Category Archives: synthetic biology

Transforming bacterial cells into living computers

If this were a movie instead of a press release, we’d have some ominous music playing over a scene in a pristine white lab. Instead, we have a November 13, 2022 Technion-Israel Institute of Technology press release (also on EurekAlert) where the writer tries to highlight the achievement while downplaying the sort of research (in synthetic biology) that could have people running for the exits,

Bringing together concepts from electrical engineering and bioengineering tools, Technion and MIT [Massachusetts Institute of Technology] scientists collaborated to produce cells engineered to compute sophisticated functions – “biocomputers” of sorts. Graduate students and researchers from Technion – Israel Institute of Technology Professor Ramez Daniel’s Laboratory for Synthetic Biology & Bioelectronics worked together with Professor Ron Weiss from the Massachusetts Institute of Technology to create genetic “devices” designed to perform computations like artificial neural circuits. Their results were recently published in Nature Communications.

The genetic material was inserted into the bacterial cell in the form of a plasmid: a relatively short DNA molecule that remains separate from the bacteria’s “natural” genome. Plasmids also exist in nature, and serve various functions. The research group designed the plasmid’s genetic sequence to function as a simple computer, or more specifically, a simple artificial neural network. This was done by means of several genes on the plasmid regulating each other’s activation and deactivation according to outside stimuli.

What does it mean that a cell is a circuit? How can a computer be biological?

At its most basic level, a computer consists of 0s and 1s, of switches. Operations are performed on these switches: summing them, picking the maximal or minimal value between them, etc. More advanced operations rely on the basic ones, allowing a computer to play chess or fly a rocket to the moon.

In the electronic computers we know, the 0/1 switches take the form of transistors. But our cells are also computers, of a different sort. There, the presence or absence of a molecule can act as a switch. Genes activate, trigger or suppress other genes, forming, modifying, or removing molecules. Synthetic biology aims (among other goals) to harness these processes, to synthesize the switches and program the genes that would make a bacterial cell perform complex tasks. Cells are naturally equipped to sense chemicals and to produce organic molecules. Being able to “computerize” these processes within the cell could have major implications for biomanufacturing and have multiple medical applications.

The Ph.D students (now doctors) Luna Rizik and Loai Danial, together with Dr. Mouna Habib, under the guidance of Prof. Ramez Daniel from the Faculty of Biomedical Engineering at the Technion, and in collaboration with Prof. Ron Weiss from the Synthetic Biology Center, MIT,  were inspired by how artificial neural networks function. They created synthetic computation circuits by combining existing genetic “parts,” or engineered genes, in novel ways, and implemented concepts from neuromorphic electronics into bacterial cells. The result was the creation of bacterial cells that can be trained using artificial intelligence algorithms.

The group were able to create flexible bacterial cells that can be dynamically reprogrammed to switch between reporting whether at least one of a test chemicals, or two, are present (that is, the cells were able to switch between performing the OR and the AND functions). Cells that can change their programming dynamically are capable of performing different operations under different conditions. (Indeed, our cells do this naturally.) Being able to create and control this process paves the way for more complex programming, making the engineered cells suitable for more advanced tasks. Artificial Intelligence algorithms allowed the scientists to produce the required genetic modifications to the bacterial cells at a significantly reduced time and cost.

Going further, the group made use of another natural property of living cells: they are capable of responding to gradients. Using artificial intelligence algorithms, the group succeeded in harnessing this natural ability to make an analog-to-digital converter – a cell capable of reporting whether the concentration of a particular molecule is “low”, “medium”, or “high.” Such a sensor could be used to deliver the correct dosage of medicaments, including cancer immunotherapy and diabetes drugs.

Of the researchers working on this study, Dr. Luna Rizik and Dr. Mouna Habib hail from the Department of Biomedical Engineering, while Dr. Loai Danial is from the Andrew and Erna Viterbi Faculty of Electrical Engineering. It is bringing the two fields together that allowed the group to make the progress they did in the field of synthetic biology.

This work was partially funded by the Neubauer Family Foundation, the Israel Science Foundation (ISF), European Union’s Horizon 2020 Research and Innovation Programme, the Technion’s Lorry I. Lokey interdisciplinary Center for Life Sciences and Engineering, and the [US Department of Defense] Defense Advanced Research Projects Agency [DARPA].

Here’s a link to and a citation for the paper,

Synthetic neuromorphic computing in living cells by Luna Rizik, Loai Danial, Mouna Habib, Ron Weiss & Ramez Daniel. Nature Communications volume 13, Article number: 5602 (2022) DOIL https://doi.org/10.1038/s41467-022-33288-8 Published: 24 September 2022

This paper is open access.

Coelacanth (a living fish fossil) may provide clue to making artificial organs for transplantation

An ancient fish called a ‘living fossil’ has helped researchers understand the basics of stem cells. This will further stem cell research and be a step in the direction of creating artificial organs. The coelacanth fish is 400 million years old. Photo: Canva. Courtesy: university of Copenhagen

A December 12, 2022 University of Copenhagen press release (also on EurekAlert) describes work which may have an impact on organ transplants,

A beating heart. A complicated organ that pumps blood around the body of animals and humans. Not exactly something you associate with a Petri dish in a laboratory.

But that may change in the future, and save the lives of people whose own organs fail. And the research is now one step closer to that.

To design artificial organs you first have to understand stem cells and the genetic instructions that govern their remarkable properties.

Professor Joshua Mark Brickman at the Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) has unearthed the evolutionary origins of a master gene that acts on a network of genes instructing stem cells.

“The first step in stem cell research is to understand the gene regulatory network that supports so-called pluripotent stem cells. Understanding how their function was perfected in evolution can help provide knowledge about how to construct better stem cells,” says Joshua Mark Brickman.

Pluripotent stem cells are stem cells that can develop into all other cells. For example, heart cells. If we understand how the pluripotent stem cells develop into a heart, then we are one step closer to replicating this process in a laboratory.

What are stem cells?

Stem cells are non-specialized cells found in all multicellular organisms. Stem cells have two properties that distinguish them from other cell types. On the one hand, stem cells can undergo an unlimited number of cell divisions (mitoses), and on the other hand, stem cells have the ability to mature (differentiate) into several cell types.

A pluripotent stem cell is a cell that can develop into any other cell, such as a heart cell, hair cell or eye cell.

A ‘living fossil’ is the key to understanding stem cells

The pluripotent property of stem cells – meaning that the cells can develop into any other cell – is something that has traditionally been associated with mammals.

Now Joshua Mark Brickman and his colleagues have found that the master gene that controls stem cells and supports pluripotency also exists in a fish called coelacanth. In humans and mice this gene is called OCT4 and they found that the coelacanth version could replace the mammalian one in mouse stem cells.

In addition to the fact that the coelacanth is in a different class from mammals, it has also been called a ‘living fossil,’ since approximately 400 million years ago it developed into the form it has today. It has fins shaped like limbs and is therefore thought to resemble the first animals to move from the sea onto land.

“By studying its cells, you can go back in evolution, so to speak,” explains Assistant Professor Molly Lowndes.

Assistant Professor Woranop Sukparangsi continues: “The central factor controlling the gene network in stem cells is found in the coelacanth. This shows that the network already existed early in evolution, potentially as far back as 400 million years ago.”

And by studying the network in other species, such as this fish, the researchers can distill what the basic concepts that support a stem cell are.

“The beauty of moving back in evolution is that the organisms become simpler. For example, they have only one copy of some essential genes instead of many versions. That way, you can start to separate what is really important for stem cells and use that to improve how you grow stem cells in a dish,” says PhD student Elena Morganti.

Sharks, mice and kangaroos

In addition to the researchers finding out that the network around stem cells is much older than previously thought, and found in ancient species, they also learned how exactly evolution has modified the network of genes to support pluripotent stem cells.

The researchers looked at the stem cell genes from over 40 animals. For example sharks, mice and kangaroos. The animals were selected to provide a good sampling of the main branch points in evolution.

The researchers used artificial intelligence to build three-dimensional models of the different OCT4 proteins. The researchers could see that the general structure of the protein is maintained across evolution. While the regions of these proteins known to be important for stem cells do not change, species-specific differences in apparently unrelated regions of these proteins alter their orientation, potentially affecting how well it supports pluripotency.

“This a very exciting finding about evolution that would not have been possible prior to the advent of new technologies. You can see it as evolution cleverly thinking, we don not tinker with the ‘engine in the car’, but we can move the engine around and improve the drive train to see if it makes the car go faster,” says Joshua Mark Brickman.

The study is a collaborative project spanning Australia, Japan and Europe, with vital strategic partnerships with the groups of Sylvie Mazan at the Oceanological Observatory of Banyuls-sur-Mer in France and professor Guillermo Montoya at Novo Nordisk Foundation Center for Protein Research at University of Copenhagen.

Caption: Coelacanth-fish and other animals. Credit: By Woranop Sukparangsi Courtesy: University of Copenhagen

Here’s a link to and a citation for the paper,

Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency by Woranop Sukparangsi, Elena Morganti, Molly Lowndes, Hélène Mayeur, Melanie Weisser, Fella Hammachi, Hanna Peradziryi, Fabian Roske, Jurriaan Hölzenspies, Alessandra Livigni, Benoit Gilbert Godard, Fumiaki Sugahara, Shigeru Kuratani, Guillermo Montoya, Stephen R. Frankenberg, Sylvie Mazan & Joshua M. Brickman. Nature Communications volume 13, Article number: 5537 (2022) DOI: https://doi.org/10.1038/s41467-022-32481-z Published: 21 September 2022

This paper is open access.

Living photovoltaics with carbon nanotubes (CNTs)?

A September 12, 2022 news item on phys.org has an interesting lede,

“We put nanotubes inside of bacteria,” says Professor Ardemis Boghossian at EPFL’s School of Basic Sciences. “That doesn’t sound very exciting on the surface, but it’s actually a big deal. Researchers have been putting nanotubes in mammalian cells that use mechanisms like endocytosis, that are specific to those kinds of cells. Bacteria, on the other hand, don’t have these mechanisms and face additional challenges in getting particles through their tough exterior. Despite these barriers, we’ve managed to do it, and this has very exciting implications in terms of applications.”

A September 16, 2022 Ecole Polytechnique Fédérale de Lausanne (EPFL) press release (also on EurekAlert but published September 12, 2022), which originated the news item, goes on to describe this work in the field of ‘nanobionics,

Boghossian’s research focuses on interfacing artificial nanomaterials with biological constructs, including living cells. The resulting “nanobionic” technologies combine the advantages of both the living and non-living worlds. For years, her group has worked on the nanomaterial applications of single-walled carbon nanotubes (SWCNTs), tubes of carbon atoms with fascinating mechanical and optical properties.

These properties make SWCNTs [single-walled carbon nanotubes] ideal for many novel applications in the field of nanobiotechnology. For example, SWCNTs have been placed inside mammalian cells to monitor their metabolisms using near-infrared imaging. The insertion of SWCNTs in mammalian cells has also led to new technologies for delivering therapeutic drugs to their intracellular targets, while in plant cells they have been used for genome editing. SWCNTs have also been implanted in living mice to demonstrate their ability to image biological tissue deep inside the body.

Fluorescent nanotubes in bacteria: A first

In an article published in Nature Nanotechnology, Boghossian’s group with their international colleagues were able to “convince” bacteria to spontaneously take up SWCNTs by “decorating” them with positively charged proteins that are attracted by the negative charge of the bacteria’s outer membrane. The two types of bacteria explored in the study, Synechocystis and Nostoc, belong to the Cyanobacteria phylum, an enormous group of bacteria that get their energy through photosynthesis – like plants. They are also “Gram-negative”, which means that their cell wall is thin, and they have an additional outer membrane that “Gram-positive” bacteria lack.

The researchers observed that the cyanobacteria internalized SWCNTs through a passive, length-dependent and selective process. This process allowed the SWCNTs to spontaneously penetrate the cell walls of both the unicellular Synechocystis and the long, snake-like, multicellular Nostoc.

Following this success, the team wanted to see if the nanotubes can be used to image cyanobacteria – as is the case with mammalian cells. “We built a first-of-its-kind custom setup that allowed us to image the special near-infrared fluorescence we get from our nanotubes inside the bacteria,” says Boghossian.

Alessandra Antonucci, a former PhD student at Boghossian’s lab adds: “When the nanotubes are inside the bacteria, you could very clearly see them, even though the bacteria emit their own light. This is because the wavelengths of the nanotubes are far in the red, the near-infrared. You get a very clear and stable signal from the nanotubes that you can’t get from any other nanoparticle sensor. We’re excited because we can now use the nanotubes to see what is going on inside of cells that have been difficult to image using more traditional particles or proteins. The nanotubes give off a light that no natural living material gives off, not at these wavelengths, and that makes the nanotubes really stand out in these cells.”

“Inherited nanobionics”

The scientists were able to track the growth and division of the cells by monitoring the bacteria in real-time. Their findings revealed that the SWCNTs were being shared by the daughter cells of the dividing microbe.  “When the bacteria divide, the daughter cells inherent the nanotubes along with the properties of the nanotubes,” says Boghossian. “We call this ‘inherited nanobionics.’ It’s like having an artificial limb that gives you capabilities beyond what you can achieve naturally. And now imagine that your children can inherit its properties from you when they are born. Not only did we impart the bacteria with this artificial behavior, but this behavior is also inherited by their descendants. It’s our first demonstration of inherited nanobionics.”

Living photovoltaics

“Another interesting aspect is when we put the nanotubes inside the bacteria, the bacteria show a significant enhancement in the electricity it produces when it is illuminated by light,” says Melania Reggente, a postdoc with Boghossian’s group. “And our lab is now working towards the idea of using these nanobionic bacteria in a living photovoltaic.”

“Living” photovoltaics are biological energy-producing devices that use photosynthetic microorganisms. Although still in the early stages of development, these devices represent a real solution to our ongoing energy crisis and efforts against climate change.

“There’s a dirty secret in photovoltaic community,” says Boghossian. “It is green energy, but the carbon footprint is really high; a lot of CO2 is released just to make most standard photovoltaics. But what’s nice about photosynthesis is not only does it harness solar energy, but it also has a negative carbon footprint. Instead of releasing CO2, it absorbs it. So it solves two problems at once: solar energy conversion and CO2 sequestration. And these solar cells are alive. You do not need a factory to build each individual bacterial cell; these bacteria are self-replicating. They automatically take up CO2 to produce more of themselves.  This is a material scientist’s dream.”

Boghossian envisions a living photovoltaic device based on cyanobacteria that have automated control over electricity production that does not rely on the addition of foreign particles. “In terms of implementation, the bottleneck now is the cost and environmental effects of putting nanotubes inside of cyanobacteria on a large scale.”

With an eye towards large-scale implementation, Boghossian and her team are looking to synthetic biology for answers: “Our lab is now working towards bioengineering cyanobacteria that can produce electricity without the need for nanoparticle additives. Advancements in synthetic biology allow us to reprogram these cells to behave in totally artificial ways. We can engineer them so that producing electricity is literally in their DNA.”

Other contributors

University of Freiburg
Swiss Center for Electronics and Microtechnology
University of Salento
Sapienza University of Rome

Here’s a link to and a citation for the paper,

Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics by Alessandra Antonucci, Melania Reggente, Charlotte Roullier, Alice J. Gillen, Nils Schuergers, Vitalijs Zubkovs, Benjamin P. Lambert, Mohammed Mouhib, Elisabetta Carata, Luciana Dini & Ardemis A. Boghossian. Nature Nanotechnology (2022) DOI: https://doi.org/10.1038/s41565-022-01198-x Published: 12 September 2022

This paper is behind a paywall.

Implantable living pharmacy

I stumbled across a very interesting US Defense Advanced Research Projects Agency (DARPA) project (from an August 30, 2021 posting on Northwestern University’s Rivnay Lab [a laboratory for organic bioelectronics] blog),

Our lab has received a cooperative agreement with DARPA to develop a wireless, fully implantable ‘living pharmacy’ device that could help regulate human sleep patterns. The project is through DARPA’s BTO (biotechnology office)’s Advanced Acclimation and Protection Tool for Environmental Readiness (ADAPTER) program, meant to address physical challenges of travel, such as jetlag and fatigue.

The device, called NTRAIN (Normalizing Timing of Rhythms Across Internal Networks of Circadian Clocks), would control the body’s circadian clock, reducing the time it takes for a person to recover from disrupted sleep/wake cycles by as much as half the usual time.

The project spans 5 institutions including Northwestern, Rice University, Carnegie Mellon, University of Minnesota, and Blackrock Neurotech.

Prior to the Aug. 30, 2021 posting, Amanda Morris wrote a May 13, 2021 article for Northwestern NOW (university magazine), which provides more details about the project, Note: A link has been removed,

The first phase of the highly interdisciplinary program will focus on developing the implant. The second phase, contingent on the first, will validate the device. If that milestone is met, then researchers will test the device in human trials, as part of the third phase. The full funding corresponds to $33 million over four-and-a-half years. 

Nicknamed the “living pharmacy,” the device could be a powerful tool for military personnel, who frequently travel across multiple time zones, and shift workers including first responders, who vacillate between overnight and daytime shifts.

Combining synthetic biology with bioelectronics, the team will engineer cells to produce the same peptides that the body makes to regulate sleep cycles, precisely adjusting timing and dose with bioelectronic controls. When the engineered cells are exposed to light, they will generate precisely dosed peptide therapies. 

“This control system allows us to deliver a peptide of interest on demand, directly into the bloodstream,” said Northwestern’s Jonathan Rivnay, principal investigator of the project. “No need to carry drugs, no need to inject therapeutics and — depending on how long we can make the device last — no need to refill the device. It’s like an implantable pharmacy on a chip that never runs out.” 

Beyond controlling circadian rhythms, the researchers believe this technology could be modified to release other types of therapies with precise timing and dosing for potentially treating pain and disease. The DARPA program also will help researchers better understand sleep/wake cycles, in general.

“The experiments carried out in these studies will enable new insights into how internal circadian organization is maintained,” said Turek [Fred W. Turek], who co-leads the sleep team with Vitaterna [Martha Hotz Vitaterna]. “These insights will lead to new therapeutic approaches for sleep disorders as well as many other physiological and mental disorders, including those associated with aging where there is often a spontaneous breakdown in temporal organization.” 

For those who like to dig even deeper, Dieynaba Young’s June 17, 2021 article for Smithsonian Magazine (GetPocket.com link to article) provides greater context and greater satisfaction, Note: Links have been removed,

In 1926, Fritz Kahn completed Man as Industrial Palace, the preeminent lithograph in his five-volume publication The Life of Man. The illustration shows a human body bustling with tiny factory workers. They cheerily operate a brain filled with switchboards, circuits and manometers. Below their feet, an ingenious network of pipes, chutes and conveyer belts make up the blood circulatory system. The image epitomizes a central motif in Kahn’s oeuvre: the parallel between human physiology and manufacturing, or the human body as a marvel of engineering.

An apparatus in the embryonic stage of development at the time of this writing in June of 2021—the so-called “implantable living pharmacy”—could have easily originated in Kahn’s fervid imagination. The concept is being developed by the Defense Advanced Research Projects Agency (DARPA) in conjunction with several universities, notably Northwestern and Rice. Researchers envision a miniaturized factory, tucked inside a microchip, that will manufacture pharmaceuticals from inside the body. The drugs will then be delivered to precise targets at the command of a mobile application. …

The implantable living pharmacy, which is still in the “proof of concept” stage of development, is actually envisioned as two separate devices—a microchip implant and an armband. The implant will contain a layer of living synthetic cells, along with a sensor that measures temperature, a short-range wireless transmitter and a photo detector. The cells are sourced from a human donor and reengineered to perform specific functions. They’ll be mass produced in the lab, and slathered onto a layer of tiny LED lights.

The microchip will be set with a unique identification number and encryption key, then implanted under the skin in an outpatient procedure. The chip will be controlled by a battery-powered hub attached to an armband. That hub will receive signals transmitted from a mobile app.

If a soldier wishes to reset their internal clock, they’ll simply grab their phone, log onto the app and enter their upcoming itinerary—say, a flight departing at 5:30 a.m. from Arlington, Virginia, and arriving 16 hours later at Fort Buckner in Okinawa, Japan. Using short-range wireless communications, the hub will receive the signal and activate the LED lights inside the chip. The lights will shine on the synthetic cells, stimulating them to generate two compounds that are naturally produced in the body. The compounds will be released directly into the bloodstream, heading towards targeted locations, such as a tiny, centrally-located structure in the brain called the suprachiasmatic nucleus (SCN) that serves as master pacemaker of the circadian rhythm. Whatever the target location, the flow of biomolecules will alter the natural clock. When the solider arrives in Okinawa, their body will be perfectly in tune with local time.

The synthetic cells will be kept isolated from the host’s immune system by a membrane constructed of novel biomaterials, allowing only nutrients and oxygen in and only the compounds out. Should anything go wrong, they would swallow a pill that would kill the cells inside the chip only, leaving the rest of their body unaffected.

If you have the time, I recommend reading Young’s June 17, 2021 Smithsonian Magazine article (GetPocket.com link to article) in its entirety. Young goes on to discuss, hacking, malware, and ethical/societal issues and more.

There is an animation of Kahn’s original poster in a June 23, 2011 posting on openculture.com (also found on Vimeo; Der Mensch als Industriepalast [Man as Industrial Palace])

Credits: Idea & Animation: Henning M. Lederer / led-r-r.net; Sound-Design: David Indge; and original poster art: Fritz Kahn.

Xenobots (living robots) that can reproduce

Xenobots (living robots made from African frog (Xenopus laevis) frog cells) can now self-replicate. First mentioned here in a June 21, 2021 posting, xenobots have captured the imagination of various media outlets including the Canadian Broadcasting Corporation’s (CBC) Quirks and Quarks radio programme and blog where Amanda Buckiewicz posted a December 3, 2021 article about the latest xenobot development (Note: Links have been removed),

In a new study, Bongard [Joshua Bongard, a computer scientist at the University of Vermont] and his colleagues from Tufts University and Harvard’s Wyss Institute for Biologically Inspired Engineering found that the xenobots would autonomously collect loose single cells in their environment, gathering hundreds of cells together until new xenobots had formed.

“This took a little bit for us to wrap our minds around,” he said. “There’s no programming here. Instead, we’re designing or shaping these xenobots, and what they do, the way they behave, is based on shape.”

“We take a couple of thousand of those frog cells and we squish them together into a ball and put that in the bottom of a petri dish,” Bongard told Quirks & Quarks host Bob McDonald. 

“If you were to look into the dish, you would see some very small, what look like specks of pepper, moving about in the bottom of the petri dish.”

The xenobots initially received no instruction from humans on how to replicate. But when researchers added extra cells to the dish containing xenobots, they observed that the xenobots would assemble them into piles.

“Cells early in development are sticky,” said Bongard. “If the pile is large enough and the cells stick together, the outer ones on the surface will grow very small hairs, which are called cilia. And eventually, after four days, those cilia will start to beat back and forth like flexible oars, and the pile will start moving.”

“And that’s a child xenobot.” 

A November 29, 2021 Wyss Institute news release by Joshua Brown describes the process a little differently,

To persist, life must reproduce. Over billions of years, organisms have evolved many ways of replicating, from budding plants to sexual animals to invading viruses.

Now scientists at the University of Vermont, Tufts University, and the Wyss Institute for Biologically Inspired Engineering at Harvard University have discovered an entirely new form of biological reproduction—and applied their discovery to create the first-ever, self-replicating living robots.

The same team that built the first living robots (“Xenobots,” assembled from frog cells—reported in 2020) has discovered that these computer-designed and hand-assembled organisms can swim out into their tiny dish, find single cells, gather hundreds of them together, and assemble “baby” Xenobots inside their Pac-Man-shaped “mouth”—that, a few days later, become new Xenobots that look and move just like themselves.

And then these new Xenobots can go out, find cells, and build copies of themselves. Again and again.

In a Xenopus laevis frog, these embryonic cells would develop into skin. “They would be sitting on the outside of a tadpole, keeping out pathogens and redistributing mucus,” says Michael Levin, Ph.D., a professor of biology and director of the Allen Discovery Center at Tufts University and co-leader of the new research. “But we’re putting them into a novel context. We’re giving them a chance to reimagine their multicellularity.” Levin is also an Associate Faculty member at the Wyss Institute.

And what they imagine is something far different than skin. “People have thought for quite a long time that we’ve worked out all the ways that life can reproduce or replicate. But this is something that’s never been observed before,” says co-author Douglas Blackiston, Ph.D., the senior scientist at Tufts University and the Wyss Institute who assembled the Xenobot “parents” and developed the biological portion of the new study.

“This is profound,” says Levin. “These cells have the genome of a frog, but, freed from becoming tadpoles, they use their collective intelligence, a plasticity, to do something astounding.” In earlier experiments, the scientists were amazed that Xenobots could be designed to achieve simple tasks. Now they are stunned that these biological objects—a computer-designed collection of cells—will spontaneously replicate. “We have the full, unaltered frog genome,” says Levin, “but it gave no hint that these cells can work together on this new task,” of gathering and then compressing separated cells into working self-copies.

“These are frog cells replicating in a way that is very different from how frogs do it. No animal or plant known to science replicates in this way,” says Sam Kriegman, Ph.D.,  the lead author on the new study, who completed his Ph.D. in Bongard’s lab at UVM and is now a post-doctoral researcher at Tuft’s Allen Center and Harvard University’s Wyss Institute for Biologically Inspired Engineering.

Both Buckiewicz’s December 3, 2021 article and Brown’s November 29, 2021 Wyss Institute news release are good reads with liberal used of embedded images. If you have time, start with Buckiewicz as she provides a good introduction and follow up with Brown who gives more detail and has an embedded video of a December 1, 2021 panel discussion with the scientists behind the xenobots.

Here’s a link to and a citation for the latest paper,

Kinematic self-replication in reconfigurable organisms by Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. PNAS [Proceedings of the National Academy of Sciences] December 7, 2021 118 (49) e2112672118; https://doi.org/10.1073/pnas.2112672118

This paper appears to be open access.

Use kombucha to produce bacterial cellulose

The combination of the US Army, bacterial cellulose, and kombucha seems a little unusual. However, this January 26, 2021 U.S. Army Research Laboratory news release (also on EurekAlert) provides some clues as to how this combination makes sense,

Kombucha tea, a trendy fermented beverage, inspired researchers to develop a new way to generate tough, functional materials using a mixture of bacteria and yeast similar to the kombucha mother used to ferment tea.

With Army funding, using this mixture, also called a SCOBY, or symbiotic culture of bacteria and yeast, engineers at MIT [Massachusetts Institute of Technology] and Imperial College London produced cellulose embedded with enzymes that can perform a variety of functions, such as sensing environmental pollutants and self-healing materials.

The team also showed that they could incorporate yeast directly into the cellulose, creating living materials that could be used to purify water for Soldiers in the field or make smart packaging materials that can detect damage.

“This work provides insights into how synthetic biology approaches can harness the design of biotic-abiotic interfaces with biological organization over multiple length scales,” said Dr. Dawanne Poree, program manager, Army Research Office, an element of the U.S. Army Combat Capabilities Development Command, now known as DEVCOM, Army Research Laboratory. “This is important to the Army as this can lead to new materials with potential applications in microbial fuel cells, sense and respond systems, and self-reporting and self-repairing materials.”

The research, published in Nature Materials was funded by ARO [Army Research Office] and the Army’s Institute for Soldier Nanotechnologies [ISN] at the Massachusetts Institute of Technology. The U.S. Army established the ISN in 2002 as an interdisciplinary research center devoted to dramatically improving the protection, survivability, and mission capabilities of the Soldier and Soldier-supporting platforms and systems.

“We foresee a future where diverse materials could be grown at home or in local production facilities, using biology rather than resource-intensive centralized manufacturing,” said Timothy Lu, an MIT associate professor of electrical engineering and computer science and of biological engineering.

Researchers produced cellulose embedded with enzymes, creating living materials that could be used to purify water for Soldiers in the field or make smart packaging materials that can detect damage. These fermentation factories, which usually contain one species of bacteria and one or more yeast species, produce ethanol, cellulose, and acetic acid that gives kombucha tea its distinctive flavor.

Most of the wild yeast strains used for fermentation are difficult to genetically modify, so the researchers replaced them with a strain of laboratory yeast called Saccharomyces cerevisiae. They combined the yeast with a type of bacteria called Komagataeibacter rhaeticus that their collaborators at Imperial College London had previously isolated from a kombucha mother. This species can produce large quantities of cellulose.

Because the researchers used a laboratory strain of yeast, they could engineer the cells to do any of the things that lab yeast can do, such as producing enzymes that glow in the dark, or sensing pollutants or pathogens in the environment. The yeast can also be programmed so that they can break down pollutants/pathogens after detecting them, which is highly relevant to Army for chem/bio defense applications.

“Our community believes that living materials could provide the most effective sensing of chem/bio warfare agents, especially those of unknown genetics and chemistry,” said Dr. Jim Burgess ISN program manager for ARO.

The bacteria in the culture produced large-scale quantities of tough cellulose that served as a scaffold. The researchers designed their system so that they can control whether the yeast themselves, or just the enzymes that they produce, are incorporated into the cellulose structure. It takes only a few days to grow the material, and if left long enough, it can thicken to occupy a space as large as a bathtub.

“We think this is a good system that is very cheap and very easy to make in very large quantities,” said MIT graduate student and the paper’s lead author, Tzu-Chieh Tang. To demonstrate the potential of their microbe culture, which they call Syn-SCOBY, the researchers created a material incorporating yeast that senses estradiol, which is sometimes found as an environmental pollutant. In another version, they used a strain of yeast that produces a glowing protein called luciferase when exposed to blue light. These yeasts could be swapped out for other strains that detect other pollutants, metals, or pathogens.

The researchers are now looking into using the Syn-SCOBY system for biomedical or food applications. For example, engineering the yeast cells to produce antimicrobials or proteins that could benefit human health.

Here’s a link to and a citation for the paper,

Living materials with programmable functionalities grown from engineered microbial co-cultures by Charlie Gilbert, Tzu-Chieh Tang, Wolfgang Ott, Brandon A. Dorr, William M. Shaw, George L. Sun, Timothy K. Lu & Tom Ellis. Nature Materials (2021) DOI: https://doi.org/10.1038/s41563-020-00857-5 Published: 11 January 2021

This paper is behind a paywall.

Rafts! a game for your inner genetic engineer

Earlier this week, RaftsTheGame (@TheRaftsGame) popped up on my twitter feed, which was excellent timing since it’s getting close to Christmas in a year (2020) when I imagine a lot of people may be home and inclined to play games.

The people (rafts4biotech) who produced Rafts The Game (also called Rafts!) are involved in a research project funded by the European Union’s Horizon 2020 programme,

RAFTS!
Create the bacterium of your dreams

Have you ever wondered what it would be like to be a genetic engineer? Now’s your chance to find out! Rafts! is a card game in which your aim is to design a bacterium while trying to overcome the challenges of research work.

If you are a researcher, look no further – Rafts! enables you to finally share your academic struggles with those friends who don’t have a clue of what you do!

THE GAME

In Rafts! you race to become the first scientist to create a bacterium that can do incredible things: cleaning an oil spill, detecting toxic compounds, producing blood for donations… Sounds like science fiction? More like a regular day at the lab!

But don’t get carried away – nobody said conducting research was easy! Hard work alone isn’t enough if you don’t have the right genetic instructions as well as a combination of money, time as well as food for your bacterium. You’ll have to collect all of these resources to finish the masterpiece that is your bacterium.

In this laboratory people play dirty, so don’t forget to keep an eye on your colleagues – they are all trying to achieve their objectives, and sometimes you will compete for the same resources. Don’t hesitate to strike back!

THE CARDS

There are three types of cards in Rafts!: action cards help you gather the resource cards that you will need to achieve the goal in your objective card. Bring your mouse on top of a card to know what it can do!

GET YOURS

Ready to become the biotech wizard you’ve always wanted to be? You’re just a click away from building the bacterium of a lifetime!

Download Rafts! for free and print it yourself – or let your local print shop do it for you:

DOWNLOAD

DESCARGA

Order a ready-made Rafts! deck to your doorsteps – by clicking on the link we direct you to the card shop where you can finish your order:

ORDER

Here’s what the cards look like,

[downloaded from http://www.raftsthegame.com/]

The rules of the game are here.

For anyone curious about the source for the game, here’s a bit about rafts4biotech, from the homepage,

Engineering bacterial lipid rafts to optimise industrial processes

Context

Bacteria are used in the biotechnology industry to produce a wide range of valuable compounds. However, the performance of these microorganisms in the demanding industrial conditions is limited by the toxicity of some compounds and the complex metabolic interactions that occur within the bacterial cells.

Challenge

Generating new synthetic microorganisms that will solve productivity hurdles and yield a great variety of economy-value compounds. These modified strains will be used as standardised microbial chassis platforms to fit industry needs.

Solution

The R4B solution relies on confining the production of compounds to specific areas of the microbe’s membrane called lipid rafts.  This recently-discovered regions present an ideal setting that will avoid interferences with bacterial metabolism and viability.

Given that at least one of the COVID-19 vaccines (Pfizer-BioNTech?) is wrapped in lipid nanobodies and, now, with this mention of lipids, it seemed like a good idea (for me) to learn about lipids. Here’s what I found in the definition for lipid in The free Dictionary,

a group of substances comprising fatty, greasy, oily, and waxy compounds that are insoluble in water and soluble in nonpolar solvents, such as hexane, ether, and chloroform.

Let the games begin!

Spinning gold out of nanocellulose

If you’re hoping for a Rumpelstiltskin reference (there is more about the fairy tale at the end of this posting) and despite the press release’s headline, you won’t find it in this August 10, 2020 news item on Nanowerk,

When nanocellulose is combined with various types of metal nanoparticles, materials are formed with many new and exciting properties. They may be antibacterial, change colour under pressure, or convert light to heat.

“To put it simply, we make gold from nanocellulose”, says Daniel Aili, associate professor in the Division of Biophysics and Bioengineering at the Department of Physics, Chemistry and Biology at Linköping University.

The research group, led by Daniel Aili, has used a biosynthetic nanocellulose produced by bacteria and originally developed for wound care. The scientists have subsequently decorated the cellulose with metal nanoparticles, principally silver and gold. The particles, no larger than a few billionths of a metre, are first tailored to give them the properties desired, and then combined with the nanocellulose.

An August 10, 2020 Linköping University press release (also on EurekAlert), which originated the news item,expands on a few details about the work (sob … without mentioning Rumpelstiltskin),

“Nanocellulose consists of thin threads of cellulose, with a diameter approximately one thousandth of the diameter of a human hair. The threads act as a three-dimensional scaffold for the metal particles. When the particles attach themselves to the cellulose, a material that consists of a network of particles and cellulose forms”, Daniel Aili explains.

The researchers can determine with high precision how many particles will attach, and their identities. They can also mix particles of different metals and with different shapes – spherical, elliptical and triangular.

In the first part of a scientific article published in Advanced Functional Materials, the group describes the process and explains why it works as it does. The second part focusses on several areas of application.

One exciting phenomenon is the way in which the properties of the material change when pressure is applied. Optical phenomena arise when the particles approach each other and interact, and the material changes colour. As the pressure increases, the material eventually appears to be gold.

“We saw that the material changed colour when we picked it up in tweezers, and at first we couldn’t understand why”, says Daniel Aili.

The scientists have named the phenomenon “the mechanoplasmonic effect”, and it has turned out to be very useful. A closely related application is in sensors, since it is possible to read the sensor with the naked eye. An example: If a protein sticks to the material, it no longer changes colour when placed under pressure. If the protein is a marker for a particular disease, the failure to change colour can be used in diagnosis. If the material changes colour, the marker protein is not present.

Another interesting phenomenon is displayed by a variant of the material that absorbs light from a much broader spectrum visible light and generates heat. This property can be used for both energy-based applications and in medicine.

“Our method makes it possible to manufacture composites of nanocellulose and metal nanoparticles that are soft and biocompatible materials for optical, catalytic, electrical and biomedical applications. Since the material is self-assembling, we can produce complex materials with completely new well-defined properties,” Daniel Aili concludes.

Here’s a link to and a citation for the paper,

Self‐Assembly of Mechanoplasmonic Bacterial Cellulose–Metal Nanoparticle Composites by Olof Eskilson, Stefan B. Lindström, Borja Sepulveda, Mohammad M. Shahjamali, Pau Güell‐Grau, Petter Sivlér, Mårten Skog, Christopher Aronsson, Emma M. Björk, Niklas Nyberg, Hazem Khalaf, Torbjörn Bengtsson, Jeemol James, Marica B. Ericson, Erik Martinsson, Robert Selegård, Daniel Aili. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202004766 First published: 09 August 2020

This paper is open access.

As for Rumpelstiltskin, there’s this abut the story’s origins and its cross-cultural occurrence, from its Wikipedia entry,

“Rumpelstiltskin” (/ˌrʌmpəlˈstɪltskɪn/ RUMP-əl-STILT-skin[1]) is a fairy tale popularly associated with Germany (where it is known as Rumpelstilzchen). The tale was one collected by the Brothers Grimm in the 1812 edition of Children’s and Household Tales. According to researchers at Durham University and the NOVA University Lisbon, the story originated around 4,000 years ago.[2][3] However, many biases led some to take the results of this study with caution.[4]

The same story pattern appears in numerous other cultures: Tom Tit Tot in England (from English Fairy Tales, 1890, by Joseph Jacobs); The Lazy Beauty and her Aunts in Ireland (from The Fireside Stories of Ireland, 1870 by Patrick Kennedy); Whuppity Stoorie in Scotland (from Robert Chambers’s Popular Rhymes of Scotland, 1826); Gilitrutt in Iceland; جعيدان (Joaidane “He who talks too much”) in Arabic; Хламушка (Khlamushka “Junker”) in Russia; Rumplcimprcampr, Rampelník or Martin Zvonek in the Czech Republic; Martinko Klingáč in Slovakia; “Cvilidreta” in Croatia; Ruidoquedito (“Little noise”) in South America; Pancimanci in Hungary (from A Csodafurulya, 1955, by Emil Kolozsvári Grandpierre, based on the 19th century folktale collection by László Arany); Daiku to Oniroku (大工と鬼六 “A carpenter and the ogre”) in Japan and Myrmidon in France.

An earlier literary variant in French was penned by Mme. L’Héritier, titled Ricdin-Ricdon.[5] A version of it exists in the compilation Le Cabinet des Fées, Vol. XII. pp. 125-131.

The Cornish tale of Duffy and the Devil plays out an essentially similar plot featuring a “devil” named Terry-top.

All these tales are Aarne–Thompson type 500, “The Name of the Helper”.[6]

Should you be curious about the story as told by the Brothers Grimm, here’s the beginning to get you started (from the grimmstories.com Rumpelstiltskin webpage),

There was once a miller who was poor, but he had one beautiful daughter. It happened one day that he came to speak with the king, and, to give himself consequence, he told him that he had a daughter who could spin gold out of straw. The king said to the miller: “That is an art that pleases me well; if thy daughter is as clever as you say, bring her to my castle to-morrow, that I may put her to the proof.”

When the girl was brought to him, he led her into a room that was quite full of straw, and gave her a wheel and spindle, and said: “Now set to work, and if by the early morning thou hast not spun this straw to gold thou shalt die.” And he shut the door himself, and left her there alone. And so the poor miller’s daughter was left there sitting, and could not think what to do for her life: she had no notion how to set to work to spin gold from straw, and her distress grew so great that she began to weep. Then all at once the door opened, and in came a little man, who said: “Good evening, miller’s daughter; why are you crying?”

Enjoy! BTW, should you care to, you can find three other postings here tagged with ‘Rumpelstiltskin’. I think turning dross into gold is a popular theme in applied science.

Some amusements in the time of COVID-19

Gold stars for everyone who recognized the loose paraphrasing of the title, Love in the Time of Cholera, for Gabrial Garcia Marquez’s 1985 novel.

I wrote my headline and first paragraph yesterday and found this in my email box this morning, from a March 25, 2020 University of British Columbia news release, which compares times, diseases, and scares of the past with today’s COVID-19 (Perhaps politicians and others could read this piece and stop using the word ‘unprecedented’ when discussing COVID-19?),

How globalization stoked fear of disease during the Romantic era

In the late 18th and early 19th centuries, the word “communication” had several meanings. People used it to talk about both media and the spread of disease, as we do today, but also to describe transport—via carriages, canals and shipping.

Miranda Burgess, an associate professor in UBC’s English department, is working on a book called Romantic Transport that covers these forms of communication in the Romantic era and invites some interesting comparisons to what the world is going through today.

We spoke with her about the project.

What is your book about?

It’s about global infrastructure at the dawn of globalization—in particular the extension of ocean navigation through man-made inland waterways like canals and ship’s canals. These canals of the late 18th and early 19th century were like today’s airline routes, in that they brought together places that were formerly understood as far apart, and shrunk time because they made it faster to get from one place to another.

This book is about that history, about the fears that ordinary people felt in response to these modernizations, and about the way early 19th-century poets and novelists expressed and responded to those fears.

What connections did those writers make between transportation and disease?

In the 1810s, they don’t have germ theory yet, so there’s all kinds of speculation about how disease happens. Works of tropical medicine, which is rising as a discipline, liken the human body to the surface of the earth. They talk about nerves as canals that convey information from the surface to the depths, and the idea that somehow disease spreads along those pathways.

When the canals were being built, some writers opposed them on the grounds that they could bring “strangers” through the heart of the city, and that standing water would become a breeding ground for disease. Now we worry about people bringing disease on airplanes. It’s very similar to that.

What was the COVID-19 of that time?

Probably epidemic cholera [emphasis mine], from about the 1820s onward. The Quarterly Review, a journal that novelist Walter Scott was involved in editing, ran long articles that sought to trace the map of cholera along rivers from South Asia, to Southeast Asia, across Europe and finally to Britain. And in the way that its spread is described, many of the same fears that people are evincing now about COVID-19 were visible then, like the fear of clothes. Is it in your clothes? Do we have to burn our clothes? People were concerned.

What other comparisons can be drawn between those times and what is going on now?

Now we worry about the internet and “fake news.” In the 19th century, they worried about what William Wordsworth called “the rapid communication of intelligence,” which was the daily newspaper. Not everybody had access to newspapers, but each newspaper was read by multiple families and newspapers were available in taverns and coffee shops. So if you were male and literate, you had access to a newspaper, and quite a lot of women did, too.

Paper was made out of rags—discarded underwear. Because of the French Revolution and Napoleonic Wars that followed, France blockaded Britain’s coast and there was a desperate shortage of rags to make paper, which had formerly come from Europe. And so Britain started to import rags from the Caribbean that had been worn by enslaved people.

Papers of the time are full of descriptions of the high cost of rags, how they’re getting their rags from prisons, from prisoners’ underwear, and fear about the kinds of sweat and germs that would have been harboured in those rags—and also discussions of scarcity, as people stole and hoarded those rags. It rings very well with what the internet is telling us now about a bunch of things around COVID-19.

Plus ça change, n’est-ce pas?

And now for something completely different

Kudos to all who recognized the Monty Python reference. Now, onto the frogfish,

Thank you to the Monterey Bay Aquarium (in California, US).

A March 22, 2020 University of Washington (state) news release features an interview with the author of a new book on frogfishes,

Any old fish can swim. But what fish can walk, scoot, clamber over rocks, change color or pattern and even fight? That would be the frogfish.

The latest book by Ted Pietsch, UW professor emeritus of aquatic and fishery sciences, explores the lives and habits of these unusual marine shorefishes. “Frogfishes: Biodiversity, Zoogeography, and Behavioral Ecology” was published in March [2020] by Johns Hopkins University Press.

Pietsch, who is also curator emeritus of fishes at the Burke Museum of Natural History and Culture, has published over 200 articles and a dozen books on the biology and behavior of marine fishes. He wrote this book with Rachel J. Arnold, a faculty member at Northwest Indian College in Bellingham and its Salish Sea Research Center.

These walking fishes have stepped into the spotlight lately, with interest growing in recent decades. And though these predatory fishes “will almost certainly devour anything else that moves in a home aquarium,” Pietsch writes, “a cadre of frogfish aficionados around the world has grown within the dive community and among aquarists.” In fact, Pietsch said, there are three frogfish public groups on Facebook, with more than 6,000 members.

First, what is a frogfish?

Ted Pietsch: A member of a family of bony fishes, containing 52 species, all of which are highly camouflaged and whose feeding strategy consists of mimicking the immobile, inert, and benign appearance of a sponge or an algae-encrusted rock, while wiggling a highly conspicuous lure to attract prey.

This is a fish that “walks” and “hops” across the sea bottom, and clambers about over rocks and coral like a four-legged terrestrial animal but, at the same time, can jet-propel itself through open water. Some lay their eggs encapsulated in a complex, floating, mucus mass, called an “egg raft,” while some employ elaborate forms of parental care, carrying their eggs around until they hatch.

They are among the most colorful of nature’s productions, existing in nearly every imaginable color and color pattern, with an ability to completely alter their color and pattern in a matter of days or seconds. All these attributes combined make them one of the most intriguing groups of aquatic vertebrates for the aquarist, diver, and underwater photographer as well as the professional zoologist.

I couldn’t resist the ‘frog’ reference and I’m glad since this is a good read with a number of fascinating photographs and illustrations.,

An illustration of the frogfish Antennarius pictus, published by George Shaw in 1794. From a new book by Ted Pietsch, UW professor of emeritus of aquatic and fishery sciences. Courtesy: University of Washington (state)

h/t phys.org March 24, 2020 news item

Building with bacteria

A block of sand particles held together by living cells. Credit: The University of Colorado Boulder College of Engineering and Applied Science

A March 24, 2020 news item on phys.org features the future of building construction as perceived by synthetic biologists,

Buildings are not unlike a human body. They have bones and skin; they breathe. Electrified, they consume energy, regulate temperature and generate waste. Buildings are organisms—albeit inanimate ones.

But what if buildings—walls, roofs, floors, windows—were actually alive—grown, maintained and healed by living materials? Imagine architects using genetic tools that encode the architecture of a building right into the DNA of organisms, which then grow buildings that self-repair, interact with their inhabitants and adapt to the environment.

A March 23, 2020 essay by Wil Srubar (Professor of Architectural Engineering and Materials Science, University of Colorado Boulder), which originated the news item, provides more insight,

Living architecture is moving from the realm of science fiction into the laboratory as interdisciplinary teams of researchers turn living cells into microscopic factories. At the University of Colorado Boulder, I lead the Living Materials Laboratory. Together with collaborators in biochemistry, microbiology, materials science and structural engineering, we use synthetic biology toolkits to engineer bacteria to create useful minerals and polymers and form them into living building blocks that could, one day, bring buildings to life.

In one study published in Scientific Reports, my colleagues and I genetically programmed E. coli to create limestone particles with different shapes, sizes, stiffnesses and toughness. In another study, we showed that E. coli can be genetically programmed to produce styrene – the chemical used to make polystyrene foam, commonly known as Styrofoam.

Green cells for green building

In our most recent work, published in Matter, we used photosynthetic cyanobacteria to help us grow a structural building material – and we kept it alive. Similar to algae, cyanobacteria are green microorganisms found throughout the environment but best known for growing on the walls in your fish tank. Instead of emitting CO2, cyanobacteria use CO2 and sunlight to grow and, in the right conditions, create a biocement, which we used to help us bind sand particles together to make a living brick.

By keeping the cyanobacteria alive, we were able to manufacture building materials exponentially. We took one living brick, split it in half and grew two full bricks from the halves. The two full bricks grew into four, and four grew into eight. Instead of creating one brick at a time, we harnessed the exponential growth of bacteria to grow many bricks at once – demonstrating a brand new method of manufacturing materials.

Researchers have only scratched the surface of the potential of engineered living materials. Other organisms could impart other living functions to material building blocks. For example, different bacteria could produce materials that heal themselves, sense and respond to external stimuli like pressure and temperature, or even light up. If nature can do it, living materials can be engineered to do it, too.

It also take less energy to produce living buildings than standard ones. Making and transporting today’s building materials uses a lot of energy and emits a lot of CO2. For example, limestone is burned to make cement for concrete. Metals and sand are mined and melted to make steel and glass. The manufacture, transport and assembly of building materials account for 11% of global CO2 emissions. Cement production alone accounts for 8%. In contrast, some living materials, like our cyanobacteria bricks, could actually sequester CO2.

The field of engineered living materials is in its infancy, and further research and development is needed to bridge the gap between laboratory research and commercial availability. Challenges include cost, testing, certification and scaling up production. Consumer acceptance is another issue. For example, the construction industry has a negative perception of living organisms. Think mold, mildew, spiders, ants and termites. We’re hoping to shift that perception. Researchers working on living materials also need to address concerns about safety and biocontamination.

The [US] National Science Foundation recently named engineered living materials one of the country’s key research priorities. Synthetic biology and engineered living materials will play a critical role in tackling the challenges humans will face in the 2020s and beyond: climate change, disaster resilience, aging and overburdened infrastructure, and space exploration.

If you have time and interest, this is fascinating. Strubar is a little exuberant and, at this point, I welcome it.

Fitness

The Lithuanians are here for us. Scientists from the Kaunas University of Technology have just published a paper on better exercises for lower back pain in our increasingly sedentary times, from a March 23, 2020 Kaunas University of Technology press release (also on EurekAlert) Note: There are a few minor grammatical issues,

With the significant part of the global population forced to work from home, the occurrence of lower back pain may increase. Lithuanian scientists have devised a spinal stabilisation exercise programme for managing lower back pain for people who perform a sedentary job. After testing the programme with 70 volunteers, the researchers have found that the exercises are not only efficient in diminishing the non-specific lower back pain, but their effect lasts 3 times longer than that of a usual muscle strengthening exercise programme.

According to the World Health Organisation, lower back pain is among the top 10 diseases and injuries that are decreasing the quality of life across the global population. It is estimated that non-specific low back pain is experienced by 60% to 70% of people in industrialised societies. Moreover, it is the leading cause of activity limitation and work absence throughout much of the world. For example, in the United Kingdom, low back pain causes more than 100 million workdays lost per year, in the United States – an estimated 149 million.

Chronic lower back pain, which starts from long-term irritation or nerve injury affects the emotions of the afflicted. Anxiety, bad mood and even depression, also the malfunctioning of the other bodily systems – nausea, tachycardia, elevated arterial blood pressure – are among the conditions, which may be caused by lower back pain.

During the coronavirus disease (COVID-19) outbreak, with a significant part of the global population working from home and not always having a properly designed office space, the occurrence of lower back pain may increase.

“Lower back pain is reaching epidemic proportions. Although it is usually clear what is causing the pain and its chronic nature, people tend to ignore these circumstances and are not willing to change their lifestyle. Lower back pain usually comes away itself, however, the chances of the recurring pain are very high”, says Dr Irina Klizienė, a researcher at Kaunas University of Technology (KTU) Faculty of Social Sciences, Humanities and Arts.

Dr Klizienė, together with colleagues from KTU and from Lithuanian Sports University has designed a set of stabilisation exercises aimed at strengthening the muscles which support the spine at the lower back, i.e. lumbar area. The exercise programme is based on Pilates methodology.

According to Dr Klizienė, the stability of lumbar segments is an essential element of body biomechanics. Previous research evidence shows that in order to avoid the lower back pain it is crucial to strengthen the deep muscles, which are stabilising the lumbar area of the spine. One of these muscles is multifidus muscle.

“Human central nervous system is using several strategies, such as preparing for keeping the posture, preliminary adjustment to the posture, correcting the mistakes of the posture, which need to be rectified by specific stabilising exercises. Our aim was to design a set of exercises for this purpose”, explains Dr Klizienė.

The programme, designed by Dr Klizienė and her colleagues is comprised of static and dynamic exercises, which train the muscle strength and endurance. The static positions are to be held from 6 to 20 seconds; each exercise to be repeated 8 to 16 times.

Caption: The static positions are to be held from 6 to 20 seconds; each exercise to be repeated 8 to 16 times. Credit: KTU

The previous set is a little puzzling but perhaps you’ll find these ones below easier to follow,

Caption: The exercises are aimed at strengthening the muscles which support the spine at the lower back. Credit: KTU

I think more pictures of intervening moves would have been useful. Now. getting back to the press release,

In order to check the efficiency of the programme, 70 female volunteers were randomly enrolled either to the lumbar stabilisation exercise programme or to a usual muscle strengthening exercise programme. Both groups were exercising twice a week for 45 minutes for 20 weeks. During the experiment, ultrasound scanning of the muscles was carried out.

As soon as 4 weeks in lumbar stabilisation programme, it was observed that the cross-section area of the multifidus muscle of the subjects of the stabilisation group has increased; after completing the programme, this increase was statistically significant (p < 0,05). This change was not observed in the strengthening group.

Moreover, although both sets of exercises were efficient in eliminating lower back pain and strengthening the muscles of the lower back area, the effect of stabilisation exercises lasted 3 times longer – 12 weeks after the completion of the stabilisation programme against 4 weeks after the completion of the muscle strengthening programme.

“There are only a handful of studies, which have directly compared the efficiency of stabilisation exercises against other exercises in eliminating lower back pain”, says Dr Klizienė, “however, there are studies proving that after a year, lower back pain returned only to 30% of people who have completed a stabilisation exercise programme, and to 84% of people who haven’t taken these exercises. After three years these proportions are 35% and 75%.”

According to her, research shows that the spine stabilisation exercises are more efficient than medical intervention or usual physical activities in curing the lower back pain and avoiding the recurrence of the symptoms in the future.

Here’s a link to and a citation for the paper,

Effect of different exercise programs on non-specific chronic low back pain and disability in people who perform sedentary work by Saule Sipavicienea, Irina Klizieneb. Clinical Biomechanics March 2020 Volume 73, Pages 17–27 DOI: https://doi.org/10.1016/j.clinbiomech.2019.12.028

This paper is behind a paywall.

Winter jacket made with ‘brewed protein’ and enabled by synthetic biology

It’s called a ‘Moon Parka’,

[downloaded from https://sp.spiber.jp/en/tnfsp/mp/]

Adele Peters in her October 31, 2019 article for Fast Company describes the technology used to make this jacket,

A typical waterproof winter jacket is made with nylon—a material that, like other plastics, is made from petroleum. But a new limited-edition jacket from The North Face Japan uses something called “brewed protein” instead. It’s a material inspired by spider silk that is fermented in giant vats, the same way that breweries make beer.

It’s one of the first uses of a material produced by the Japanese startup Spiber, a company that has spent more than a decade developing a new process to make high-performance textiles and other products that don’t rely on fossil fuels, animals, or natural fibers like cotton, all of which have environmental issues. …

The company designs genes that code for a specific protein—the first was an exact replica of natural spider silk, known for its extreme strength—and then introduces the genes into microorganisms that can produce the protein efficiently. Inside giant tanks, the microorganisms are fed sugar, grow and multiply, and produce the protein through fermentation. …

Spiber first started collaborating with Goldwin, a Japanese outdoor brand that owns the Japanese rights to The North Face, in 2015, and created an early prototype of a jacket then. But it quickly realized that an exact replica of spider silk wouldn’t work well for the application; the material sucks up water, and the jacket needed to be waterproof.

“We spent the last four years going back to the drawing board, redesigning our protein molecule—the very order of the amino acids in the molecule,” says Meyer [Daniel Meyer, Spiber’s head of corporate global marketing]. “And we created our own hydrophobic [water repellent] version of spider silk. It’s inspired by natural spider silk, but we have made our own design changes such that it would be more hydrophobic and meet the performance requirements of The North Face Japan.”

The jacket is available for purchase but only by a lottery, which has now closed. According to Peters, a large, commercial production facility is being built in Thailand so that at some point a Moon Parka will be affordable. For reference, the lottery jackets were priced at ¥150,000 (about $1,377 US).

You can find Spiber here in mid-March [2020] according to the homepage.