Featured post

Brief note about changes

June 19,2019: Hello! I apologize for this site’s unavailability over the last 10 days or so (June 7 – 18, 2019). Moving to a new web hosting service meant that the ‘law of unintended consequences’ came into play. Fingers crossed that all the problems have been resolved.

On another matter, I’ve accumulated quite a backlog of postings, which I will be resizing (publishing) over the next few months. I’ve been trying to bring that backlog down to a reasonable size for quite some time now but I see more drastic, focused action is required. I will continue posting some more recent news items along with my older pieces.

Superhydrophobic nanoflowers

I’m getting to the science but first this video of what looks like jiggling jello,

In actuality, it’s a superhydrophobic coating demonstration and a July 2, 2019 news item on phys.org provides more information,

Plant leaves have a natural superpower—they’re designed with water repelling characteristics. Called a superhydrophobic surface, this trait allows leaves to cleanse themselves from dust particles. Inspired by such natural designs, a team of researchers at Texas A&M University has developed an innovative way to control the hydrophobicity of a surface to benefit to the biomedical field.

Researchers in Dr. Akhilesh K. Gaharwar’s lab in the Department of Biomedical Engineering have developed a “lotus effect” by incorporating atomic defects in nanomaterials, which could have widespread applications in the biomedical field including biosensing, lab-on-a-chip, blood-repellent, anti-fouling and self-cleaning applications.

A July 2, 2019 Texas A&M University news release (also on EurekAlert) by Jennifer Reiley, which originated the news item, expands on the theme,

Superhydrophobic materials are used extensively for self-cleaning characteristic of devices. However, current materials require alteration to the chemistry or topography of the surface to work. This limits the use of superhydrophobic materials.

“Designing hydrophobic surfaces and controlling the wetting behavior has long been of great interest, as it plays crucial role in accomplishing self-cleaning ability,” Gaharwar said. “However, there are limited biocompatible approach to control the wetting behavior of the surface as desired in several biomedical and biotechnological applications.”

The Texas A&M design adopts a ‘nanoflower-like’ assembly of two-dimensional (2D) atomic layers to protect the surface from wetting. The team recently released a study published in Chemical Communications. 2D nanomaterials are an ultrathin class of nanomaterials and have received considerable attention in research. Gaharwar’s lab used 2D molybdenum disulfide (MoS2), a new class of 2D nanomaterials that has shown enormous potential in nanoelectronics, optical sensors, renewable energy sources, catalysis and lubrication, but has not been investigated for biomedical applications. This innovative approach demonstrates applications of this unique class of materials to the biomedical industry.

“These 2D nanomaterials with their hexagonal packed layer repel water adherence, however, a missing atom from the top layer can allow easy access to water molecules by the next layer of atoms underneath making it transit from hydrophobic to hydrophilic,” said lead author of the study, Dr. Manish Jaiswal, a senior research associate in Gaharwar’s lab.

This innovative technique opens many doors for expanded applications in several scientific and technological areas. The superhydrophobic coating can be easily applied over various substrates such as glass, tissue paper, rubber or silica using the solvent evaporation method. These superhydrophobic coatings have wide-spread applications, not only in developing self-cleaning surfaces in nanoelectronics devices, but also for biomedical applications.

Specifically, the study demonstrated that blood and cell culture media containing proteins do not adhere to the surface, which is very promising. In addition, the team is currently exploring the potential applications of controlled hydrophobicity in stem cell fate.

Here’s a link to and a citation for the paper,

Superhydrophobic states of 2D nanomaterials controlled by atomic defects can modulate cell adhesion by Manish K. Jaiswal, Kanwar Abhay Singh, Giriraj Lokhande and Akhilesh K. Gaharwar. Chem. Commun., 2019, Advance Article DOI: 10.1039/C9CC00547A First published on 07 Jun 2019

This paper is open access.

Human-machine interfaces and ultra-small nanoprobes

We’re back on the cyborg trail or what I sometimes refer to as machine/flesh. A July 3, 2019 news item on ScienceDaily describes the latest attempts to join machine with flesh,

Machine enhanced humans — or cyborgs as they are known in science fiction — could be one step closer to becoming a reality, thanks to new research Lieber Group at Harvard University, as well as scientists from University of Surrey and Yonsei University.

Researchers have conquered the monumental task of manufacturing scalable nanoprobe arrays small enough to record the inner workings of human cardiac cells and primary neurons.

The ability to read electrical activities from cells is the foundation of many biomedical procedures, such as brain activity mapping and neural prosthetics. Developing new tools for intracellular electrophysiology (the electric current running within cells) that push the limits of what is physically possible (spatiotemporal resolution) while reducing invasiveness could provide a deeper understanding of electrogenic cells and their networks in tissues, as well as new directions for human-machine interfaces.

The Lieber Group at Harvard University provided this image illustrating the work,

U-shaped nanowires can record electrical chatter inside a brain or heart cell without causing any damage. The devices are 100 times smaller than their biggest competitors, which kill a cell after recording. Courtesy: University of Surrey

A July 3, 2019 University of Surrey press release (also on EurekAlert), which originated the news item, provides more details about this UK/US/China collaboration,

In a paper published by Nature Nanotechnology, scientists from Surrey’s Advanced Technology Institute (ATI) and Harvard University detail how they produced an array of the ultra-small U-shaped nanowire field-effect transistor probes for intracellular recording. This incredibly small structure was used to record, with great clarity, the inner activity of primary neurons and other electrogenic cells, and the device has the capacity for multi-channel recordings.

Dr Yunlong Zhao from the ATI at the University of Surrey said: “If our medical professionals are to continue to understand our physical condition better and help us live longer, it is important that we continue to push the boundaries of modern science in order to give them the best possible tools to do their jobs. For this to be possible, an intersection between humans and machines is inevitable.

“Our ultra-small, flexible, nanowire probes could be a very powerful tool as they can measure intracellular signals with amplitudes comparable with those measured with patch clamp techniques; with the advantage of the device being scalable, it causes less discomfort and no fatal damage to the cell (cytosol dilation). Through this work, we found clear evidence for how both size and curvature affect device internalisation and intracellular recording signal.”

Professor Charles Lieber from the Department of Chemistry and Chemical Biology at Harvard University said: “This work represents a major step towards tackling the general problem of integrating ‘synthesised’ nanoscale building blocks into chip and wafer scale arrays, and thereby allowing us to address the long-standing challenge of scalable intracellular recording.

“The beauty of science to many, ourselves included, is having such challenges to drive hypotheses and future work. In the longer term, we see these probe developments adding to our capabilities that ultimately drive advanced high-resolution brain-machine interfaces and perhaps eventually bringing cyborgs to reality.”

Professor Ravi Silva, Director of the ATI at the University of Surrey, said: “This incredibly exciting and ambitious piece of work illustrates the value of academic collaboration. Along with the possibility of upgrading the tools we use to monitor cells, this work has laid the foundations for machine and human interfaces that could improve lives across the world.”

Dr Yunlong Zhao and his team are currently working on novel energy storage devices, electrochemical probing, bioelectronic devices, sensors and 3D soft electronic systems. Undergraduate, graduate and postdoc students with backgrounds in energy storage, electrochemistry, nanofabrication, bioelectronics, tissue engineering are very welcome to contact Dr Zhao to explore the opportunities further.

Here’s a link to and a citation for the paper,

Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording by Yunlong Zhao, Siheng Sean You, Anqi Zhang, Jae-Hyun Lee, Jinlin Huang & Charles M. Lieber. Nature Nanotechnology (2019) DOI: https://doi.org/10.1038/s41565-019-0478-y Published 01 July 2019

The link I’ve provided leads to a paywall. However, I found a freely accessible version of the paper (this may not be the final published version) here.

The glorious glasswing butterfly and superomniphobic glass

This is not the first time the glasswing butterfly has inspired some new technology. Lat time, it was an eye implant,

The clear wings make this South-American butterfly hard to see in flight, a succesfull defense mechanism. Credit: Eddy Van 3000 from in Flanders fields – B – United Tribes ov Europe – the wings-become-windows butterfly. [downloaded from https://commons.wikimedia.org/wiki/Category:Greta_oto#/media/File:South-American_butterfly.jpg]

You’ll find that image and more in my May 22, 2018 posting about the eye implant. Don’t miss scrolling down to the video which features the butterfly fluttering its wings in the first few seconds.

Getting back to the glasswing butterfly’s latest act of inspiration a July 11, 2019 news item on ScienceDaily announces the work,

Glass for technologies like displays, tablets, laptops, smartphones, and solar cells need to pass light through, but could benefit from a surface that repels water, dirt, oil, and other liquids. Researchers from the University of Pittsburgh’s Swanson School of Engineering have created a nanostructure glass that takes inspiration from the wings of the glasswing butterfly to create a new type of glass that is not only very clear across a wide variety of wavelengths and angles, but is also antifogging.

A July 11, 2019 University of Pittsburgh news release (also on EurekAlert), which originated the news item, provides more technical detail about the new glass,

The nanostructured glass has random nanostructures, like the glasswing butterfly wing, that are smaller than the wavelengths of visible light. This allows the glass to have a very high transparency of 99.5% when the random nanostructures are on both sides of the glass. This high transparency can reduce the brightness and power demands on displays that could, for example, extend battery life. The glass is antireflective across higher angles, improving viewing angles. The glass also has low haze, less than 0.1%, which results in very clear images and text.

“The glass is superomniphobic, meaning it repels a wide variety of liquids such as orange juice, coffee, water, blood, and milk,” explains Sajad Haghanifar, lead author of the paper and doctoral candidate in industrial engineering at Pitt. “The glass is also anti-fogging, as water condensation tends to easily roll off the surface, and the view through the glass remains unobstructed. Finally, the nanostructured glass is durable from abrasion due to its self-healing properties–abrading the surface with a rough sponge damages the coating, but heating it restores it to its original function.”

Natural surfaces like lotus leaves, moth eyes and butterfly wings display omniphobic properties that make them self-cleaning, bacterial-resistant and water-repellant–adaptations for survival that evolved over millions of years. Researchers have long sought inspiration from nature to replicate these properties in a synthetic material, and even to improve upon them. While the team could not rely on evolution to achieve these results, they instead utilized machine learning.

“Something significant about the nanostructured glass research, in particular, is that we partnered with SigOpt to use machine learning to reach our final product,” says Paul Leu, PhD, associate professor of industrial engineering, whose lab conducted the research. Dr. Leu holds secondary appointments in mechanical engineering and materials science and chemical engineering. “When you create something like this, you don’t start with a lot of data, and each trial takes a great deal of time. We used machine learning to suggest variables to change, and it took us fewer tries to create this material as a result.”

“Bayesian optimization and active search are the ideal tools to explore the balance between transparency and omniphobicity efficiently, that is, without needing thousands of fabrications, requiring hundreds of days.” said Michael McCourt, PhD, research engineer at SigOpt. Bolong Cheng, PhD, fellow research engineer at SigOpt, added, “Machine learning and AI strategies are only relevant when they solve real problems; we are excited to be able to collaborate with the University of Pittsburgh to bring the power of Bayesian active learning to a new application.”

Here’s an image illustrating the work from the researchers,

Courtesy: University of Pittsburgh

Here’s a link to and a citation for the paper,

Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization by Sajad Haghanifar, Michael McCourt, Bolong Cheng, Jeffrey Wuenschell, Paul Ohodnickic, and Paul W. Leu. Mater. Horiz., 2019, Advance Article DOI: 10.1039/C9MH00589G first published on 10 Jun 2019

This paper is behind a paywall. One more thing, here’s SigOpt, the company the scientists partnered.

RFP (request for proposal) from Evidence for Democracy and undergraduate physics summer school/internship opportunities at the Perimeter Institute

Two very different Canadian institutions are offering opportunities to work, in one case, and to study and work, in the other case.

Evidence for Democracy and their RFP

The deadline for making your proposal is November 25, 2019 and the competition was opened on November 11, 2019. Here’s more from Evidence for Democracy’s RFP webpage,

Description
Evidence for Democracy (E4D) is a national science-based non-partisan, non-profit organization promoting science integrity and evidence-based policy development in Canada.

E4D intends to hire a contractor to work with us to produce a case study documenting and examining the grassroots movement that evolved in Canada to support evidence-informed policymaking (EIP) from 2013 to 2019, and to determine which elements could inspire similar work in other countries.

Background
E4D will produce a case study documenting and examining the grassroots movement that evolved in Canada to support evidence-informed policymaking from 2013 to 2019 to see which elements could inspire similar work in other countries.

The goals are to better understand what elements of E4D’s work over this period have been successful and why. This will be achieved through a survey of E4D’s supporters and interviews with various people in the science policy and evidence field in Canada.

The project will start with information gathering from inside and outside the E4D community. One of the goals is to learn more about which E4D activities have been the most and least effective at engaging and mobilizing individuals around evidence-informed policymaking, so we will start with a digital survey of our broad supporter base to learn from them. This will be disseminated by email to our E4D network. To add to the survey data, we will conduct interviews with selected members of E4D’s network to dig deeper into why they chose to engage and what motivated them (aiming for 20 interviews with E4D volunteers and network of expert members). Finally, we will conduct interviews with individuals who are external to E4D but engaged in science policy or EIP to have an external perspective on E4D’s work and grassroots engagement.

The information will be synthesized into a report outlining the grassroots movement to support EIP that emerged in Canada; what actions and activities strengthened this movement and why; and what specific actions, strategies and lessons learned can be drawn out to be applied in other countries.

E4D is looking to contract an individual to develop survey and interview questions, execute the interviews, complete the information synthesis and the first draft of the report. The ideal individual will be a freelance science writer or science journalist who has some experience looking at issues through an international lens to ensure the final report is context-appropriate.

Timeline and Compensation
December: Drafting and finalizing interview questions and recipient list and begin survey and interviews
January: Complete survey/interviews
February: Draft report

Budget
$18,000 CDN

Responses
Responses shall be submitted by email to katie@evidencefordemocracy.ca by November 25th, 2019. Please provide your resume and a short (under 1 page) summary of your qualifications and availability for this project.

About Evidence for Democracy
Evidence for Democracy is the leading fact-driven, non-partisan, not-for-profit organization promoting the transparent use of evidence in government decision-making in Canada. Through research, education and issue campaigns, we engage and empower the science community while cultivating public and political demand for evidence-based decision-making.

A case study without science?

It’s fascinating to me that there’s no mention that the contractor might need skills in building a survey, creating an interview instrument, interviewing, and analyzing both qualitative and quantitative data. Where is the social science?

Focusing on a science writer or science journalist as examples of people who might have the required skill set suggests that more attention has been paid to the end result (the draft report) than the process.

I hope I’m wrong but this looks like a project where the importance of questions has been ignored. It can take a couple or more iterations to get your survey questions right and then you have to get your interview questions right. As for a sample of 20 qualitative interviews, that’s a lot of work.both from the perspective of setting up and conducting interviews and analyzing the copious amounts of information you are likely to receive.

Given that E4D is a science- and evidence-based organization, the project seems odd. Either they’ve left a lot out of their project description or they don’t plan to build a proper case study following basic social science protocols. It almost seems as if they’re more interested in self-promotion than in evidence. Time will tell. Once the report is released, it will be possible to examine how the gathered their information.

Perimeter Institute (PI) invites undergraduate physics students to their 2020 summer program

This looks pretty nifty given that PI will pay your expenses and you might end up with a paid internship afterwards. From a November 4, 2019 PI announcement (received via email),

Undergraduate Theoretical Physics Summer Program
Perimeter Institute for Theoretical Physics is now accepting applications for the Undergraduate Theoretical Physics Summer Program.

The program invites 20 exceptional students to join its research community for a fully-funded two-week summer school. Students will learn research tools and collaboration skills in the multi-disciplinary environment of the world’s largest independent theoretical physics research centre.

This program consists of two parts:
Two-week Summer School (fully-funded): Students are immersed in Perimeter’s dynamic research environment — attending courses on cutting-edge topics in physics, learning new techniques to solve interesting problems, working on group research projects, and potentially even publishing their work. 
Research Internship: Applicants may also be considered for a paid summer research internship. Accepted interns will work on projects alongside Perimeter researchers 

The program is accepting applications for the summer school beginning May 25, 2020.

Ways to share this opportunity with your colleagues and students
Download, print, and hang this high-resolution poster
Direct all to the Undergraduate Theoretical Physics Summer Program website for more information
Paste this key information on your sites and blogs
Application Deadline: January 6, 2020
Apply at perimeterinstitute.ca/undergrad

I’m not sure what the image on the left represents but the one on the right would seem to be some very happy students,

Perimeter Institute Summer Program

The institute is located in Waterloo, Ontario (from the PI Summer Program webpage),

We accept excellent students with a demonstrated interest in the program, who are entering the final year of their undergraduate program in Fall 2020 (special exceptions allowed).

The two-week summer school is fully funded. Successful candidates will be provided with workspace, accommodations, and weekday meals (per diem are provided for weekends). Perimeter Institute will also cover economy travel expenses between the applicant’s home institutions and Toronto Pearson Airport. Ground transportation from Toronto Pearson Airport to Perimeter Institute will be provided.

The two-week summer school is fully funded to ensure that a diverse group of top students, both in background and nationality and without regard for financial means, may attend.

Students staying for the research internship will be paid through a Research Award.

APPLY ONLINE

There is no application fee required.

Important Dates

January 6, 2020 – Application deadline

January 20, 2020 – By this date, all applicants will have received an email on their application status (for summer school acceptance and internship offers)

May 25 to June 5, 2020 – Two-week summer school program in session

Questions should be directed to Santiago Almada

According to the PI website, Waterloo is approximately one hour from Toronto.

Good luck!

The medical community and art/science: two events in Canada in November 2019

This time it’s the performing arts. I have one theatre and psychiatry production in Toronto and a music and medical science event in Vancouver.

Toronto’s Here are the Fragments opening on November 19, 2019

From a November 2, 2019 ArtSci Salon announcement (received via email),

An immersive theatre experience inspired by the psychiatric writing of Frantz Fanon

Here are the Fragments.
Co-produced by The ECT Collective and The Theatre Centre
November 19-December 1, 2019
Tickets: Preview $17 | Student/senior/arts worker $22 | Adult $30
Service charges may apply
Book 416-538-0988 | PURCHASE ONLINE

An immigrant psychiatrist develops psychosis and then schizophrenia. He walks a long path towards reconnection with himself, his son, and humanity.

Walk with him.

Within our immersive design (a fabric of sound, video, and live actors) lean in close to the possibilities of perceptual experience.

Schizophrenics ‘hear voices’. Schizophrenics fear loss of control over their own thoughts and bodies. But how does any one of us actually separate internal and external voices? How do we trust what we see or feel? How do we know which voices are truly our own?

Within the installation find places of retreat from chaos. Find poetry. Find critical analysis.

Explore archival material, Fanon’s writings and contemporary interviews with psychiatrists, neuroscientists, artists, and people living with schizophrenia, to reflect on the relationships between identity, history, racism and mental health.

I was able to find out more in a November 6, 2019 article at broadwayworld.com (Note: Some of this is repetitive),

How do we trust what we see or feel? How do we know which voices are truly our own? THE THEATRE CENTRE and THE ECT COLLECTIVE are proud to Co-produce HERE ARE THE FRAGMENTS., an immersive work of theatre written by Suvendrini Lena, Theatre Centre Residency artist and CAMH [ Centre for Addiction and Mental Health] Neurologist. Based on the psychiatric writing of famed political theorist Frantz Fanon and combining narratives, sensory exploration, and scientific and historical analysis, HERE ARE THE FRAGMENTS. reflects on the relationships between identity, history, racism, and mental health. FRAGMENTS. will run November 19 to December 1 at The Theatre Centre (Opening Night November 21).

HERE ARE THE FRAGMENTS. consists of live performances within an interactive installation. The plot, told in fragments, follows a psychiatrist early in his training as he develops psychosis and ultimately, treatment resistant schizophrenia. Eduard, his son, struggles to connect with his father, while the young man must also make difficult treatment decisions.

The Theatre Centre’s Franco Boni Theatre and Gallery will be transformed into an immersive interactive installation. The design will offer many spaces for exploration, investigation, and discovery, bringing audiences into the perceptual experience of Schizophrenia. The scenes unfold around you, incorporating a fabric of sound, video, and live actors. Amidst the seeming chaos there will also be areas of retreat; whispering voices, Fanon’s own books, archival materials, interviews with psychiatrists, neuroscientists, and people living with schizophrenia all merge to provoke analysis and reflection on the intersection of racism and mental health.

Suvendrini Lena (Writer) is a playwright and neurologist. She works as the staff neurologist at the Centre for Addiction and Mental Health and at the Centre for Headache at Women’s College Hospital [Toronto]. She is an Assistant Professor of Psychiatry and Neurology at the University of Toronto where she teaches medical students, residents, and fellows. She also teaches a course called Staging Medicine, a collaboration between The Theatre Centre and University of Toronto Postgraduate Medical Education.

Frantz Fanon (1925-1961), was a French West Indian psychiatrist, political philosopher, revolutionary, and writer, whose works are influential in the fields of post-colonial studies, critical theory, and Marxism. Fanon published numerous books, including Black Skin, White Masks (1952) and The Wretched of the Earth (1961).

In addition to performances, The Theatre Centre will host a number of panels and events. Highlights include a post-show talkback with Ngozi Paul (Development Producer, Artist/Activist) and Psychiatrist Collaborator Araba Chintoh on November 22. Also of note is Our Patients and Our Selves: Experiences of Racism Among Health Care Workers with facilitator Dr. Fatimah Jackson-Best of Black Health Alliance on November 23rd and Fanon Today: A Creative Symposium on November 24th, a panel, reading, and creative discussion featuring David Austin, Frank Francis, Doris Rajan and George Elliot Clarke [formerly Toronto’s Poet Laureate and Canadian Parliamentary Poet Laureate; emphasis and link mine].

You can get more details and a link for ticket purchase here.

Sounds and Science: Vienna meets Vancouver on November 30, 2019

‘Sounds and Science’ originated at the Medical University of Vienna (Austria) as the November 6, 2019 event posting on the University of British Columbia’s (UBC) Faculty of Medicine website,

The University of British Columbia will host the first Canadian concert bringing leading musical talents of Vienna together with dramatic narratives from science and medicine.

“Sounds and Science: Vienna Meets Vancouver” is part of the President’s Concert Series, to be held Nov. 30, 2019 on UBC campus. The event is modeled on a successful concert series launched in Austria in 2014, in cooperation with the Medical University of Vienna.

“Basic research tends to always stay within its own box, yet research is telling the most beautiful stories,” says Dr. Josef Penninger, director of UBC’s Life Sciences Institute, a professor of medical genetics and a Canada 150 Chair. “With this concert, we are bringing science out of the ivory tower, using the music of great composers such as Mozart, Schubert or Strauss to transport stories of discovery and insight into the major diseases that affected the composers themselves, and continue to have a significant impact on our society.”

Famous composers of the past are often seen as icons of classical music, but in fact, they were human beings, living under enormous physical constraints – perhaps more than people today, according to Dr. Manfred Hecking, an associate professor of internal medicine at the Medical University of Vienna.

“But ‘Sounds and Science’ is not primarily about suffering and disease,” says Dr. Hecking, a former member of the Vienna Philharmonic Orchestra who will be playing double bass during the concert. “It is a fun way of bringing music and science together. Combining music and thought, we hope that we will reach the attendees of the ‘Sounds and Science’ concert in Vancouver on an emotional, perhaps even personal level.”

A showcase for Viennese music, played in the tradition of the Vienna Philharmonic by several of its members, as well as the world-class science being done here at UBC, “Sounds and Science” will feature talks by UBC clinical and research faculty, including Dr. Penninger. Their topics will range from healthy aging and cancer research to the historical impact of bacterial infections.

Combining music and thought, we hope that we will reach the attendees of the ‘Sounds and Science’ concert in Vancouver on an emotional, perhaps even personal level.
Dr. Manfred Hecking

Faculty speaking at “Sounds and Science” will be:
Dr. Allison Eddy, professor and head, department of pediatrics, and chief, pediatric medicine, BC Children’s Hospital and BC Women’s Hospital;
Dr. Troy Grennan, clinical assistant professor, division of infectious diseases, UBC faculty of medicine;
Dr. Poul Sorensen, professor, department of pathology and laboratory medicine, UBC faculty of medicine; and
Dr. Roger Wong, executive associate dean, education and clinical professor of geriatric medicine, UBC faculty of medicine
UBC President and Vice-Chancellor Santa J. Ono and Vice President Health and Dr. Dermot Kelleher, dean, faculty of medicine and vice-president, health at UBC will also speak during the evening.

The musicians include two outstanding members of the Vienna Philharmonic – violinist Prof. Günter Seifert and violist-conductor Hans Peter Ochsenhofer, who will be joined by violinist-conductor Rémy Ballot and double bassist Dr. Manfred Hecking, who serves as a regular substitute in the orchestra.

For those in whose lives intertwine music and science, the experience of cross-connection will be familiar. For Dr. Penninger, the concert represents an opportunity to bring the famous sound of the Vienna Philharmonic to UBC and British Columbia, to a new audience. “That these musicians are coming here is a fantastic recognition and acknowledgement of the amazing work being done at UBC,” he says.

“Like poetry, music is a universal language that all of us immediately understand and can relate to. Science tells the most amazing stories. Both of them bring meaning and beauty to our world.”

“Sounds and Science” – Vienna Meets Vancouver is part of the President’s Concert Series | November 30, 2019 on campus at the Old Auditorium from 6:30 to 9:30 p.m.

To learn more about the Sounds and Science concert series hosted in cooperation with the Medical University of Vienna, visit www.soundsandscience.com.

I found more information regarding logistics,

Saturday, November 30, 2019
6:30 pm
The Old Auditorium, 6344 Memorial Road, UBC

Box office and Lobby: Opens at 5:30 pm (one hour prior to start of performance)
Old Auditorium Concert Hall: Opens at 6:00 pm

Sounds
Günter Seifert  VIOLIN
Rémy Ballot VIOLIN
Hans Peter Ochsenhofer VIOLA
Manfred Hecking DOUBLE BASS

Science
Josef Penninger GENETICS
Manfred Hecking INTERNAL MEDICINE
Troy Grennan INFECTIOUS DISEASE
Poul Sorensen PATHOLOGY & LABORATORY MEDICINE
Allison Eddy PEDIATRICS
Roger Wong GERIATRICS

Tickets are also available in person at UBC concert box-office locations:
– Old Auditorium
– Freddie Wood Theatre
– The Chan Centre for the Performing Art

General admission: $10.00
Free seating for UBC students
Purchase tickets for both President’s Concert Series events to make it a package, and save 10% on both performances

Transportation
Public and Bike Transportation
Please visit Translink for bike and transit information.
Parking
Suggested parking in the Rose Garden Parkade.

Buy Tickets

The Sounds and Science website has a feature abut the upcoming Vancouver concert and it offers a history dating from 2008,

MUSIC AND MEDICINE

The idea of combining music and medicine into the “Sounds & Science” – scientific concert series started in 2008, when the Austrian violinist Rainer Honeck played Bach’s Chaconne in d-minor directly before a keynote lecture, held by Nobel laureate Peter Doherty, at the Austrian Society of Allergology and Immunology’s yearly meeting in Vienna. The experience at that lecture was remarkable, truly a special moment. “Sounds & Science” was then taken a step further by bringing several concepts together: Anton Neumayr’s medical histories of composers, John Brockman’s idea of a “Third Culture” (very broadly speaking: combining humanities and science), and finally, our perception that science deserves a “Red Carpet” to walk on, in front of an audience. Attendees of the “Sounds & Science” series have also described that music opens the mind, and enables a better understanding of concepts in life and thereby science in general. On a typical concert/lecture, we start with a chamber music piece, continue with the pathobiography of the composer, go back to the music, and then introduce our main speaker, whose talk should be genuinely understandable to a broad, not necessarily scientifically trained audience. In the second half, we usually try to present a musical climax. One prerequisite that “Sounds & Science” stands for, is the outstanding quality of the principal musicians, and of the main speakers. Our previous concerts/lectures have so far covered several aspects of medicine like “Music & Cancer” (Debussy, Brahms, Schumann), “Music and Heart” (Bruckner, Mahler, Wagner), and “Music and Diabetes” (Bach, Ysaÿe, Puccini). For many individuals who have combined music and medicine or music and science inside of their own lives and biographies, the experience of a cross-connection between sounds and science is quite familiar. But there is also this “fun” aspect of sharing and participating, and at the “Sounds & Science” events, we usually try to ensure that the event location can easily be turned into a meeting place.

At a guess, Science and Sounds started informally in 2008 and became a formal series in 2014.

There is a video but it’s in German. It’s enjoyable viewing with beautiful music but unless you have German language skills you won’t get the humour. Also it runs for over 9 minutes (a little longer than most of videos you’ll find here on FrogHeart),

Enjoy!

A Canadian military science posting in honour of Remembrance Day 2019

A surprising number of every day products, including items such as microwave ovens, penicillin, nylon, and more have come to us courtesy of military science. While we remember our fallen soldiers today (Remembrance Day 2019) in Canada and elsewhere throughout the Commonwealth countries, I thought it might be interesting to consider contemporary Canadian military science.

I’ve often wondered whether or not we have an equivalent to the US Army’s DARPA (Defense Advanced Research Projects Agency) and their other military research laboratories. We do! Defence Research and Development Canada (DRDC) or Recherche et développement pour la défense Canada (RDDC). Here’s more from its Wikipedia entry (Note: Links have been removed),

[…] is an agency of the Department of National Defence (DND), whose purpose is to provide the Canadian Armed Forces (CAF), other government departments, and public safety and national security communities with knowledge and technology.

DRDC has approximately 1,400 employees across eight research centres within Canada.

Civilian achievements

Over the years, researchers at DRDC, sometimes in partnership with the NRC [National Research Council of Canada] and others, have been responsible for numerous innovations and inventions of practical application in the civilian world. These include the G-suit, motorized wheelchair, the Alouette 1 satellite, Black Brant rocket, improvements to the carbon dioxide laser, flight data recorder, the Ballard fuel cell membrane, and the Bombsniffer (using gas chromatomography and ion mobility spectrometry).

While there’s been some type of organized Canadian military research since the 1920s (it wasn’t always called DRDC/RDDC), it’s only since 2018 that we have a rough equivalent to DARPA and, in our case known as, the Government of Canada Department of National Defence’s Innovation for Defence Excellence and Security (IDEaS). One of the currently available ‘challenges’ involves finding ways to make it easier to handle waste and manage energy in temporary camps, from the Pop-up City: Integrated Energy, Water and Waste Management Systems for Deployed Camps contest, which was launched August 21, 2019 and has a deadline of December 13, 2019,

The Canadian Armed Forces (CAF) must be ready to deploy on short notice, in any climate and for prolonged periods. The CAF presently relies on Relocatable Temporary Camps (RTCs) for its deployments that sustain personnel through demanding operational and environmental conditions.

The Department of National Defence’s (DND) Innovation for Defence Excellence and Security (IDEaS) Program is calling innovators on to propose and develop solutions that provide integrated energy, water and waste management systems for the CAF’s RTCs deployed in national and international operations.

The “Pop up City” Contest is a multi-phased contest for innovators to propose and develop reliable, energy efficient, integrated and scalable energy, water and waste management systems for RTCs. Contests are a competitive means of finding innovative solutions and awarding prizes to the best solutions derived from the innovation community. Specifically, this Contest is seeking solutions designed to manage the energy, water and waste needs of a 150 to 1,500-person RTC, operating in a temperate climate zone.

To standardize the required performance capacity for system designs, contestants will be supplied with per capita data for energy and water consumption, and waste production, along with representative annual climate data, including wind and solar patterns. Contestants will be asked to provide scalable solutions that can supply the requirements of RTCs over a 12-month period in this climate zone. System designs which would also allow for the occasional deployment to extreme hot and/or frigid climatic zones are strongly encouraged.

There are four competitive rounds culminating in the chance to win $2.0 million. Here are some details from the Pop-up City Contest FAQs (frequently asked questions),

Can a Contestant submit a solution for more than one technical domain (i.e. energy, water or waste) in Round 1 of the Contest?
Yes, Contestants can submit more than one proposal to the Contest. However, each solution must be submitted with its own complete application package. Contestants may not submit more than one solution proposal per technical domain.
Can I submit a proposal describing a solution that already exists?
Yes, Contestants may submit proposals describing solutions that are already at a high solution readiness level, with the caveat that Contestants must hold the Intellectual Property (IP) rights or have the necessary authorization from the owner of the IP rights to submit an application for the purpose of this Contest for any existing technologies submitted.
How do I apply for this Contest?
You must apply online through a Canada Post epost Connect™ service account. Before submitting your application materials (including a completed Application Form and a Declaration Form, and with documentation to demonstrate your eligibility), you must have a Canada Post epost Connect™ service account. It will take some time to register for an account, so it is strongly recommended that you initiate the registration process at least 2 weeks before you plan to submit your application materials. Instructions for creating an account are provided in Section 2.12 of the Contest Program guide.
What type of monetary awards will be given to contestants who are screened into Round 1 and Round 2 of the Contest?
If a Contestant is successful in Round 1, they will receive an award of $10, 000. If a Contestant is successful in Round 2, they will receive an award of $50,000.
Is the Contest a call for proposal process that will be awarding contracts to fund work based on project milestones?
No, there is no procurement related activity or contracting process associated with this Contest. Proposals submitted by Contestants may be awarded a monetary prize based on the overall ranking of their technical proposal and eligibility to participate within a specific Round of the Contest. DND will not be entering into a contract for work undertaken by Contestants should they be selected to advance within each Round of the Contest. However should a Contestant be offered a Contribution Agreement to build a prototype in Round 3 they will be reimbursed for eligible costs as stipulated in the Contribution Agreement based on project milestones.
If a Contestant has been selected to receive awards in Round 1 or 2, how will the money be disbursed?
Contestants will receive their award in a single payment via a grant agreement.
If a contestant has been selected to build their prototype in Round 3, how will funding be disbursed?
Should a Contestant be offered a Contribution Agreement (CA) to build their prototype, the CA will have clearly defined parameters based on milestone deliverables that will be used to reimburse eligible expenditures. If milestone deliverables demonstrate that progress in building and testing the prototype are not being met as per the CA, funding for the next stage of the project will not be approved and the CA will be terminated. Contestants will be removed from the Contest in these cases.
How will milestone deliverables be determined?
The milestone deliverables will be specified by the Contestant should they be selected to enter into a CA with DND in Round 3 of the Contest.
Do Contestants need to be a legal entity in Canada to participate in the Contest?
Yes, Contestants need to constitute an eligible recipient as listed in the Contest Program Guide, and be located in Canada to receive a grant payment or enter into a CA with DND on behalf of the Crown.
I am an Academic Institution located in Quebec. Must I abide by the M-30 law? What do I need to do to ensure that I am able to receive funds from the Government of Canada if I am selected in any Round within this Contest?
The Contest Program Guide (Annex C) provides some instructions and a form that must be completed by entities located in Quebec, to whom M-30 applies, and signed by the appropriate authority. You will not be able to receive any prize money or funding from the Government of Canada through this Contest until the appropriate authorization has been received by the IDEaS Program Office.
Will the winner of the Grand Prize of the Contest ($2.0M) be awarded a contract?
A grant agreement, not a contract, will be awarded to the Grand Prize winner at the end of this Contest.
Are there any terms and conditions associated with the Grand Prize?
It is expected that the Contestant who wins the $2.0M Grand Prize in Round 4 will use it to further develop the winning solution along the path to commercialization. Additional requirements will be stipulated in a grant agreement which will be used to disburse funding.
Who will sit on DND’s Technical Review Committee (TRC)?
The TRC will consist of Department of National Defence (DND) scientific personnel as well as members of the Canadian Armed Forces. In addition, select subject matter experts from other Government Departments may be invited to support activities associated with the TRC.
Who will sit on DND Senior Management Funding Oversite Committee?
The Senior Management Funding Oversight Committee (SMFOC), is comprised of the Director General responsible for the IDEaS Program, and the Directors General responsible for DND and/or Canadian Armed Forces organization(s) associated with the Contest.
How will submissions be selected to move on from Rounds 1, 2, 3 and 4 and who will select the Grand prize winner?
The TRC, along with the SMFOC will assess Round 1, 2, 3 and 4 submissions including the Grand Prize winner.
What can the $1.5M in Contribution Agreement for Round 3 winners be used for?
The Contribution Agreement will support the development of a prototype system proposed in Round 2. A list of eligible costs will be provided to Contestants. Recipients may be required to leverage additional funding to build their prototype depending on the cost of their proposal.
What will the Department of National Defence use the information from the prototype for?
This information will help inform the state of the current capabilities of the innovation community in these domains.
Can Contestants submit solutions that have already been integrated in 2 or 3 technical domains in Round 1 of the Contest?
Yes, however each solution must be submitted individually for assessment to determine if it will be screened into Round 2 of the Contest.

Questions from Information Session
The following questions were posed in the English information session held September 11, 2019 for the Pop up City contest. If you did not receive a response to your question, please contact the program directly at: IDEaSContests.IDEeSConcours@forces.gc.ca.

Waste
What’s in scope for solid waste? Food waste? Human waste? Non-organic waste? Does ‘solid waste’ include non-organic solid waste? Can a solution address organic waste only, as opposed to organic and non-organic waste?
Answer: Human waste is included in the black water volumes provided. Wet waste can be assumed to be organic kitchen waste. Dry waste is a mixture of various materials “shipping, office, plastic, metal and textile” in origin. Assumptions on composition of dry solid waste can be made based on total energy content provided of 15 MJ/kg. Organic and inorganic waste can be managed separately, however all solid waste output from the RTC will be measured.
Are solid waste generation numbers segregated from gray water and black water effluents?
Answer: Yes. Per capita volumes of grey and black water are provided and do not overlap with per capita weights of dry and wet solid waste provided.
Do waste management systems need to handle both solid and liquid waste, or just one stream such as grey or black water?
Answer: Solutions must propose management for both solid and liquid waste.
Would grey water be acceptable for reuse in some capacity?
Answer: Yes, strategies for grey water recycling can be proposed.
….

It seems to me this kind of pop up city waster and energy management solution could be very useful in disaster relief.

In any event and not to lose sight of the purpose for this day, I leave you to your remembrances of those who fought and died or were injured in the various wars and military actions where we have participated. Lest we forget.

Reading (2 of 2): Is zinc-infused underwear healthier for women?

This first part of this Reading ‘series’, Reading (1 of 2): an artificial intelligence story in British Columbia (Canada) was mostly about how one type of story, in this case,based on a survey, is presented and placed in one or more media outlets. The desired outcome is for more funding by government and for more investors (they tucked in an ad for an upcoming artificial intelligence conference in British Columbia).

This story about zinc-infused underwear for women also uses science to prove its case and it, too, is about raising money. In this case, it’s a Kickstarter campaign to raise money.

If Huha’s (that’s the company name) claims for ‘zinc-infused mineral undies’ are to be believed, the answer is an unequivocal yes. The reality as per the current research on the topic is not quite as conclusive.

The semiotics (symbolism)

Huha features fruit alongside the pictures of their underwear. You’ll see an orange, papaya, and melon in the kickstarter campaign images and on the company website. It seems to be one of those attempts at subliminal communication. Fruit is good for you therefore our underwear is good for you. In fact, our underwear (just like the fruit) has health benefits.

For a deeper dive into the world of semiotics, there’s the ‘be fruitful and multiply’ stricture which is found in more than one religious or cultural orientation and is hard to dismiss once considered.

There is no reason to add fruit to the images other than to suggest benefits from nature and fertility (or fruitfulness). They’re not selling fruit and these ones are not particularly high in zinc. If all you’re looking for is colour, why not vegetables or puppies?

The claims

I don’t have time to review all of the claims but I’ll highlight a few. My biggest problem with the claims is that there are no citations or links to studies, i.e., the research. So, something like this becomes hard to assess,

Most women’s underwear are made with chemical-based, synthetic fibers that lead to yeast and UTI [urinary tract infection] infections, odor, and discomfort. They’ve also been proven to disrupt human hormones, have been linked to cancer, pollute the planet aggressively, and stay in landfills far too long.

There’s more than one path to a UTI and/or odor and/or discomfort but I can see where fabrics that don’t breathe can exacerbate or cause problems of that nature. I have a little more difficulty with the list that follows. I’d like to see the research on underpants disrupting human hormones. Is this strictly a problem for women or could men also be affected? (If you should know, please leave a comment.)

As for ‘linked to cancer’, I’m coming to the conclusion that everything is linked to cancer. Offhand, I’ve been told peanuts, charcoal broiled items (I think it’s the char), and my negative thoughts are all linked to cancer.

One of the last claims in the excerpted section, ‘pollute the planet aggressively’ raises this question.When did underpants become aggressive’?

The final claim seems unexceptional. Our detritus is staying too long in our landfills. Of course, the next question is: how much faster do the Huha underpants degrade in a landfill? That question is not addressed in Kickstarter campaign material.

Talking to someone with more expertise

I contacted Dr. Andrew Maynard, Associate Director at Arizona State University (ASU) School for the Future of Innovation in Society, He has a PhD in physics and longstanding experience in research and evaluation of emerging technologies (for many years he specialized in nanoparticle analysis and aerosol exposure in occupational settings),.

Professor Maynard is a widely recognized expert and public commentator on emerging technologies and their safe and responsible development and use, and has testified before [US] congressional committees on a number of occasions. 

None of this makes him infallible but I trust that he always works with integrity and bases his opinions on the best information at hand. I’ve always found him to be a reliable source of information.

Here’s what he had to say (from an October 25, 2019 email),

I suspect that their claims are pushing things too far – from what I can tell, professionals tend to advise against synthetic underwear because of the potential build up of moisture and bacteria and the lack of breathability, and tend to suggest natural materials – which indicating that natural fibers and good practices should be all most people need. I haven’t seen any evidence for an underwear crisis here, and one concern is that the company is manufacturing a problem which they then claim to solve. That said, I can’t see anything totally egregious in what they are doing. And the zinc presence makes sense in that it prevents bacterial growth/activity within the fabric, thus reducing the chances of odor and infection.

Pharmaceutical grade zinc and research into underwear

I was a little curious about ‘pharmaceutical grade’ zinc as my online searches for a description were unsuccessful. Andrew explained that the term likely means ‘high purity’ zinc suitable for use in medications rather than the zinc found in roofing panels.

After the reference to ‘pharmaceutical grade’ zinc there’s a reference to ‘smartcel sensitive Zinc’. Here’s more from the smartcel sensitive webpage,

smartcel™ sensitive is skin friendly thanks to zinc oxide’s soothing and anti-inflammatory capabilities. This is especially useful for people with sensitive skin or skin conditions such as eczema or neurodermitis. Since zinc is a component of skin building enzymes, it operates directly on the skin. An active exchange between the fiber and the skin occurs when the garment is worn.

Zinc oxide also acts as a shield against harmful UVA and UVB radiation [it’s used in sunscreens], which can damage our skin cells. Depending on the percentage of smartcel™ sensitive used in any garment, it can provide up to 50 SPF.

Further to this, zinc oxide possesses strong antibacterial properties, especially against odour causing bacteria, which helps to make garments stay fresh longer. *

I couldn’t see how zinc helps the pH balance in anyone’s vagina as claimed in the Kickstarter campaign and smartcel, on its ‘sensitive’ webpage, doesn’t make that claim but I found an answer in an April 4, 2017 Q&A (question and answer) interview by Jocelyn Cavallo for Medium,

What women need to know about their vaginal p

Q & A with Dr. Joanna Ellington

A woman’s vagina is a pretty amazing body part. Not only can it be a source of pleasure but it also can help create and bring new life into the world. On top of all that, it has the extraordinary ability to keep itself clean by secreting natural fluids and maintaining a healthy pH to encourage the growth of good bacteria and discourage harmful bacteria from moving in. Despite being so important, many women are never taught the vital role that pH plays in their vaginal health or how to keep it in balance.

We recently interviewed renowned Reproductive Physiologist and inventor of IsoFresh Balancing Vaginal Gel, Dr. Joanna Ellington, to give us the low down on what every woman needs to know about their vaginal pH and how to maintain a healthy level.

What is pH?

Dr. Ellington: PH is a scale of acidity and alkalinity. The measurements range from 0 to 14: a pH lower than 7 is acidic and a pH higher than 7 is considered alkaline.

What is the “perfect” pH level for a woman’s vagina?

Dr. E.: For most women of a reproductive age vaginal pH should be 4.5 or less. For post-menopausal women this can go up to about 5. The vagina will naturally be at a high pH right after sex, during your period, after you have a baby or during ovulation (your fertile time).

Are there diet and environmental factors that affect a women’s vaginal pH level?

Dr. E.: Yes, iron zinc and manganese have been found to be critical for lactobacillus (healthy bacteria) to function. Many women don’t eat well and should supplement these, especially if they are vegetarian. Additionally, many vegetarians have low estrogen because they do not eat the animal fats that help make our sex steroids. Without estrogen, vaginal pH and bacterial imbalance can occur. It is important that women on these diets ensure good fat intake from other sources, and have estrogen and testosterone and iron levels checked each year.

Do clothing and underwear affect vaginal pH?

Dr. E.: Yes, tight clothing and thong underwear [emphasis mine] have been shown in studies to decrease populations of healthy vaginal bacteria and cause pH changes in the vagina. Even if you wear these sometimes, it is important for your vaginal ecosystem that loose clothing or skirts be worn some too.

Yes, Dr. Ellington has the IsoFresh Balancing Vaginal Gel and whether that’s a good product should be researched but all of the information in the excerpt accords with what I’ve heard over the years and fits in nicely with what Andrew said, zinc in underwear could be useful for its antimicrobial properties. Also, note the reference to ‘thong underwear’ as a possible source of difficulty and note that Huha is offering thong and very high cut underwear.

Of course, your underwear may already have zinc in it as this research suggests (thank you, Andrew, for the reference),

Exposure of women to trace elements through the skin by direct contact with underwear clothing by Thao Nguyen & Mahmoud A. Saleh. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering Volume 52, 2017 – Issue 1 Pages 1-6 DOI: https://doi.org/10.1080/10934529.2016.1221212 Published online: 09 Sep 2016

This paper is behind a paywall but I have access through a membership in the Canadian Academy of Independent Scholars. So, here’s the part I found interesting,

… The main chemical pollutants present in textiles are dyes containing carcinogenic amines, metals, pentachlorophenol, chlorine bleaching, halogen carriers, free formaldehyde, biocides, fire retardants and softeners.[1] Metals are also found in textile products and clothing are used for many purposes: Co [cobalt], Cu [copper], Cr [chromium] and Pb [lead] are used as metal complex dyes, Cr as pigments mordant, Sn as catalyst in synthetic fabrics and as synergists of flame retardants,Ag [silver] as antimicrobials and Ti [titanium] and Zn [zinc] as water repellents and odor preventive agents.[2–5] When present in textile materials, the toxic elements mentioned above represent not only a major environmental problem in the textile industry but also they may impose potential danger to human health by absorption through the skin.[6,7] [emphasis mine] Chronic exposure to low levels of toxic elements has been associated with a number of adverse human health effects.[8–11] Also exposure to high concentration of elements which are considered as essential for humans such as Cu, Co, Fe [iron], Mn [manganese] or Zn among others, can also be harmful.[12] [emphasis mine] Co, Cr, Cu and Ni [nitrogen] are skin sensitizers,[13,14] which may lead to contact dermatitis, also Cr can lead to liver damage, pulmonary congestion and cancer.[15] [emphasis mine] The purpose of the present study was to determine the concentrations of a number of elements in various skin-contact clothes. For risk estimations, the determination of the extractable amounts of heavy metals is of importance, since they reflect their possible impact on human health. [p. 2 PDF]

So, there’s the link to cancer. Maybe.

Are zinc-infused undies a good idea?

It could go either way. (For specifics about the conclusions reached in the study, scroll down to the Ooops! subheading.) I like the idea of using sustainable Eucalyptus-based material (TencelL) for the underwear as I have heard that cotton isn’t sustainably cultivated. As for claims regarding the product’s environmental friendliness, it’s based on wood, specifically, cellulose, which Canadian researchers have been experimenting with at the nanoscale* and they certainly have been touting nanocellulose as environmentally friendly. Tencel’s sustainability page lists a number of environmental certifications from the European Union, Belgium, and the US.

*Somewhere in the Kickstarter campaign material, there’s a reference to nanofibrils and I’m guessing those nanofibrils are Tencel’s wood fibers at the nanoscale. As well, I’m guessing that smartcel’s fabric contains zinc oxide nanoparticles.

Whether or not you need more zinc is something you need to determine for yourself. Finding out if the pH balance in your vagina is within a healthy range might be a good way to start. It would also be nice to know how much zinc is in the underwear and whether it’s being used antimicrobial properties and/or as a source for one of minerals necessary for your health.

How the Kickstarter campaign is going

At the time of this posting, they’ve reached a little over $24,000 with six days left. The goal was $10,000. Sadly, there are no questions in the FAQ (frequently asked questions).

Reading tips

It’s exhausting trying to track down authenticity. In this case, there were health and environmental claims but I do have a few suggestions.

  1. Look at the imagery critically and try to ignore the hyperbole.
  2. How specific are the claims? e.g., How much zinc is there in the underpants?
  3. Who are their experts and how trustworthy are the agencies/companies mentioned?
  4. If research is cited, are the publishers reputable and is the journal reputable?
  5. Does it make sense given your own experience?
  6. What are the consequences if you make a mistake?

Overblown claims and vague intimations of disease are not usually good signs. Conversely, someone with great credential may not be trustworthy which is why I usually try to find more than one source for confirmation. The person behind this campaign and the Huha company is Alexa Suter. She’s based in Vancouver, Canada and seems to have spent most of her time as a writer and social media and video producer with a few forays into sales and real estate. I wonder if she’s modeling herself and her current lifestyle entrepreneurial effort on Gwyneth Paltrow and her lifestyle company, Goop.

Huha underwear may fulfill its claims or it may be just another pair of underwear or it may be unhealthy. As for the environmentally friendly claims, let’s hope that the case. On a personal level, I’m more hopeful about that.

Regardless, the underwear is not cheap. The smallest pledge that will get your underwear (a three-pack) is $65 CAD.

Ooops! ETA: November 8, 2019:

I forgot to include the conclusion the researchers arrived at and some details on how they arrived at those conclusions. First, they tested 120 pairs of underpants in all sorts of colours and made in different parts of the world.

Second, some underpants showed excessive levels of metals. Cotton was the most likely material to show excess although nylon and polyester can also be problematic. To put this into proportion and with reference to zinc, “Zn exceeded the limit in 4% of the tested samples
and was found mostly in samples manufactured in China.” [p. 6 PDF] Finally, dark colours tested for higher levels of metals than light colours.

While it doesn’t mention underpants as such, there’s a November 8, 2019 article ‘Five things everyone with a vagina should know‘ by Paula McGrath for BBC news online. McGrath’s health expert is Dr. Jen Gunter, a physician whose specialties are obstetrics, gynaecology, and pain.

Reading (1 of 2): an artificial intelligence story in British Columbia (Canada)

Every once in a while I decide to dive further into a story and highlight some of the ways in which we all get fooled into thinking that the technology industry is going to leave British Columbia with use of a survey (Reading [1 of 2]) or that we can somehow make ourselves healthier (Reading [2 of 2)) with the use ‘scientifically’ derived data.

Setting the scene

The last time I encountered Miro Cernetig was when he was a member of a panel of political pundits (he was a reporter for the Vancouver Sun at that time in 2009). It seems he’s moved on into the realm of ‘storymaking’ and public relations. He popped up in Nick Eagland’s October 5, 2019 article (Artificial intelligence firms in B.C. seek more support from federal government),

Handol Kim, vice-chair of Network [Artificial Intelligence Network of B.C (AInBC)] said federal funding and support don’t measure up to the size and pace of B.C.’s AI sector, and should be earmarked for research.

In 2017, the federal budget included $125 million in funding for AI research at institutes in Edmonton, Toronto and Montreal. [emphasis mine] Kim said those centres boast AI “super star” and “rock star” researchers with international name recognition. B.C.’s sector hasn’t been able to market itself that way but has plenty to offer, Kim said.

“The tech industry doesn’t automatically assume the government is going to help,” he said. “But where government does have a role to play is in research and funding research, especially when we have a tenuous lead and a good position, and we’re getting outspent.”

CityAge is partnering with the Artificial Intelligence Network for CrossOver: AI, a conference in Vancouver on Dec. 9 [2019], which will help draw national attention to B.C.’s sector, said CityAge co-founder Miro Cernetig.[emphasis mine]

Cernetig, owner of branding agency Catalytico, said B.C.’s sector is strong at commercializing its technology — getting it to market for a profit. But he worries that Canada is too often recognized only for its natural resources, when it has plenty of “human capital” to give it an edge in the development of AI, particularly in B.C.

“It’s important that Vancouver and British Columbia be fully integrated into the national data strategy, which includes AI,” he said.

“Because the only way we’ll be able to compete globally is if we take all of the best pieces and nodes of excellent across the country and bring them together into a true Canadian approach.”

This seems like a standard ploy. “Our industry is not getting enough support, please give us more federal money or lower taxes, etc.” Looking backwards from our latest federal election on Oct. 22, 2019, the timing for this plea seems odd. Unless it’s a misdirect and the real audience is the provincial government (British Columbia). So, what is the story?

Storymaking, surveys, and the tech sector in BC

Cernetig bills himself as a ‘storymaker’ on his LinkedIn profile,

Miro Cernetig
Storymaker and seasoned strategist who is founder of Catalytico ~ ideas in motion & Co-Founder of CityAge.

As noted earlier, Cernetig was a journalist (which gives him credentials when placing a story with former colleagues in the media). He also seems to have been quite successful (from his Huffington Post biography),

Globe and Mail‘s bureau chief in Beijing, New York, Vancouver, Edmonton and the Arctic. He was also the Quebec bureau chief for the Toronto Star. During his 25-year career Miro has worked in film, print and digital mediums for the Globe and Mail, the CBC, the Toronto Star and most recently as a staff columnist at the Vancouver Sun.

Miro’s writing — on business, culture, politics and public policy — has also appeared in ROB Magazine [Report on Business; a Globe and Mail publication], the New York Times, the Economist, the International Herald Tribune and People Magazine.

..

Lies, damn lies and statistics

I can’t find anything that suggests Cernetig has a background in any type of science. Presumably his employees at CityAge have some skills in polling and/or social sciences (from Eagland’s October 5, 2019 article (Artificial intelligence firms in B.C. seek more support from federal government),

A new survey found that more than half of B.C’s. artificial intelligence companies believe the federal government is not doing enough to boost the sector, and half have considered leaving the province. [emphasis mine]

The non-profit industry association, Artificial Intelligence Network of B.C., [AInBC] says there are more than 150 AI-related firms in B.C. and more than 65 submitted responses to its survey, which was conducted by CityAge and released this week. [emphases mine]

More than 56 per cent of respondents said the federal government needs to do more to help the local AI sector grow, with 31 per cent saying its efforts were lacking and 24 per cent saying they needed major attention.

Half of respondents said they have considered moving their companies out of B.C. They main reasons they gave were a desire to connect to bigger markets (35 per cent) and to operate in a better taxation and regulatory environment (11 per cent).

The firms said their most significant impediments to growth were lack of capital (30 per cent) and an inability to access the right talent (27 per cent).

But they also showed hope for the future, with 47 per cent saying they are “very confident” they will grow over the next three to five years, and 33 per cent saying they are “solid” but could be doing better.

A survey, eh? I guarantee that I could devise one where a majority of the respondents agree that I should receive $1M or more from the government, tax free, and for no particular reason.

It’s funny. We know surveys are highly dependent on who is surveyed and how and in what order the questions are asked and yet we forget when we see ‘survey facts’ published somewhere.

Does anyone think that members of the Artificial Intelligence Network of B.C would say no to more financial support? What was the point of the survey? The whole thing reminds me of an old saying, “lies, damn lies, and statistics,” (Note: Links in the excerpt have been removed)

Lies, damned lies, and statistics” is a phrase describing the persuasive power of numbers, particularly the use of statistics to bolster weak arguments. It is also sometimes colloquially used to doubt statistics used to prove an opponent’s point.

The phrase was popularized in the United States by Mark Twain (among others), who attributed it to the British prime minister Benjamin Disraeli: “There are three kinds of lies: lies, damned lies, and statistics.” However, the phrase is not found in any of Disraeli’s works and the earliest known appearances were years after his death. Several other people have been listed as originators of the quote, and it is often erroneously attributed to Twain himself.[1]

By the way, I haven’t been able to find the survey or a report about the survey available online, which means that the methodology can’t be examined.

What’s the story? Answer: confusing

Eagland’s article looks like part of a campaign to get the federal government to spread their AI largesse in BC’s direction. (Am I the only one who thinks that British Columbia’s AI companies and educational institutions are smarting because they weren’t included in the federal government’s 2017 Pan-Canadian Artificial Intelligence Strategy? They budgeted $125M for AI communities in Edmonton, Montréal, and Toronto.) Or, it’s possible AInBC is signaling the provincial government that there are problems which they (the provincial government) could solve with funding

In Eagland’s relatively short article there’s a second message; it’s about an upcoming AI conference, CrossOver: AI on December 9, 2019. At that point, the articles start to look like an advertisement for an event organized by CityAge’s (Miro Cernetig’s company). I found this on the conference website’s About page,

Artificial Intelligence, and the technologies around it, will determine the builders of our future economy.

British Columbia has — and is building — that crucial AI ecosystem. Through it, we will have the local and global reach to build the future.

Organized by CityAge and the Artificial Intelligence network of British Columbia, CrossOver: AI will connect and catalyze an essential network of leaders in British Columbia and Canada’s emerging AI ecosystem. To take BC’s strengths in this transformative technology to the national and global stage.

CrossOver AI will:

Establish British Columbia as a national and global leader in AI/ML.

Showcase BC’s AI/ML start-up ecosystem to global investors and corporations for investment and partnerships.

Attract global corporations to invest in establishing AI/ML R&D in BC.

Demonstrate to BC and Canada’s business, government and academic leadership that we have a strong, growing AI network.

Gather and connect all of the members of BC’s AI network to each other.

CrossOver AI’s program will be structured to provide an engaging combination of high-quality content and practical business information.

The morning of the event will be a mix of panel discussions and 20-minute TED-style presentations.

The afternoon will be organized as an interactive mix of pitch sessions that profile the opportunities in global AI and BC’s capabilities.

About AInBC

The Artificial Intelligence network of British Columbia (AInBC) was established by business and academic leaders to unify, organize and catalyze the Artificial Intelligence (AI) and Machine Learning (ML) communities in British Columbia (BC) to establish BC as a national and global leader in AI by 2022.

AInBC believes that AI/ML is of strategic importance to the economic and social well-being of everyone in BC, and is dedicated to ensuring that BC leads rather than follows.

We define the AI community in BC as:
Academic Institutions
AI/ML companies/start-ups
Corporations with AI/ML initiatives
Entrepreneurs
Investment Community
Students
Government (Provincial and Municipal)
Foreign/Non-BC based Corporations seeking AI/ML talent in BC

AInBC recognizes that all members of this community must be served in order to create a vigorous and high-growth ecosystem that benefits all members and the province overall. AInBC is a not-for-profit Society.

About CityAge
CityAge was founded on the idea that a neutral, focused set of high-powered conversations will help us develop and implement big ideas that build the future. 

CityAge has held over 50 conferences on a variety of topics in major urban markets across North America, Europe and Asia, ranging in size from 150 to 500 leaders. 

More than 7,000 leaders have attended CityAge and are part of the CityAge network.

I also found themes,

Which Businesses AI is Disrupting Now: How your organization can use this essential new tool for business, managing natural resources, and discovering innovations. AI isn’t just for Silicon Valley; it’s available to everyone.

Unicorn AI: BC’s AI companies have the potential to be global players. We’ll look at how we can help them get there.

Attracting Global AI Investment: What do BC and Canada need to do to attract human and financial capital to the emerging AI cluster? How do we get the news out to the world that we are taking a leading role in the AI revolution?

AI for a Better World:  AI will allow us new ways to look at social challenges we’ve been trying to solve. How will AI, with the human component and thoughtful policy, help us build a stronger economy and society?

AI and The Data Effect: BC and Canada can responsibly gather and use the data that AI needs. We will look at what competitors are doing, what our strategic advantages are, and how to use them to build our AI cluster.

Ethical AI: How to control the risks, enroll the public, and use AI to build the economy and improve lives.

It’s nice to see that they’ve tucked in ‘ethics’ and ‘making the world a better place’ along with the business-oriented themes.

As for what constitutes this story, it seems a little confused. First, we want money from the federal government 9we might leave if we don’t get it) and, second, we’ve got a conference where we want to attract business people and investors.

Analyzing the confusion

It would have been good to find out more about the artificial intelligence community in BC. Unfortunately, I don’t think Nick Eagland has enough experience to get that story. (BTW, A lot of reporters don’t have enough experience to ask the right questions, especially in science and technology. They don’t have the time to adequately research the topic and they can’t draw on past experience because they don’t spend enough time focused on one subject area long enough to learn about it.)

As for the branding or storymaking strategy on display, I don’t think it was a good idea to bundle the two messages together but then I’m not a member of any target audiences (e.g., business investor, venture capitalist, policy maker, etc.). As well, I’m not the client who may have been driving this message or, in this case, incompatible messages and there’s not a lot the PR flack can do in that case.

An example of ‘good’ storymaking

As for the standard tech community complaints, here’s one of the latest examples and it’s a good example of how to do this. From an Oct. 7, 2019 news item on Daily Hive,

Over 110 Canadian tech CEOs have signed an open letter urging political parties to take action to strengthen the country’s innovative economy, and avoid falling further behind international peers.

So far, major parties have put forward pledges in areas like affordability, first-time home buyers, and climate change, but the campaigns have offered few promises designed to drive economic growth in the digital age.

The letter was drafted by the Council of Canadian Innovators, a lobby group representing some of the country’s fastest-growing companies. Combined, its signatories run domestic firms that employed more than 35,000 people last year and generated more than $6 billion for the Canadian economy.

Ian Rae, CEO of Montreal big-data firm CloudOps, said his engineers receive unsolicited job offers, usually with big salaries and mostly from US tech firms.

“We need to be thinking in Canada about the future economy and the fact that the globe seems to be in this enormous shift towards the globalized digital economy,” said Rae.

He said deep-pocketed foreign investors have also had their eyes on Canadian firms with potential. The risk, he said, is that these companies are bought out before they can grow and generate wealth and employment returns in Canada.

“A lot of these US companies are cherry-picking Canadian scale-ups before they scale up, so that the ultimate net benefit tends to flow outside of the Canadian economy,” Rae said.

Tech CEOs have said the Liberal government’s efforts in recent years to support high growth firms have offered little for emerging scale-up companies that have already outgrown the start-up phase.

David Ross, CEO of Ross Video, said a recent study by the University of Toronto found that Canada was an international laggard when it came to scaling up private firms to the billion dollar mark, companies also known as unicorns. [emphasis mine]

“The situation is so bad that even if we were to create four times as many unicorns, we would still be in last place,” said the study from the university’s Impact Centre.

Ross, whose Ottawa information and communications technology company has 650 employees, said the performance “should be a bit of a crisis for our politicians.”

“Canada should be more than rocks, trees, and oil,” Ross said.


This story was tightly focused on science and technology innovation and party platforms prior to the October 21, 2019 election. It was timely and it was an appeal to make Canada “… more than rocks, …” tying in very nicely with an iconic slam poetry presentation (We Are More) at the 2010 Olympics in Vancouver by Shane Koyczan.

Should you be interested in more information about Mr. Cenetig’s companies, you can find out more about Catalytico here and CityAge here.

Bacteria and graphene oxide as a basis for producing computers

A July 10, 2019 news item on ScienceDaily announces a more environmentally friendly way to produce graphene leading to more environmentally friendly devices such as computers,

In order to create new and more efficient computers, medical devices, and other advanced technologies, researchers are turning to nanomaterials: materials manipulated on the scale of atoms or molecules that exhibit unique properties.

Graphene — a flake of carbon as thin as a single later of atoms — is a revolutionary nanomaterial due to its ability to easily conduct electricity, as well as its extraordinary mechanical strength and flexibility. However, a major hurdle in adopting it for everyday applications is producing graphene at a large scale, while still retaining its amazing properties.

In a paper published in the journal ChemOpen, Anne S. Meyer, an associate professor of biology at the University of Rochester [New York state, US], and her colleagues at Delft University of Technology in the Netherlands, describe a way to overcome this barrier. The researchers outline their method to produce graphene materials using a novel technique: mixing oxidized graphite with bacteria. Their method is a more cost-efficient, time-saving, and environmentally friendly way of producing graphene materials versus those produced chemically, and could lead to the creation of innovative computer technologies and medical equipment.

A July 10, 2019 University of Rochester news release (also on EurekAlert), which originated the news item, provides details as to how this new technique for extracting graphene differs from the technique currently used,

Graphene is extracted from graphite, the material found in an ordinary pencil. At exactly one atom thick, graphene is the thinnest–yet strongest–two-dimensional material known to researchers. Scientists from the University of Manchester in the United Kingdom were awarded the 2010 Nobel Prize in Physics for their discovery of graphene; however, their method of using sticky tape to make graphene yielded only small amounts of the material.

“For real applications you need large amounts,” Meyer says. “Producing these bulk amounts is challenging and typically results in graphene that is thicker and less pure. This is where our work came in.”

In order to produce larger quantities of graphene materials, Meyer and her colleagues started with a vial of graphite. They exfoliated the graphite–shedding the layers of material–to produce graphene oxide (GO), which they then mixed with the bacteria Shewanella. They let the beaker of bacteria and precursor materials sit overnight, during which time the bacteria reduced the GO to a graphene material.

“Graphene oxide is easy to produce, but it is not very conductive due to all of the oxygen groups in it,” Meyer says. “The bacteria remove most of the oxygen groups, which turns it into a conductive material.”

While the bacterially-produced graphene material created in Meyer’s lab is conductive, it is also thinner and more stable than graphene produced chemically. It can additionally be stored for longer periods of time, making it well suited for a variety of applications, including field-effect transistor (FET) biosensors and conducting ink. FET biosensors are devices that detect biological molecules and could be used to perform, for example, real-time glucose monitoring for diabetics.

“When biological molecules bind to the device, they change the conductance of the surface, sending a signal that the molecule is present,” Meyer says. “To make a good FET biosensor you want a material that is highly conductive but can also be modified to bind to specific molecules.” Graphene oxide that has been reduced is an ideal material because it is lightweight and very conductive, but it typically retains a small number of oxygen groups that can be used to bind to the molecules of interest.

The bacterially produced graphene material could also be the basis for conductive inks, which could, in turn, be used to make faster and more efficient computer keyboards, circuit boards, or small wires such as those used to defrost car windshields. Using conductive inks is an “easier, more economical way to produce electrical circuits, compared to traditional techniques,” Meyer says. Conductive inks could also be used to produce electrical circuits on top of nontraditional materials like fabric or paper.

“Our bacterially produced graphene material will lead to far better suitability for product development,” Meyer says. “We were even able to develop a technique of ‘bacterial lithography’ to create graphene materials that were only conductive on one side, which can lead to the development of new, advanced nanocomposite materials.”

Here’s a link to and a citation for the paper,

Creation of Conductive Graphene Materials by Bacterial Reduction Using Shewanella Oneidensis by Benjamin A. E. Lehner, Vera A. E. C. Janssen, Dr. Ewa M. Spiesz, Dominik Benz, Dr. Stan J. J. Brouns, Dr. Anne S. Meyer, Prof. Dr. Herre S. J. van der Zant. ChemistryOpen Volume 8, Issue 7 July 2019 Pages 888-895 DOI: https://doi.org/10.1002/open.201900186
First published: 04 July 2019

As you would expect given the journal’s title, this paper is open access.