Tag Archives: nanobiotechnology

Ethical nanobiotechnology

This paper on ethics (aside: I have a few comments after the news release and citation) comes from the US Pacific Northwest National Laboratory (PNNL) according to a July 12, 2023 news item on phys.org,

Prosthetics moved by thoughts. Targeted treatments for aggressive brain cancer. Soldiers with enhanced vision or bionic ears. These powerful technologies sound like science fiction, but they’re becoming possible thanks to nanoparticles.

“In medicine and other biological settings, nanotechnology is amazing and helpful, but it could be harmful if used improperly,” said Pacific Northwest National Laboratory (PNNL) chemist Ashley Bradley, part of a team of researchers who conducted a comprehensive survey of nanobiotechnology applications and policies.

Their research, available in Health Security, works to sum up the very large, active field of nanotechnology in biology applications, draw attention to regulatory gaps, and offer areas for further consideration.

A July 12, 2023 PNNL news release (also on EurekAlert), which originated the news item, delves further into the topic, Note: A link has been removed,

“In our research, we learned there aren’t many global regulations yet,” said Bradley. “And we need to create a common set of rules to figure out the ethical boundaries.”

Nanoparticles, big differences

Nanoparticles are clusters of molecules with different properties than large amounts of the same substances. In medicine and other biology applications, these properties allow nanoparticles to act as the packaging that delivers treatments through cell walls and the difficult to cross blood-brain barrier.

“You can think of the nanoparticles a little bit like the plastic around shredded cheese,” said PNNL chemist Kristin Omberg. “It makes it possible to get something perishable directly where you want it, but afterwards you’ve got to deal with a whole lot of substance where it wasn’t before.”

Unfortunately, dealing with nanoparticles in new places isn’t straightforward. Carbon is pencil lead, nano carbon conducts electricity. The same material may have different properties at the nanoscale, but most countries still regulate it the same as bulk material, if the material is regulated at all.

For example, zinc oxide, a material that was stable and unreactive as a pigment in white paint, is now accumulating in oceans when used as nanoparticles in sunscreen, warranting a call to create alternative reef-safe sunscreens. And although fats and lipids aren’t regulated, the researchers suggest which agencies could weigh in on regulations were fats to become after-treatment byproducts.

The article also inventories national and international agencies, organizations, and governing bodies with an interest in understanding how nanoparticles break down or react in a living organism and the environmental life cycle of a nanoparticle. Because nanobiotechnology spans materials science, biology, medicine, environmental science, and tech, these disparate research and regulatory disciplines must come together, often for the first time—to fully understand the impact on humans and the environment.

Dual use: Good for us, bad for us

Like other quickly growing fields, there’s a time lag between the promise of new advances and the possibilities of unintended uses.

“There were so many more applications than we thought there were,” said Bradley, who collected exciting nanobio examples such as Alzheimer’s treatment, permanent contact lenses, organ replacement, and enhanced muscle recovery, among others.

The article also highlights concerns about crossing the blood-brain barrier, thought-initiated control of computers, and nano-enabled DNA editing where the researchers suggest more caution, questioning, and attention could be warranted. This attention spans everything from deep fundamental research and regulations all the way to what Omberg called “the equivalent of tattoo removal” if home-DNA splicing attempts go south.

The researchers draw parallels to more established fields such as synthetic bio and pharmacology, which offer lessons to be learned from current concerns such as the unintended consequences of fentanyl and opioids. They believe these fields also offer examples of innovative coordination between science and ethics, such as synthetic bio’s IGEM [The International Genetically Engineered Machine competition]—student competition, to think about not just how to create, but also to shape the use and control of new technologies.

Omberg said unusually enthusiastic early reviewers of the article contributed even more potential uses and concerns, demonstrating that experts in many fields recognize ethical nanobiotechnology is an issue to get in front of. “This is a train that’s going. It will be sad if 10 years from now, we haven’t figured how to talk about it.”

Funding for the team’s research was supported by PNNL’s Biorisk Beyond the List National Security Directorate Objective.

Here’s a link to and a citation for the paper,

The Promise of Emergent Nanobiotechnologies for In Vivo Applications and Implications for Safety and Security by Anne M. Arnold, Ashley M. Bradley, Karen L. Taylor, Zachary C. Kennedy, and Kristin M. Omberg. Health Security.Oct 2022.408-423.Published in Volume: 20 Issue 5: October 17, 2022 DOI: https://doi.org/10.1089/hs.2022.0014 Published Online:17 Oct 2022

This paper is open access.

You can find out more about IGEM (The International Genetically Engineered Machine competition) here.

Comments (brief)

It seems a little odd that the news release (“Prosthetics moved by thoughts …”) and the paper both reference neurotechnology without ever mentioning it by name. Here’s the reference from the paper, Note: Links have been removed,

Nanoparticles May Be Developed to Facilitate Cognitive Enhancements

The development and implementation of NPs that enhance cognitive function has yet to be realized. However, recent advances on the micro- and macro-level with neural–machine interfacing provide the building blocks necessary to develop this technology on the nanoscale. A noninvasive brain–computer interface to control a robotic arm was developed by teams at 2 universities.157 A US-based company, Neuralink, [emphasis mine] is at the forefront of implementing implantable, intracortical microelectrodes that provide an interface between the human brain and technology.158,159 Utilization of intracortical microelectrodes may ultimately provide thought-initiated access and control of computers and mobile devices, and possibly expand cognitive function by accessing underutilized areas of the brain.158

Neuralink (founded by Elon Musk) is controversial for its animal testing practices. You can find out more in Björn Ólafsson’s May 30, 2023 article for Sentient Media.

The focus on nanoparticles as the key factor in the various technologies and applications mentioned seems narrow but necessary given the breadth of topics covered in the paper as the authors themselves note in the paper’s abstract,

… In this article, while not comprehensive, we attempt to illustrate the breadth and promise of bionanotechnology developments, and how they may present future safety and security challenges. Specifically, we address current advancements to streamline the development of engineered NPs for in vivo applications and provide discussion on nano–bio interactions, NP in vivo delivery, nanoenhancement of human performance, nanomedicine, and the impacts of NPs on human health and the environment.

They have a good overview of the history and discussions about nanotechnology risks and regulation. It’s international in scope with a heavy emphasis on US efforts, as one would expect.

For anyone who’s interested in the neurotechnology end of things, I’ve got a July 17, 2023 commentary “Unveiling the Neurotechnology Landscape: Scientific Advancements, Innovations and Major Trends—a UNESCO report.” The report was launched July 13, 2023 during UNESCO’s Global dialogue on the ethics of neurotechnology (see my July 7, 2023 posting about the then upcoming dialogue for links to more UNESCO information). Both the July 17 and July 7, 2023 postings included additional information about Neuralink.

Living photovoltaics with carbon nanotubes (CNTs)?

A September 12, 2022 news item on phys.org has an interesting lede,

“We put nanotubes inside of bacteria,” says Professor Ardemis Boghossian at EPFL’s School of Basic Sciences. “That doesn’t sound very exciting on the surface, but it’s actually a big deal. Researchers have been putting nanotubes in mammalian cells that use mechanisms like endocytosis, that are specific to those kinds of cells. Bacteria, on the other hand, don’t have these mechanisms and face additional challenges in getting particles through their tough exterior. Despite these barriers, we’ve managed to do it, and this has very exciting implications in terms of applications.”

A September 16, 2022 Ecole Polytechnique Fédérale de Lausanne (EPFL) press release (also on EurekAlert but published September 12, 2022), which originated the news item, goes on to describe this work in the field of ‘nanobionics,

Boghossian’s research focuses on interfacing artificial nanomaterials with biological constructs, including living cells. The resulting “nanobionic” technologies combine the advantages of both the living and non-living worlds. For years, her group has worked on the nanomaterial applications of single-walled carbon nanotubes (SWCNTs), tubes of carbon atoms with fascinating mechanical and optical properties.

These properties make SWCNTs [single-walled carbon nanotubes] ideal for many novel applications in the field of nanobiotechnology. For example, SWCNTs have been placed inside mammalian cells to monitor their metabolisms using near-infrared imaging. The insertion of SWCNTs in mammalian cells has also led to new technologies for delivering therapeutic drugs to their intracellular targets, while in plant cells they have been used for genome editing. SWCNTs have also been implanted in living mice to demonstrate their ability to image biological tissue deep inside the body.

Fluorescent nanotubes in bacteria: A first

In an article published in Nature Nanotechnology, Boghossian’s group with their international colleagues were able to “convince” bacteria to spontaneously take up SWCNTs by “decorating” them with positively charged proteins that are attracted by the negative charge of the bacteria’s outer membrane. The two types of bacteria explored in the study, Synechocystis and Nostoc, belong to the Cyanobacteria phylum, an enormous group of bacteria that get their energy through photosynthesis – like plants. They are also “Gram-negative”, which means that their cell wall is thin, and they have an additional outer membrane that “Gram-positive” bacteria lack.

The researchers observed that the cyanobacteria internalized SWCNTs through a passive, length-dependent and selective process. This process allowed the SWCNTs to spontaneously penetrate the cell walls of both the unicellular Synechocystis and the long, snake-like, multicellular Nostoc.

Following this success, the team wanted to see if the nanotubes can be used to image cyanobacteria – as is the case with mammalian cells. “We built a first-of-its-kind custom setup that allowed us to image the special near-infrared fluorescence we get from our nanotubes inside the bacteria,” says Boghossian.

Alessandra Antonucci, a former PhD student at Boghossian’s lab adds: “When the nanotubes are inside the bacteria, you could very clearly see them, even though the bacteria emit their own light. This is because the wavelengths of the nanotubes are far in the red, the near-infrared. You get a very clear and stable signal from the nanotubes that you can’t get from any other nanoparticle sensor. We’re excited because we can now use the nanotubes to see what is going on inside of cells that have been difficult to image using more traditional particles or proteins. The nanotubes give off a light that no natural living material gives off, not at these wavelengths, and that makes the nanotubes really stand out in these cells.”

“Inherited nanobionics”

The scientists were able to track the growth and division of the cells by monitoring the bacteria in real-time. Their findings revealed that the SWCNTs were being shared by the daughter cells of the dividing microbe.  “When the bacteria divide, the daughter cells inherent the nanotubes along with the properties of the nanotubes,” says Boghossian. “We call this ‘inherited nanobionics.’ It’s like having an artificial limb that gives you capabilities beyond what you can achieve naturally. And now imagine that your children can inherit its properties from you when they are born. Not only did we impart the bacteria with this artificial behavior, but this behavior is also inherited by their descendants. It’s our first demonstration of inherited nanobionics.”

Living photovoltaics

“Another interesting aspect is when we put the nanotubes inside the bacteria, the bacteria show a significant enhancement in the electricity it produces when it is illuminated by light,” says Melania Reggente, a postdoc with Boghossian’s group. “And our lab is now working towards the idea of using these nanobionic bacteria in a living photovoltaic.”

“Living” photovoltaics are biological energy-producing devices that use photosynthetic microorganisms. Although still in the early stages of development, these devices represent a real solution to our ongoing energy crisis and efforts against climate change.

“There’s a dirty secret in photovoltaic community,” says Boghossian. “It is green energy, but the carbon footprint is really high; a lot of CO2 is released just to make most standard photovoltaics. But what’s nice about photosynthesis is not only does it harness solar energy, but it also has a negative carbon footprint. Instead of releasing CO2, it absorbs it. So it solves two problems at once: solar energy conversion and CO2 sequestration. And these solar cells are alive. You do not need a factory to build each individual bacterial cell; these bacteria are self-replicating. They automatically take up CO2 to produce more of themselves.  This is a material scientist’s dream.”

Boghossian envisions a living photovoltaic device based on cyanobacteria that have automated control over electricity production that does not rely on the addition of foreign particles. “In terms of implementation, the bottleneck now is the cost and environmental effects of putting nanotubes inside of cyanobacteria on a large scale.”

With an eye towards large-scale implementation, Boghossian and her team are looking to synthetic biology for answers: “Our lab is now working towards bioengineering cyanobacteria that can produce electricity without the need for nanoparticle additives. Advancements in synthetic biology allow us to reprogram these cells to behave in totally artificial ways. We can engineer them so that producing electricity is literally in their DNA.”

Other contributors

University of Freiburg
Swiss Center for Electronics and Microtechnology
University of Salento
Sapienza University of Rome

Here’s a link to and a citation for the paper,

Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics by Alessandra Antonucci, Melania Reggente, Charlotte Roullier, Alice J. Gillen, Nils Schuergers, Vitalijs Zubkovs, Benjamin P. Lambert, Mohammed Mouhib, Elisabetta Carata, Luciana Dini & Ardemis A. Boghossian. Nature Nanotechnology (2022) DOI: https://doi.org/10.1038/s41565-022-01198-x Published: 12 September 2022

This paper is behind a paywall.

All-natural agrochemicals

Michael Berger in his May 4, 2018 Nanowerk Spotlight article highlights research into creating all natural agrochemicals,

Widespread use of synthetic agrochemicals in crop protection has led to serious concerns of environmental contamination and increased resistance in plant-based pathogenic microbes.

In an effort to develop bio-based and non-synthetic alternatives, nanobiotechnology researchers are looking to plants that possess natural antimicrobial properties.

Thymol, an essential oil component of thyme, is such a plant and known for its antimicrobial activity. However, it has low water solubility, which reduces its biological activity and limits its application through aqueous medium. In addition, thymol is physically and chemically unstable in the presence of oxygen, light and temperature, which drastically reduces its effectiveness.

Scientists in India have overcome these obstacles by preparing thymol nanoemulsions where thymol is converted into nanoscale droplets using a plant-based surfactant known as saponin (a glycoside of the Quillaja tree). Due to this encapsulation, thymol becomes physically and chemically stable in the aqueous medium (the emulsion remained stable for three months).

In their work, the researchers show that nanoscale thymol’s antibacterial and antifungal properties not only prevent plant disease but that it also enhances plant growth.

“It is exciting how nanoscale thymol is more active,” says Saharan [Dr. Vinod Saharan from the Nano Research Facility Lab, Department of Molecular Biology and Biotechnology, at Maharana Pratap University of Agriculture and Technology], who led this work in collaboration with Washington University in St. Louis and Haryana Agricultural University, Hisar. “We found that nanoscale droplets of thymol can easily pass through the surfaces of bacteria, fungi and plants and exhibit much faster and strong activity. In addition nanodroplets of thymol have a larger surface area, i.e. more molecules on the surface, so thymol becomes more active at the target sites.”

Here’s a link to and a citation for the paper,

Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean by Sarita Kumari, R. V. Kumaraswamy, Ram Chandra Choudhary, S. S. Sharma, Ajay Pal, Ramesh Raliya, Pratim Biswas, & Vinod Saharan. Scientific Reportsvolume 8, Article number: 6650 (2018) doi:10.1038/s41598-018-24871-5 Published: 27 April 2018

This paper is open access.

Final note

There is a Canadian company which specialises in nanoscale products for the agricultural sector, Vive Crop Protection. I don’t believe they claim their products are ‘green’ but due to the smaller quantities needed of Vive Crop Protection’s products, the environmental impact is less than that of traditional agrochemicals.

2015 Mustafa prize winners (two nanoscientists) announced

The $500,000US Mustafa Prize was started in 2013 according to the information on prize website’s homepage,

The Mustafa Prize is a top science and technology award granted to the top researchers and scientists of the Organization of Islamic Cooperation (OIC) member states biennially.

The Prize seeks to encourage education and research and is set to play the pioneering role in developing relations between science and technology institutions working in the OIC member countries.

It also aims to improve scientific relation between academics and researchers to facilitate the growth and perfection of science in the OIC member states.

The laureates in each section will be awarded 500,000 USD which is financed through the endowments made to the Prize. The winners will also be adorned with a special medal and certificate.

The Mustafa Prize started its job in 2013. The Policy making Council of the Prize which is tasked with supervising various procedures of the event is comprised of high-profile universities and academic centers of OIC member states.

The prize will be granted to the works which have improved the human life and have made tangible and cutting-edge innovations on the boundaries of science or have presented new scientific methodology.

The 2015 winners were announced in a Dec. 23, 2015 news item on merhnews.com,

Dr. Hossein Zohour, Chairman of the science committee of Mustafa Scientific Prize, has announced the laureates on Wednesday [Dec. 16, 2015].

According to the Public Relations Department of Mustafa (PBUH) Prize, Professor Jackie Y. Ying from Singapore and Professor Omar Yaghi from Jordan won the top science and technology award of the Islamic world.

Zohour cited that the Mustafa (PBUH) Prize is awarded in four categories including, Life Sciences and Medicine, Nanoscience and Nanotechnology, Information and Communication Technologies and Top Scientific Achievement in general fields. “In the first three categories, the nominees must be citizens of one of the 57 Islamic countries while in the fourth category the nominee must be Muslim but being citizen of an Islamic country is not mandatory,” he added.

Professor Jackie Y. Ying, CEO and faculty member of the Institute of Bioengineering and Nanotechnology of Singapore and Professor Omar Yaghi, president of Kavli Nano-energy Organization and faculty member of University of California, Berkeley are the laureates in the fields of Nano-biotechnology sciences and Nanoscience and Nanotechnology respectively.

Zohour continued, “Professor Ying is awarded in recognition of her efforts in development of ‘stimulus response systems in targeted delivery of drugs’ in the field of Nano-biotechnology.”

These systems are consisted of polymeric nanoparticles, which auto-regulate the release of insulin therapeutic depending on the blood glucose levels without the need for sampling. The technology was first developed in her knowledge-based company and now being commercialized in big pharmaceutical firms to be at the service of human health.

Professor Omar Yaghi, prominent Jordanian chemist, has also been selected for his extensive research in the field of metal-organic frameworks (MOFs) in the category of nanoscience and nanotechnology.

It’s worth noting that this [sic] MOFs have a wide range of applications in clean energy technologies, carbon dioxide capturing and hydrogen and methane storage systems due to their extremely high surface areas.

The Mustafa (PBUH) Prize Award Ceremony will take place on Friday December 25 [2015] at Vahdat Hall to honor the laureates.

Unfortunately, I’ve not profiled Dr. Yaghi’s work here. Dr. Ying has been mentioned a few times (a March 2, 2015 posting, a May 12, 2014 posting, and an Aug. 22, 2013 posting) but not for the work for which she is being honoured.

Congratulations to both Dr. Yaghi and Dr. Ying!

Joint India-Australia nanobiotechnology research centre opens in India

I first wrote about the TERI-Deakin Nanobiotechnology Research Centre (a joint India-Australia partnership) in my Nov. 30, 2010 posting when the Memorandum of Understanding (MOU) was first signed. According to the Feb. 24, 2012 news item on Nanowerk, the centre has recently opened,

Speaking at the inauguration of the new lab facilities, Hon’ble Louise Asher, MP and Minister for Innovation, Services & Small business, Minister for Tourism and Major Events, Australia said, “This outstanding facility is the result of a dynamic partnership between The Energy and Resources Institute of India (TERI) and Victoria’s [Australia] own Deakin University to augment research in the area of Nano Biotechnology, which will enable efficiency, effectiveness and provide solutions for a sustainable future.”

Highlighting the importance of TERI-DEAKIN partnership, Dr RK Pachauri, Director-General, TERI said, “Research at TERI seeks to find solutions to problems related to attaining sustainability and environmental degradation and has made a difference to the lives of many people. The organization’s commitment to these areas is a continuous process, and setting up the TERI-Deakin Nano Biotechnology Research Centre is one of the means through which, TERI plans to create capacity and expertise for technological solutions to problems of inefficient use of natural resources.”

Professor Jane den Hollander, Vice Chancellor, Deakin University said that the centre provided a hub for up to 50 PhD students who are undertaking research under the Deakin India Research Initiative (DIRI).

“What is particularly pleasing about this centre is that it is tackling research into global issues such as food security for a growing world population, sustainable agricultural practices and environmental sustainability,” she said.

The new facility opened in Gual Pahari, Gurgaon, approximately 35 mins. away (by car) from New Delhi, India (according to Feb. 24, 2012 article in the Asian Scientist about the new TERI-Deakin Nanobiotechnology Research Centre).

Walking on eggshells? and sunshine too?

Tissue scaffolding, egg shells, and nanostructures all come together in work being done by Ryerson University (Toronto, Ontario, Canada) researchers Bo Tan and Krishnan Venkatakrishnan. From the Feb. 28, 2011 news item on physorg.com,

… Venkatakrishnan and Tan first began studying nanostructures within micro-electronics. More recently, though, the researchers have started developing nanostructures using a variety of materials.

One example: the pair’s research on eggshell-based nanostructures – co-authored with Ryerson PhD candidate Amirhossein Tavangar – was published last month in the Journal of Nanobiotechnology. But eggshells aren’t the only materials that can support nanostructures; bones and other natural bio-materials are also being studied in Venkatakrishnan and Tan’s lab.

Typically, fragile ceramics or rigid polymers are used in surgery to fix broken, old or cancer-damaged bones. Nanostructures embedded within actual bones, however, offer a better solution and can help “glue” deteriorated or fragmented bones back together. Through a biomedical process called tissue scaffolding, a porous, artificially created material is used to simulate real tissue and stimulate new bone growth in the body – something that other grafting materials are limited in their capacity to do.

This couple (partners in research and in life) are also working on solar energy panels and water quality monitoring as part of their investigations into nanostructures. I recommend reading this article for a good general introduction about how multidisciplinary research on nanostructures can be applied to many fields.

After writing my headline about “walking on eggshells” I was reminded of a song, “Walking on Sunshine” by Katrina and the Waves. Enjoy a happy weekend,