Announcing: Fully Funded PhD Positions at McGill Nanofactory in Montréal, Canada

It’s been a while since I’ve published news about funded positions. Here’s more about the Montréal-based positions from a May 22, 2023 McGill University news release on EurekAlert,

McGill Nanofactory, led by Prof. Cao [Professor Changhong Cao], has multiple fully funded Ph.D. positions (Winter and Fall 2024) in the directions including nano-mechanics of 2D materials, mechano-electro-chemical studies of solid-state batteries, and additive manufacturing of advanced structures. Candidates with expertise in one or more of the following areas are strongly encouraged to contact Prof. Cao at changhong.cao@mcgill.ca. 2D materials, solid mechanics, MEMS design and fabrication, electrochemistry, AFM, and 3D printing. Full application submission on McGill’s online portal must be before July 15th, 2023 [emphasis mine] for the Winter 2024 admission round. Details here: https://www.mcgill.ca/mecheng/grad/admission

You can also find out more on the McGill Nanofactory website.

Good luck with your application!

Fluidic memristor with neuromorphic (brainlike) functions

I think this is the first time I’ve had occasion to feature a fluidic memristor. From a January 13, 2023 news item on Nahowerk, Note: Links have been removed,

Neuromorphic devices have attracted increasing attention because of their potential applications in neuromorphic [brainlike] computing, intelligence sensing, brain-machine interfaces and neuroprosthetics. However, most of the neuromorphic functions realized are based on the mimic of electric pulses with solid state devices. Mimicking the functions of chemical synapses, especially neurotransmitter-related functions, is still a challenge in this research area.

In a study published in Science (“Neuromorphic functions with a polyelectrolyte-confined fluidic memristor”), the research group led by Prof. YU Ping and MAO Lanqun from the Institute of Chemistry of the Chinese Academy of Sciences developed a polyelectrolyte-confined fluidic memristor (PFM), which could emulate diverse electric pulse with ultralow energy consumption. Moreover, benefitting from the fluidic nature of PFM, chemical-regulated electric pulses and chemical-electric signal transduction could also be emulated.

A January 12, 2023 Chinese Academy of Science (CAS) press release, which originated the news item, offers more technical detail,

The researchers first fabricated the polyelectrolyte-confined fluidic channel by surface-initiated atomic transfer polymerization. By systematically studying the current-voltage relationship, they found that the fabricated fluidic channel well satisfied the nature memristor, defined as PFM. The origin of the ion memory was originated from the relatively slow diffusion dynamics of anions into and out of the polyelectrolyte brushes.  

The PFM could well emulate the short-term plasticity patterns (STP), including paired-pulse facilitation and paired-pulse depression. These functions can be operated at the voltage and energy consumption as low as those biological systems, suggesting the potential application in bioinspired sensorimotor implementation, intelligent sensing and neuroprosthetics.  

The PFM could also emulate the chemical-regulated STP electric pulses. Based on the interaction between polyelectrolyte and counterions, the retention time could be regulated in different electrolyte.

More importantly, in a physiological electrolyte (i.e., phosphate-buffered saline solution, pH7.4), the PFM could emulate the regulation of memory by adenosine triphosphate (ATP), demonstrating the possibility to regulate the synaptic plasticity by neurotransmitter.  More importantly, based on the interaction between polyelectrolytes and counterions, the chemical-electric signal transduction was accomplished with the PFM, which is a key step towards the fabrication of artificial chemical synapses.

With structural emulation to ion channels, PFM features versatility and easily interfaces with biological systems, paving a way to building neuromorphic devices with advanced functions by introducing rich chemical designs. This study provides a new way to interface the chemistry with neuromorphic device. 

Here’s a link to and a citation for the paper,

Neuromorphic functions with a polyelectrolyte-confined fluidic memristor by Tianyi Xiong, Changwei Li, Xiulan He, Boyang Xie, Jianwei Zong, Yanan Jiang, Wenjie Ma, Fei Wu, Junjie Fei, Ping Yu, and Lanqun Mao. Science 12 Jan 2023 Vol 379, Issue 6628 pp. 156-161 DOI: 10.1126/science.adc9150

This paper is behind a paywall.

Drying and redispersing cellulose nanocrystals (CNC)

A January 11, 2023 news item on ScienceDaily announces some new research on cellulose nanocrystals (CNC),

Cellulose nanocrystals—bio-based nanomaterials derived from natural resources such as plant cellulose—are valuable for their use in water treatment, packaging, tissue engineering, electronics, antibacterial coatings and much more. Though the materials provide a sustainable alternative to non-bio-based materials, transporting them in liquid taxes industrial infrastructures and leads to environmental impacts.

A team of Penn State [Pennsylvania State University] chemical engineering researchers studied the mechanisms of drying the nanocrystals and proposed nanotechnology to render the nanocrystals highly redispersible in aqueous mediums, while retaining their full functionality, to make them easier to store and transport. They published their results in the journal Biomacromolecules.

This image illustrates what the drying process does,

This graphic representation of hairy cellulose nanocrystals, shown attached at their hairy ends when dried (right), will be featured as the Biomacromolecules journal cover in the Jan. 17 issue. Credit: Sheikhi Research Group. All Rights Reserved.

A Pennsylvania State University (Penn State) news release (also on EurekAlert) by Mariah R. Lucas, which originated the news item, provides more detail, Note: A link has been removed,

“We looked at how we could take hairy nanocrystals, dry them in ovens, and redisperse them in solutions containing different ions,” said co-first author Breanna Huntington, current chemical engineering doctoral student at the University of Delaware and former member of the Sheikhi Research Group while an undergraduate student at Penn State. “We then compared their functionality to conventional, non-hairy cellulose nanocrystals.”  

The nanocrystals have negatively charged cellulose chains at their ends, known as hairs. When rehydrated, the hairs repel each other and separate, dispersing again through a liquid, as a result of electrosteric repulsion — a term meaning charge-driven, or electrostatic, and free-volume dependent, or steric.  

“The hairy ends of the nanocrystals are nanoengineered to be negatively charged and repel each other when placed in an aqueous medium,” said corresponding author Amir Sheikhi, Penn State assistant professor of chemical engineering and of biomedical engineering. “To have maximum function, the nanocrystals must be separate, individual particles, not chained together as they are when they are dry.” 

After the hairy particles were redispersed, researchers tested them and measured their size and surface properties and found their characteristics and performance were the same as those that had never been dried. They also found the particles could perform well and maintain their stability in a variety of liquid mixtures of different salinities and pH levels.

“The hairy nanocrystals can become redispersed even at high salt concentrations, which is convenient, as they remain functional in harsh media and may be used in a broad range of applications,” said co-first author Mica Pitcher, Penn State doctoral student in chemistry, supervised by Sheikhi. “This work may pave the way for sustainable and large-scale processing of nanocelluloses without using additive or energy-intensive methods.” 

The Penn State College of Engineering Summer Research Experiences for Undergraduates program and the NASA Pennsylvania Space Grant Consortium graduate fellowship program supported this work.  

Here’s a link to and a citation for the paper,

Nanoengineering the Redispersibility of Cellulose Nanocrystals by Breanna Huntington, Mica L. Pitcher, and Amir Sheikhi. Biomacromolecules 2023, 24, 1, 43–56 DOI: https://doi.org/10.1021/acs.biomac.2c00518 Publication Date:December 5, 2022 Copyright © 2022 American Chemical Society

This paper is behind a paywall.

Ada Lovelace’s skills (embroidery, languages, and more) led to her pioneering computer work in the 19th century

This is a cleaned up version of the Ada Lovelace story,

A pioneer in the field of computing, she has a remarkable life story as noted in this October 13, 2014 posting, and explored further in this October 13, 2015 posting (Ada Lovelace “… manipulative, aggressive, a drug addict …” and a genius but was she likable?) published to honour the 200th anniversary of her birth.

In a December 8, 2022 essay for The Conversation, Corinna Schlombs focuses on skills other than mathematics that influenced her thinking about computers (Note: Links have been removed),

Growing up in a privileged aristocratic family, Lovelace was educated by home tutors, as was common for girls like her. She received lessons in French and Italian, music and in suitable handicrafts such as embroidery. Less common for a girl in her time, she also studied math. Lovelace continued to work with math tutors into her adult life, and she eventually corresponded with mathematician and logician Augustus De Morgan at London University about symbolic logic.

Lovelace drew on all of these lessons when she wrote her computer program – in reality, it was a set of instructions for a mechanical calculator that had been built only in parts.

The computer in question was the Analytical Engine designed by mathematician, philosopher and inventor Charles Babbage. Lovelace had met Babbage when she was introduced to London society. The two related to each other over their shared love for mathematics and fascination for mechanical calculation. By the early 1840s, Babbage had won and lost government funding for a mathematical calculator, fallen out with the skilled craftsman building the precision parts for his machine, and was close to giving up on his project. At this point, Lovelace stepped in as an advocate.

To make Babbage’s calculator known to a British audience, Lovelace proposed to translate into English an article that described the Analytical Engine. The article was written in French by the Italian mathematician Luigi Menabrea and published in a Swiss journal. Scholars believe that Babbage encouraged her to add notes of her own.

In her notes, which ended up twice as long as the original article, Lovelace drew on different areas of her education. Lovelace began by describing how to code instructions onto cards with punched holes, like those used for the Jacquard weaving loom, a device patented in 1804 that used punch cards to automate weaving patterns in fabric.

Having learned embroidery herself, Lovelace was familiar with the repetitive patterns used for handicrafts. Similarly repetitive steps were needed for mathematical calculations. To avoid duplicating cards for repetitive steps, Lovelace used loops, nested loops and conditional testing in her program instructions.

Finally, Lovelace recognized that the numbers manipulated by the Analytical Engine could be seen as other types of symbols, such as musical notes. An accomplished singer and pianist, Lovelace was familiar with musical notation symbols representing aspects of musical performance such as pitch and duration, and she had manipulated logical symbols in her correspondence with De Morgan. It was not a large step for her to realize that the Analytical Engine could process symbols — not just crunch numbers — and even compose music.

… Lovelace applied knowledge from what we today think of as disparate fields in the sciences, arts and the humanities. A well-rounded thinker, she created solutions that were well ahead of her time.

If you have time, do check out Schlombs’ essay (h/t December 9, 2022 news item on phys.org).

For more about Jacquard looms and computing, there’s Sarah Laskow’s September 16, 2014 article for The Atlantic, which includes some interesting details (Note: Links have been removed),

…, one of the very first machines that could run something like what we now call a “program” was used to make fabric. This machine—a loom—could process so much information that the fabric it produced could display pictures detailed enough that they might be mistaken for engravings.

Like, for instance, the image above [as of March 3, 2023, the image is not there]: a woven piece of fabric that depicts Joseph-Marie Jacquard, the inventor of the weaving technology that made its creation possible. As James Essinger recounts in Jacquard’s Web, in the early 1840s Charles Babbage kept a copy at home and would ask guests to guess how it was made. They were usually wrong.

.. At its simplest, weaving means taking a series of parallel strings (the warp) lifting a selection of them up, and running another string (the weft) between the two layers, creating a crosshatch. …

The Jacquard loom, though, could process information about which of those strings should be lifted up and in what order. That information was stored in punch cards—often 2,000 or more strung together. The holes in the punch cards would let through only a selection of the rods that lifted the warp strings. In other words, the machine could replace the role of a person manually selecting which strings would appear on top. Once the punch cards were created, Jacquard looms could quickly make pictures with subtle curves and details that earlier would have take months to complete. …

… As Ada Lovelace wrote him: “We may say most aptly that the Analytical Engine weaves algebraical patterns just as the Jacquard-loom weaves flowers and leaves.”

For anyone who’s very curious about Jacquard looms, there’s a June 25, 2019 Objects and Stories article (Programming patterns: the story of the Jacquard loom) on the UK’s Science and Industry Museum (in Manchester) website.

Artificial organic neuron mimics characteristics of biological nerve cells

There’s a possibility that in the future, artificial neurons could be used for medical treatment according to a January 12, 2023 news item on phys.org,

Researchers at Linköping University (LiU), Sweden, have created an artificial organic neuron that closely mimics the characteristics of biological nerve cells. This artificial neuron can stimulate natural nerves, making it a promising technology for various medical treatments in the future.

Work to develop increasingly functional artificial nerve cells continues at the Laboratory for Organic Electronics, LOE. In 2022, a team of scientists led by associate professor Simone Fabiano demonstrated how an artificial organic neuron could be integrated into a living carnivorous plant [emphasis mine] to control the opening and closing of its maw. This synthetic nerve cell met two of the 20 characteristics that differentiate it from a biological nerve cell.

I wasn’t expecting a carnivorous plant, living or otherwise. Sadly, they don’t seem to have been able to include it in this image although the ‘green mitts’ are evocative,

Caption: Artificial neurons created by the researchers at Linköping University. Credit: Thor Balkhed

A January 13, 2023 Linköping University (LiU) press release by Mikael Sönne (also on EurkeAlert but published January 12, 2023), which originated the news item, delves further into the work,

In their latest study, published in the journal Nature Materials, the same researchers at LiU have developed a new artificial nerve cell called “conductance-based organic electrochemical neuron” or c-OECN, which closely mimics 15 out of the 20 neural features that characterise biological nerve cells, making its functioning much more similar to natural nerve cells.

“One of the key challenges in creating artificial neurons that effectively mimic real biological neurons is the ability to incorporate ion modulation. Traditional artificial neurons made of silicon can emulate many neural features but cannot communicate through ions. In contrast, c-OECNs use ions to demonstrate several key features of real biological neurons”, says Simone Fabiano, principal investigator of the Organic Nanoelectronics group at LOE.

In 2018, this research group at Linköping University was one of the first to develop organic electrochemical transistors based on n-type conducting polymers, which are materials that can conduct negative charges. This made it possible to build printable complementary organic electrochemical circuits. Since then, the group has been working to optimise these transistors so that they can be printed in a printing press on a thin plastic foil. As a result, it is now possible to print thousands of transistors on a flexible substrate and use them to develop artificial nerve cells.

In the newly developed artificial neuron, ions are used to control the flow of electronic current through an n-type conducting polymer, leading to spikes in the device’s voltage. This process is similar to that which occurs in biological nerve cells. The unique material in the artificial nerve cell also allows the current to be increased and decreased in an almost perfect bell-shaped curve that resembles the activation and inactivation of sodium ion channels found in biology.

“Several other polymers show this behaviour, but only rigid polymers are resilient to disorder, enabling stable device operation”, says Simone Fabiano

In experiments carried out in collaboration with Karolinska Institute (KI), the new c-OECN neurons were connected to the vagus nerve of mice. The results show that the artificial neuron could stimulate the mice’s nerves, causing a 4.5% change in their heart rate.

The fact that the artificial neuron can stimulate the vagus nerve itself could, in the long run, pave the way for essential applications in various forms of medical treatment. In general, organic semiconductors have the advantage of being biocompatible, soft, and malleable, while the vagus nerve plays a key role, for example, in the body’s immune system and metabolism.

The next step for the researchers will be to reduce the energy consumption of the artificial neurons, which is still much higher than that of human nerve cells. Much work remains to be done to replicate nature artificially.

“There is much we still don’t fully understand about the human brain and nerve cells. In fact, we don’t know how the nerve cell makes use of many of these 15 demonstrated features. Mimicking the nerve cells can enable us to understand the brain better and build circuits capable of performing intelligent tasks. We’ve got a long road ahead, but this study is a good start,” says Padinhare Cholakkal Harikesh, postdoc and main author of the scientific paper.

Here’s a link to and a citation for the paper,

Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons by Padinhare Cholakkal Harikesh, Chi-Yuan Yang, Han-Yan Wu, Silan Zhang, Mary J. Donahue, April S. Caravaca, Jun-Da Huang, Peder S. Olofsson, Magnus Berggren, Deyu Tu & Simone Fabiano. Nature Materials volume 22, pages 242–248 (2023) DOI: https://doi.org/10.1038/s41563-022-01450-8 Published online: 12 January 2023 Issue Date: February 2023

This paper is open access.

Insect-inspired microphones

I was hoping that there would be some insect audio files but this research is more about their role as inspiration for a new type of microphone than the sounds they make themselves. From a May 10, 2023 Acoustical Society of America news release (also on EurekAlert),

What can an insect hear? Surprisingly, quite a lot. Though small and simple, their hearing systems are highly efficient. For example, with a membrane only 2 millimeters across, the desert locust can decompose frequencies comparable to human capability. By understanding how insects perceive sound and using 3D-printing technology to create custom materials, it is possible to develop miniature, bio-inspired microphones.

The displacement of the wax moth Acroia grisella membrane, which is one of the key sources of inspiration for designing miniature, bio-inspired microphones. Credit: Andrew Reid

Andrew Reid of the University of Strathclyde in the U.K. will present his work creating such microphones, which can autonomously collect acoustic data with little power consumption. His presentation, “Unnatural hearing — 3D printing functional polymers as a path to bio-inspired microphone design,” will take place Wednesday, May 10 [2023], at 10:05 a.m. Eastern U.S. in the Northwestern/Ohio State room, as part of the 184th Meeting of the Acoustical Society of America running May 8-12 at the Chicago Marriott Downtown Magnificent Mile Hotel.

“Insect ears are ideal templates for lowering energy and data transmission costs, reducing the size of the sensors, and removing data processing,” said Reid.

Reid’s team takes inspiration from insect ears in multiple ways. On the chemical and structural level, the researchers use 3D-printing technology to fabricate custom materials that mimic insect membranes. These synthetic membranes are highly sensitive and efficient acoustic sensors. Without 3D printing, traditional, silicon-based attempts at bio-inspired microphones lack the flexibility and customization required.

“In images, our microphone looks like any other microphone. The mechanical element is a simple diaphragm, perhaps in a slightly unusual ellipsoid or rectangular shape,” Reid said. “The interesting bits are happening on the microscale, with small variations in thickness and porosity, and on the nanoscale, with variations in material properties such as the compliance and density of the material.”

More than just the material, the entire data collection process is inspired by biological systems. Unlike traditional microphones that collect a range of information, these microphones are designed to detect a specific signal. This streamlined process is similar to how nerve endings detect and transmit signals. The specialization of the sensor enables it to quickly discern triggers without consuming a lot of energy or requiring supervision.

The bio-inspired sensors, with their small size, autonomous function, and low energy consumption, are ideal for applications that are hazardous or hard to reach, including locations embedded in a structure or within the human body.

Bio-inspired 3D-printing techniques can be applied to solve many other challenges, including working on blood-brain barrier organoids or ultrasound structural monitoring.

Here’s a link to and a citation for the paper,

Unnatural hearing—3D printing functional polymers as a path to bio-inspired microphone design by Andrew Reid. J Acoust Soc Am 153, A195 (2023) or JASA (Journal of the Acoustical Sociey of America) Volume 153, Issue 3_supplement March 2023 DOI: https://doi.org/10.1121/10.0018636

You will find the abstract but I wish you good luck with finding the paper online; I wasn’t able and am guessing it’s available on paper only.

Plastic waste as a valuable soil additive

There’s some mildly encouraging news about a way to get rid of plastic waste,

Caption: Plastic waste in a creek bed at Fairmount Park in Riverside, Calif. David Danelski/UCR. Credit: Photo by David Danelski/UCR

This January 9, 2023 news item on ScienceDaily describes research into turning plastic waste into useful products,

University of California, Riverside, scientists have moved a step closer to finding a use for the hundreds of millions of tons of plastic waste produced every year that often winds up clogging streams and rivers and polluting our oceans.

In a recent study, Kandis Leslie Abdul-Aziz, a UCR assistant professor of chemical and environmental engineering, and her colleagues detailed a method to convert plastic waste into a highly porous form of charcoal or char that has a whopping surface area of about 400 square meters per gram of mass.

Such charcoal captures carbon and could potentially be added to soil to improve soil water retention and aeration of farmlands. It could also fertilize the soil as it naturally breaks down. Abdul-Aziz, however, cautioned that more work needs to be done to substantiate the utility of such char in agriculture.

A January 6, 2023 University of California at Riverside (UC Riverside or UCR) news release (also on EurekAlert) by David Danelski, which originated the news item, provides more detail about the work

The plastic-to-char process was developed at UC Riverside’s Marlan and Rosemary Bourns College of Engineering. It involved mixing one of two common types of plastic with corn waste — the leftover stalks, leaves, husks, and cobs — collectively known as corn stover. The mix was then cooked with highly compressed hot water, a process known as hydrothermal carbonization.

The highly porous char was produced using polystyrene, the plastic used for Styrofoam packaging, and polyethylene terephthalate, or PET, the material commonly used to make water and soda bottles, among many other products.

The study followed an earlier successful effort to use corn stover alone to make activated charcoal used to filter pollutants from drinking water. In the earlier study, charcoal made from corn stover alone activated with potassium hydroxide was able to absorb 98% of the pollutant vanillin from test water samples. 

In the follow-up study, Abdul-Aziz and her colleagues wanted to know if activated charcoal made from a combination of corn stover and plastic also could be an effective water treatment medium. If so, plastic waste could be repurposed to clean up water pollution. But the activated charcoal made from the mix absorbed only about 45% of vanillin in test water samples – making it ineffective for water cleanups, she said.  

“We theorize that there could be still some residual plastic on the surface of the materials, which is preventing the absorption of some of these (vanillin) molecules on the surface,” she said.

Still, the ability to make highly porous charcoal by combining plastic and plant biomass waste is an important discovery, as detailed in the paper, “Synergistic and Antagonistic Effects of the Co-Pyrolysis of Plastics and Corn Stover to Produce Char and Activated Carbon,” published in the journal ACS Omega. The lead author is Mark Gale, a former UCR doctoral student who is now a lecturer at Harvey Mudd College. UCR undergraduate student Peter Nguyen is a co-author and Abdul-Aziz is the corresponding author.  

“It could be a very useful biochar because it is a very high surface area material,” Abdul-Aziz said. “So, if we just stop at the char and not make it in that turn into activated carbon, I think there are a lot of useful ways that we can utilize it.” 

Plastic is essentially a solid form of petroleum that accumulates in the environment, where it pollutes, entangles, and chokes and kills fish, birds, and other animals that inadvertently ingest it. Plastics also break down into micro particles that can get into our bodies and damage cells or induce inflammatory and immune reactions.

Unfortunately, it costs more to recycle used plastic than it costs to make new plastic from petroleum. 

Abdul-Aziz’s laboratory takes a different approach to recycling. It is devoted to putting pernicious waste products such as plastic and plant biomass waste back into the economy by upcycling them into valuable commodities.

“I feel like we have more of an agnostic approach to plastic recycling when you can throw it in (with biomass) and use the char to better the soil,” she said.  “That’s what we’re thinking.”

Here’s a link to and a citation for the paper,

Synergistic and Antagonistic Effects of the Co-Pyrolysis of Plastics and Corn Stover to Produce Char and Activated Carbon by Mark Gale, Peter M. Nguyen, and Kandis Leslie Gilliard-AbdulAziz. ACS Omega 2023, 8, 1, 380–390 Publication Date:December 21, 2022 DOI: https://doi.org/10.1021/acsomega.2c04815 Copyright © 2022 The Authors. Published by American Chemical Society

This paper appears to be open access.

Pusan National University researchers explore artificial intelligence (AI) for designing fashion

Caption: Researchers from Pusan National University in Korea have conducted an in-depth study exploring the use of collaborative AI models to create new designs and the engagement of complex systems. This encourages human-AI collaborative designing which increases efficiency and improves sustainability. Credit:Yoon Kyung Lee from Pusan National University

A Korean researcher is exploring what a collaborative relationship between fashion designers and artificial intelligence (AI) would look like according to a January 6 ,2023 Pusan National University press release (also on EurekAlert but published January 12, 2023),

The use of artificial intelligence (AI) in the fashion industry has grown significantly in recent years. AI is being used for tasks such as personalizing fashion recommendations for customers, optimizing supply chain management, automating processes, and improving sustainability to reduce waste. However, creative processes in fashion designing continue to be human driven, mostly, and not a lot of research exists in the realm of using AI for designing in fashion. Moreover, studies are generally done with data scientists, who build the AI platforms and are involved with the technologic aspect of the process. However, the other side of this equation, i.e., designers themselves, are not roped into research often.

To investigate the practical applicability of AI models to implement creative designs and work with human designers, Assistant Professor Prof. Yoon Kyung Lee from Pusan National University in Korea conducted an in-depth study. Her study was made available online in Thinking Skills and Creativity on September 15, 2022, and subsequently published in Volume 46 of the Journal in December 2022.

At a time when AI is so deeply ingrained into our lives, this study started instead with considering what a human can do better than AI,” says Prof. Lee, explaining her motivation behind the study. “Could there be an effective collaboration between humans and AI for the purpose of creative design?”

Prof. Lee started with generating new textile designs using deep convolution generative adversarial networks (DC-GANs) and cycle-GANs. The outputs from these models were compared to similar designs produced by design students.

The comparison revealed that though designs produced by both were similar, the biggest difference was the uniqueness and originality seen in the human designs, which came from the person’s experiences. However, the use of AI in repetitive tasks can improve the efficiency of designers and frees up their time to focus on more high-difficulty creative work. AI-generated designs can also be used as a learning tool for people who lack expertise in fashion want to explore their creativity. These people can create designs with assistance from AI.  Thus, Prof. Lee proposes a human-AI collaborative network that integrates GANs with human creativity to produce designs. The professor also defined and studied the various elements of a complex system that are involved in human-AI collaborated design. She also went on to establish a human-AI model in which the designer collaborates with AI to create a novel design idea. The model is built in such a way that if the designer shares their creative process and ideas with others, the system can interconnect and evolve, thereby improving its designs.

The fashion industry can leverage this to foresee changes in the fashion industry and offer recommendations and co-creation services. Setting objectives, variables, and limits is part of the designer’s job in the Human-AI collaborative design environment. Therefore, their work should go beyond only the visual aspect and instead cover a variety of disciplines.

In the future, everybody will be able to be a creator or designer with the help of AI models. So far, only professional fashion designers have been able to design and showcase clothes. But in the future, it will be possible for anyone to design the clothes they want and showcase their creativity,” concludes Prof. Lee.

We hope her dreams are very close to realization!

This is the first time I’ve seen a press release where the writer wishes well for the researcher. Nice touch!

Here’s a link to and a citation for the paper,

How complex systems get engaged in fashion design creation: Using artificial intelligence by Yoon Kyung Lee. Thinking Skills and Creativity Volume 46, December 2022, 101137 DOI: https://doi.org/10.1016/j.tsc.2022.101137

This paper is behind a paywall.

‘Poetic meditation’ could enhance qualitative data analysis

Poetry can provide research inspiration. Courtesy: University of Birmingham

I like the opening line in this January 10, 2023 University of Birmingham press release for how it relates poetry to data analysis (Note: A link has been removed),

‘Poetic meditation’ can enhance qualitative data analysis by offering researchers improved sensory experience and an ability to approach data analysis from unexpected directions, a new study reveals.

(For some reason the first line/lede was rewritten for the January 10, 2023 news item on phys.org and for the copy found on EurekAlert.)

The rest of the press release (Note: A link has been removed),

The authors of the study explain that meditation allows researchers to train their body for data collection – improving their capacity to capture unexpected insights and deal with uncertainty and transformation as they incorporate novel interpretations into their research.

The skills enable researchers to understand novel cultural practices. Poetic meditations may prepare the researchers to see the world with different eyes.

Publishing their findings in Journal of Marketing Management, researchers at the University of Birmingham and Kedge Business School, Bordeaux, France, outline a radical new process to help researchers to enhance their work.

Pilar Rojas-Gaviria, from the University of Birmingham, commented: “Scientific wonder prompts us to ask questions about the purpose of consumption, the way markets are created and extended, and how life and human experience are attached to both.

“Academics have always developed theses to resolve questions and explain events, but mindfulness practice can make our bodies an instrument of research – gathering data from different environmental sources. Poetry offers qualitative researchers a useful tool to refigure their surroundings and shed new light on the data they work with.”

Poetic meditation allows researchers to reveal unexpected or previously unnoticed features of market and consumption environments – rather than simply reproducing existing categories and theories.

By recording and presenting poetic meditations through audio media, the researchers demonstrate poetry’s potential to stimulate new ideas that can influence how academics approach data collection or analysis.

The researchers demonstrate the technique with two poetic meditations focusing on the colours green and red. These audio presentations settle the listener into a relaxed state, before taking the listener on an intellectual journey into poetry and philosophy, and ending with a period of meditation.

Robin Canniford, from Kedge Business School, commented: “We believe this technique can inspire researchers to include sound recordings and data presentations in their publications – creating a different approach to communicating and understandingtheir findings.

“Creating a poetic meditation might be a first step in a researcher’s journey that uncovers new sensations, interpretations, and questions – reaching towards unconventional and impactful responses in our research, even when answers seem to be far in the future.”

Poetry in marketing is already proven to be an effective research method to challenge conventional thinking in areas such as branding. It has helped marketers understand markets and consumers – engaging in conversations that capture how people consume products and services.

Here’s a link to and a citation for the paper (where you’ll find an audio file of this paper and supplementary audio files of poetry),

Poetic meditation: (re)presenting the mystery of the field by Pilar Rojas-Gaviria & Robin Canniford. Journal Marketing Management Volume 38, 2022 – Issue 15-16: Presenting Marketing Differently Pages 1821-1831 DOI: 10.1080/0267257X.2022.2112611 Published online: 22 Nov 2022

This paper is open access and because I quite like it, here’s the,

ABSTRACT

How does one use one’s body in qualitative research? Poetic meditation is a technique that offers to enhance researchers’ sensory capacities and embodied practices in research. By using mindfulness practice as a means to relax and focus on sensations, scholars can prepare to embody data collection so as to encounter multiple environmental features including, but not limited to the visual and textual. So too is poetic meditation intended as a tool to help researchers to encounter mysterious moments and to refigure their surroundings in ways that explicitly reframe sensemaking and representation. This companion essay to recorded poetic meditations encourages researchers to embrace mystery as a pathway to knowledge-making, and to build confidence to creatively step outside of common linguistic and theoretical modes.

Enjoy!

Virtual panel discussion: Canadian Strategies for Responsible Neurotechnology Innovation on May 16, 2023

The Canadian Science Policy Centre (CSPC) sent a May 11, 2023 notice (via email) about an upcoming event but first, congratulations (Bravo!) are in order,

The Science Meets Parliament [SMP] Program 2023 is now complete and was a huge success. 43 Delegates from across Canada met with 62 Parliamentarians from across the political spectrum on the Hill on May 1-2, 2023.

The SMP Program is championed by CSPC and Canada’s Chief Science Advisor, Dr. Mona Nemer [through the Office of the Chief Science Advisor {OCSA}].

This Program would not have been possible without the generous support of our sponsors: The Royal Military College of Canada, The Stem Cell Network, and the University of British Columbia.

There are 443 seats in Canada’s Parliament with 338 in the House of Commons and 105 in the Senate and 2023 is the third time the SMP programme has been offered. (It was previously held in 2018 and 2022 according to the SMP program page.)

The Canadian programme is relatively new compared to Australia where they’ve had a Science Meets Parliament programme since 1999 (according to a March 20, 2017 essay by Ken Baldwin, Director of Energy Change Institute at Australian National University for The Conversation). The Scottish have had a Science and the Parliament programme since 2000 (according to this 2022 event notice on the Royal Society of Chemistry’s website).

By comparison to the other two, the Canadian programme is a toddler. (We tend not to recognize that walking for the major achievement it is.) So, bravo to the CSPC and OCSA on getting 62 Parliamentarians to make time in their schedules to meet a scientist.

Responsible neurotechnology innovation?

From the Canadian Strategies for Responsible Neurotechnology Innovation event page on the CSPC website,

Advances in neurotechnology are redefining the possibilities of improving neurologic health and mental wellbeing, but related ethical, legal, and societal concerns such as privacy of brain data, manipulation of personal autonomy and agency, and non-medical and dual uses are increasingly pressing concerns [emphasis mine]. In this regard, neurotechnology presents challenges not only to Canada’s federal and provincial health care systems, but to existing laws and regulations that govern responsible innovation. In December 2019, just before the pandemic, the OECD [Organisation for Economic Cooperation and Development] Council adopted a Recommendation on Responsible Innovation in Neurotechnology. It is now urging that member states develop right-fit implementation strategies.

What should these strategies look like for Canada? We will propose and discuss opportunities that balance and leverage different professional and governance approaches towards the goal of achieving responsible innovation for the current state of the art, science, engineering, and policy, and in anticipation of the rapid and vast capabilities expected for neurotechnology in the future by and for this country.

Link to the full OECD Recommendation on Responsible Innovation in Neurotechnology

Date: May 16 [2023]

Time: 12:00 pm – 1:30 pm EDT

Event Category: Virtual Session [on Zoom]

Registration Page: https://us02web.zoom.us/webinar/register/WN_-g8d1qubRhumPSCQi6WUtA

The panelists are:

Dr. Graeme Moffat
Neurotechnology entrepreneur & Senior Fellow, Munk School of Global Affairs & Public Policy [University of Toronto]

Dr. Graeme Moffat is a co-founder and scientist with System2 Neurotechnology. He previously was Chief Scientist and VP of Regulatory Affairs at Interaxon, Chief Scientist with ScienceScape (later Chan-Zuckerberg Meta), and a research engineer at Neurelec (a division of Oticon Medical). He served as Managing Editor of Frontiers in Neuroscience, the largest open access scholarly journal series in the field of neuroscience. Dr. Moffat is a Senior Fellow at the Munk School of Global Affairs and Public Policy and an advisor to the OECD’s neurotechnology policy initiative.

Professor Jennifer Chandler
Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa

Jennifer Chandler is Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa. She leads the “Neuroethics Law and Society” Research Pillar for the Brain Mind Research Institute and sits on its Scientific Advisory Council. Her research focuses on the ethical, legal and policy issues in brain sciences and the law. She teaches mental health law and neuroethics, tort law, and medico-legal issues. She is a member of the advisory board for CIHR’s Institute for Neurosciences, Mental Health and Addiction (IMNA) and serves on international editorial boards in the field of law, ethics and neuroscience, including Neuroethics, the Springer Book Series Advances in Neuroethics, and the Palgrave-MacMillan Book Series Law, Neuroscience and Human Behavior. She has published widely in legal, bioethical and health sciences journals and is the co-editor of the book Law and Mind: Mental Health Law and Policy in Canada (2016). Dr. Chandler brings a unique perspective to this panel as her research focuses on the ethical, legal and policy issues at the intersection of the brain sciences and the law. She is active in Canadian neuroscience research funding policy, and regularly contributes to Canadian governmental policy on contentious matters of biomedicine.

Ian Burkhart
Neurotech Advocate and Founder of BCI [brain-computer interface] Pioneers Coalition

Ian is a C5 tetraplegic [also known as quadriplegic] from a diving accident in 2010. He participated in a ground-breaking clinical trial using a brain-computer interface to control muscle stimulation. He is the founder of the BCI Pioneers Coalition, which works to establish ethics, guidelines and best practices for future patients, clinicians, and commercial entities engaging with BCI research. Ian serves as Vice President of the North American Spinal Cord Injury Consortium and chairs their project review committee. He has also worked with Unite2Fight Paralysis to advocate for $9 million of SCI research in his home state of Ohio. Ian has been a Reeve peer mentor since 2015 and helps lead two local SCI networking groups. As the president of the Ian Burkhart Foundation, he raises funds for accessible equipment for the independence of others with SCI. Ian is also a full-time consultant working with multiple medical device companies.

Andrew Atkinson
Manager, Emerging Science Policy, Health Canada

Andrew Atkinson is the Manager of the Emerging Sciences Policy Unit under the Strategic Policy Branch of Health Canada. He oversees coordination of science policy issues across the various regulatory and research programs under the mandate of Health Canada. Prior to Health Canada, he was a manager under Environment Canada’s CEPA new chemicals program, where he oversaw chemical and nanomaterial risk assessments, and the development of risk assessment methodologies. In parallel to domestic work, he has been actively engaged in ISO [International Organization for Standardization and OECD nanotechnology efforts.

Andrew is currently a member of the Canadian delegation to the OECD Working Party on Biotechnology, Nanotechnology and Converging Technologies (BNCT). BNCT aims to contribute original policy analysis on emerging science and technologies, such as gene editing and neurotechnology, including messaging to the global community, convening key stakeholders in the field, and making ground-breaking proposals to policy makers.

Professor Judy Illes
Professor, Division of Neurology, Department of Medicine, Faculty of Medicine, UBC [University of British Columbia]

Dr. Illes is Professor of Neurology and Distinguished Scholar in Neuroethics at the University of British Columbia. She is the Director of Neuroethics Canada, and among her many leadership positions in Canada, she is Vice Chair of the Canadian Institutes of Health Research (CIHR) Advisory Board of the Institute on Neuroscience, Mental Health and Addiction (INMHA), and chair of the International Brain Initiative (www.internationalbraininitiative.org; www.canadianbrain.ca), Director at Large of the Canadian Academy of Health Sciences, and a member of the Board of Directors of the Council of Canadian Academies.

Dr. Illes is a world-renown expert whose research, teaching and outreach are devoted to ethical, legal, social and policy challenges at the intersection of the brain sciences and biomedical ethics. She has made ground breaking contributions to neuroethical thinking for neuroscience discovery and clinical translation across the life span, including in entrepreneurship and in the commercialization of health care. Dr. Illes has a unique and comprehensive overview of the field of neurotechnology and the relevant sectors in Canada.

One concern I don’t see mentioned is bankruptcy (in other words, what happens if the company that made your neural implant goes bankrupt?) either in the panel description or in the OECD recommendation. My April 5, 2022 posting “Going blind when your neural implant company flirts with bankruptcy (long read)” explored that topic and while many of the excerpted materials present a US perspective, it’s easy to see how it could also apply in Canada and elsewhere.

For those of us on the West Coast, this session starts at 9 am. Enjoy!