRISPR-Cas9 to the detection of gravitational waves — transforming our understanding of the big, the small and the complex.

Mirkin’s discovery of SNAs has far-reaching implications for biology and medicine. SNAs, which have no known natural equivalents, interact uniquely with living systems compared to nucleic acids of other forms. Mirkin was the first to synthesize SNAs and elucidate the distinctive chemical and physical properties that underpin their use in transformative techniques and technologies in medicine and the life sciences. This work has led to the development of the first commercialized molecular medical diagnostic systems of the modern nanotechnology era, such as the Food and Drug Administration-cleared Verigene System, used in over half of the world’s top hospitals to detect diseases with high sensitivity and selectivity.

Illinois Gov. JB Pritzker praised Mirkin for his extraordinary contributions to the field of nanotechnology and how his innovations have helped find solutions to some of society’s biggest challenges.

“Academic institutions in Chicago and across Illinois have become the biggest drivers in nanoscience and technology over the last three decades,” Pritzker said. “Chad Mirkin and his Northwestern colleagues have made outstanding scientific discoveries that change how we view the world around us.”

In 1996, Mirkin created the first SNAs with DNA shells on gold nanoparticle cores. Over the years, he has developed numerous other types of SNAs with other shells and cores, including proteins, liposomes and FDA-approved materials, as well as core-less, hollow structures composed entirely of nucleic acids. These cores impart unique properties to the SNAs, such as optical and magnetic characteristics, while also serving as scaffolds to densely arrange the oligonucleotides, which participate in binding. This dense arrangement gives rise to the novel functional properties that differentiate SNAs from the natural linear and two-dimensional nucleic acids and make them particularly effective in interacting with certain biological structures within cells and tissues. SNAs, unlike conventional DNA and RNA, are naturally taken up by cells without the need for toxic, positively charged co-carriers, making them highly effective in RNA interference (RNAi), antisense gene regulation, and gene editing pathways.

Mirkin’s pioneering work on SNAs has also advanced the development of immunotherapeutics, structures capable of stimulating a patient’s immune response to fight both infectious diseases and certain forms of cancer. Using SNAs, Mirkin has pioneered the concept of rational vaccinology, where he demonstrated that the structure of a vaccine, rather than the components alone, is crucial for dictating its therapeutic effectiveness. This insight and these “structural nanomedicines” have opened new possibilities for developing curative treatments by rearranging known components into more effective structures at the nanoscale. Mirkin founded Flashpoint Therapeutics to commercialize these innovations, focusing on nucleic acid-based nanostructure cancer vaccines. Mirkin also invented the first SNA-based antiviral vaccine, using COVID-19 as a model. These SNAs, featuring the spike protein’s RBD subunit in the core, achieved a 100% survival rate in humanized mice challenged with the live virus. These structures and concepts for designing such vaccines are poised to move vaccine development beyond the current mRNA vaccines.

In addition, Mirkin invented dip-pen nanolithography, initially a technique for molecular writing with nanometer-scale precision that has evolved into a powerful platform for tip-based materials synthesis that, when combined with artificial intelligence, is revolutionizing how materials important for many sectors, especially clean energy, are discovered. Dip-pen nanolithography, which has spurred subsequent techniques that now use tens of millions of tiny tips to rapidly synthesize materials to be explored for such purposes, was recognized by National Geographic as one of the “top 100 scientific discoveries that changed the world.” These innovations are being commercialized by Mattiq, Inc., another venture-backed company Mirkin cofounded. Mirkin and his students also invented high-area rapid printing, an additive manufacturing technology, that is being commercialized by Azul 3D and being used to disrupt the microelectronics and optical lens industries.

Mirkin’s research has progressed SNA drugs through seven human clinical trials so far for treating various cancers, including glioblastoma multiforme and Merkel cell carcinoma. One SNA drug has shown remarkable potential in stimulating the immune system, proving effective in models of breast, colorectal and bladder cancers, lymphoma and melanoma. This drug has achieved complete tumor elimination in a subset of patients with Merkel cell carcinoma during Phase 1b/2 clinical trials, earning FDA fast-track and orphan drug status. It was recently licensed to Bluejay Therapeutics to treat hepatitis.

In 2000, Mirkin founded the International Institute for Nanotechnology (IIN) at Northwestern University, which he also directs. Research at the IIN has led to over 2,000 new commercial products sold globally and the creation of more than 40 startup companies. The IIN has collectively brought together over $1.2 billion to support research, education and infrastructure at Northwestern since its inception.

Mirkin is the George B. Rathmann Professor of Chemistry and a professor of medicine, chemical and biological engineering, biomedical engineering, and materials science and engineering at Northwestern. He is among an elite group of scientists elected to all three branches of the U.S. National Academies — the National Academy of Sciences, the National Academy of Engineering and the National Academy of Medicine. He is a member of the American Academy of Arts and Sciences. Mirkin served on President Obama’s Council of Advisors on Science and Technology for eight years.

Congratulations to all of the winners in all of the categories!

As for the Norway announcement, it makes a bit of sense given that Fred Kavli was a Norwegian American. However, it’s a little hard to avoid the suspicion that there might be some regional and prize rivalry between Norway with its Kavli and Sweden its Nobel..

Measuring quantum gravity

It was about two years ago that a local (Vancouver, Canada) group of movers and shakers announced the launch of a Vancouver-based Quantum Gravity Institute at the Quantum Mechanics & Gravity conference (August 15 – 19, 2022) in my July 26, 2022 posting where I also provided an overview of the doings in the Canadian quantum scene. (I can’t find an online presence for the institute but there is the Vancouver-based Quantum Gravity Society which organized the 2022 conference and the institute.)

All of this being the buildup to a quantum gravity announcement in a February 23, 2024 news item on Nanowerk,

Scientists are a step closer to unravelling the mysterious forces of the universe after working out how to measure gravity on a microscopic level.

Experts have never fully understood how the force which was discovered by Isaac Newton works in the tiny quantum world.

Even Einstein was baffled by quantum gravity and, in his theory of general relativity, said there is no realistic experiment which could show a quantum version of gravity.

But now physicists at the University of Southampton [UK], working with scientists in Europe, have successfully detected a weak gravitational pull on a tiny particle using a new technique.

They claim it could pave the way to finding the elusive quantum gravity theory.

A February 26, 2024 University of Southampton press release, also on EurekAlert but published on February 23, 2024, delves further into quantum gravity,

The experiment, published in the Science Advances journal, used levitating magnets to detect gravity on microscopic particles – small enough to boarder on the quantum realm.

Lead author Tim Fuchs, from the University of Southampton, said the results could help experts find the missing puzzle piece in our picture of reality.

He added: “For a century, scientists have tried and failed to understand how gravity and quantum mechanics work together.

“Now we have successfully measured gravitational signals at a smallest mass ever recorded, it means we are one step closer to finally realising how it works in tandem.

“From here we will start scaling the source down using this technique until we reach the quantum world on both sides.

“By understanding quantum gravity, we could solve some of the mysteries of our universe – like how it began, what happens inside black holes, or uniting all forces into one big theory.”

The rules of the quantum realm are still not fully understood by science – but it is believed that particles and forces at a microscopic scale interact differently than regular-sized objects.

Academics from Southampton conducted the experiment with scientists at Leiden University in the Netherlands and the Institute for Photonics and Nanotechnologies in Italy, with funding from the EU Horizon Europe EIC Pathfinder grant (QuCoM).

Their study used a sophisticated setup involving superconducting devices, known as traps, with magnetic fields, sensitive detectors and advanced vibration isolation.

It measured a weak pull, just 30aN, on a tiny particle 0.43mg in size by levitating it in freezing temperatures a hundredth of a degree above absolute zero – about minus-273 degrees Celsius.

The results open the door for future experiments between even smaller objects and forces, said Professor of Physics Hendrik Ulbricht also at the University of Southampton.

He added: “We are pushing the boundaries of science that could lead to new discoveries about gravity and the quantum world.

“Our new technique that uses extremely cold temperatures and devices to isolate vibration of the particle will likely prove the way forward for measuring quantum gravity.

“Unravelling these mysteries will help us unlock more secrets about the universe’s very fabric, from the tiniest particles to the grandest cosmic structures.”

Here’s a link to and a citation for the paper,

Measuring gravity with milligram levitated masses by Tim M. Fuchs, Dennis G. Uitenbroek, Jaimy Plugge, Noud van Halteren, Jean-Paul van Soest, Andrea Vinante, Hendrik Ulbricht, and Tjerk H. Oosterkamp. Science Advances 23 Feb 2024 Vol 10, Issue 8 DOI: 10.1126/sciadv.adk2949

This paper is open access.

Brain-inspired (neuromorphic) wireless system for gathering data from sensors the size of a grain of salt

This is what a sensor the size of a grain of salt looks like,

Caption: The sensor network is designed so the chips can be implanted into the body or integrated into wearable devices. Each submillimeter-sized silicon sensor mimics how neurons in the brain communicate through spikes of electrical activity. Credit: Nick Dentamaro/Brown University

A March 19, 2024 news item on Nanowerk announces this research from Brown University (Rhode Island, US), Note: A link has been removed,

Tiny chips may equal a big breakthrough for a team of scientists led by Brown University engineers.

Writing in Nature Electronics (“An asynchronous wireless network for capturing event-driven data from large populations of autonomous sensors”), the research team describes a novel approach for a wireless communication network that can efficiently transmit, receive and decode data from thousands of microelectronic chips that are each no larger than a grain of salt.

One of the potential applications is for brain (neural) implants,

Caption: Writing in Nature Electronics, the research team describes a novel approach for a wireless communication network that can efficiently transmit, receive and decode data from thousands of microelectronic chips that are each no larger than a grain of salt. Credit: Nick Dentamaro/Brown University

A March 19, 2024 Brown University news release (also on EurekAlert), which originated the news item, provides more detail about the research, Note: Links have been removed,

The sensor network is designed so the chips can be implanted into the body or integrated into wearable devices. Each submillimeter-sized silicon sensor mimics how neurons in the brain communicate through spikes of electrical activity. The sensors detect specific events as spikes and then transmit that data wirelessly in real time using radio waves, saving both energy and bandwidth.

“Our brain works in a very sparse way,” said Jihun Lee, a postdoctoral researcher at Brown and study lead author. “Neurons do not fire all the time. They compress data and fire sparsely so that they are very efficient. We are mimicking that structure here in our wireless telecommunication approach. The sensors would not be sending out data all the time — they’d just be sending relevant data as needed as short bursts of electrical spikes, and they would be able to do so independently of the other sensors and without coordinating with a central receiver. By doing this, we would manage to save a lot of energy and avoid flooding our central receiver hub with less meaningful data.”

This radiofrequency [sic] transmission scheme also makes the system scalable and tackles a common problem with current sensor communication networks: they all need to be perfectly synced to work well.

The researchers say the work marks a significant step forward in large-scale wireless sensor technology and may one day help shape how scientists collect and interpret information from these little silicon devices, especially since electronic sensors have become ubiquitous as a result of modern technology.

“We live in a world of sensors,” said Arto Nurmikko, a professor in Brown’s School of Engineering and the study’s senior author. “They are all over the place. They’re certainly in our automobiles, they are in so many places of work and increasingly getting into our homes. The most demanding environment for these sensors will always be inside the human body.”

That’s why the researchers believe the system can help lay the foundation for the next generation of implantable and wearable biomedical sensors. There is a growing need in medicine for microdevices that are efficient, unobtrusive and unnoticeable but that also operate as part of a large ensembles to map physiological activity across an entire area of interest.

“This is a milestone in terms of actually developing this type of spike-based wireless microsensor,” Lee said. “If we continue to use conventional methods, we cannot collect the high channel data these applications will require in these kinds of next-generation systems.”

The events the sensors identify and transmit can be specific occurrences such as changes in the environment they are monitoring, including temperature fluctuations or the presence of certain substances.

The sensors are able to use as little energy as they do because external transceivers supply wireless power to the sensors as they transmit their data — meaning they just need to be within range of the energy waves sent out by the transceiver to get a charge. This ability to operate without needing to be plugged into a power source or battery make them convenient and versatile for use in many different situations.

The team designed and simulated the complex electronics on a computer and has worked through several fabrication iterations to create the sensors. The work builds on previous research from Nurmikko’s lab at Brown that introduced a new kind of neural interface system called “neurograins.” This system used a coordinated network of tiny wireless sensors to record and stimulate brain activity.

“These chips are pretty sophisticated as miniature microelectronic devices, and it took us a while to get here,” said Nurmikko, who is also affiliated with Brown’s Carney Institute for Brain Science. “The amount of work and effort that is required in customizing the several different functions in manipulating the electronic nature of these sensors — that being basically squeezed to a fraction of a millimeter space of silicon — is not trivial.”

The researchers demonstrated the efficiency of their system as well as just how much it could potentially be scaled up. They tested the system using 78 sensors in the lab and found they were able to collect and send data with few errors, even when the sensors were transmitting at different times. Through simulations, they were able to show how to decode data collected from the brains of primates using about 8,000 hypothetically implanted sensors.

The researchers say next steps include optimizing the system for reduced power consumption and exploring broader applications beyond neurotechnology.

“The current work provides a methodology we can further build on,” Lee said.

Here’s a link to and a citation for the study,

An asynchronous wireless network for capturing event-driven data from large populations of autonomous sensors by Jihun Lee, Ah-Hyoung Lee, Vincent Leung, Farah Laiwalla, Miguel Angel Lopez-Gordo, Lawrence Larson & Arto Nurmikko. Nature Electronics volume 7, pages 313–324 (2024) DOI: https://doi.org/10.1038/s41928-024-01134-y Published: 19 March 2024 Issue Date: April 2024

This paper is behind a paywall.

Prior to this, 2021 seems to have been a banner year for Nurmikko’s lab. There’s this August 12, 2021 Brown University news release touting publication of a then new study in Nature Electronics and I have an April 2, 2021 post, “BrainGate demonstrates a high-bandwidth wireless brain-computer interface (BCI),” touting an earlier 2021 published study from the lab.

Maxwell’s demon at Simon Fraser University (Vancouver, Canada)

James Clerk Maxwell (1831 – 1879), a Scottish physicist, is famous for many scientific breakthroughs (see Maxwell’s Wikipedia entry) and also for a thought experiment known as Maxwell’s demon. This graphical abstract illustrates a paper from three Simon Fraser University (SFU) physicists that advances the ‘demon’s’ possibiliteis,

Graphical Abstract: Energy flows in conventional and information engines used to displace a bead. Credit: Advances in Physics: X (2024). DOI: 10.1080/23746149.2024.2352112

A June 6, 2024 news item on phys.org describes Maxwell’s thought experiment and announces a possible breakthrough, Note: Links have been removed,

The molecules that make up the matter around us are in constant motion. What if we could harness that energy and put it to use?

Over 150 years ago, Maxwell theorized that if molecules’ motion could be measured accurately, this information could be used to power an engine. Until recently this was a thought experiment, but technological breakthroughs have made it possible to build working information engines in the lab.

SFU Physics professors John Bechhoefer and David Sivak teamed up to build an information engine and test its limits. Their work has greatly advanced our understanding of how these engines function, and a paper led by postdoctoral fellow Johan du Buisson and published recently in Advances in Physics: X summarizes the findings made during their collaboration.

A June 5, 2024 SFU news release (also on EurekAlert but published June 6, 2024) by Erin Brown-John, which originated the news item, describes the breakthrough in more detail,

“We live in a world full of extra unused energy that potentially could be used,” says Bechhoefer. Understanding how information engines function can not only help us put that energy to work, it can also suggest ways that existing engines could be redesigned to use energy more efficiently, and help us learn how biological motors work in organisms and the human body.

The team’s information engine consists of a tiny bead in a water bath that is held in place with an optical trap. When fluctuations in the water cause the bead to move in the desired direction, the trap can be adjusted to prevent the bead from returning to the place where it was before. By taking accurate measurements of the bead’s location and using that information to adjust the trap, the engine is able to convert the heat energy of the water into work.

To understand how fast and efficient the engine could be, the team tested multiple variables such as the mass of the bead and sampling frequency, and developed algorithms to reduce the uncertainty of their measurements.

“Stripped down to its simplest essence, we can systematically understand how things like temperature and the size of the system changes the things we can take advantage of,” Sivak says. “What are the strategies that work best? How do they change with all those different properties?”

The team was able to achieve the fastest speed recorded to date for an information engine, approximately ten times faster than the speed of E. coli, and comparable to the speed of motile bacteria found in marine environments.

Next, the team wanted to learn if an information engine could harvest more energy than it costs to run. “In equilibrium, that’s always a losing game,” Bechhoefer says. “The costs of gathering the information and processing it will always exceed what you’re getting out of it, but when you have an environment that has extra energy, [molecules doing] extra jiggling around, then that can change the balance if it’s strong enough.”

They found that in a non-equilibrium environment, where the engine was in a heat bath with a higher temperature than the measuring apparatus, it could output significantly more power than it cost to run.

All energy on Earth comes from the sun, and it eventually radiates out into space. That directional flow of energy manifests itself in many different ways, such as wind or ocean currents that can be harvested. Understanding the principles behind information engines can help us make better use of that energy.

“We’re coming at [energy harvesting] from a very different point of view, and we hope that this different perspective can lead to some different insights about how to be more efficient,” Bechhoefer says.

The pair is looking forward to working together on other projects in the future. “We were lucky to get a joint grant together. That really helped with the collaboration,” says Bechhoefer.

Sivak, a theorist, and Bechhoefer, an experimentalist, bring complementary approaches to their work, and they have been able to attract trainees who want to work with both. “We have different styles in terms of how we go about mentoring and leading a group,” says Sivak. “Our students and post-docs can benefit from both approaches.”

Here’s a link to and a citation for the paper,

Performance limits of information engines by Johan du Buisson, David A. Sivak, & John Bechhoefer. Advances in Physics: X Volume 9, 2024 – Issue 1 Article: 2352112 DOI: https://doi.org/10.1080/23746149.2024.2352112 Published online: 21 May 2024

This paper is open access.

Two Canadian Science Policy Centre (CSPC) announcements abut climate change (an event and a call for submissions)

From a June 6, 2024 Canadian Science Policy Centre (CSPC) announcement received via email,

Upcoming Virtual Panel

Canada’s rate of warming is twice that of the global rate (GoC, 2023), and the goal of net-zero 2050 is looming in front of us. This panel brings together key figures in the current political, environmental, and academic landscapes, with up-and-coming young scholars and activists, to discuss potential policy-related shifts that can move Canada closer towards its 2050 goals.

The panel is scheduled for Thursday, June 13 at 1:00 PM ET [to 2 PM]. Register for the virtual panel by clicking the button below!

Register Here

Call for Editorial

The CSPC is excited to announce the Canadian Science Policy Summer Editorial Series. CSPC invites opinion pieces on the following topic

Canada’s Path to Net Zero

Editorials will be published on the CSPC website on a rolling basis. Submissions will be accepted to editorial@sciencepolicy.ca and are typically 800-1200 words. The CSPC Editorial Committee cordially invites editorials from all stakeholders, including representatives from industry, academia, government, and not-for-profit organizations, among others. Editorials are promoted widely on CSPC’s social media networks and featured on the CSPC Editorial Page. Click on the button below for details on the call for editorials.

Submit an Editorial

Although it’s not noted in the email or on the submission page, the deadline is May 31, 2024. Perhaps they’ve extended the submission date without changing the date on the submission webpage)?

Here’s a poster for the virtual panel on June 13, 2024,

By the way, record heat is expected for 2024 according to a January 5,, 2024 article by Kevin Maimann,for the Canadian Broadcasting Corporation (CBC) online news website,

The first week of January isn’t usually wildfire season. But as 2024 began, more than 100 “zombie fires” were actively burning in British Columbia — holdovers from last summer that typically go dormant over winter.

“That is mind boggling to me. Just unheard of,” said Lori Daniels, a professor with the University of British Columbia’s department of forest and conservation sciences.

The warm, dry weather that capped off what is expected to be declared the planet’s hottest year on record — and Canada’s most destructive wildfire season by a longshot, with more than 6,500 fires burning close to 19 million hectares — is not over.

As i write this there have been temperatures reaching 50 degrees celsius in India and in Mexico and the southwestern United States is experiencing a heat dome (source: Reuters June 6, 2024 article). For anyone unfamiliar with the term, a heat dome occurs when “… a ridge of high-pressure air in the upper atmosphere [] stalls and traps hot air while keeping cooler air away even at night.” (source: Reuters June 6, 2024 article)

Implantable brain-computer interface collaborative community (iBCI-CC) launched

That’s quite a mouthful, ‘implantable brain-computer interface collaborative community (iBCI-CC). I assume the organization will be popularly known by its abbreviation.`A March 11, 2024 Mass General Brigham news release (also on EurekAlert) announces the iBCI-CC’s launch, Note: Mass stands for Massachusetts,

Mass General Brigham is establishing the Implantable Brain-Computer Interface Collaborative Community (iBCI-CC). This is the first Collaborative Community in the clinical neurosciences that has participation from the U.S. Food and Drug Administration (FDA).

BCIs are devices that interface with the nervous system and use software to interpret neural activity. Commonly, they are designed for improved access to communication or other technologies for people with physical disability. Implantable BCIs are investigational devices that hold the promise of unlocking new frontiers in restorative neurotechnology, offering potential breakthroughs in neurorehabilitation and in restoring function for people living with neurologic disease or injury.

The iBCI-CC (https://www.ibci-cc.org/) is a groundbreaking initiative aimed at fostering collaboration among diverse stakeholders to accelerate the development, safety and accessibility of iBCI technologies. The iBCI-CC brings together researchers, clinicians, medical device manufacturers, patient advocacy groups and individuals with lived experience of neurological conditions. This collaborative effort aims to propel the field of iBCIs forward by employing harmonized approaches that drive continuous innovation and ensure equitable access to these transformative technologies.

One of the first milestones for the iBCI-CC was to engage the participation of the FDA. “Brain-computer interfaces have the potential to restore lost function for patients suffering from a variety of neurological conditions. However, there are clinical, regulatory, coverage and payment questions that remain, which may impede patient access to this novel technology,” said David McMullen, M.D., Director of the Office of Neurological and Physical Medicine Devices in the FDA’s Center for Devices and Radiological Health (CDRH), and FDA member of the iBCI-CC. “The IBCI-CC will serve as an open venue to identify, discuss and develop approaches for overcoming these hurdles.”

The iBCI-CC will hold regular meetings open both to its members and the public to ensure inclusivity and transparency. Mass General Brigham will serve as the convener of the iBCI-CC, providing administrative support and ensuring alignment with the community’s objectives.

Over the past year, the iBCI-CC was organized by the interdisciplinary collaboration of leaders including Leigh Hochberg, MD, PhD, an internationally respected leader in BCI development and clinical testing and director of the Center for Neurotechnology and Neurorecovery at Massachusetts General Hospital; Jennifer French, MBA, executive director of the Neurotech Network and a Paralympic silver medalist; and Joe Lennerz, MD, PhD, a regulatory science expert and director of the Pathology Innovation Collaborative Community. These three organizers lead a distinguished group of Charter Signatories representing a diverse range of expertise and organizations.

“As a neurointensive care physician, I know how many patients with neurologic disorders could benefit from these devices,” said Dr. Hochberg. “Increasing discoveries in academia and the launch of multiple iBCI and related neurotech companies means that the time is right to identify common goals and metrics so that iBCIs are not only safe and effective, but also have thoroughly considered the design and function preferences of the people who hope to use them”.

Jennifer French, said, “Bringing diverse perspectives together, including those with lived experience, is a critical component to help address complex issues facing this field.” French has decades of experience working in the neurotech and patient advocacy fields. Living with a spinal cord injury, she also uses an implanted neurotech device for daily functions. “This ecosystem of neuroscience is on the cusp to collectively move the field forward by addressing access to the latest groundbreaking technology, in an equitable and ethical way. We can’t wait to engage and recruit the broader BCI community.”

Joe Lennerz, MD, PhD, emphasized, “Engaging in pre-competitive initiatives offers an often-overlooked avenue to drive meaningful progress. The collaboration of numerous thought leaders plays a pivotal role, with a crucial emphasis on regulatory engagement to unlock benefits for patients.”

The iBCI-CC is supported by key stakeholders within the Mass General Brigham system. Merit Cudkowicz, MD, MSc, chair of the Neurology Department, director of the Sean M. Healey and AMG Center for ALS at Massachusetts General Hospital, and Julianne Dorn Professor of Neurology at Harvard Medical School, said, “There is tremendous excitement in the ALS [amyotrophic lateral sclerosis, or Lou Gehrig’s disease] community for new devices that could ease and improve the ability of people with advanced ALS to communicate with their family, friends, and care partners. This important collaborative community will help to speed the development of a new class of neurologic devices to help our patients.”

Bailey McGuire, program manager of strategy and operations at Mass General Brigham’s Data Science Office, said, “We are thrilled to convene the iBCI-CC at Mass General Brigham’s DSO. By providing an administrative infrastructure, we want to help the iBCI-CC advance regulatory science and accelerate the availability of iBCI solutions that incorporate novel hardware and software that can benefit individuals with neurological conditions. We’re excited to help in this incredible space.”

For more information about the iBCI-CC, please visit https://www.ibci-cc.org/.

About Mass General Brigham

Mass General Brigham is an integrated academic health care system, uniting great minds to solve the hardest problems in medicine for our communities and the world. Mass General Brigham connects a full continuum of care across a system of academic medical centers, community and specialty hospitals, a health insurance plan, physician networks, community health centers, home care, and long-term care services. Mass General Brigham is a nonprofit organization committed to patient care, research, teaching, and service to the community. In addition, Mass General Brigham is one of the nation’s leading biomedical research organizations with several Harvard Medical School teaching hospitals. For more information, please visit massgeneralbrigham.org.

About the iBCI-CC Organizers:

Leigh Hochberg, MD, PhD is a neurointensivist at Massachusetts General Hospital’s Department of Neurology, where he directs the MGH Center for Neurotechnology and Neurorecovery. He is also the IDE Sponsor-Investigator and Directorof the BrainGate clinical trials, conducted by a consortium of scientists and clinicians at Brown, Emory, MGH, VA Providence, Stanford, and UC-Davis; the L. Herbert Ballou University Professor of Engineering and Professor of Brain Science at Brown University; Senior Lecturer on Neurology at Harvard Medical School; and Associate Director, VA RR&D Center for Neurorestoration and Neurotechnology in Providence.

Jennifer French, MBA, is the Executive Director of Neurotech Network, a nonprofit organization that focuses on education and advocacy of neurotechnologies. She serves on several Boards including the IEEE Neuroethics Initiative, Institute of Neuroethics, OpenMind platform, BRAIN Initiative Multi-Council and Neuroethics Working Groups, and the American Brain Coalition. She is the author of On My Feet Again (Neurotech Press, 2013) and is co-author of Bionic Pioneers (Neurotech Press, 2014). French lives with tetraplegia due to a spinal cord injury. She is an early user of an experimental implanted neural prosthesis for paralysis and is the Past-President and Founding member of the North American SCI Consortium.

Joe Lennerz, MD PhD, serves as the Chief Scientific Officer at BostonGene, an AI analytics and genomics startup based in Boston. Dr. Lennerz obtained a PhD in neurosciences, specializing in electrophysiology. He works on biomarker development and migraine research. Additionally, he is the co-founder and leader of the Pathology Innovation Collaborative Community, a regulatory science initiative focusing on diagnostics and software as a medical device (SaMD), convened by the Medical Device Innovation Consortium. He also serves as the co-chair of the federal Clinical Laboratory Fee Schedule (CLFS) advisory panel to the Centers for Medicare & Medicaid Services (CMS).

it’s been a while since I’ve come across BrainGate (see Leigh Hochberg bio in the above news release), which was last mentioned here in an April 2, 2021 posting, “BrainGate demonstrates a high-bandwidth wireless brain-computer interface (BCI).”

Here are two of my more recent postings about brain-computer interfaces,

This next one is an older posting but perhaps the most relevant to the announcement of this collaborative community’s purpose,

There’s a lot more on brain-computer interfaces (BCI) here, just use the term in the blog search engine.

Bionic jellyfish for deep ocean exploration

This research may be a little disturbing for animal lovers as it involves conjoining a jellyfish (or sea jelly) and a robotic device. That said, a February 29, 2024 news item on ScienceDaily highlights new research into the oceanic depths,

Jellyfish can’t do much besides swim, sting, eat, and breed. They don’t even have brains. Yet, these simple creatures can easily journey to the depths of the oceans in a way that humans, despite all our sophistication, cannot.

But what if humans could have jellyfish explore the oceans on our behalf, reporting back what they find? New research conducted at Caltech [California Institute of Technology] aims to make that a reality through the creation of what researchers call biohybrid robotic jellyfish. These creatures, which can be thought of as ocean-going cyborgs, augment jellyfish with electronics that enhance their swimming and a prosthetic “hat” that can carry a small payload while also making the jellyfish swim in a more streamlined manner.

The researchers describe their work and provide recordings of the jellyfish,

A February 28, 2024 California Institute of Technology (Caltech) news release (also on EurekAlert) by Emily Velasco, which originated the news item, provides more detail,

The work, published in the journal Bioinspiration & Biomimetics, was conducted in the lab of John Dabiri (MS ’03, PhD ’05), the Centennial Professor of Aeronautics and Mechanical Engineering, and builds on his previous work augmenting jellyfish. Dabiri’s goal with this research is to use jellyfish as robotic data-gatherers, sending them into the oceans to collect information about temperature, salinity, and oxygen levels, all of which are affected by Earth’s changing climate.

“It’s well known that the ocean is critical for determining our present and future climate on land, and yet, we still know surprisingly little about the ocean, especially away from the surface,” Dabiri says. “Our goal is to finally move that needle by taking an unconventional approach inspired by one of the few animals that already successfully explores the entire ocean.”

Throughout his career, Dabiri has looked to the natural world, jellyfish included, for inspiration in solving engineering challenges. This work began with early attempts by Dabiri’s lab to develop a mechanical robot that swam like jellyfish, which have the most efficient method for traveling through water of any living creature. Though his research team succeeded in creating such a robot, that robot was never able to swim as efficiently as a real jellyfish. At that point, Dabiri asked himself, why not just work with jellyfish themselves?

“Jellyfish are the original ocean explorers, reaching its deepest corners and thriving just as well in tropical or polar waters,” Dabiri says. “Since they don’t have a brain or the ability to sense pain, we’ve been able to collaborate with bioethicists to develop this biohybrid robotic application in a way that’s ethically principled.”

Previously, Dabiri’s lab implanted jellyfish with a kind of electronic pacemaker that controls the speed at which they swim. In doing so, they found that if they made jellyfish swim faster than the leisurely pace they normally keep, the animals became even more efficient. A jellyfish swimming three times faster than it normally would uses only twice as much energy.

This time, the research team went a step further, adding what they call a forebody to the jellies. These forebodies are like hats that sit atop the jellyfish’s bell (the mushroom-shaped part of the animal). The devices were designed by graduate student and lead author Simon Anuszczyk (MS ’22), who aimed to make the jellyfish more streamlined while also providing a place where sensors and other electronics can be carried.

“Much like the pointed end of an arrow, we designed 3D-printed forebodies to streamline the bell of the jellyfish robot, reduce drag, and increase swimming performance,” Anuszczyk says. “At the same time, we experimented with 3D printing until we were able to carefully balance the buoyancy and keep the jellyfish swimming vertically.”

To test the augmented jellies’ swimming abilities, Dabiri’s lab undertook the construction of a massive vertical aquarium inside Caltech’s Guggenheim Laboratory. Dabiri explains that the three-story tank is tall, rather than wide, because researchers want to gather data on oceanic conditions far below the surface.

“In the ocean, the round trip from the surface down to several thousand meters will take a few days for the jellyfish, so we wanted to develop a facility to study that process in the lab,” Dabiri says. “Our vertical tank lets the animals swim against a flowing vertical current, like a treadmill for swimmers. We expect the unique scale of the facility—probably the first vertical water treadmill of its kind—to be useful for a variety of other basic and applied research questions.”

Swim tests conducted in the tank show that a jellyfish equipped with a combination of the swimming pacemaker and forebody can swim up to 4.5 times faster than an all-natural jelly while carrying a payload. The total cost is about $20 per jellyfish, Dabiri says, which makes biohybrid jellies an attractive alternative to renting a research vessel that can cost more than $50,000 a day to run.

“By using the jellyfish’s natural capacity to withstand extreme pressures in the deep ocean and their ability to power themselves by feeding, our engineering challenge is a lot more manageable,” Dabiri adds. “We still need to design the sensor package to withstand the same crushing pressures, but that device is smaller than a softball, making it much easier to design than a full submarine vehicle operating at those depths.

“I’m really excited to see what we can learn by simply observing these parts of the ocean for the very first time,” he adds.

Dabiri says future work may focus on further enhancing the bionic jellies’ abilities. Right now, they can only be made to swim faster in a straight line, such as the vertical paths being designed for deep ocean measurement. But further research may also make them steerable, so they can be directed horizontally as well as vertically.

The paper describing the work, “Electromechanical enhancement of live jellyfish for ocean exploration,” appears in the XX issue of Bioinspiration & Biomimetics. Co-authors are Anuszczyk and Dabiri.

Funding for the research was provided by the National Science Foundation and the Charles Lee Powell Foundation.

Here’s a link to and a citation for the paper,

Electromechanical enhancement of live jellyfish for ocean exploration by Simon R Anuszczyk and John O Dabiri. Bioinspiration & Biomimetics, Volume 19, Number 2 DOI 10.1088/1748-3190/ad277f Published 28 February 2024

This paper is open access.