Category Archives: health and safety

Reading (2 of 2): Is zinc-infused underwear healthier for women?

This first part of this Reading ‘series’, Reading (1 of 2): an artificial intelligence story in British Columbia (Canada) was mostly about how one type of story, in this case,based on a survey, is presented and placed in one or more media outlets. The desired outcome is for more funding by government and for more investors (they tucked in an ad for an upcoming artificial intelligence conference in British Columbia).

This story about zinc-infused underwear for women also uses science to prove its case and it, too, is about raising money. In this case, it’s a Kickstarter campaign to raise money.

If Huha’s (that’s the company name) claims for ‘zinc-infused mineral undies’ are to be believed, the answer is an unequivocal yes. The reality as per the current research on the topic is not quite as conclusive.

The semiotics (symbolism)

Huha features fruit alongside the pictures of their underwear. You’ll see an orange, papaya, and melon in the kickstarter campaign images and on the company website. It seems to be one of those attempts at subliminal communication. Fruit is good for you therefore our underwear is good for you. In fact, our underwear (just like the fruit) has health benefits.

For a deeper dive into the world of semiotics, there’s the ‘be fruitful and multiply’ stricture which is found in more than one religious or cultural orientation and is hard to dismiss once considered.

There is no reason to add fruit to the images other than to suggest benefits from nature and fertility (or fruitfulness). They’re not selling fruit and these ones are not particularly high in zinc. If all you’re looking for is colour, why not vegetables or puppies?

The claims

I don’t have time to review all of the claims but I’ll highlight a few. My biggest problem with the claims is that there are no citations or links to studies, i.e., the research. So, something like this becomes hard to assess,

Most women’s underwear are made with chemical-based, synthetic fibers that lead to yeast and UTI [urinary tract infection] infections, odor, and discomfort. They’ve also been proven to disrupt human hormones, have been linked to cancer, pollute the planet aggressively, and stay in landfills far too long.

There’s more than one path to a UTI and/or odor and/or discomfort but I can see where fabrics that don’t breathe can exacerbate or cause problems of that nature. I have a little more difficulty with the list that follows. I’d like to see the research on underpants disrupting human hormones. Is this strictly a problem for women or could men also be affected? (If you should know, please leave a comment.)

As for ‘linked to cancer’, I’m coming to the conclusion that everything is linked to cancer. Offhand, I’ve been told peanuts, charcoal broiled items (I think it’s the char), and my negative thoughts are all linked to cancer.

One of the last claims in the excerpted section, ‘pollute the planet aggressively’ raises this question.When did underpants become aggressive’?

The final claim seems unexceptional. Our detritus is staying too long in our landfills. Of course, the next question is: how much faster do the Huha underpants degrade in a landfill? That question is not addressed in Kickstarter campaign material.

Talking to someone with more expertise

I contacted Dr. Andrew Maynard, Associate Director at Arizona State University (ASU) School for the Future of Innovation in Society, He has a PhD in physics and longstanding experience in research and evaluation of emerging technologies (for many years he specialized in nanoparticle analysis and aerosol exposure in occupational settings),.

Professor Maynard is a widely recognized expert and public commentator on emerging technologies and their safe and responsible development and use, and has testified before [US] congressional committees on a number of occasions. 

None of this makes him infallible but I trust that he always works with integrity and bases his opinions on the best information at hand. I’ve always found him to be a reliable source of information.

Here’s what he had to say (from an October 25, 2019 email),

I suspect that their claims are pushing things too far – from what I can tell, professionals tend to advise against synthetic underwear because of the potential build up of moisture and bacteria and the lack of breathability, and tend to suggest natural materials – which indicating that natural fibers and good practices should be all most people need. I haven’t seen any evidence for an underwear crisis here, and one concern is that the company is manufacturing a problem which they then claim to solve. That said, I can’t see anything totally egregious in what they are doing. And the zinc presence makes sense in that it prevents bacterial growth/activity within the fabric, thus reducing the chances of odor and infection.

Pharmaceutical grade zinc and research into underwear

I was a little curious about ‘pharmaceutical grade’ zinc as my online searches for a description were unsuccessful. Andrew explained that the term likely means ‘high purity’ zinc suitable for use in medications rather than the zinc found in roofing panels.

After the reference to ‘pharmaceutical grade’ zinc there’s a reference to ‘smartcel sensitive Zinc’. Here’s more from the smartcel sensitive webpage,

smartcel™ sensitive is skin friendly thanks to zinc oxide’s soothing and anti-inflammatory capabilities. This is especially useful for people with sensitive skin or skin conditions such as eczema or neurodermitis. Since zinc is a component of skin building enzymes, it operates directly on the skin. An active exchange between the fiber and the skin occurs when the garment is worn.

Zinc oxide also acts as a shield against harmful UVA and UVB radiation [it’s used in sunscreens], which can damage our skin cells. Depending on the percentage of smartcel™ sensitive used in any garment, it can provide up to 50 SPF.

Further to this, zinc oxide possesses strong antibacterial properties, especially against odour causing bacteria, which helps to make garments stay fresh longer. *

I couldn’t see how zinc helps the pH balance in anyone’s vagina as claimed in the Kickstarter campaign and smartcel, on its ‘sensitive’ webpage, doesn’t make that claim but I found an answer in an April 4, 2017 Q&A (question and answer) interview by Jocelyn Cavallo for Medium,

What women need to know about their vaginal p

Q & A with Dr. Joanna Ellington

A woman’s vagina is a pretty amazing body part. Not only can it be a source of pleasure but it also can help create and bring new life into the world. On top of all that, it has the extraordinary ability to keep itself clean by secreting natural fluids and maintaining a healthy pH to encourage the growth of good bacteria and discourage harmful bacteria from moving in. Despite being so important, many women are never taught the vital role that pH plays in their vaginal health or how to keep it in balance.

We recently interviewed renowned Reproductive Physiologist and inventor of IsoFresh Balancing Vaginal Gel, Dr. Joanna Ellington, to give us the low down on what every woman needs to know about their vaginal pH and how to maintain a healthy level.

What is pH?

Dr. Ellington: PH is a scale of acidity and alkalinity. The measurements range from 0 to 14: a pH lower than 7 is acidic and a pH higher than 7 is considered alkaline.

What is the “perfect” pH level for a woman’s vagina?

Dr. E.: For most women of a reproductive age vaginal pH should be 4.5 or less. For post-menopausal women this can go up to about 5. The vagina will naturally be at a high pH right after sex, during your period, after you have a baby or during ovulation (your fertile time).

Are there diet and environmental factors that affect a women’s vaginal pH level?

Dr. E.: Yes, iron zinc and manganese have been found to be critical for lactobacillus (healthy bacteria) to function. Many women don’t eat well and should supplement these, especially if they are vegetarian. Additionally, many vegetarians have low estrogen because they do not eat the animal fats that help make our sex steroids. Without estrogen, vaginal pH and bacterial imbalance can occur. It is important that women on these diets ensure good fat intake from other sources, and have estrogen and testosterone and iron levels checked each year.

Do clothing and underwear affect vaginal pH?

Dr. E.: Yes, tight clothing and thong underwear [emphasis mine] have been shown in studies to decrease populations of healthy vaginal bacteria and cause pH changes in the vagina. Even if you wear these sometimes, it is important for your vaginal ecosystem that loose clothing or skirts be worn some too.

Yes, Dr. Ellington has the IsoFresh Balancing Vaginal Gel and whether that’s a good product should be researched but all of the information in the excerpt accords with what I’ve heard over the years and fits in nicely with what Andrew said, zinc in underwear could be useful for its antimicrobial properties. Also, note the reference to ‘thong underwear’ as a possible source of difficulty and note that Huha is offering thong and very high cut underwear.

Of course, your underwear may already have zinc in it as this research suggests (thank you, Andrew, for the reference),

Exposure of women to trace elements through the skin by direct contact with underwear clothing by Thao Nguyen & Mahmoud A. Saleh. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering Volume 52, 2017 – Issue 1 Pages 1-6 DOI: https://doi.org/10.1080/10934529.2016.1221212 Published online: 09 Sep 2016

This paper is behind a paywall but I have access through a membership in the Canadian Academy of Independent Scholars. So, here’s the part I found interesting,

… The main chemical pollutants present in textiles are dyes containing carcinogenic amines, metals, pentachlorophenol, chlorine bleaching, halogen carriers, free formaldehyde, biocides, fire retardants and softeners.[1] Metals are also found in textile products and clothing are used for many purposes: Co [cobalt], Cu [copper], Cr [chromium] and Pb [lead] are used as metal complex dyes, Cr as pigments mordant, Sn as catalyst in synthetic fabrics and as synergists of flame retardants,Ag [silver] as antimicrobials and Ti [titanium] and Zn [zinc] as water repellents and odor preventive agents.[2–5] When present in textile materials, the toxic elements mentioned above represent not only a major environmental problem in the textile industry but also they may impose potential danger to human health by absorption through the skin.[6,7] [emphasis mine] Chronic exposure to low levels of toxic elements has been associated with a number of adverse human health effects.[8–11] Also exposure to high concentration of elements which are considered as essential for humans such as Cu, Co, Fe [iron], Mn [manganese] or Zn among others, can also be harmful.[12] [emphasis mine] Co, Cr, Cu and Ni [nitrogen] are skin sensitizers,[13,14] which may lead to contact dermatitis, also Cr can lead to liver damage, pulmonary congestion and cancer.[15] [emphasis mine] The purpose of the present study was to determine the concentrations of a number of elements in various skin-contact clothes. For risk estimations, the determination of the extractable amounts of heavy metals is of importance, since they reflect their possible impact on human health. [p. 2 PDF]

So, there’s the link to cancer. Maybe.

Are zinc-infused undies a good idea?

It could go either way. (For specifics about the conclusions reached in the study, scroll down to the Ooops! subheading.) I like the idea of using sustainable Eucalyptus-based material (TencelL) for the underwear as I have heard that cotton isn’t sustainably cultivated. As for claims regarding the product’s environmental friendliness, it’s based on wood, specifically, cellulose, which Canadian researchers have been experimenting with at the nanoscale* and they certainly have been touting nanocellulose as environmentally friendly. Tencel’s sustainability page lists a number of environmental certifications from the European Union, Belgium, and the US.

*Somewhere in the Kickstarter campaign material, there’s a reference to nanofibrils and I’m guessing those nanofibrils are Tencel’s wood fibers at the nanoscale. As well, I’m guessing that smartcel’s fabric contains zinc oxide nanoparticles.

Whether or not you need more zinc is something you need to determine for yourself. Finding out if the pH balance in your vagina is within a healthy range might be a good way to start. It would also be nice to know how much zinc is in the underwear and whether it’s being used antimicrobial properties and/or as a source for one of minerals necessary for your health.

How the Kickstarter campaign is going

At the time of this posting, they’ve reached a little over $24,000 with six days left. The goal was $10,000. Sadly, there are no questions in the FAQ (frequently asked questions).

Reading tips

It’s exhausting trying to track down authenticity. In this case, there were health and environmental claims but I do have a few suggestions.

  1. Look at the imagery critically and try to ignore the hyperbole.
  2. How specific are the claims? e.g., How much zinc is there in the underpants?
  3. Who are their experts and how trustworthy are the agencies/companies mentioned?
  4. If research is cited, are the publishers reputable and is the journal reputable?
  5. Does it make sense given your own experience?
  6. What are the consequences if you make a mistake?

Overblown claims and vague intimations of disease are not usually good signs. Conversely, someone with great credential may not be trustworthy which is why I usually try to find more than one source for confirmation. The person behind this campaign and the Huha company is Alexa Suter. She’s based in Vancouver, Canada and seems to have spent most of her time as a writer and social media and video producer with a few forays into sales and real estate. I wonder if she’s modeling herself and her current lifestyle entrepreneurial effort on Gwyneth Paltrow and her lifestyle company, Goop.

Huha underwear may fulfill its claims or it may be just another pair of underwear or it may be unhealthy. As for the environmentally friendly claims, let’s hope that the case. On a personal level, I’m more hopeful about that.

Regardless, the underwear is not cheap. The smallest pledge that will get your underwear (a three-pack) is $65 CAD.

Ooops! ETA: November 8, 2019:

I forgot to include the conclusion the researchers arrived at and some details on how they arrived at those conclusions. First, they tested 120 pairs of underpants in all sorts of colours and made in different parts of the world.

Second, some underpants showed excessive levels of metals. Cotton was the most likely material to show excess although nylon and polyester can also be problematic. To put this into proportion and with reference to zinc, “Zn exceeded the limit in 4% of the tested samples
and was found mostly in samples manufactured in China.” [p. 6 PDF] Finally, dark colours tested for higher levels of metals than light colours.

While it doesn’t mention underpants as such, there’s a November 8, 2019 article ‘Five things everyone with a vagina should know‘ by Paula McGrath for BBC news online. McGrath’s health expert is Dr. Jen Gunter, a physician whose specialties are obstetrics, gynaecology, and pain.

Safe nanomaterial handling on a tiny budget

A June 3, 2019 news item on Nanowerk describes an inexpensive way to safely handle carbon nanotubes (CNTs), Note: A link has been removed,

With a little practice, it doesn’t take much more than 10 minutes, a couple of bags and a big bucket to keep nanomaterials in their place.

The Rice University lab of chemist Andrew Barron works with bulk carbon nanotubes on a variety of projects. Years ago, members of the lab became concerned that nanotubes could escape into the air, and developed a cheap and clean method to keep them contained as they were transferred from large containers into jars for experimental use.

More recently Barron himself became concerned that too few labs around the world were employing best practices to handle nanomaterials. He decided to share what his Rice team had learned.

“There was a series of studies that said if you’re going to handle nanotubes, you really need to use safety protocols,” Barron said. “Then I saw a study that said many labs didn’t use any form of hood or containment system. In the U.S., it was really bad, and in Asia it was even worse. But there are a significant number of labs scaling up to use these materials at the kilogram scale without taking the proper precautions.”

The lab’s inexpensive method is detailed in an open-access paper in the Springer Nature journal SN Applied Sciences (“The safe handling of bulk low-density nanomaterials”).

Here’s a bag and a bucket,

Caption: A plastic bucket and a plastic bag contain a 5-gallon supply of carbon nanotubes in a lab at Rice University, the beginning of the process to safely transfer the nanotubes for experimental use. The Rice lab published its technique in SN Applied Sciences. Credit: Barron Research Group/Rice University

A June 3, 2019 Rice University news release (also on EurekAlert and received separately by email), which originated the news item, provides more detail,

In bulk form, carbon nanotubes are fluffy and disperse easily if disturbed. The Rice lab typically stores the tubes in 5-gallon plastic buckets, and simply opening the lid is enough to send them flying because of their low density.

Varun Shenoy Gangoli, a research scientist in Barron’s lab, and Pavan Raja, a scientist with Rice’s Nanotechnology-Enabled Water Treatment center, developed for their own use a method that involves protecting the worker and sequestering loose tubes when removing smaller amounts of the material for use in experiments.

Full details are available in the paper, but the precautions include making sure workers are properly attired with long pants, long sleeves, lab coats, full goggles and face masks, along with two pairs of gloves duct-taped to the lab coat sleeves. The improvised glove bag involves a 25-gallon trash bin with a plastic bag taped to the rim. The unopened storage container is placed inside, and then the bin is covered with another transparent trash bag, with small holes cut in the top for access.

After transferring the nanotubes, acetone wipes are used to clean the gloves and more acetone is sprayed inside the barrel so settling nanotubes would stick to the surfaces. These can be recovered and returned to the storage container.

Barron said it took lab members time to learn to use the protocol efficiently, “but now they can get their samples in 5 to 10 minutes.” He’s sure other labs can and will enhance the technique for their own circumstances. He noted a poster presented at the Ninth Guadalupe Workshop on the proper handling of carbon nanotubes earned recognition and discussion among the world’s premier researchers in the field, noting the importance of the work for agencies in general.

“When we decided to write about this, we were originally just going to put it on the web and hope somebody would read it occasionally,” Barron said. “We couldn’t imagine who would publish it, but we heard that an editor at Springer Nature was really keen to have published articles like this.

“I think this is something people will use,” he said. “There’s nothing outrageous but it helps everybody, from high schools and colleges that are starting to use nanoparticles for experiments to small companies. That was the goal: Let’s provide a process that doesn’t cost thousands of dollars to install and allows you to transfer nanomaterials safely and on a large scale. Finally, publish said work in an open-access journal to maximize the reach across the globe.”

Here’s a link to and a citation for the paper,

The safe handling of bulk low-density nanomaterials by Varun Shenoy Gangoli, Pavan M. V. Raja, Gibran Liezer Esquenazi, Andrew R. Barron. SN Applied Sciences June 2019, 1:644 DOI: https://doi.org/10.1007/s42452-019-0647-5 First Online 25 May 2019

This paper is open access.

AI (artificial intelligence) and a hummingbird robot

Every once in a while I stumble across a hummingbird robot story (my August 12, 2011 posting and my August 1, 2014 posting). Here’s what the hummingbird robot looks like now (hint: there’s a significant reduction in size),

Caption: Purdue University researchers are building robotic hummingbirds that learn from computer simulations how to fly like a real hummingbird does. The robot is encased in a decorative shell. Credit: Purdue University photo/Jared Pike

I think this is the first time I’ve seen one of these projects not being funded by the military, which explains why the researchers are more interested in using these hummingbird robots for observing wildlife and for rescue efforts in emergency situations. Still, they do acknowledge theses robots could also be used in covert operations.

From a May 9, 2019 news item on ScienceDaily,

What can fly like a bird and hover like an insect?

Your friendly neighborhood hummingbirds. If drones had this combo, they would be able to maneuver better through collapsed buildings and other cluttered spaces to find trapped victims.

Purdue University researchers have engineered flying robots that behave like hummingbirds, trained by machine learning algorithms based on various techniques the bird uses naturally every day.

This means that after learning from a simulation, the robot “knows” how to move around on its own like a hummingbird would, such as discerning when to perform an escape maneuver.

Artificial intelligence, combined with flexible flapping wings, also allows the robot to teach itself new tricks. Even though the robot can’t see yet, for example, it senses by touching surfaces. Each touch alters an electrical current, which the researchers realized they could track.

“The robot can essentially create a map without seeing its surroundings. This could be helpful in a situation when the robot might be searching for victims in a dark place — and it means one less sensor to add when we do give the robot the ability to see,” said Xinyan Deng, an associate professor of mechanical engineering at Purdue.

The researchers even have a video,

A May 9, 2019 Purdue University news release (also on EurekAlert), which originated the news item, provides more detail,


The researchers [presented] their work on May 20 at the 2019 IEEE International Conference on Robotics and Automation in Montreal. A YouTube video is available at https://www.youtube.com/watch?v=hl892dHqfA&feature=youtu.be. [it’s the video I’ve embedded in the above]

Drones can’t be made infinitely smaller, due to the way conventional aerodynamics work. They wouldn’t be able to generate enough lift to support their weight.

But hummingbirds don’t use conventional aerodynamics – and their wings are resilient. “The physics is simply different; the aerodynamics is inherently unsteady, with high angles of attack and high lift. This makes it possible for smaller, flying animals to exist, and also possible for us to scale down flapping wing robots,” Deng said.

Researchers have been trying for years to decode hummingbird flight so that robots can fly where larger aircraft can’t. In 2011, the company AeroVironment, commissioned by DARPA, an agency within the U.S. Department of Defense, built a robotic hummingbird that was heavier than a real one but not as fast, with helicopter-like flight controls and limited maneuverability. It required a human to be behind a remote control at all times.

Deng’s group and her collaborators studied hummingbirds themselves for multiple summers in Montana. They documented key hummingbird maneuvers, such as making a rapid 180-degree turn, and translated them to computer algorithms that the robot could learn from when hooked up to a simulation.

Further study on the physics of insects and hummingbirds allowed Purdue researchers to build robots smaller than hummingbirds – and even as small as insects – without compromising the way they fly. The smaller the size, the greater the wing flapping frequency, and the more efficiently they fly, Deng says.

The robots have 3D-printed bodies, wings made of carbon fiber and laser-cut membranes. The researchers have built one hummingbird robot weighing 12 grams – the weight of the average adult Magnificent Hummingbird – and another insect-sized robot weighing 1 gram. The hummingbird robot can lift more than its own weight, up to 27 grams.

Designing their robots with higher lift gives the researchers more wiggle room to eventually add a battery and sensing technology, such as a camera or GPS. Currently, the robot needs to be tethered to an energy source while it flies – but that won’t be for much longer, the researchers say.

The robots could fly silently just as a real hummingbird does, making them more ideal for covert operations. And they stay steady through turbulence, which the researchers demonstrated by testing the dynamically scaled wings in an oil tank.

The robot requires only two motors and can control each wing independently of the other, which is how flying animals perform highly agile maneuvers in nature.

“An actual hummingbird has multiple groups of muscles to do power and steering strokes, but a robot should be as light as possible, so that you have maximum performance on minimal weight,” Deng said.

Robotic hummingbirds wouldn’t only help with search-and-rescue missions, but also allow biologists to more reliably study hummingbirds in their natural environment through the senses of a realistic robot.

“We learned from biology to build the robot, and now biological discoveries can happen with extra help from robots,” Deng said.
Simulations of the technology are available open-source at https://github.com/
purdue-biorobotics/flappy
.

Early stages of the work, including the Montana hummingbird experiments in collaboration with Bret Tobalske’s group at the University of Montana, were financially supported by the National Science Foundation.

The researchers have three paper on arxiv.org for open access peer review,

Learning Extreme Hummingbird Maneuvers on Flapping Wing Robots
Fan Fei, Zhan Tu, Jian Zhang, and Xinyan Deng
Purdue University, West Lafayette, IN, USA
https://arxiv.org/abs/1902.0962

Biological studies show that hummingbirds can perform extreme aerobatic maneuvers during fast escape. Given a sudden looming visual stimulus at hover, a hummingbird initiates a fast backward translation coupled with a 180-degree yaw turn, which is followed by instant posture stabilization in just under 10 wingbeats. Consider the wingbeat frequency of 40Hz, this aggressive maneuver is carried out in just 0.2 seconds. Inspired by the hummingbirds’ near-maximal performance during such extreme maneuvers, we developed a flight control strategy and experimentally demonstrated that such maneuverability can be achieved by an at-scale 12- gram hummingbird robot equipped with just two actuators. The proposed hybrid control policy combines model-based nonlinear control with model-free reinforcement learning. We use model-based nonlinear control for nominal flight control, as the dynamic model is relatively accurate for these conditions. However, during extreme maneuver, the modeling error becomes unmanageable. A model-free reinforcement learning policy trained in simulation was optimized to ‘destabilize’ the system and maximize the performance during maneuvering. The hybrid policy manifests a maneuver that is close to that observed in hummingbirds. Direct simulation-to-real transfer is achieved, demonstrating the hummingbird-like fast evasive maneuvers on the at-scale hummingbird robot.

Acting is Seeing: Navigating Tight Space Using Flapping Wings
Zhan Tu, Fan Fei, Jian Zhang, and Xinyan Deng
Purdue University, West Lafayette, IN, USA
https://arxiv.org/abs/1902.0868

Wings of flying animals can not only generate lift and control torques but also can sense their surroundings. Such dual functions of sensing and actuation coupled in one element are particularly useful for small sized bio-inspired robotic flyers, whose weight, size, and power are under stringent constraint. In this work, we present the first flapping-wing robot using its flapping wings for environmental perception and navigation in tight space, without the need for any visual feedback. As the test platform, we introduce the Purdue Hummingbird, a flapping-wing robot with 17cm wingspan and 12 grams weight, with a pair of 30-40Hz flapping wings driven by only two actuators. By interpreting the wing loading feedback and its variations, the vehicle can detect the presence of environmental changes such as grounds, walls, stairs, obstacles and wind gust. The instantaneous wing loading can be obtained through the measurements and interpretation of the current feedback by the motors that actuate the wings. The effectiveness of the proposed approach is experimentally demonstrated on several challenging flight tasks without vision: terrain following, wall following and going through a narrow corridor. To ensure flight stability, a robust controller was designed for handling unforeseen disturbances during the flight. Sensing and navigating one’s environment through actuator loading is a promising method for mobile robots, and it can serve as an alternative or complementary method to visual perception.

Flappy Hummingbird: An Open Source Dynamic Simulation of Flapping Wing Robots and Animals
Fan Fei, Zhan Tu, Yilun Yang, Jian Zhang, and Xinyan Deng
Purdue University, West Lafayette, IN, USA
https://arxiv.org/abs/1902.0962

Insects and hummingbirds exhibit extraordinary flight capabilities and can simultaneously master seemingly conflicting goals: stable hovering and aggressive maneuvering, unmatched by small scale man-made vehicles. Flapping Wing Micro Air Vehicles (FWMAVs) hold great promise for closing this performance gap. However, design and control of such systems remain challenging due to various constraints. Here, we present an open source high fidelity dynamic simulation for FWMAVs to serve as a testbed for the design, optimization and flight control of FWMAVs. For simulation validation, we recreated the hummingbird-scale robot developed in our lab in the simulation. System identification was performed to obtain the model parameters. The force generation, open- loop and closed-loop dynamic response between simulated and experimental flights were compared and validated. The unsteady aerodynamics and the highly nonlinear flight dynamics present challenging control problems for conventional and learning control algorithms such as Reinforcement Learning. The interface of the simulation is fully compatible with OpenAI Gym environment. As a benchmark study, we present a linear controller for hovering stabilization and a Deep Reinforcement Learning control policy for goal-directed maneuvering. Finally, we demonstrate direct simulation-to-real transfer of both control policies onto the physical robot, further demonstrating the fidelity of the simulation.

Enjoy!

Food nanoparticles and their effect on intestinal flora (i.e., your gut microbiome)

This work from Germany is largely speculative. The scientists seem to be interested in exploring how engineered nanoparticles and naturally occurring nanoparticles in food affect your gut. From a January 29, 2019 news item on ScienceDaily,

The intestinal microbiome is not only key for food processing but an accepted codeterminant for various diseases. Researchers led by the University Medical Center of Johannes Gutenberg University Mainz (JGU) identified effects of nanoparticles on intestinal microorganisms. The ultra-small particles adhere to intestinal microorganisms, thereby affecting their life cycle as well as cross talk with the host. One of the researchers’ observations was that nanoparticles’ binding inhibits the infection with Helicobacter pylori, a pathogen implicated in gastric cancer. The findings will stimulate further epidemiological studies and pave the way for the development of potential ‘probiotic’ nanoparticles for food. The discoveries were published in Science of Food.

A January 29, 2019 Johannes Gutenberg University Mainz (JGU) press release (also on EurekAlert), which originated the news item, provides more detail,

Due to their minute size, nanoparticles have unique characteristics and capabilities, such as adhering to microstructures. Nanotechnology is as an important driver of innovation for both consumer industry and medicine. In medicine, the focus is on improving diagnostics and therapeutics, while industry addresses mainly product optimization. Hence, synthetic nanoparticles are already used as additives to improve the characteristics of food. But how can we use nanotechnology more efficiently and safely in food? And are there unknown effects of nanoparticles, which need to be further exploited?

Nutrition strongly influences the diversity and composition of our microbiome. ‘Microbiome’ describes all colonizing microorganisms present in a human being, in particular, all the bacteria in the gut. In other words, your microbiome includes your intestinal flora as well as the microorganisms that colonize your skin, mouth, and nasal cavity.

Scientists and clinicians are interested in microbiomes because of their positive or negative effects on the host. These include modulation of our immune system, metabolism, vascular aging, cerebral functioning, and our hormonal system. The composition of the microbiome seems to play an important role for the development of various disorders, such as cardiovascular diseases, cancer, allergies, obesity, and even mental disorders. “Hence, nutrition and its containing nanoparticulates may affect the microbiome-host balance, finally influencing human health. In order to reduce potential risks and, ideally, promote health, the impact of dietary nanoparticles needs to be understood,” emphasized Professor David J. McClements from the Department of Food Science at the University of Massachusetts in Amherst, USA.

“Prior to our studies, nobody really looked whether and how nano-additives directly influence the gastrointestinal flora,” commented Professor Roland Stauber of the Department of Otolaryngology, Head, and Neck Surgery at the Mainz University Medical Center. “Hence, we studied at a wide range of technical nanoparticles with clearly defined properties in order to mimic what happens to currently used or potential future nanosized food additives. By simulating the journey of particles through the different environments of the digestive tract in the laboratory, we found that the all tested nanomaterials were indeed able to bind to bacteria.” explained Stauber.

The scientists discovered that these binding processes can have different outcomes. On the one hand, nanoparticle-bound microorganisms were less efficiently recognized by the immune system, which may lead to increased inflammatory responses. On the other hand, ‘nano-food’ showed beneficial effects. In cell culture models, silica nanoparticles inhibited the infectivity of Helicobacter pylori, which is considered to be one of the main agents involved in gastric cancer.

‘It was puzzling that we were able to also isolate naturally occurring nanoparticles from food, like beer, which showed similar effects. Nanoparticles in our daily food are not just those added deliberately but can also be generated naturally during preparation. Nanoparticulates are already omnipresent,” concluded Stauber.

The insights of the study will allow to derive strategies for developing and utilizing synthetic or natural nanoparticles to modulate the microbiome as beneficial ingredients in functional foods. “The challenge is to identify nanoparticles that fit the desired purpose, perhaps even as probiotic food supplements in the future. Challenge accepted,” emphasized Stauber and his team.

Here’s a link to and a citation for the paper,

Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study by Svenja Siemer, Angelina Hahlbrock, Cecilia Vallet, David Julian McClements, Jan Balszuweit, Jens Voskuhl, Dominic Docter, Silja Wessler, Shirley K. Knauer, Dana Westmeier, & Roland H. Stauber. npj Science of Foodvolume 2, Article number: 22 (2018) DOI: https://doi.org/10.1038/s41538-018-0030-8 Published 04 December 2018

This paper is open access.

Iron oxide nanoparticles for artificial skin with super powers

A January 28, 2019 news item on ScienceDaily describes the possibilities for a skin replacement material,

A new type of sensor could lead to artificial skin that someday helps burn victims ‘feel’ and safeguards the rest of us, University of Connecticut researchers suggest in a paper in Advanced Materials.

Our skin’s ability to perceive pressure, heat, cold, and vibration is a critical safety function that most people take for granted. But burn victims, those with prosthetic limbs, and others who have lost skin sensitivity for one reason or another, can’t take it for granted, and often injure themselves unintentionally.

Chemists Islam Mosa from UConn [University of Connecticut], and James Rusling from UConn and UConn Health, along with University of Toronto engineer Abdelsalam Ahmed, wanted to create a sensor that can mimic the sensing properties of skin. Such a sensor would need to be able to detect pressure, temperature, and vibration. But perhaps it could do other things too, the researchers thought.

“It would be very cool if it had abilities human skin does not; for example, the ability to detect magnetic fields, sound waves, and abnormal behaviors,” said Mosa.

A January 22, 2019 UConn news release (also on EurekAlert but dated January 28, 2019), which originated the news item, give more detail about the work,

Mosa and his colleagues created such a sensor with a silicone tube wrapped in a copper wire and filled with a special fluid made of tiny particles of iron oxide just one billionth of a meter long, called nanoparticles. The nanoparticles rub around the inside of the silicone tube and create an electric current. The copper wire surrounding the silicone tube picks up the current as a signal. When this tube is bumped by something experiencing pressure, the nanoparticles move and the electric signal changes. Sound waves also create waves in the nanoparticle fluid, and the electric signal changes in a different way than when the tube is bumped.

The researchers found that magnetic fields alter the signal too, in a way distinct from pressure or sound waves. Even a person moving around while carrying the sensor changes the electrical current, and the team found they could distinguish between the electrical signals caused by walking, running, jumping, and swimming.

Metal skin might sound like a superhero power, but this skin wouldn’t make the wearer Colossus from the X-men. Rather, Mosa and his colleagues hope it could help burn victims “feel” again, and perhaps act as an early warning for workers exposed to dangerously high magnetic fields. Because the rubber exterior is completely sealed and waterproof, it could also serve as a wearable monitor to alert parents if their child fell into deep water in a pool, for example.

“The inspiration was to make something durable that would last for a very long time, and could detect multiple hazards,” Mosa says. The team has yet to test the sensor for its response to heat and cold, but they suspect it will work for those as well. The next step is to make the sensor in a flat configuration, more like skin, and see if it still works.

Here’s a link to and a citation for the paper,

An Ultra‐Shapeable, Smart Sensing Platform Based on a Multimodal Ferrofluid‐Infused Surface by Abdelsalam Ahmed, Islam Hassan, Islam M. Mosa, Esraa Elsanadidy, Mohamed Sharafeldin, James F. Rusling, Shenqiang Ren. Advanced Materials DOI: https://doi.org/10.1002/adma.201807201 First published: 28 January 2019

This paper is behind a paywall.

How do nanoparticles interact with the environment and with humans over time?

I meant to get this piece published sooner but good intentions don’t get you far.

At Northwestern University, scientists have researched the impact engineered nanoparticles (ENPs) might have as they enter the food chain. An October 18, 2019 Northwestern University news release (also on EurekAlert) by Megan Fellman describes research on an investigation of ENPs and their interaction with living organisms,

Personal electronic devices — smartphones, computers, TVs, tablets, screens of all kinds — are a significant and growing source of the world’s electronic waste. Many of these products use nanomaterials, but little is known about how these modern materials and their tiny particles interact with the environment and living things.

Now a research team of Northwestern University chemists and colleagues from the national Center for Sustainable Nanotechnology has discovered that when certain coated nanoparticles interact with living organisms it results in new properties that cause the nanoparticles to become sticky. Fragmented lipid coronas form on the particles, causing them to stick together and grow into long kelp-like strands. Nanoparticles with 5-nanometer diameters form long structures that are microns in size in solution. The impact on cells is not known.

“Why not make a particle that is benign from the beginning?” said Franz M. Geiger, professor of chemistry in Northwestern’s Weinberg College of Arts and Sciences. He led the Northwestern portion of the research.

“This study provides insight into the molecular mechanisms by which nanoparticles interact with biological systems,” Geiger said. “This may help us understand and predict why some nanomaterial/ligand coating combinations are detrimental to cellular organisms while others are not. We can use this to engineer nanoparticles that are benign by design.”

Using experiments and computer simulations, the research team studied how gold nanoparticles wrapped in strings having positively charged beads interact with a variety of bilayer membrane models. The researchers found that a nearly circular layer of lipids forms spontaneously around the particles. Formation of these “fragmented lipid coronas” have never been seen before to form from membranes.

The study points to solving problems with chemistry. Scientists can use the findings to design a better ligand coating for nanoparticles that avoids the ammonium-phosphate interaction, which causes the aggregation. (Ligands are used in nanomaterials for layering.)

The results will be published Oct. 18 [2018] in the journal Chem.

Geiger is the study’s corresponding author. Other authors include scientists from the Center for Sustainable Nanotechnology’s other institutional partners. Based at the University of Wisconsin-Madison, the center studies engineered nanomaterials and their interaction with the environment, including biological systems — both the negative and positive aspects.

“The nanoparticles pick up parts of the lipid cellular membrane like a snowball rolling in a snowfield, and they become sticky,” Geiger said. “This unintended effect happens because of the presence of the nanoparticle. It can bring lipids to places in cells where lipids are not meant to be.”

The experiments were conducted in idealized laboratory settings that nevertheless are relevant to environments found during the late summer in a landfill — at 21-22 degrees Celsius and a couple feet below ground, where soil and groundwater mix and the food chain begins.

By pairing spectroscopic and imaging experiments with atomistic and coarse-grain simulations, the researchers identified that ion pairing between the lipid head groups of biological membranes and the polycations’ ammonium groups in the nanoparticle wrapping leads to the formation of fragmented lipid coronas. These coronas engender new properties, including composition and stickiness, to the particles with diameters below 10 nanometers.

The study’s insights help predict the impact that the increasingly widespread use of engineered nanomaterials has on the nanoparticles’ fate once they enter the food chain, which many of them may eventually do.

“New technologies and mass consumer products are emerging that feature nanomaterials as critical operational components,” Geiger said. “We can upend the existing paradigm in nanomaterial production towards one in which companies design nanomaterials to be sustainable from the beginning, as opposed to risking expensive product recalls — or worse — down the road.” [emphases mine]

Here’s an image illustrating the work,

Caption: This is a computer simulation of a lipid corona around a 5-nanometer nanoparticle showing ammonium-phosphate ion pairing. Credit: Northwestern University

The curious can find the paper here,

Lipid Corona Formation from Nanoparticle Interactions with Bilayers by Laura L. Olenick, Julianne M. Troiano, Ariane Vartanian, Eric S. Melby, Arielle C. Mensch, Leili Zhang, Jiewei Hong, Oluwaseun Mesele, Tian Qiu, Jared Bozich, Samuel Lohse, Xi Zhang, Thomas R. Kuech, Augusto Millevolte, Ian Gunsolus, Alicia C. McGeachy, Merve Doğangün, Tianzhe Li, Dehong Hu, Stephanie R. Walter, Aurash Mohaimani, Angela Schmoldt, Marco D. Torelli, Katherine R. Hurley, Joe Dalluge, Gene Chong, Z. Vivian Feng, Christy L. Haynes, Robert J. Hamers, Joel A. Pedersen, Qiang Cui, Rigoberto Hernandez, Rebecca Klaper, Galya Orr, Catherine J. Murphy, Franz M. Geiger. Chem Volume 4, ISSUE 11, P2709-2723, November 08, 2018 DOI:https://doi.org/10.1016/j.chempr.2018.09.018 Published:October 18, 2018

This paper is behind a paywall.

Human lung enzyme can degrade graphene

Caption: A human lung enzyme can biodegrade graphene. Credit: Fotolia Courtesy: Graphene Flagship

The big European Commission research programme, Grahene Flagship, has announced some new work with widespread implications if graphene is to be used in biomedical implants. From a August 23, 2018 news item on ScienceDaily,

Myeloperoxidase — an enzyme naturally found in our lungs — can biodegrade pristine graphene, according to the latest discovery of Graphene Flagship partners in CNRS, University of Strasbourg (France), Karolinska Institute (Sweden) and University of Castilla-La Mancha (Spain). Among other projects, the Graphene Flagship designs based like flexible biomedical electronic devices that will interfaced with the human body. Such applications require graphene to be biodegradable, so our body can be expelled from the body.

An August 23, 2018 Grapehene Flagship press release (mildly edited version on EurekAlert), which originated the news item, provides more detail,

To test how graphene behaves within the body, researchers analysed how it was broken down with the addition of a common human enzyme – myeloperoxidase or MPO. If a foreign body or bacteria is detected, neutrophils surround it and secrete MPO, thereby destroying the threat. Previous work by Graphene Flagship partners found that MPO could successfully biodegrade graphene oxide.

However, the structure of non-functionalized graphene was thought to be more resistant to degradation. To test this, the team looked at the effects of MPO ex vivo on two graphene forms; single- and few-layer.

Alberto Bianco, researcher at Graphene Flagship Partner CNRS, explains: “We used two forms of graphene, single- and few-layer, prepared by two different methods in water. They were then taken and put in contact with myeloperoxidase in the presence of hydrogen peroxide. This peroxidase was able to degrade and oxidise them. This was really unexpected, because we thought that non-functionalized graphene was more resistant than graphene oxide.”

Rajendra Kurapati, first author on the study and researcher at Graphene Flagship Partner CNRS, remarks how “the results emphasize that highly dispersible graphene could be degraded in the body by the action of neutrophils. This would open the new avenue for developing graphene-based materials.”

With successful ex-vivo testing, in-vivo testing is the next stage. Bengt Fadeel, professor at Graphene Flagship Partner Karolinska Institute believes that “understanding whether graphene is biodegradable or not is important for biomedical and other applications of this material. The fact that cells of the immune system are capable of handling graphene is very promising.”

Prof. Maurizio Prato, the Graphene Flagship leader for its Health and Environment Work Package said that “the enzymatic degradation of graphene is a very important topic, because in principle, graphene dispersed in the atmosphere could produce some harm. Instead, if there are microorganisms able to degrade graphene and related materials, the persistence of these materials in our environment will be strongly decreased. These types of studies are needed.” “What is also needed is to investigate the nature of degradation products,” adds Prato. “Once graphene is digested by enzymes, it could produce harmful derivatives. We need to know the structure of these derivatives and study their impact on health and environment,” he concludes.

Prof. Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship, and chair of its management panel added: “The report of a successful avenue for graphene biodegradation is a very important step forward to ensure the safe use of this material in applications. The Graphene Flagship has put the investigation of the health and environment effects of graphene at the centre of its programme since the start. These results strengthen our innovation and technology roadmap.”

Here’s a link to and a citation for the paper,

Degradation of Single‐Layer and Few‐Layer Graphene by Neutrophil Myeloperoxidase by Dr. Rajendra Kurapati, Dr. Sourav P. Mukherjee, Dr. Cristina Martín, Dr. George Bepete, Prof. Ester Vázquez, Dr. Alain Pénicaud, Prof. Dr. Bengt Fadeel, Dr. Alberto Bianco. Angewandte Chemie https://doi.org/10.1002/anie.201806906 First published: 13 July 2018

This paper is behind a paywall.

Nanoparticles in combination could be more toxic

It seems that one set of nanoparticles, e.g., silver nanoparticles, in combination with another material, e.g., cadmium ions, are more dangerous than either one separately according to an August 17, 2018 University of Southern Denmark press release by Birgitte Svennevig (also on EurekAlert but dated August 20, 2018),

Researchers warn that a combination of nanoparticles and contaminants may form a cocktail that is harmful to our cells. In their study, 72 pct. of cells died after exposure to a cocktail of nano-silver and cadmium ions.

Nanoparticles are becoming increasingly widespread in our environment. Thousands of products contain nanoparticles because of their unique properties. Silver nanoparticles are one example: They have an effective antibacterial effect and can be found in refrigerators, sports clothes, cosmetics, tooth brushes, water filters, etc.

There is a significant difference between how the cells react when exposed to nanosilver alone and when they are exposed to a cocktail of nanosilver and cadmium ions. Cadmium ions are naturally found everywhere around us on Earth.

In the study, 72 pct. of the cells died, when exposed to both nanosilver and cadmiun ions. When exposed to nanosilver only, 25 pct. died. When exposed to cadmium ions only, 12 pct. died.

The study was conducted on human liver cancer cells.

  • This study indicates, that we should not look at nanoparticles isolated when we investigate and discuss the effects, they may have on our health. We need to take cocktail effects into account, said Professor Frank Kjeldsen, Dept of Biochemistry and Molecular Biology, SDU, adding:
  • Products with nano particles are being developed and manufactured every day, but in most countries there are no regulations, so there is no way of knowing what and how many nanoparticles are being released into the environment. In my opinion, this should be stopped.

Other studies, led by Professor Kjeldsen have previously shown that human cells interact with metal nanoparticles.

One study showed that nano-silver leads to the formation free radicals in cells and changes in the form and amount of proteins. Many serious diseases are characterized by an overproduction of free radicals in cells. This applies to cancer and neurological diseases such as Alzheimer’s and Parkinson’s.

This is not great news but there are a few things to note about this research. First, it was conducted on cells and therefore not subject to some of the defensive systems found in complete biological organisms such as a mouse or a dandelion plant for example.

Also, since they were cancer cells one might suspect their reactions might differ from those of healthy cells. As for how the cells were exposed to the contaminants, I think (???) they were sitting in a solution of contaminants and most of us do not live in that kind of environment.. Finally, with regard to the concentrations, I have no idea if they are greater than one might expect to encounter in one’s lifecycle but it’s always worth questioning just how much exposure you might expect during yours or a mouse’s or a dandelion’s life.

These caveats aside, Professor Frank Kjeldsen’s work raises some very concerning issues and his work adds to a growing body of evidence.

Here’s a video featuring Dr. Kjeldsen talking about his work,

Here’s a link to and a citation for the paper,

Co-exposure to silver nanoparticles and cadmium induce metabolic adaptation in HepG2 cells by Renata Rank Miranda, Vladimir Gorshkov, Barbara Korzeniowska, Stefan J. Kempf, Francisco Filipak Neto, & Frank Kjeldsen. Nanotoxicology DOI: https://doi.org/10.1080/17435390.2018.1489987 Published online: 11 Jul 2018

This paper is open access.

Artificial intelligence (AI) brings together International Telecommunications Union (ITU) and World Health Organization (WHO) and AI outperforms animal testing

Following on my May 11, 2018 posting about the International Telecommunications Union (ITU) and the 2018 AI for Good Global Summit in mid- May, there’s an announcement. My other bit of AI news concerns animal testing.

Leveraging the power of AI for health

A July 24, 2018 ITU press release (a shorter version was received via email) announces a joint initiative focused on improving health,

Two United Nations specialized agencies are joining forces to expand the use of artificial intelligence (AI) in the health sector to a global scale, and to leverage the power of AI to advance health for all worldwide. The International Telecommunication Union (ITU) and the World Health Organization (WHO) will work together through the newly established ITU Focus Group on AI for Health to develop an international “AI for health” standards framework and to identify use cases of AI in the health sector that can be scaled-up for global impact. The group is open to all interested parties.

“AI could help patients to assess their symptoms, enable medical professionals in underserved areas to focus on critical cases, and save great numbers of lives in emergencies by delivering medical diagnoses to hospitals before patients arrive to be treated,” said ITU Secretary-General Houlin Zhao. “ITU and WHO plan to ensure that such capabilities are available worldwide for the benefit of everyone, everywhere.”

The demand for such a platform was first identified by participants of the second AI for Good Global Summit held in Geneva, 15-17 May 2018. During the summit, AI and the health sector were recognized as a very promising combination, and it was announced that AI-powered technologies such as skin disease recognition and diagnostic applications based on symptom questions could be deployed on six billion smartphones by 2021.

The ITU Focus Group on AI for Health is coordinated through ITU’s Telecommunications Standardization Sector – which works with ITU’s 193 Member States and more than 800 industry and academic members to establish global standards for emerging ICT innovations. It will lead an intensive two-year analysis of international standardization opportunities towards delivery of a benchmarking framework of international standards and recommendations by ITU and WHO for the use of AI in the health sector.

“I believe the subject of AI for health is both important and useful for advancing health for all,” said WHO Director-General Tedros Adhanom Ghebreyesus.

The ITU Focus Group on AI for Health will also engage researchers, engineers, practitioners, entrepreneurs and policy makers to develop guidance documents for national administrations, to steer the creation of policies that ensure the safe, appropriate use of AI in the health sector.

“1.3 billion people have a mobile phone and we can use this technology to provide AI-powered health data analytics to people with limited or no access to medical care. AI can enhance health by improving medical diagnostics and associated health intervention decisions on a global scale,” said Thomas Wiegand, ITU Focus Group on AI for Health Chairman, and Executive Director of the Fraunhofer Heinrich Hertz Institute, as well as professor at TU Berlin.

He added, “The health sector is in many countries among the largest economic sectors or one of the fastest-growing, signalling a particularly timely need for international standardization of the convergence of AI and health.”

Data analytics are certain to form a large part of the ITU focus group’s work. AI systems are proving increasingly adept at interpreting laboratory results and medical imagery and extracting diagnostically relevant information from text or complex sensor streams.

As part of this, the ITU Focus Group for AI for Health will also produce an assessment framework to standardize the evaluation and validation of AI algorithms — including the identification of structured and normalized data to train AI algorithms. It will develop open benchmarks with the aim of these becoming international standards.

The ITU Focus Group for AI for Health will report to the ITU standardization expert group for multimedia, Study Group 16.

I got curious about Study Group 16 (from the Study Group 16 at a glance webpage),

Study Group 16 leads ITU’s standardization work on multimedia coding, systems and applications, including the coordination of related studies across the various ITU-T SGs. It is also the lead study group on ubiquitous and Internet of Things (IoT) applications; telecommunication/ICT accessibility for persons with disabilities; intelligent transport system (ITS) communications; e-health; and Internet Protocol television (IPTV).

Multimedia is at the core of the most recent advances in information and communication technologies (ICTs) – especially when we consider that most innovation today is agnostic of the transport and network layers, focusing rather on the higher OSI model layers.

SG16 is active in all aspects of multimedia standardization, including terminals, architecture, protocols, security, mobility, interworking and quality of service (QoS). It focuses its studies on telepresence and conferencing systems; IPTV; digital signage; speech, audio and visual coding; network signal processing; PSTN modems and interfaces; facsimile terminals; and ICT accessibility.

I wonder which group deals with artificial intelligence and, possibly, robots.

Chemical testing without animals

Thomas Hartung, professor of environmental health and engineering at Johns Hopkins University (US), describes in his July 25, 2018 essay (written for The Conversation) on phys.org the situation where chemical testing is concerned,

Most consumers would be dismayed with how little we know about the majority of chemicals. Only 3 percent of industrial chemicals – mostly drugs and pesticides – are comprehensively tested. Most of the 80,000 to 140,000 chemicals in consumer products have not been tested at all or just examined superficially to see what harm they may do locally, at the site of contact and at extremely high doses.

I am a physician and former head of the European Center for the Validation of Alternative Methods of the European Commission (2002-2008), and I am dedicated to finding faster, cheaper and more accurate methods of testing the safety of chemicals. To that end, I now lead a new program at Johns Hopkins University to revamp the safety sciences.

As part of this effort, we have now developed a computer method of testing chemicals that could save more than a US$1 billion annually and more than 2 million animals. Especially in times where the government is rolling back regulations on the chemical industry, new methods to identify dangerous substances are critical for human and environmental health.

Having written on the topic of alternatives to animal testing on a number of occasions (my December 26, 2014 posting provides an overview of sorts), I was particularly interested to see this in Hartung’s July 25, 2018 essay on The Conversation (Note: Links have been removed),

Following the vision of Toxicology for the 21st Century, a movement led by U.S. agencies to revamp safety testing, important work was carried out by my Ph.D. student Tom Luechtefeld at the Johns Hopkins Center for Alternatives to Animal Testing. Teaming up with Underwriters Laboratories, we have now leveraged an expanded database and machine learning to predict toxic properties. As we report in the journal Toxicological Sciences, we developed a novel algorithm and database for analyzing chemicals and determining their toxicity – what we call read-across structure activity relationship, RASAR.

This graphic reveals a small part of the chemical universe. Each dot represents a different chemical. Chemicals that are close together have similar structures and often properties. Thomas Hartung, CC BY-SA

To do this, we first created an enormous database with 10 million chemical structures by adding more public databases filled with chemical data, which, if you crunch the numbers, represent 50 trillion pairs of chemicals. A supercomputer then created a map of the chemical universe, in which chemicals are positioned close together if they share many structures in common and far where they don’t. Most of the time, any molecule close to a toxic molecule is also dangerous. Even more likely if many toxic substances are close, harmless substances are far. Any substance can now be analyzed by placing it into this map.

If this sounds simple, it’s not. It requires half a billion mathematical calculations per chemical to see where it fits. The chemical neighborhood focuses on 74 characteristics which are used to predict the properties of a substance. Using the properties of the neighboring chemicals, we can predict whether an untested chemical is hazardous. For example, for predicting whether a chemical will cause eye irritation, our computer program not only uses information from similar chemicals, which were tested on rabbit eyes, but also information for skin irritation. This is because what typically irritates the skin also harms the eye.

How well does the computer identify toxic chemicals?

This method will be used for new untested substances. However, if you do this for chemicals for which you actually have data, and compare prediction with reality, you can test how well this prediction works. We did this for 48,000 chemicals that were well characterized for at least one aspect of toxicity, and we found the toxic substances in 89 percent of cases.

This is clearly more accurate that the corresponding animal tests which only yield the correct answer 70 percent of the time. The RASAR shall now be formally validated by an interagency committee of 16 U.S. agencies, including the EPA [Environmental Protection Agency] and FDA [Food and Drug Administration], that will challenge our computer program with chemicals for which the outcome is unknown. This is a prerequisite for acceptance and use in many countries and industries.

The potential is enormous: The RASAR approach is in essence based on chemical data that was registered for the 2010 and 2013 REACH [Registration, Evaluation, Authorizations and Restriction of Chemicals] deadlines [in Europe]. If our estimates are correct and chemical producers would have not registered chemicals after 2013, and instead used our RASAR program, we would have saved 2.8 million animals and $490 million in testing costs – and received more reliable data. We have to admit that this is a very theoretical calculation, but it shows how valuable this approach could be for other regulatory programs and safety assessments.

In the future, a chemist could check RASAR before even synthesizing their next chemical to check whether the new structure will have problems. Or a product developer can pick alternatives to toxic substances to use in their products. This is a powerful technology, which is only starting to show all its potential.

It’s been my experience that these claims having led a movement (Toxicology for the 21st Century) are often contested with many others competing for the title of ‘leader’ or ‘first’. That said, this RASAR approach seems very exciting, especially in light of the skepticism about limiting and/or making animal testing unnecessary noted in my December 26, 2014 posting.it was from someone I thought knew better.

Here’s a link to and a citation for the paper mentioned in Hartung’s essay,

Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility by Thomas Luechtefeld, Dan Marsh, Craig Rowlands, Thomas Hartung. Toxicological Sciences, kfy152, https://doi.org/10.1093/toxsci/kfy152 Published: 11 July 2018

This paper is open access.

Sound-absorbing nanofoam

In these increasingly noisy days (there’s construction going on around me), news of a cheaper, easier way to dull the noise is very attractive. From a June 25, 2018 Far Eastern Federal University (Russia) press release on EurekAlert,

The breakthrough material reduces a noise level by 100% more efficient comparing to standard analogs, cutting the level of noise transmission by 20-22 dB. The new foam reacts to sound waves not only of high but also of low frequencies, which can damage human health. A young scientist from the Far Eastern Federal University (FEFU) took part in the development.

PARTNERSHIP DEVELOPMENT

Alexey Zavjalov, postdoc, researcher at the Academic Department of Nuclear Technologies School of Natural Science, FEFU, worked as a part of the international team of Russian and South Korean scientists under professor S.P. Bardakhanov. Alexey’s research performance led to the creation of nanofoam – the new noise-absorbing composite material. The results of the work are published in ‘Applied Acoustics’.

‘The problem of noise is the problem of modern technogenic civilization. In South Korea, cities are equipped with round-the-clock working stationary and mobile networks for noise levels monitoring. The urbanization level of such territorially small countries as South Korea is much higher than in Russia. However, in our country this problem is still crucial for big cities,’ – explained Alexey Zavjalov. – ‘The development of new noise-absorbing materials is especially interesting for the automotive industry. Modern people spend a lot of time driving cars and the noise level inside the vehicles’ directly determines the quality of life. For East Asian countries, the issue of noise control is relevant for high-speed rail lines.’ Porous materials are excellent sound absorbers but their noise-absorbing properties can be significantly enhanced by nanoporous grit injected into the foam structure and formed internal channels in it. Alexey Zavjalov has developed approaches for saturation of macroporous foam material with nanoporous grit.

HARMFULNESS OF THE LOW FREQUENCIES NOISES.

Along with the rapid development of nanotechnology, there have been many attempts to mix nano- and microsized materials to create a modified material with enhanced strength, elastic, dynamical and vibrational properties. The acoustic parameters of such materials could not be fundamentally enhanced thus far.

Foam materials are most often used for soundproofing purposes. They provide the proper quality at a reasonable cost, but until today have been effective against high-frequency noise only. At the same time, low frequencies can be much more harmful to human health.

Infra- and low-frequency vibrations and noise (less than 0.4 kHz) are most harmful and dangerous for human health and life. Especially unfavorable is their long-lasting impact, since leads to serious diseases and pathologies. Complaints on such oppressions exceed 35% of the sum total of complaints on harmful environmental conditions.

The foam material, developed by Russian and Korean scientists, demonstrated promising results at medium frequencies and, therefore, more specialized low-frequency noise tests are needed.

CHEAPER AND EASIER FOR APPLICATION THAN AEROGEL.

The improved acoustic characteristics of the newest hybrid nanofoam were obtained by additional impregnation of the standard off-the-shelf sound-absorbing foam with porous granules of silica and magnetite nanoparticles. The porous foam was immersed in nanopowder suspensions in the liquid, subjected to ultrasonic treatment and dried.

The nanoparticles granules formed in the result can be compared structurally to a widely known class of materials – aerogel. It has not only excellent thermal insulation properties but also has a good noise-proof. However, aerogels are quite expensive and complex when used in structures. The new material, created according to the scheme developed by the FEFU researcher, is structurally similar to aerogel but is free of such shortcomings as a high price and engineering problems.

COMPOSITE TECHNOLOGY

The mechanism of sound absorption of a new foam is based on the fact that its sound-absorbing surface is significantly scaled due to the presence of a large number of nanopores in the particles injected, as well as the location of these particles in the foam matrix in the form of distinct channels. Nanoparticles dissipate the energy of a sound wave transforming it into heat. The soundproof properties of the material increase.

Scientists found out that the composite structure is most effective for noise reduction. Thin layers of foam impregnated with nanoparticles are connected to each other in a “sandwich”-construction. This design significantly improves the soundproof properties of the resulting material. The outcome of the study also suggests that the more foamy material is impregnated with nanoparticles, the better it’s sound absorption is.

‘In some approximation, any material can be represented as a network of weights connected by springs. Such a mechanical system always has its own frequency bands, in which the oscillations propagate in the system relatively freely. There are also forbidden frequency bands in which the oscillations rapidly fade out in the system. To effectively extinguish the transmission of oscillations, including sound waves, the materials should be alternated in such a way that the fluctuations that propagate freely in the first material would be in the forbidden band for the second layer,’- commented Alexey Zavjalov. – ‘Of course, for our foam material, this idealization is too crude. However, it allows us to clearly illustrate the fundamentally conditioned necessity of creating a “sandwich” structure.’

RESEARCH OUTCOME

The study showed the effectiveness of the method of foams impregnation with nanosilica or nanomagnetite, which form granules up to several hundred micrometers (in accordance with the pore sizes of the modified foam material) and having pores about 15 nm. This small addition provided a more complex and branched 3D network of nanochannels which led to an additional absorption of noise energy.

Due to the method used, the noise absorption efficiency was achieved in the range of 2.0-6.3 kHz and at lower frequencies 0.5-1.6 kHz. The degree of absorption was increased by 60-100% and the sound transmission was reduced by 20-22 dB, regardless of the type of nanofiller.

‘There is room to further improve the sound absorbing properties of the new material for medium and low frequencies using the” active control” strategy’. – Alexey Zavjalov comments on the plans for further development of such an important scientific topic. – ‘First of all, this refers to the materials obtained by using a magnetite nanopowder. Active noise protection systems have long been used in the world. The main idea is to detect the noise acoustic fields “online” and to generate sound waves in antiphase by means of loudspeakers. That allows achieving a significant reduction of noise in a given area. Concerning the nanofoam, it’s proposed to adapt this approach and to actively exert on a material saturated with granules of magnetite nanoparticles by magnetic fields. This will achieve even better noise reduction.’

Here’s a link to and a citation for the paper,

Hybrid sound-absorbing foam materials with nanostructured grit-impregnated pores by S.P.Bardakhanov, C.M.Lee, V.N.Goverdovskiy, A.P.Zavjalov, K.V.Zobov, M.Chen, Z.H.Xu, I.K.Chakin, D.Yu.Trufanov. Applied Acoustics Volume 139, October 2018, Pages 69-74
https://doi.org/10.1016/j.apacoust.2018.04.024 Available online 23 April 2018.

This paper is behind a paywall.

If you have difficulty seeing the press release on EurekAlert, there is a June 26, 2018 news item on a Russian news site, RSF News and there is an edited version in a June 26, 2018 news item on Azonano.