Tag Archives: US

China’s ex-UK ambassador clashes with ‘AI godfather’ on panel at AI Action Summit in France (February 10 – 11, 2025)

The Artificial Intelligence (AI) Action Summit held from February 10 – 11, 2025 in Paris seems to have been pretty exciting, President Emanuel Macron announced a 09B euros investment in the French AI sector on February 10, 2025 (I have more in my February 13, 2025 posting [scroll down to the ‘What makes Canadian (and Greenlandic) minerals and water so important?’ subhead]). I also have this snippet, which suggests Macron is eager to provide an alternative to US domination in the field of AI, from a February 10, 2025 posting on CCGTN (China Global Television Network),

French President Emmanuel Macron announced on Sunday night [February 10, 2025] that France is set to receive a total investment of 109 billion euros (approximately $112 billion) in artificial intelligence over the coming years.

Speaking in a televised interview on public broadcaster France 2, Macron described the investment as “the equivalent for France of what the United States announced with ‘Stargate’.”

He noted that the funding will come from the United Arab Emirates, major American and Canadian investment funds [emphases mine], as well as French companies.

Prime Minister Justin Trudeau attended the AI Action Summit on Tuesday, February 11, 2025 according to a Canadian Broadcasting Corporation (CBC) news online article by Ashley Burke and Olivia Stefanovich,

Prime Minister Justin Trudeau warned U.S. Vice-President J.D. Vance that punishing tariffs on Canadian steel and aluminum will hurt his home state of Ohio, a senior Canadian official said. 

The two leaders met on the sidelines of an international summit in Paris Tuesday [February 11, 2025], as the Trump administration moves forward with its threat to impose 25 per cent tariffs on all steel and aluminum imports, including from its biggest supplier, Canada, effective March 12.

Speaking to reporters on Wednesday [February 12, 2025] as he departed from Brussels, Trudeau characterized the meeting as a brief chat that took place as the pair met.

“It was just a quick greeting exchange,” Trudeau said. “I highlighted that $2.2 billion worth of steel and aluminum exports from Canada go directly into the Ohio economy, often to go into manufacturing there.

“He nodded, and noted it, but it wasn’t a longer exchange than that.”

Vance didn’t respond to Canadian media’s questions about the tariffs while arriving at the summit on Tuesday [February 11, 2025].

Additional insight can be gained from a February 10, 2025 PBS (US Public Broadcasting Service) posting of an AP (Associated Press) article with contributions from Kelvin Chan and Angela Charlton in Paris, Ken Moritsugu in Beijing, and Aijaz Hussain in New Delhi,

JD Vance stepped onto the world stage this week for the first time as U.S. vice president, using a high-stakes AI summit in Paris and a security conference in Munich to amplify Donald Trump’s aggressive new approach to diplomacy.

The 40-year-old vice president, who was just 18 months into his tenure as a senator before joining Trump’s ticket, is expected, while in Paris, to push back on European efforts to tighten AI oversight while advocating for a more open, innovation-driven approach.

The AI summit has drawn world leaders, top tech executives, and policymakers to discuss artificial intelligence’s impact on global security, economics, and governance. High-profile attendees include Chinese Vice Premier Zhang Guoqing, signaling Beijing’s deep interest in shaping global AI standards.

Macron also called on “simplifying” rules in France and the European Union to allow AI advances, citing sectors like healthcare, mobility, energy, and “resynchronize with the rest of the world.”

“We are most of the time too slow,” he said.

The summit underscores a three-way race for AI supremacy: Europe striving to regulate and invest, China expanding access through state-backed tech giants, and the U.S. under Trump prioritizing a hands-off approach.

Vance has signaled he will use the Paris summit as a venue for candid discussions with world leaders on AI and geopolitics.

“I think there’s a lot that some of the leaders who are present at the AI summit could do to, frankly — bring the Russia-Ukraine conflict to a close, help us diplomatically there — and so we’re going to be focused on those meetings in France,” Vance told Breitbart News.

Vance is expected to meet separately Tuesday with Indian Prime Minister Narendra Modi and European Commission President Ursula von der Leyen, according to a person familiar with planning who spoke on the condition of anonymity.

Modi is co-hosting the summit with Macron in an effort to prevent the sector from becoming a U.S.-China battle.

Indian Foreign Secretary Vikram Misri stressed the need for equitable access to AI to avoid “perpetuating a digital divide that is already existing across the world.”

But the U.S.-China rivalry overshadowed broader international talks.

The U.S.-China rivalry didn’t entirely overshadow the talks. At least one Chinese former diplomat chose to make her presence felt by chastising a Canadian academic according to a February 11, 2025 article by Matthew Broersma for silicon.co.uk

A representative of China at this week’s AI Action Summit in Paris stressed the importance of collaboration on artificial intelligence, while engaging in a testy exchange with Yoshua Bengio, a Canadian academic considered one of the “Godfathers” of AI.

Fu Ying, a former Chinese government official and now an academic at Tsinghua University in Beijing, said the name of China’s official AI Development and Safety Network was intended to emphasise the importance of collaboration to manage the risks around AI.

She also said tensions between the US and China were impeding the ability to develop AI safely.

… Fu Ying, a former vice minister of foreign affairs in China and the country’s former UK ambassador, took veiled jabs at Prof Bengio, who was also a member of the panel.

Zoe Kleinman’s February 10, 2025 article for the British Broadcasting Corporation (BBC) news online website also notes the encounter,

A former Chinese official poked fun at a major international AI safety report led by “AI Godfather” professor Yoshua Bengio and co-authored by 96 global experts – in front of him.

Fu Ying, former vice minister of foreign affairs and once China’s UK ambassador, is now an academic at Tsinghua University in Beijing.

The pair were speaking at a panel discussion ahead of a two-day global AI summit starting in Paris on Monday [February 10, 2025].

The aim of the summit is to unite world leaders, tech executives, and academics to examine AI’s impact on society, governance, and the environment.

Fu Ying began by thanking Canada’s Prof Bengio for the “very, very long” document, adding that the Chinese translation stretched to around 400 pages and she hadn’t finished reading it.

She also had a dig at the title of the AI Safety Institute – of which Prof Bengio is a member.

China now has its own equivalent; but they decided to call it The AI Development and Safety Network, she said, because there are lots of institutes already but this wording emphasised the importance of collaboration.

The AI Action Summit is welcoming guests from 80 countries, with OpenAI chief executive Sam Altman, Microsoft president Brad Smith and Google chief executive Sundar Pichai among the big names in US tech attending.

Elon Musk is not on the guest list but it is currently unknown whether he will decide to join them. [As of February 13, 2025, Mr. Musk did not attend the summit, which ended February 11, 2025.]

A key focus is regulating AI in an increasingly fractured world. The summit comes weeks after a seismic industry shift as China’s DeepSeek unveiled a powerful, low-cost AI model, challenging US dominance.

The pair’s heated exchanges were a symbol of global political jostling in the powerful AI arms race, but Fu Ying also expressed regret about the negative impact of current hostilities between the US and China on the progress of AI safety.

She gave a carefully-crafted glimpse behind the curtain of China’s AI scene, describing an “explosive period” of innovation since the country first published its AI development plan in 2017, five years before ChatGPT became a viral sensation in the west.

She added that “when the pace [of development] is rapid, risky stuff occurs” but did not elaborate on what might have taken place.

“The Chinese move faster [than the west] but it’s full of problems,” she said.

Fu Ying argued that building AI tools on foundations which are open source, meaning everyone can see how they work and therefore contribute to improving them, was the most effective way to make sure the tech did not cause harm.

Most of the US tech giants do not share the tech which drives their products.

Open source offers humans “better opportunities to detect and solve problems”, she said, adding that “the lack of transparency among the giants makes people nervous”.

But Prof Bengio disagreed.

His view was that open source also left the tech wide open for criminals to misuse.

He did however concede that “from a safety point of view”, it was easier to spot issues with the viral Chinese AI assistant DeepSeek, which was built using open source architecture, than ChatGPT, whose code has not been shared by its creator OpenAI.

Fro anyone curious about Professor Bengio’s AI safety report, I have more information in a September 29, 2025 Université de Montréal (UdeM) press release,

The first international report on the safety of artificial intelligence, led by Université de Montréal computer-science professor Yoshua Bengio, was released today and promises to serve as a guide for policymakers worldwide. 

Announced in November 2023 at the AI Safety Summit at Bletchley Park, England, and inspired by the workings of the United Nations Intergovernmental Panel on Climate Change, the report consolidates leading international expertise on AI and its risks. 

Supported by the United Kingdom’s Department for Science, Innovation and Technology, Bengio, founder and scientific director of the UdeM-affiliated Mila – Quebec AI Institute, led a team of 96 international experts in drafting the report.

The experts were drawn from 30 countries, the U.N., the European Union and the OECD [Organisation for Economic Cooperation and Development]. Their report will help inform discussions next month at the AI Action Summit in Paris, France and serve as a global handbook on AI safety to help support policymakers.

Towards a common understanding

The most advanced AI systems in the world now have the ability to write increasingly sophisticated computer programs, identify cyber vulnerabilities, and perform on a par with human PhD-level experts on tests in biology, chemistry, and physics. 

In what is identified as a key development for policymakers to monitor, the AI Safety Report published today warns that AI systems are also increasingly capable of acting as AI agents, autonomously planning and acting in pursuit of a goal. 

As policymakers worldwide grapple with the rapid and unpredictable advancements in AI, the report contributes to bridging the gap by offering a scientific understanding of emerging risks to guide decision-making.  

The document sets out the first comprehensive, independent, and shared scientific understanding of advanced AI systems and their risks, highlighting how quickly the technology has evolved.  

Several areas require urgent research attention, according to the report, including how rapidly capabilities will advance, how general-purpose AI models work internally, and how they can be designed to behave reliably. 

Three distinct categories of AI risks are identified: 

  • Malicious use risks: these include cyberattacks, the creation of AI-generated child-sexual-abuse material, and even the development of biological weapons; 
  • System malfunctions: these include bias, reliability issues, and the potential loss of control over advanced general-purpose AI systems; 
  • Systemic risks: these stem from the widespread adoption of AI, include workforce disruption, privacy concerns, and environmental impacts.  

The report places particular emphasis on the urgency of increasing transparency and understanding in AI decision-making as the systems become more sophisticated and the technology continues to develop at a rapid pace. 

While there are still many challenges in mitigating the risks of general-purpose AI, the report highlights promising areas for future research and concludes that progress can be made.   

Ultimately, it emphasizes that while AI capabilities could advance at varying speeds, their development and potential risks are not a foregone conclusion. The outcomes depend on the choices that societies and governments make today and in the future. 

“The capabilities of general-purpose AI have increased rapidly in recent years and months,” said Bengio. “While this holds great potential for society, AI also presents significant risks that must be carefully managed by governments worldwide.  

“This report by independent experts aims to facilitate constructive and evidence-based discussion around these risks and serves as a common basis for policymakers around the world to understand general-purpose AI capabilities, risks and possible mitigations.” 

The report is more formally known as the International AI Safety Report 2025 and can be found on the gov.uk website.

There have been two previous AI Safety Summits that I’m aware of and you can read about them in my May 21, 2024 posting about the one in Korea and in my November 2, 2023 posting about the first summit at Bletchley Park in the UK.

You can find the Canadian Artificial Intelligence Safety Institute (or AI Safety Institute) here and my coverage of DeepSeek’s release and the panic in the US artificial intelligence and the business communities that ensued in my January 29, 2025 posting.

Water, critical minerals, technology and US expansionist ambitions (Manifest Destiny)

I was taught in high school that the US was running out of its resources and that Canada still had much of its resources. That was decades ago. As well, throughout the years, usually during a vote in Québec about separating, I’ve heard rumblings about the US absorbing part or all of Canada as something they call ‘Manifest Destiny,’ which dates back to the 19th century.

Unlike the previous forays Into Manifest Destiny, this one has not been precipitated by any discussion of separation.

Manifest Destiny

It took a while for that phrase to emerge this time but when it finally did the Canadian Broadcasting Corporation (CBC) online news published a January 19, 2025 article by Ainsley Hawthorn providing some context for the term, Note: Links have been removed,

U.S. president-elect Donald Trump says he’s prepared to use economic force to turn Canada into America’s 51st state, and it’s making Canadians — two-thirds of whom believe he’s sincere — anxious. 

But the last time Canada faced the threat of American annexation, it united us more than ever before, leading to the foundation of our country as we know it today.

In the 1860s, several prominent U.S. politicians advocated for annexing the colonies of British North America. 

“I look on Rupert’s Land [modern-day Manitoba and parts of Alberta, Saskatchewan, Nunavut, Ontario, and Quebec] and Canada, and see how an ingenious people and a capable, enlightened government are occupied with bridging rivers and making railroads and telegraphs,” Secretary of State William Henry Seward told a crowd in St. Paul, Minn. while campaigning on behalf of presidential candidate Abraham Lincoln.

“I am able to say, it is very well; you are building excellent states to be hereafter admitted into the American Union.”

Seward believed in Manifest Destiny, the doctrine that the United States would inevitably expand across the entire North American continent. While he seems to have preferred to acquire territory through negotiation rather than aggression, Canadians weren’t wholly assured of America’s peaceful intentions. 

In the late 1850s and early 1860s, Canadian parliament had been so deadlocked it had practically come to a standstill. Within just a few years, American pressure created a sense of unity so great it led to Confederation.

The current conversation around annexation is likewise uniting Canada’s leaders to a degree we’ve rarely seen in recent years. 

Representatives across the political spectrum are sharing a common message, the same message as British North Americans in the late nineteenth century: despite our problems, Canadians value Canada.

Critical minerals and water

Prime Minister Justin Trudeau had a few comments to make about US President Donald Trump’s motivation for ‘absorbing’ Canada as the 51st state, from a February 7, 2025 CBC news online article by Peter Zimonjic, ·

Prime Minister Justin Trudeau told business leaders at the Canada-U.S. Economic Summit in Toronto that U.S. President Donald Trump’s threat to annex Canada “is a real thing” motivated by his desire to tap into the country’s critical minerals.

“Mr. Trump has it in mind that the easiest way to do it is absorbing our country and it is a real thing,” Trudeau said, before a microphone cut out at the start of the closed-door meeting. 

The prime minister made the remarks to more than 100 business leaders after delivering an opening address to the summit Friday morning [February 7, 2025], outlining the key issues facing the country when it comes to Canada’s trading relationship with the U.S.

After the opening address, media were ushered out of the room when a microphone that was left on picked up what was only meant to be heard by attendees [emphasis mine].

Automotive Parts Manufacturers’ Association president Flavio Volpe was in the room when Trudeau made the comments. He said the prime minister went on to say that Trump is driven because the U.S. could benefit from Canada’s critical mineral resources.

There was more, from a February 7, 2025 article by Nick Taylor-Vaisey for Politico., Note: A link has been removed,

In remarks caught on tape by The Toronto Star, Trudeau suggested the president is keenly aware of Canada’s vast mineral resources. “I suggest that not only does the Trump administration know how many critical minerals we have but that may be even why they keep talking about absorbing us and making us the 51st state,” Trudeau said.

All of this reminded me of US President Joe Biden’s visit to Canada and his interest in critical minerals which I mentioned briefly in my comments about the 2023 federal budget, from my April 17, 2023 posting (scroll down to the ‘Canadian economic theory (the staples theory), mining, nuclear energy, quantum science, and more’ subhead,

Critical minerals are getting a lot of attention these days. (They were featured in the 2022 budget, see my April 19, 2022 posting, scroll down to the Mining subhead.) This year, US President Joe Biden, in his first visit to Canada as President, singled out critical minerals at the end of his 28 hour state visit (from a March 24, 2023 CBC news online article by Alexander Panetta; Note: Links have been removed),

There was a pot of gold at the end of President Joe Biden’s jaunt to Canada. It’s going to Canada’s mining sector.

The U.S. military will deliver funds this spring to critical minerals projects in both the U.S. and Canada. The goal is to accelerate the development of a critical minerals industry on this continent.

The context is the United States’ intensifying rivalry with China.

The U.S. is desperate to reduce its reliance on its adversary for materials needed to power electric vehicles, electronics and many other products, and has set aside hundreds of millions of dollars under a program called the Defence Production Act.

The Pentagon already has told Canadian companies they would be eligible to apply. It has said the cash would arrive as grants, not loans.

On Friday [March 24, 2023], before Biden left Ottawa, he promised they’ll get some.

The White House and the Prime Minister’s Office announced that companies from both countries will be eligible this spring for money from a $250 million US fund.

Which Canadian companies? The leaders didn’t say. Canadian officials have provided the U.S. with a list of at least 70 projects that could warrant U.S. funding.

“Our nations are blessed with incredible natural resources,” Biden told Canadian parliamentarians during his speech in the House of Commons.

Canada in particular has large quantities of critical minerals [emphasis mine] that are essential for our clean energy future, for the world’s clean energy future.

I don’t think there’s any question that the US knows how much, where, and how easily ‘extractable’ Canadian critical minerals might be.

Pressure builds

On the same day (Monday, February 3, 2025) the tariffs were postponed for a month,Trudeau had two telephone calls with US president Donald Trump. According to a February 9, 2025 article by Steve Chase and Stefanie Marotta for the Globe and Mail, Trump and his minions are exploring the possibility of acquiring Canada by means other than a trade war or economic domination,

“He [Trudeau] talked about two phone conversations he had with Mr. Trump on Monday [February 3, 2025] before the President agreed to delay to steep tariffs on Canadian goods for 30 days.n

During the calls, the Prime Minister recalled Mr. Trump referred to a four-page memo that included a list of grievances he had with Canadian trade and commercial rules, including the President’s false claim that US banks are unable to operate in Canada. …

In the second conversation with Mr. Trump on Monday, the Prime Minister told the summit, the President asked him whether he was familiar with the Treaty of 1908, a pact between the United States and Britain that defined the border between the United States and Canada. he told Mr. Trudeau, he should look it up.

Mr. Trudeau told the summit he thought the treaty had been superseded by other developments such as the repatriation the Canadian Constitution – in other words, that the border cannot be dissolved by repealing that treaty. He told the audience that international law would prevent the dissolution 1908 Treaty leading to the erasure of the border. For example, various international laws define sovereign borders, including the United Nationals Charter of which both countries are signatories and which has protection to territorial integrity.

A source familiar with the calls said Mr. Trump’s reference to the 1908 Treaty was taken as an implied threat. … [p. A3 in paper version]

I imagine Mr. Trump and/or his minions will keep trying to find one pretext or another for this attempt to absorb or annex or wage war (economically or otherwise) on Canada.

What makes Canadian (and Greenlandic) minerals and water so important?

You may have noticed the January 21, 2025 announcement by Mr. Trump about the ‘Stargate Project,’ a proposed US $500B AI infrastructure company (you can find more about the Stargate Project (Stargate LLC) in its Wikipedia entry).

Most likely not a coincidence, on February 10, 2025 President of France, Emmanuel Macron announced a 109B euros investment in French AI sector, from the February 9, 2025 Reuters preannouncement article,

France will announce private sector investments totalling some 109 billion euros ($112.5 billion [US]) in its artificial intelligence sector during the Paris AI summit which opens on Monday, President Emmanuel Macron said.

The financing includes plans by Canadian investment firm [emphasis mine] Brookfield to invest 20 billion euros in AI projects in France and financing from the United Arab Emirates which could hit 50 billion euros in the years ahead, Macron’s office said.

Big projects, non? It’s no surprise critical minerals will be necessary but the need for massive amounts of water may be. My October 16, 2023 posting focuses on water and AI development, specifically ChatGPT-4,

A September 9, 2023 news item (an Associated Press article by Matt O’Brien and Hannah Fingerhut) on phys.org and also published September 12, 2023 on the Iowa Public Radio website, describe an unexpected cost for building ChatGPT and other AI agents, Note: Links [in the excerpt] have been removed,

The cost of building an artificial intelligence product like ChatGPT can be hard to measure.

But one thing Microsoft-backed OpenAI needed for its technology was plenty of water [emphases mine], pulled from the watershed of the Raccoon and Des Moines rivers in central Iowa to cool a powerful supercomputer as it helped teach its AI systems how to mimic human writing.

As they race to capitalize on a craze for generative AI, leading tech developers including Microsoft, OpenAI and Google have acknowledged that growing demand for their AI tools carries hefty costs, from expensive semiconductors to an increase in water consumption.

But they’re often secretive about the specifics. Few people in Iowa knew about its status as a birthplace of OpenAI’s most advanced large language model, GPT-4, before a top Microsoft executive said in a speech it “was literally made next to cornfields west of Des Moines.”

In its latest environmental report, Microsoft disclosed that its global water consumption spiked 34% from 2021 to 2022 (to nearly 1.7 billion gallons , or more than 2,500 Olympic-sized swimming pools), a sharp increase compared to previous years that outside researchers tie to its AI research. [emphases mine]

As for how much water was diverted in Iowa for a data centre project, from my October 16, 2023 posting

Jason Clayworth’s September 18, 2023 article for AXIOS describes the issue from the Iowan perspective, Note: Links [from the excerpt] have been removed,

Future data center projects in West Des Moines will only be considered if Microsoft can implement technology that can “significantly reduce peak water usage,” the Associated Press reports.

Why it matters: Microsoft’s five WDM data centers — the “epicenter for advancing AI” — represent more than $5 billion in investments in the last 15 years.

Yes, but: They consumed as much as 11.5 million gallons of water a month for cooling, or about 6% of WDM’s total usage during peak summer usage during the last two years, according to information from West Des Moines Water Works.

The bottom line is that these technologies consume a lot of water and require critical minerals.

Greenland

Evan Dyer’s January 16, 2025 article for CBC news online describes both US military strategic interests and hunger for resources, Note 1: Article links have been removed; Note 2: I have added one link to a Wikipedia entry,

The person who first put a bug in Donald Trump’s ear about Greenland — if a 2022 biography is to be believed — was his friend Ronald Lauder, a New York billionaire and heir to the Estée Lauder cosmetics fortune.

But it would be wrong to believe that U.S. interest in Greenland originated with idle chatter at the country club, rather than real strategic considerations.

Trump’s talk of using force to annex Greenland — which would be an unprovoked act of war against a NATO ally — has been rebuked by Greenlandic, Danish and European leaders. A Fox News team that travelled to Greenland’s capital Nuuk reported back to the Trump-friendly show Fox & Friends that “most of the people we spoke with did not support Trump’s comments and found them offensive.”

Certainly, military considerations motivated the last U.S. attempt at buying Greenland in 1946.

The military value to the U.S. of acquiring Greenland is much less clear in 2025 than it was in 1946.

Russian nuclear submarines no longer need to traverse the GIUK [the GIUK gap; “{sometimes written G-I-UK} is an area in the northern Atlantic Ocean that forms a naval choke point. Its name is an acronym for Greenland, Iceland, and the United Kingdom, the gap being the two stretches of open ocean among these three landmasses.”]. They can launch their missiles from closer to home.

And in any case, the U.S. already has a military presence on Greenland, used for early warning, satellite tracking and marine surveillance. The Pentagon simply ignored Denmark’s 1957 ban on nuclear weapons on Greenlandic territory. Indeed, an American B-52 bomber carrying four hydrogen bombs crashed in Greenland in 1968.

“The U.S. already has almost unhindered access [emphasis mine], and just building on their relationship with Greenland is going to do far more good than talk of acquisition,” said Dwayne Menezes, director of the Polar Research and Policy Initiative in London.

The complication, he says, is Greenland’s own independence movement. All existing defence agreements involving the U.S. presence in Greenland are between Washington and the Kingdom of Denmark. [emphasis mine]

“They can’t control what’s happening between Denmark and Greenland,” Menezes said. “Over the long term, the only way to mitigate that risk altogether is by acquiring Greenland.”

Menezes also doesn’t believe U.S. interest in Greenland is purely military.

And Trump’s incoming national security adviser Michael Waltz [emphasis mine] appeared to confirm as much when asked by Fox News why the administration wanted Greenland.

This is about critical minerals, this is about natural resources [emphasis mine]. This is about, as the ice caps pull back, the Chinese are now cranking out icebreakers and are pushing up there.”

While the United States has an abundance of natural resources, it risks coming up short in two vital areas: rare-earth minerals and freshwater.

Greenland’s apparent barrenness belies its richness in those two key 21st-century resources.

The U.S. rise to superpower was driven partly by the good fortune of having abundant reserves of oil, which fuelled its industrial growth. The country is still a net exporter of petroleum.

China, Washington’s chief strategic rival, had no such luck. It has to import more than two-thirds of its oil, and is now importing more than six times as much as it did in 2000.

But the future may not favour the U.S. as much as the past.

I stand corrected, where oil is concerned. From Dyer’s January 16, 2025 article, Note: Links have been removed,

It’s China, and not the U.S., that nature blessed with rich deposits of rare-earth elements, a collection of 17 metals such as yttrium and scandium that are increasingly necessary for high-tech applications from cellphones and flat-screen TVs to electric cars.

The rare-earth element neodymium is an essential part of many computer hard drives and defence systems including electronic displays, guidance systems, lasers, radar and sonar.

Three decades ago, the U.S. produced a third of the world’s rare-earth elements, and China about 40 per cent. By 2011, China had 97 per cent of world production, and its government was increasingly limiting and controlling exports.

The U.S. has responded by opening new mines and spurring recovery and recycling to reduce dependence on China.

Such efforts have allowed the U.S. to claw back about 20 per cent of the world’s annual production of rare-earth elements. But that doesn’t change the fact that China has about 44 million tonnes of reserves, compared to fewer than two million in the U.S.

“There’s a huge dependency on China,” said Menezes. “It offers China the economic leverage, in the midst of a trade war in particular, to restrict supply to the West, thus crippling industries like defence, the green transition. This is where Greenland comes in.”

Greenland’s known reserves are almost equivalent to those of the entire U.S., and much more may lie beneath its icebound landscape. 

“Greenland is believed to be able to meet at least 25 per cent of global rare-earth demand well into the future,” he said.

An abundance of freshwater

The melting ice caps referenced by Trump’s nominee for national security adviser are another Greenlandic resource the world is increasingly interested in.

Seventy per cent of the world’s freshwater is locked up in the Antarctic ice cap. Of the remainder, two-thirds is in Greenland, in a massive ice cap that is turning to liquid at nearly twice the volume of melting in Antarctica.

“We know this because you can weigh the ice sheet from satellites,” said Christian Schoof, a professor of Earth, ocean and atmospheric sciences at the University of British Columbia who spent part of last year in Greenland studying ice cap melting.

“The ice sheet is heavy enough that it affects the orbit of satellites going over it. And you can record the change in that acceleration of satellites due to the ice sheet over time, and directly weigh the ice sheet.”

“There is a growing demand for freshwater on the world market, and the use of the vast water potential in Greenland may contribute to meeting this demand,” the Greenland government announces on its website.

The Geological Survey of Denmark and Greenland found 10 locations that were suitable for the commercial exploitation of Greenland’s ice and water, and has already issued a number of licenses.

Schoof told CBC News that past projects that attempted to tow Greenlandic ice to irrigate farms in the Middle East “haven’t really taken off … but humans are resourceful and inventive, and we face some really significant issues in the future.”

For the U.S., those issues include the 22-year-long “megadrought” which has left the western U.S. [emphases mine] drier than at any time in the past 1,200 years, and which is already threatening the future of some American cities.

As important as they are, there’s more than critical minerals and water, according to Dyer’s January 16, 2025 article

Even the “rock flour” that lies under the ice cap could have great commercial and strategic importance.

Ground into nanoparticles by the crushing weight of the ice, research has revealed it to have almost miraculous properties, says Menezes.

“Scientists have found that Greenlandic glacial flour has a particular nutrient composition that enables it to be regenerative of soil conditions elsewhere,” he told CBC News. “It improves agricultural yields. It has direct implications for food security.”

Spreading Greenland rock flour on corn fields in Ghana produced a 30 to 50 per cent increase in crop yields. Similar yield gains occurred when it was spread on Danish fields that produce the barley for Carlsberg beer.

Canada

It’s getting a little tiring keeping up with Mr. Trump’s tariff tear (using ‘tear’ as a verbal noun; from the Cambridge dictionary, verb: TEAR definition: 1. to pull or be pulled apart, or to pull pieces off: 2. to move very quickly …).

The bottom line is that Mr. Trump wants something and certainly Canadian critical minerals and water constitute either his entire interest or, at least, his main interest for now, with more to be determined later.

Niall McGee’s February 9, 2025 article for the Globe and Mail provides an overview of the US’s dependence on Canada’s critical minerals,

The US relies on Canada for a huge swath of its critical mineral imports, including 40 per cent of its primary nickel for its defence industry, 30 per cent of its uranium, which is used in its nuclear-power fleet, and 79 per cent of its potash for growing crops.

The US produces only small amounts of all three, while Canada is the world’s biggest potash producer, the second biggest in uranium, and number six in nickel.

If the US wants to buy fewer critical minerals from Canada, in many cases it would be forced to source them from hostile countries such as Russia and China.

Vancouver-based Teck Resources Ltd. is one of the few North American suppliers of germanium. The critical mineral is used in fibre-optic networks, infrared vision systems, solar panels. The US relies on Canada for 23 per cent of its imports of germanium.

China in December [2024] banned exports of the critical mineral to the US citing national security concerns. The ban raised fears of possible shortages for the US.

“It’s obvious we have a lot of what Trump wants to support America’s ambitions, from both an economic and a geopolitical standpoint,” says Martin Turenne, CEO of Vancouver-based FPX Nickel Corp., which is developing a massive nickel project in British Columbia. [p. B5 paper version]

Akshay Kulkarni’s January 15, 2025 article for CBC news online provides more details about British Columbia and its critical minerals, Note: Links have been removed,

The premier had suggested Tuesday [January 14, 2025] that retaliatory tariffs and export bans could be part of the response, and cited a smelter operation located in Trail, B.C. [emphasis mine; keep reading], which exports minerals that Eby [Premier of British Columbia, David Eby] said are critical for the U.S.

The U.S. and Canada both maintain lists of critical minerals — ranging from aluminum and tin to more obscure elements like ytterbium and hafnium — that both countries say are important for defence, energy production and other key areas.

Michael Goehring, the president of the Mining Association of B.C., said B.C. has access to or produces 16 of the 50 minerals considered critical by the U.S.

Up-close picture of red and blue atoms.
Individual atoms of silicon and germanium are seen following an Atomic Probe Tomography (APT) measurement at Polytechnique Montreal. Both minerals are manufactured in B.C. (Christinne Muschi/The Canadian Press)

“We have 17 critical mineral projects on the horizon right now, along with a number of precious metal projects,” he told CBC News on Tuesday [January 14, 2025].

“The 17 critical mineral projects alone represent some $32 billion in potential investment for British Columbia,” he added.

John Steen, director of the Bradshaw Research Institute for Minerals and Mining at the University of B.C., pointed to germanium — which is manufactured at Teck’s facility in Trail [emphasis mine] — as one of the materials most important to U.S industry.

There are a number of mines and manufacturing facilities across B.C. and Canada for critical minerals.

The B.C. government says the province is Canada’s largest producer of copper, and only producer of molybdenum, which are both considered critical minerals.

There’s also graphite, not in BC but in Québec. This April 8, 2023 article by Christian Paas-Lang for CBC news online focuses largely on issues of how to access and exploit graphite and also, importantly, indigenous concerns, but this excerpt focuses on graphite as a critical mineral,

A mining project might not be what comes to mind when you think of the transition to a lower emissions economy. But embedded in electric vehicles, solar panels and hydrogen fuel storage are metals and minerals that come from mines like the one in Lac-des-Îles, Que.

The graphite mine, owned by the company Northern Graphite, is just one of many projects aimed at extracting what are now officially dubbed “critical minerals” — substances of significant strategic and economic importance to the future of national economies.

Lac-des-Îles is the only significant graphite mining project in North America, accounting for Canada’s contribution to an industry dominated by China.

There was another proposed graphite mine in Québec, which encountered significant push back from the local Indigenous community as noted in my November 26, 2024 posting, “Local resistance to Lomiko Metals’ Outaouais graphite mine.” The posting also provides a very brief update of graphite mining in Canada.

It seems to me that water does not get the attention that it should and that’s why I lead with water in my headline. Eric Reguly’s February 9, 2025 article in the Globe and Mail highlights some of the water issues facing the US, not just Iowa,

Water may be the real reason, or one of the top reasons, propelling his [Mr. Trump’s] desire to turn Canada into Minnesota North. Canadians represent 0.5 per cent of the globe’s population yet sit on 20% or more of its fresh water. Vast tracts of the United States routinely suffer from water shortages, which are drying up rivers – the once mighty Colorado River no longer reaches the Pacific Ocean – shrinking aquifers beneath farmland and preventing water-intensive industries from building factories. Warming average temperatures will intensify the shortages. [p. B2 in paper version]

Reguly is more interested in the impact water shortages have on industry. He also offers a brief history of US interest in acquiring Canadian water resources dating back to the first North America Free Trade Agreement (NAFTA) that came into effect on January 1, 1994.

A March 6, 2024 article by Elia Nilsen for CNN television news online details Colorado river geography and gives you a sense of just how serious the situation is, Note: Links have been removed,

Seven Western states are starting to plot a future for how much water they’ll draw from the dwindling Colorado River in a warmer, drier world.

The river is the lifeblood for the West – providing drinking water for tens of millions, irrigating crops, and powering homes and industry with hydroelectric dams.

This has bought states more time to figure out how to divvy up the river after 2026, when the current operating guidelines expire.

To that end, the four upper basin river states of Colorado, Utah, New Mexico and Wyoming submitted their proposal for how future cuts should be divvied up among the seven states to the federal government on Tuesday [March 5, 2024], and the three lower basin states of California, Arizona and Nevada submitted their plan on Wednesday [March 6, 2024].

One thing is clear from the competing plans: The two groups of states do not agree so far on who should bear the brunt of future cuts if water levels drop in the Colorado River basin.

As of a December 12, 2024 article by Shannon Mullane for watereducationcolorado.org, the states are still wrangling and they are not the only interested parties, Note: A link has been removed,

… officials from seven states are debating the terms of a new agreement for how to store, release and deliver Colorado River water for years to come, and they have until 2026 to finalize a plan. This month, the tone of the state negotiations soured as some state negotiators threw barbs and others called for an end to the political rhetoric and saber-rattling.

The state negotiators are not the only players at the table: Tribal leaders, federal officials, environmental organizations, agricultural groups, cities, industrial interests and others are weighing in on the process.

Water use from the Colorado river has international implications as this February 5, 2025 essay (Water is the other US-Mexico border crisis, and the supply crunch is getting worse) by Gabriel Eckstein, professor of law at Texas A&M University and Rosario Sanchez, senior research scientist at Texas Water Resources Institute and at Texas A&M University for The Conversation makes clear, Note: Links have been removed,

The Colorado River provides water to more than 44 million people, including seven U.S. and two Mexican states, 29 Indian tribes and 5.5 million acres of farmland. Only about 10% of its total flow reaches Mexico. The river once emptied into the Gulf of California, but now so much water is withdrawn along its course that since the 1960s it typically peters out in the desert.

At least 28 aquifers – underground rock formations that contain water – also traverse the border. With a few exceptions, very little information on these shared resources exists. One thing that is known is that many of them are severely overtapped and contaminated.

Nonetheless, reliance on aquifers is growing as surface water supplies dwindle. Some 80% of groundwater used in the border region goes to agriculture. The rest is used by farmers and industries, such as automotive and appliance manufacturers.

Over 10 million people in 30 cities and communities throughout the border region rely on groundwater for domestic use. Many communities, including Ciudad Juarez; the sister cities of Nogales in both Arizona and Sonora; and the sister cities of Columbus in New Mexico and Puerto Palomas in Chihuahua, get all or most of their fresh water from these aquifers.

A booming region

About 30 million people live within 100 miles (160 kilometers) of the border on both sides. Over the next 30 years, that figure is expected to double.

Municipal and industrial water use throughout the region is also expected to increase. In Texas’ lower Rio Grande Valley, municipal use alone could more than double by 2040.

At the same time, as climate change continues to worsen, scientists project that snowmelt will decrease and evaporation rates will increase. The Colorado River’s baseflow – the portion of its volume that comes from groundwater, rather than from rain and snow – may decline by nearly 30% in the next 30 years.

Precipitation patterns across the region are projected to be uncertain and erratic for the foreseeable future. This trend will fuel more extreme weather events, such as droughts and floods, which could cause widespread harm to crops, industrial activity, human health and the environment.

Further stress comes from growth and development. Both the Colorado River and Rio Grande are tainted by pollutants from agricultural, municipal and industrial sources. Cities on both sides of the border, especially on the Mexican side, have a long history of dumping untreated sewage into the Rio Grande. Of the 55 water treatment plants located along the border, 80% reported ongoing maintenance, capacity and operating problems as of 2019.

Drought across the border region is already stoking domestic and bilateral tensions. Competing water users are struggling to meet their needs, and the U.S. and Mexico are straining to comply with treaty obligations for sharing water [emphasis mine].

Getting back to Canada and water, Reguly’s February 9, 2025 article notes Mr. Trump’s attitude towards our water,

Mr. Trump’s transaction-oriented brain know that water availability translates into job availability. If Canada were forced to export water by bulk to the United States, Canada would in effect be exporting jobs and America absorbing them. In the fall [2024] when he was campaigning, he called British Columbia “essentially a very large faucet” [emphasis mine] that could be used to overcome California’s permanent water deficit.

In Canada’s favour, Canadians have been united in their opposition to bulk water exports. That sentiment is codified in the Transboundary Waters Protection Act, which bans large scale removal from waterways shared with the United States. … [p. B2 in paper version]

It’s reassuring to read that we have some rules regarding water removal but British Columbia also has a water treaty with the US, the Columbia River Treaty, and an update to it lingers in limbo as Kirk Lapointe notes in his February 6, 2025 article for vancouverisawesome.com. Lapointe mentions shortcomings on both sides of the negotiating table for the delay in ratifying the update while expressing concern over Mr. Trump’s possible machinations should this matter cross his radar.

What about Ukraine’s critical mineral?

A February 13, 2025 article by Geoff Nixon for CBC news online provides some of the latest news on the situation between the US and the Ukraine, Note: Links have been removed,

Ukraine has clearly grabbed the attention of U.S. President Donald Trump with its apparent willingness to share access to rare-earth resources with Washington, in exchange for its continued support and security guarantees.

Trump wants what he calls “equalization” for support the U.S. has provided to Ukraine in the wake of Russia’s full-scale invasion. And he wants this payment in the form of Ukraine’s rare earth minerals, metals “and other things,” as the U.S. leader put it last week.

U.S. Treasury Secretary Scott Bessent has travelled to Ukraine to discuss the proposition, which was first raised with Trump last fall [2024], telling reporters Wednesday [February 12, 2025] that he hoped a deal could be reached within days.

Bessent says such a deal could provide a “security shield” in post-war Ukraine. Ukrainian President Volodymyr Zelenskyy, meanwhile, said in his daily address that it would both strengthen Ukraine’s security and “give new momentum to our economic relations.”

But just how much trust can Kyiv put in a Trump-led White House to provide support to Ukraine, now and in the future? Ukraine may not be in a position to back away from the offer, with Trump’s interest piqued and U.S. support remaining critical for Kyiv after nearly three years of all-out war with Russia.

“I think the problem for Ukraine is that it doesn’t really have much choice,” said Oxana Shevel, an associate professor of political science at Boston’s Tufts University.

Then there’s the issue of the Ukrainian minerals, which have to remain in Kyiv’s hands in order for the U.S. to access them — a point Zelenskyy and other Ukraine officials have underlined.

There are more than a dozen elements considered to be rare earths, and Ukraine’s Institute of Geology says those that can be found in Ukraine include lanthanum, cerium, neodymium, erbium and yttrium. EU-funded research also indicates that Ukraine has scandium reserves. But the details of the data are classified.

Rare earths are used in manufacturing magnets that turn power into motion for electric vehicles, in cellphones and other electronics, as well as for scientific and industrial applications.

Trump has said he wants the equivalent of $500 billion US in rare earth minerals.

Yuriy Gorodnichenko, a professor of economics at the University of California, Berkeley, says any effort to develop and extract these resources won’t happen overnight and it’s unclear how plentiful they are.

“The fact is, nobody knows how much you have for sure there and what is the value of that,” he said in an interview.

“It will take years to do geological studies,” he said. “Years to build extraction facilities.” 

Just how desperate is the US?

Yes, the United States has oil but it doesn’t have much in the way of materials it needs for the new technologies and it’s running out of something very basic: water.

I don’t know how desperate the US is but Mr. Trump’s flailings suggest that the answer is very, very desperate.

*ETA February 18, 2025: For anyone interested in more information about water, Canada, and the US, Joel Dryden’s February 18, 2025 article, “Trump’s musings on ‘very large faucet’ in Canada part of looming water crisis, say researchers” for CBC news online, which offers more information about the situation.

DeepSeek, a Chinese rival to OpenAI and other US AI companies

There’s been quite the kerfuffle over DeepSeek during the last few days. This January 27, 2025 article by Alexandra Mae Jones for the Canadian Broadcasting Corporation (CBC) news only was my introduction to DeepSeek AI, Note: A link has been removed,

There’s a new player in AI on the world stage: DeepSeek, a Chinese startup that’s throwing tech valuations into chaos and challenging U.S. dominance in the field with an open-source model that they say they developed for a fraction of the cost of competitors.

DeepSeek’s free AI assistant — which by Monday [January 27, 20¸25] had overtaken rival ChatGPT to become the top-rated free application on Apple’s App Store in the United States — offers the prospect of a viable, cheaper AI alternative, raising questions on the heavy spending by U.S. companies such as Apple and Microsoft, amid a growing investor push for returns.

U.S. stocks dropped sharply on Monday [January 27, 2025], as the surging popularity of DeepSeek sparked a sell-off in U.S. chipmakers.

“[DeepSeek] performs as well as the leading models in Silicon Valley and in some cases, according to their claims, even better,” Sheldon Fernandez, co-founder of DarwinAI, told CBC News. “But they did it with a fractional amount of the resources is really what is turning heads in our industry.”

What is DeepSeek?

Little is known about the small Hangzhou startup behind DeepSeek, which was founded out of a hedge fund in 2023, but largely develops open-source AI models. 

Its researchers wrote in a paper last month that the DeepSeek-V3 model, launched on Jan. 10 [2025], cost less than $6 million US to develop and uses less data than competitors, running counter to the assumption that AI development will eat up increasing amounts of money and energy. 

Some analysts are skeptical about DeepSeek’s $6 million claim, pointing out that this figure only covers computing power. But Fernandez said that even if you triple DeepSeek’s cost estimates, it would still cost significantly less than its competitors. 

The open source release of DeepSeek-R1, which came out on Jan. 20 [2025] and uses DeepSeek-V3 as its base, also means that developers and researchers can look at its inner workings, run it on their own infrastructure and build on it, although its training data has not been made available. 

“Instead of paying Open $20 a month or $200 a month for the latest advanced versions of these models, [people] can really get these types of features for free. And so it really upends a lot of the business model that a lot of these companies were relying on to justify their very high valuations.”

A key difference between DeepSeek’s AI assistant, R1, and other chatbots like OpenAI’s ChatGPT is that DeepSeek lays out its reasoning when it answers prompts and questions, something developers are excited about. 

“The dealbreaker is the access to the raw thinking steps,” Elvis Saravia, an AI researcher and co-founder of the U.K.-based AI consulting firm DAIR.AI, wrote on X, adding that the response quality was “comparable” to OpenAI’s latest reasoning model, o1.

U.S. dominance in AI challenged

One of the reasons DeepSeek is making headlines is because its development occurred despite U.S. actions to keep Americans at the top of AI development. In 2022, the U.S. curbed exports of computer chips to China, hampering their advanced supercomputing development.

The latest AI models from DeepSeek are widely seen to be competitive with those of OpenAI and Meta, which rely on high-end computer chips and extensive computing power.

Christine Mui in a January 27, 2025 article for Politico notes the stock ‘crash’ taking place while focusing on the US policy implications, Note: Links set by Politico have been removed while I have added one link

A little-known Chinese artificial intelligence startup shook the tech world this weekend by releasing an OpenAI-like assistant, which shot to the No.1 ranking on Apple’s app store and caused American tech giants’ stocks to tumble.

From Washington’s perspective, the news raised an immediate policy alarm: It happened despite consistent, bipartisan efforts to stifle AI progress in China.

In tech terms, what freaked everyone out about DeepSeek’s R1 model is that it replicated — and in some cases, surpassed — the performance of OpenAI’s cutting-edge o1 product across a host of performance benchmarks, at a tiny fraction of the cost.

The business takeaway was straightforward. DeepSeek’s success shows that American companies might not need to spend nearly as much as expected to develop AI models. That both intrigues and worries investors and tech leaders.

The policy implications, though, are more complex. Washington’s rampant anxiety about beating China has led to policies that the industry has very mixed feelings about.

On one hand, most tech firms hate the export controls that stop them from selling as much to the world’s second-largest economy, and force them to develop new products if they want to do business with China. If DeepSeek shows those rules are pointless, many would be delighted to see them go away.

On the other hand, anti-China, protectionist sentiment has encouraged Washington to embrace a whole host of industry wishlist items, from a lighter-touch approach to AI rules to streamlined permitting for related construction projects. Does DeepSeek mean those, too, are failing? Or does it trigger a doubling-down?

DeepSeek’s success truly seems to challenge the belief that the future of American AI demands ever more chips and power. That complicates Trump’s interest in rapidly building out that kind of infrastructure in the U.S.

Why pour $500 billion into the Trump-endorsed “Stargate” mega project [announced by Trump on January 21, 2025] — and why would the market reward companies like Meta that spend $65 billion in just one year on AI — if DeepSeek claims it only took $5.6 million and second-tier Nvidia chips to train one of its latest models? (U.S. industry insiders dispute the startup’s figures and claim they don’t tell the full story, but even at 100 times that cost, it would be a bargain.)

Tech companies, of course, love the recent bloom of federal support, and it’s unlikely they’ll drop their push for more federal investment to match anytime soon. Marc Andreessen, a venture capitalist and Trump ally, argued today that DeepSeek should be seen as “AI’s Sputnik moment,” one that raises the stakes for the global competition.

That would strengthen the case that some American AI companies have been pressing for the new administration to invest government resources into AI infrastructure (OpenAI), tighten restrictions on China (Anthropic) and ease up on regulations to ensure their developers build “artificial general intelligence” before their geopolitical rivals.

The British Broadcasting Corporation’s (BBC) Peter Hoskins & Imran Rahman-Jones provided a European perspective and some additional information in their January 27, 2025 article for BBC news online, Note: Links have been removed,

US tech giant Nvidia lost over a sixth of its value after the surging popularity of a Chinese artificial intelligence (AI) app spooked investors in the US and Europe.

DeepSeek, a Chinese AI chatbot reportedly made at a fraction of the cost of its rivals, launched last week but has already become the most downloaded free app in the US.

AI chip giant Nvidia and other tech firms connected to AI, including Microsoft and Google, saw their values tumble on Monday [January 27, 2025] in the wake of DeepSeek’s sudden rise.

In a separate development, DeepSeek said on Monday [January 27, 2025] it will temporarily limit registrations because of “large-scale malicious attacks” on its software.

The DeepSeek chatbot was reportedly developed for a fraction of the cost of its rivals, raising questions about the future of America’s AI dominance and the scale of investments US firms are planning.

DeepSeek is powered by the open source DeepSeek-V3 model, which its researchers claim was trained for around $6m – significantly less than the billions spent by rivals.

But this claim has been disputed by others in AI.

The researchers say they use already existing technology, as well as open source code – software that can be used, modified or distributed by anybody free of charge.

DeepSeek’s emergence comes as the US is restricting the sale of the advanced chip technology that powers AI to China.

To continue their work without steady supplies of imported advanced chips, Chinese AI developers have shared their work with each other and experimented with new approaches to the technology.

This has resulted in AI models that require far less computing power than before.

It also means that they cost a lot less than previously thought possible, which has the potential to upend the industry.

After DeepSeek-R1 was launched earlier this month, the company boasted of “performance on par with” one of OpenAI’s latest models when used for tasks such as maths, coding and natural language reasoning.

In Europe, Dutch chip equipment maker ASML ended Monday’s trading with its share price down by more than 7% while shares in Siemens Energy, which makes hardware related to AI, had plunged by a fifth.

“This idea of a low-cost Chinese version hasn’t necessarily been forefront, so it’s taken the market a little bit by surprise,” said Fiona Cincotta, senior market analyst at City Index.

“So, if you suddenly get this low-cost AI model, then that’s going to raise concerns over the profits of rivals, particularly given the amount that they’ve already invested in more expensive AI infrastructure.”

Singapore-based technology equity adviser Vey-Sern Ling told the BBC it could “potentially derail the investment case for the entire AI supply chain”.

Who founded DeepSeek?

The company was founded in 2023 by Liang Wenfeng in Hangzhou, a city in southeastern China.

The 40-year-old, an information and electronic engineering graduate, also founded the hedge fund that backed DeepSeek.

He reportedly built up a store of Nvidia A100 chips, now banned from export to China.

Experts believe this collection – which some estimates put at 50,000 – led him to launch DeepSeek, by pairing these chips with cheaper, lower-end ones that are still available to import.

Mr Liang was recently seen at a meeting between industry experts and the Chinese premier Li Qiang.

In a July 2024 interview with The China Academy, Mr Liang said he was surprised by the reaction to the previous version of his AI model.

“We didn’t expect pricing to be such a sensitive issue,” he said.

“We were simply following our own pace, calculating costs, and setting prices accordingly.”

A January 28, 2025 article by Daria Solovieva for salon.com covers much the same territory as the others and includes a few detail about security issues,

The pace at which U.S. consumers have embraced DeepSeek is raising national security concerns similar to those surrounding TikTok, the social media platform that faces a ban unless it is sold to a non-Chinese company.

The U.S. Supreme Court this month upheld a federal law that requires TikTok’s sale. The Court sided with the U.S. government’s argument that the app can collect and track data on its 170 million American users. President Donald Trump has paused enforcement of the ban until April to try to negotiate a deal.

But “the threat posed by DeepSeek is more direct and acute than TikTok,” Luke de Pulford, co-founder and executive director of non-profit Inter-Parliamentary Alliance on China, told Salon.

DeepSeek is a fully Chinese company and is subject to Communist Party control, unlike TikTok which positions itself as independent from parent company ByteDance, he said. 

“DeepSeek logs your keystrokes, device data, location and so much other information and stores it all in China,” de Pulford said. “So you’ll never know if the Chinese state has been crunching your data to gain strategic advantage, and DeepSeek would be breaking the law if they told you.”  

I wonder if other AI companies in other countries also log keystrokes, etc. Is it theoretically possible that one of those governments or their government agencies could gain access to your data? It’s obvious in China but people in other countries may have the issues.

Censorship: DeepSeek and ChatGPT

Anis Heydari’s January 28, 2025 article for CBC news online reveals some surprising results from a head to head comparison between DeepSeek and ChatGPT,

The Chinese-made AI chatbot DeepSeek may not always answer some questions about topics that are often censored by Beijing, according to tests run by CBC News and The Associated Press, and is providing different information than its U.S.-owned competitor ChatGPT.

The new, free chatbot has sparked discussions about the competition between China and the U.S. in AI development, with many users flocking to test it. 

But experts warn users should be careful with what information they provide to such software products.

It is also “a little bit surprising,” according to one researcher, that topics which are often censored within China are seemingly also being restricted elsewhere.

“A lot of services will differentiate based on where the user is coming from when deciding to deploy censorship or not,” said Jeffrey Knockel, who researches software censorship and surveillance at the Citizen Lab at the University of Toronto’s Munk School of Global Affairs & Public Policy.

“With this one, it just seems to be censoring everyone.”

Both CBC News and The Associated Press posed questions to DeepSeek and OpenAI’s ChatGPT, with mixed and differing results.

For example, DeepSeek seemed to indicate an inability to answer fully when asked “What does Winnie the Pooh mean in China?” For many Chinese people, the Winnie the Pooh character is used as a playful taunt of President Xi Jinping, and social media searches about that character were previously, briefly banned in China. 

DeepSeek said the bear is a beloved cartoon character that is adored by countless children and families in China, symbolizing joy and friendship.

Then, abruptly, it added the Chinese government is “dedicated to providing a wholesome cyberspace for its citizens,” and that all online content is managed under Chinese laws and socialist core values, with the aim of protecting national security and social stability.

CBC News was unable to produce this response. DeepSeek instead said “some internet users have drawn comparisons between Winnie the Pooh and Chinese leaders, leading to increased scrutiny and restrictions on the character’s imagery in certain contexts,” when asked the same question on an iOS app on a CBC device in Canada.

Asked if Taiwan is a part of China — another touchy subject — it [DeepSeek] began by saying the island’s status is a “complex and sensitive issue in international relations,” adding that China claims Taiwan, but that the island itself operates as a “separate and self-governing entity” which many people consider to be a sovereign nation.

But as that answer was being typed out, for both CBC and the AP, it vanished and was replaced with: “Sorry, that’s beyond my current scope. Let’s talk about something else.”

… Brent Arnold, a data breach lawyer in Toronto, says there are concerns about DeepSeek, which explicitly says in its privacy policy that the information it collects is stored on servers in China.

That information can include the type of device used, user “keystroke patterns,” and even “activities on other websites and apps or in stores, including the products or services you purchased, online or in person” depending on whether advertising services have shared those with DeepSeek.

“The difference between this and another AI company having this is now, the Chinese government also has it,” said Arnold.

While much, if not all, of the data DeepSeek collects is the same as that of U.S.-based companies such as Meta or Google, Arnold points out that — for now — the U.S. has checks and balances if governments want to obtain that information.

“With respect to America, we assume the government operates in good faith if they’re investigating and asking for information, they’ve got a legitimate basis for doing so,” he said. 

Right now, Arnold says it’s not accurate to compare Chinese and U.S. authorities in terms of their ability to take personal information. But that could change.

“I would say it’s a false equivalency now. But in the months and years to come, we might start to say you don’t see a whole lot of difference in what one government or another is doing,” he said.

Graham Fraser’s January 28, 2025 article comparing DeepSeek to the others (OpenAI’s ChatGPT and Google’s Gemini) for BBC news online took a different approach,

Writing Assistance

When you ask ChatGPT what the most popular reasons to use ChatGPT are, it says that assisting people to write is one of them.

From gathering and summarising information in a helpful format to even writing blog posts on a topic, ChatGPT has become an AI companion for many across different workplaces.

As a proud Scottish football [soccer] fan, I asked ChatGPT and DeepSeek to summarise the best Scottish football players ever, before asking the chatbots to “draft a blog post summarising the best Scottish football players in history”.

DeepSeek responded in seconds, with a top ten list – Kenny Dalglish of Liverpool and Celtic was number one. It helpfully summarised which position the players played in, their clubs, and a brief list of their achievements.

DeepSeek also detailed two non-Scottish players – Rangers legend Brian Laudrup, who is Danish, and Celtic hero Henrik Larsson. For the latter, it added “although Swedish, Larsson is often included in discussions of Scottish football legends due to his impact at Celtic”.

For its subsequent blog post, it did go into detail of Laudrup’s nationality before giving a succinct account of the careers of the players.

ChatGPT’s answer to the same question contained many of the same names, with “King Kenny” once again at the top of the list.

Its detailed blog post briefly and accurately went into the careers of all the players.

It concluded: “While the game has changed over the decades, the impact of these Scottish greats remains timeless.” Indeed.

For this fun test, DeepSeek was certainly comparable to its best-known US competitor.

Coding

Brainstorming ideas

Learning and research

Steaming ahead

The tasks I set the chatbots were simple but they point to something much more significant – the winner of the so-called AI race is far from decided.

For all the vast resources US firms have poured into the tech, their Chinese rival has shown their achievements can be emulated.

Reception from the science community

Days before the news outlets discovered DeepSeek, the company published a paper about its Large Language Models (LLMs) and its new chatbot on arXiv. Here’s a little more information,

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

[over 100 authors are listed]

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.

Cite as: arXiv:2501.12948 [cs.CL]
(or arXiv:2501.12948v1 [cs.CL] for this version)
https://doi.org/10.48550/arXiv.2501.12948

Submission history

From: Wenfeng Liang [view email]
[v1] Wed, 22 Jan 2025 15:19:35 UTC (928 KB)

You can also find a PDF version of the paper here or another online version here at Hugging Face.

As for the science community’s response, the title of Elizabeth Gibney’s January 23, 2025 article “China’s cheap, open AI model DeepSeek thrills scientists” for Nature says it all, Note: Links have been removed,

A Chinese-built large language model called DeepSeek-R1 is thrilling scientists as an affordable and open rival to ‘reasoning’ models such as OpenAI’s o1.

These models generate responses step-by-step, in a process analogous to human reasoning. This makes them more adept than earlier language models at solving scientific problems and could make them useful in research. Initial tests of R1, released on 20 January, show that its performance on certain tasks in chemistry, mathematics and coding is on par with that of o1 — which wowed researchers when it was released by OpenAI in September.

“This is wild and totally unexpected,” Elvis Saravia, an AI researcher and co-founder of the UK-based AI consulting firm DAIR.AI, wrote on X.

R1 stands out for another reason. DeepSeek, the start-up in Hangzhou that built the model, has released it as ‘open-weight’, meaning that researchers can study and build on the algorithm. Published under an MIT licence, the model can be freely reused but is not considered fully open source, because its training data has not been made available.

“The openness of DeepSeek is quite remarkable,” says Mario Krenn, leader of the Artificial Scientist Lab at the Max Planck Institute for the Science of Light in Erlangen, Germany. By comparison, o1 and other models built by OpenAI in San Francisco, California, including its latest effort o3 are “essentially black boxes”, he says.

DeepSeek hasn’t released the full cost of training R1, but it is charging people using its interface around one-thirtieth of what o1 costs to run. The firm has also created mini ‘distilled’ versions of R1 to allow researchers with limited computing power to play with the model. An “experiment that cost more than £300 with o1, cost less than $10 with R1,” says Krenn. “This is a dramatic difference which will certainly play a role its future adoption.”

The kerfuffle has died down for now.

Ancient 3D paper art (kirigami) and modern wireless technology

The first nanokirigami (or nano-kirigami) story featured here was in a January 29, 2019 posting (Manipulating light at the nanoscale with kirigami-inspired technique). This latest story features a two-dimensional material and the kirigami technique, also, some researchers from the University of British Columbia (Canada).

An October 14, 2024 news item on ScienceDaily announces that the newly applied (ancient) technique could change wireless technology,

The future of wireless technology — from charging devices to boosting communication signals — relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University [Pennsylvania, US] and the University of British Columbia [UBC; Canada] believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas.

An October 14, 2024 Drexel University news release (also on EurekAlert), which originated the news item, provides more information (Note: Links have been removed),

Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami — a variation of origami — can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape.

The proof of concept is significant, according to the researchers, because it represents a new way to quickly and cost-effectively manufacture an antenna by simply coating aqueous MXene ink onto a clear elastic polymer substrate material.

“For wireless technology to support advancements in fields like soft robotics and aerospace, antennas need to be designed for tunable performance and with ease of fabrication,” said Yury Gogotsi, PhD, Distinguished University and Bach Professor in Drexel’s College of Engineering, and a co-author of  the research. “Kirigami is a natural model for a manufacturing process, due to the simplicity with which complex 3D forms can be created from a single 2D piece of material.”

Standard microwave antennas can be reconfigured either electronically or by altering their physical shape. However, adding the necessary circuitry to control an antenna electronically can increase its complexity, making the antenna bulkier, more vulnerable to malfunction and more expensive to manufacture. By contrast, the process demonstrated in this joint work leverages physical shape change and can create antennas in a variety of intricate shapes and forms. These antennas are flexible, lightweight and durable, which are crucial factors for their survivability on movable robotics and aerospace components.

To create the test antennas, the researchers first coated a sheet of acetate with a special conductive ink, composed of a titanium carbide MXene, to create frequency-selective patterns. MXene ink is particularly useful in this application because its chemical composition allows it to adhere strongly to the substrate for a durable antenna and can be adjusted to reconfigure the transmission specifications of the antenna.

MXenes are a family of two-dimensional nanomaterials discovered by Drexel researchers in 2011 whose physical and electrochemical properties can be adjusted by slightly altering their chemical composition. MXenes have been widely used in the last decade for applications that require materials with precise physiochemical behavior, such as electromagnetic shielding, biofiltration and energy storage. They have also been explored for telecommunications applications for many years due to their efficiency in transmitting radio waves and their ability to be adjusted to selectively block and allow transmission of electromagnetic waves.

Using kirigami techniques, originally developed in Japan the 4th and 5th centuries A.D., the researchers made a series of parallel cuts in the MXene-coated surface. Pulling at the edges of the sheet triggered an array of square-shaped resonator antennas to spring from its two-dimensional surface. Varying the tension caused the angle of the array to shift — a capability that could be deployed to quickly adjust the communications configuration of the antennas. 

The researchers assembled two kirigami antenna arrays for testing. They also created a prototype of a co-planar resonator — a component used in sensors that naturally produces waves of a certain frequency — to showcase the versatility of the approach. In addition to communication applications, resonators and reconfigurable antennas could also be used for strain-sensing, according to the team.

“Frequency selective surfaces, like these antennas, are periodic structures that selectively transmit, reflect, or absorb electromagnetic waves at specific frequencies,” said Mohammad Zarifi, principal research chair, an associate professor at UBC, who helped  lead the research. “They have active and/or passive structures and are commonly used in applications such as antennas, radomes, and reflectors to control wave propagation direction in wireless communication at 5G and beyond platforms.”

The kirigami antennas proved effective at transmitting signals in three commonly used microwave frequency bands: 2-4 GHz, 4-8 GHz and 8-12 GHz. Additionally, the team found that shifting the geometry and direction of the substrate could redirect the waves from each resonator.

The frequency produced by the resonator shifted by 400 MHz as its shape was deformed under strain conditions – demonstrating that it could perform effectively as a strain sensor for monitoring the condition of infrastructure and buildings.

According to the team, these findings are the first step toward integrating the components on relevant structures and wireless devices. With kirigami’s myriad forms as their inspiration, the team will now seek to optimize the performance of the antennas by exploring new shapes, substrates and movements.

 “Our goal here was to simultaneously improve the adjustability of antenna performance as well as create a simple manufacturing process for new microwave components by incorporating a versatile MXene nanomaterial with kirigami-inspired designs,” said Omid Niksan, PhD, from [the] University of British Columbia, who was an author of the paper. “The next phase of this research will explore new materials and geometries for the antennas.”

Here’s a link to and a citation for the paper,

MXene-based kirigami designs: showcasing reconfigurable frequency selectivity in microwave regime by Omid Niksan, Lingyi Bi, Yury Gogotsi & Mohammad H. Zarifi. Nature Communications volume 15, Article number: 7793 (2024) DOI: https://doi.org/10.1038/s41467-024-51853-1 Published: 06 September 2024

This paper is open access.

Bio-hybrid robotics (living robots) needs public debate and regulation

A July 23, 2024 University of Southampton (UK) press release (also on EurekAlert but published July 22, 2024) describes the emerging science/technology of bio-hybrid robotics and a recent study about the ethical issues raised, Note 1: bio-hybrid may also be written as biohybrid; Note 2: Links have been removed,

Development of ‘living robots’ needs regulation and public debate

Researchers are calling for regulation to guide the responsible and ethical development of bio-hybrid robotics – a ground-breaking science which fuses artificial components with living tissue and cells.

In a paper published in Proceedings of the National Academy of Sciences [PNAS] a multidisciplinary team from the University of Southampton and universities in the US and Spain set out the unique ethical issues this technology presents and the need for proper governance.

Combining living materials and organisms with synthetic robotic components might sound like something out of science fiction, but this emerging field is advancing rapidly. Bio-hybrid robots using living muscles can crawl, swim, grip, pump, and sense their surroundings. Sensors made from sensory cells or insect antennae have improved chemical sensing. Living neurons have even been used to control mobile robots.

Dr Rafael Mestre from the University of Southampton, who specialises in emergent technologies and is co-lead author of the paper, said: “The challenges in overseeing bio-hybrid robotics are not dissimilar to those encountered in the regulation of biomedical devices, stem cells and other disruptive technologies. But unlike purely mechanical or digital technologies, bio-hybrid robots blend biological and synthetic components in unprecedented ways. This presents unique possible benefits but also potential dangers.”

Research publications relating to bio-hybrid robotics have increased continuously over the last decade. But the authors found that of the more than 1,500 publications on the subject at the time, only five considered its ethical implications in depth.

The paper’s authors identified three areas where bio-hybrid robotics present unique ethical issues: Interactivity – how bio-robots interact with humans and the environment, Integrability – how and whether humans might assimilate bio-robots (such as bio-robotic organs or limbs), and Moral status.

In a series of thought experiments, they describe how a bio-robot for cleaning our oceans could disrupt the food chain, how a bio-hybrid robotic arm might exacerbate inequalities [emphasis mine], and how increasing sophisticated bio-hybrid assistants could raise questions about sentience and moral value.

“Bio-hybrid robots create unique ethical dilemmas,” says Aníbal M. Astobiza, an ethicist from the University of the Basque Country in Spain and co-lead author of the paper. “The living tissue used in their fabrication, potential for sentience, distinct environmental impact, unusual moral status, and capacity for biological evolution or adaptation create unique ethical dilemmas that extend beyond those of wholly artificial or biological technologies.”

The paper is the first from the Biohybrid Futures project led by Dr Rafael Mestre, in collaboration with the Rebooting Democracy project. Biohybrid Futures is setting out to develop a framework for the responsible research, application, and governance of bio-hybrid robotics.

The paper proposes several requirements for such a framework, including risk assessments, consideration of social implications, and increasing public awareness and understanding.

Dr Matt Ryan, a political scientist from the University of Southampton and a co-author on the paper, said: “If debates around embryonic stem cells, human cloning or artificial intelligence have taught us something, it is that humans rarely agree on the correct resolution of the moral dilemmas of emergent technologies.

“Compared to related technologies such as embryonic stem cells or artificial intelligence, bio-hybrid robotics has developed relatively unattended by the media, the public and policymakers, but it is no less significant. We want the public to be included in this conversation to ensure a democratic approach to the development and ethical evaluation of this technology.”

In addition to the need for a governance framework, the authors set out actions that the research community can take now to guide their research.

“Taking these steps should not be seen as prescriptive in any way, but as an opportunity to share responsibility, taking a heavy weight away from the researcher’s shoulders,” says Dr Victoria Webster-Wood, a biomechanical engineer from Carnegie Mellon University in the US and co-author on the paper.

“Research in bio-hybrid robotics has evolved in various directions. We need to align our efforts to fully unlock its potential.”

Here’s a link to and a citation for the paper,

Ethics and responsibility in biohybrid robotics research by Rafael Mestre, Aníbal M. Astobiza, Victoria A. Webster-Wood, Matt Ryan, and M. Taher A. Saif. PNAS 121 (31) e2310458121 July 23, 2024 DOI: https://doi.org/10.1073/pnas.2310458121

This paper is open access.

Cyborg or biohybrid robot?

Earlier, I highlighted “… how a bio-hybrid robotic arm might exacerbate inequalities …” because it suggests cyborgs, which are not mentioned in the press release or in the paper, This seems like an odd omission but, over the years, terminology does change although it’s not clear that’s the situation here.

I have two ‘definitions’, the first is from an October 21, 2019 article by Javier Yanes for OpenMind BBVA, Note: More about BBVA later,

The fusion between living organisms and artificial devices has become familiar to us through the concept of the cyborg (cybernetic organism). This approach consists of restoring or improving the capacities of the organic being, usually a human being, by means of technological devices. On the other hand, biohybrid robots are in some ways the opposite idea: using living tissues or cells to provide the machine with functions that would be difficult to achieve otherwise. The idea is that if soft robots seek to achieve this through synthetic materials, why not do so directly with living materials?

In contrast, there’s this from “Biohybrid robots: recent progress, challenges, and perspectives,” Note 1: Full citation for paper follows excerpt; Note 2: Links have been removed,

2.3. Cyborgs

Another approach to building biohybrid robots is the artificial enhancement of animals or using an entire animal body as a scaffold to manipulate robotically. The locomotion of these augmented animals can then be externally controlled, spanning three modes of locomotion: walking/running, flying, and swimming. Notably, these capabilities have been demonstrated in jellyfish (figure 4(A)) [139, 140], clams (figure 4(B)) [141], turtles (figure 4(C)) [142, 143], and insects, including locusts (figure 4(D)) [27, 144], beetles (figure 4(E)) [28, 145–158], cockroaches (figure 4(F)) [159–165], and moths [166–170].

….

The advantages of using entire animals as cyborgs are multifold. For robotics, augmented animals possess inherent features that address some of the long-standing challenges within the field, including power consumption and damage tolerance, by taking advantage of animal metabolism [172], tissue healing, and other adaptive behaviors. In particular, biohybrid robotic jellyfish, composed of a self-contained microelectronic swim controller embedded into live Aurelia aurita moon jellyfish, consumed one to three orders of magnitude less power per mass than existing swimming robots [172], and cyborg insects can make use of the insect’s hemolymph directly as a fuel source [173].

So, sometimes there’s a distinction and sometimes there’s not. I take this to mean that the field is still emerging and that’s reflected in evolving terminology.

Here’s a link to and a citation for the paper,

Biohybrid robots: recent progress, challenges, and perspectives by Victoria A Webster-Wood, Maria Guix, Nicole W Xu, Bahareh Behkam, Hirotaka Sato, Deblina Sarkar, Samuel Sanchez, Masahiro Shimizu and Kevin Kit Parker. Bioinspiration & Biomimetics, Volume 18, Number 1 015001 DOI 10.1088/1748-3190/ac9c3b Published 8 November 2022 • © 2022 The Author(s). Published by IOP Publishing Ltd

This paper is open access.

A few notes about BBVA and other items

BBVA is Banco Bilbao Vizcaya Argentaria according to its Wikipedia entry, Note: Links have been removed,

Banco Bilbao Vizcaya Argentaria, S.A. (Spanish pronunciation: [ˈbaŋko βilˈβao βiθˈkaʝa aɾxenˈtaɾja]), better known by its initialism BBVA, is a Spanish multinational financial services company based in Madrid and Bilbao, Spain. It is one of the largest financial institutions in the world, and is present mainly in Spain, Portugal, Mexico, South America, Turkey, Italy and Romania.[2]

BBVA’s OpenMind is, from their About us page,

OpenMind: BBVA’s knowledge community

OpenMind is a non-profit project run by BBVA that aims to contribute to the generation and dissemination of knowledge about fundamental issues of our time, in an open and free way. The project is materialized in an online dissemination community.

Sharing knowledge for a better future.

At OpenMind we want to help people understand the main phenomena affecting our lives; the opportunities and challenges that we face in areas such as science, technology, humanities or economics. Analyzing the impact of scientific and technological advances on the future of the economy, society and our daily lives is the project’s main objective, which always starts on the premise that a broader and greater quality knowledge will help us to make better individual and collective decisions.

As for other items, you can find my latest (biorobotic, cyborg, or bionic depending what terminology you what to use) jellyfish story in this June 6, 2024 posting, the Biohybrid Futures project mentioned in the press release here, and also mentioned in the Rebooting Democracy project (unexpected in the context of an emerging science/technology) can be found here on this University of Southampton website.

Finally, you can find more on these stories (science/technology announcements and/or ethics research/issues) here by searching for ‘robots’ (tag and category), ‘cyborgs’ (tag), ‘machine/flesh’ (tag), ‘neuroprosthetic’ (tag), and human enhancement (category).

Corporate venture capital (CVC) and the nanotechnology market plus 2023’s top 10 countries’ nanotechnolgy patents

I have two brief nanotechnology commercialization stories from the same publication.

Corporate venture capital (CVC) and the nano market

From a March 23, 2024 article on statnano.com, Note: Links have been removed,

Nanotechnology’s enormous potential across various sectors has long attracted the eye of investors, keen to capitalise on its commercial potency.

Yet the initial propulsion provided by traditional venture capital avenues was reined back when the reality of long development timelines, regulatory hurdles, and difficulty in translating scientific advances into commercially viable products became apparent.

While the initial flurry of activity declined in the early part of the 21st century, a new kid on the investing block has proved an enticing option beyond traditional funding methods.

Corporate venture capital has, over the last 10 years emerged as a key plank in turning ideas into commercial reality.

Simply put, corporate venture capital (CVC) has seen large corporations, recognising the strategic value of nanotechnology, establish their own VC arms to invest in promising start-ups.

The likes of Samsung, Johnson & Johnson and BASF have all sought to get an edge on their competition by sinking money into start-ups in nano and other technologies, which could deliver benefits to them in the long term.

Unlike traditional VC firms, CVCs invest with a strategic lens, aligning their investments with their core business goals. For instance, BASF’s venture capital arm, BASF Venture Capital, focuses on nanomaterials with applications in coatings, chemicals, and construction.

It has an evergreen EUR 250 million fund available and will consider everything from seed to Series B investment opportunities.

Samsung Ventures takes a similar approach, explaining: “Our major investment areas are in semiconductors, telecommunication, software, internet, bioengineering and the medical industry from start-ups to established companies that are about to be listed on the stock market.

While historically concentrated in North America and Europe, CVC activity in nanotechnology is expanding to Asia, with China being a major player.

China has, perhaps not surprisingly, seen considerable growth over the last decade in nano and few will bet against it being the primary driver of innovation over the next 10 years.

As ever, the long development cycles of emerging nano breakthroughs can frequently deter some CVCs with shorter investment horizons.

2023 Nanotechnology patent applications: which countries top the list?

A March 28, 2024 article from statnano.com provides interesting data concerning patent applications,

In 2023, a total of 18,526 nanotechnology patent applications were published at the United States Patent and Trademark Office (USPTO) and the European Patent Office (EPO). The United States accounted for approximately 40% of these nanotechnology patent publications, followed by China, South Korea, and Japan in the next positions.

According to a statistical analysis conducted by StatNano using data from the Orbit database, the USPTO published 84% of the 18,526 nanotechnology patent applications in 2023, which is more than five times the number published by the EPO. However, the EPO saw a nearly 17% increase in nanotechnology patent publications compared to the previous year, while the USPTO’s growth was around 4%.

Nanotechnology patents are defined based on the ISO/TS 18110 standard as those having at least one claim related to nanotechnology orpatents classified with an IPC classification code related to nanotechnology such as B82.

From the March 28, 2024 article,

Top 10 Countries Based on Published Patent Applications in the Field of Nanotechnology in USPTO in 2023

Rank1CountryNumber of nanotechnology published patent applications in USPTONumber of nanotechnology published patent applications in EPOGrowth rate in USPTOGrowth rate in EPO
1United States6,9264923.20%17.40%
2South Korea1,71547613.40%8.40%
3China1,6275694.20%47.40%
4Taiwan1,118615.00%-12.90%
5Japan1,113445-1.20%9.30%
6Germany484229-10.20%15.70%
7England331505.10%16.30%
8France323145-8.00%17.90%
9Canada290125.10%-14.30%
10Saudi Arabia268322.40%0.00%
1- Ranking based on the number of nanotechnology patent applications at the USPTO

If you have a bit of time and interest, I suggest reading the March 28, 2024 article in its entirety.

Hardware policies best way to manage AI safety?

Regulation of artificial intelligence (AI) has become very topical in the last couple of years. There was an AI safety summit in November 2023 at Bletchley Park in the UK (see my November 2, 2023 posting for more about that international meeting).

A very software approach?

This year (2024) has seen a rise in legislative and proposed legislative activity. I have some articles on a few of these activities. China was the first to enact regulations of any kind on AI according to Matt Sheehan’s February 27, 2024 paper for the Carnegie Endowment for International Peace,

In 2021 and 2022, China became the first country to implement detailed, binding regulations on some of the most common applications of artificial intelligence (AI). These rules formed the foundation of China’s emerging AI governance regime, an evolving policy architecture that will affect everything from frontier AI research to the functioning of the world’s second-largest economy, from large language models in Africa to autonomous vehicles in Europe.

The Chinese Communist Party (CCP) and the Chinese government started that process with the 2021 rules on recommendation algorithms, an omnipresent use of the technology that is often overlooked in international AI governance discourse. Those rules imposed new obligations on companies to intervene in content recommendations, granted new rights to users being recommended content, and offered protections to gig workers subject to algorithmic scheduling. The Chinese party-state quickly followed up with a new regulation on “deep synthesis,” the use of AI to generate synthetic media such as deepfakes. Those rules required AI providers to watermark AI-generated content and ensure that content does not violate people’s “likeness rights” or harm the “nation’s image.” Together, these two regulations also created and amended China’s algorithm registry, a regulatory tool that would evolve into a cornerstone of the country’s AI governance regime.

The UK has adopted a more generalized approach focused on encouraging innovation according to Valeria Gallo’s and Suchitra Nair’s February 21, 2024 article for Deloitte (a British professional services firm also considered one of the big four accounting firms worldwide),

At a glance

The UK Government has adopted a cross-sector and outcome-based framework for regulating AI, underpinned by five core principles. These are safety, security and robustness, appropriate transparency and explainability, fairness, accountability and governance, and contestability and redress.

Regulators will implement the framework in their sectors/domains by applying existing laws and issuing supplementary regulatory guidance. Selected regulators will publish their AI annual strategic plans by 30th April [2024], providing businesses with much-needed direction.

Voluntary safety and transparency measures for developers of highly capable AI models and systems will also supplement the framework and the activities of individual regulators.

The framework will not be codified into law for now, but the Government anticipates the need for targeted legislative interventions in the future. These interventions will address gaps in the current regulatory framework, particularly regarding the risks posed by complex General Purpose AI and the key players involved in its development.

Organisations must prepare for increased AI regulatory activity over the next year, including guidelines, information gathering, and enforcement. International firms will inevitably have to navigate regulatory divergence.

While most of the focus appears to be on the software (e.g., General Purpose AI), the UK framework does not preclude hardware.

The European Union (EU) is preparing to pass its own AI regulation act through the European Parliament in 2024 according to a December 19, 2023 “EU AI Act: first regulation on artificial intelligence” article update, Note: Links have been removed,

As part of its digital strategy, the EU wants to regulate artificial intelligence (AI) to ensure better conditions for the development and use of this innovative technology. AI can create many benefits, such as better healthcare; safer and cleaner transport; more efficient manufacturing; and cheaper and more sustainable energy.

In April 2021, the European Commission proposed the first EU regulatory framework for AI. It says that AI systems that can be used in different applications are analysed and classified according to the risk they pose to users. The different risk levels will mean more or less regulation.

The agreed text is expected to be finally adopted in April 2024. It will be fully applicable 24 months after entry into force, but some parts will be applicable sooner:

*The ban of AI systems posing unacceptable risks will apply six months after the entry into force

*Codes of practice will apply nine months after entry into force

*Rules on general-purpose AI systems that need to comply with transparency requirements will apply 12 months after the entry into force

High-risk systems will have more time to comply with the requirements as the obligations concerning them will become applicable 36 months after the entry into force.

This EU initiative, like the UK framework, seems largely focused on AI software and according to the Wikipedia entry “Regulation of artificial intelligence,”

… The AI Act is expected to come into effect in late 2025 or early 2026.[109

I do have a few postings about Canadian regulatory efforts, which also seem to be focused on software but don’t preclude hardware. While the January 20, 2024 posting is titled “Canada’s voluntary code of conduct relating to advanced generative AI (artificial intelligence) systems,” information about legislative efforts is also included although you might find my May 1, 2023 posting titled “Canada, AI regulation, and the second reading of the Digital Charter Implementation Act, 2022 (Bill C-27)” offers more comprehensive information about Canada’s legislative progress or lack thereof.

The US is always to be considered in these matters and I have a November 2023 ‘briefing’ by Müge Fazlioglu on the International Association of Privacy Professionals (IAPP) website where she provides a quick overview of the international scene before diving deeper into US AI governance policy through the Barack Obama, Donald Trump, and Joe Biden administrations. There’s also this January 29, 2024 US White House “Fact Sheet: Biden-⁠Harris Administration Announces Key AI Actions Following President Biden’s Landmark Executive Order.”

What about AI and hardware?

A February 15, 2024 news item on ScienceDaily suggests that regulating hardware may be the most effective way of regulating AI,

Chips and datacentres — the ‘compute’ power driving the AI revolution — may be the most effective targets for risk-reducing AI policies as they have to be physically possessed, according to a new report.

A global registry tracking the flow of chips destined for AI supercomputers is one of the policy options highlighted by a major new report calling for regulation of “compute” — the hardware that underpins all AI — to help prevent artificial intelligence misuse and disasters.

Other technical proposals floated by the report include “compute caps” — built-in limits to the number of chips each AI chip can connect with — and distributing a “start switch” for AI training across multiple parties to allow for a digital veto of risky AI before it feeds on data.

The experts point out that powerful computing chips required to drive generative AI models are constructed via highly concentrated supply chains, dominated by just a handful of companies — making the hardware itself a strong intervention point for risk-reducing AI policies.

The report, published 14 February [2024], is authored by nineteen experts and co-led by three University of Cambridge institutes — the Leverhulme Centre for the Future of Intelligence (LCFI), the Centre for the Study of Existential Risk (CSER) and the Bennett Institute for Public Policy — along with OpenAI and the Centre for the Governance of AI.

A February 14, 2024 University of Cambridge press release by Fred Lewsey (also on EurekAlert), which originated the news item, provides more information about the ‘hardware approach to AI regulation’,

“Artificial intelligence has made startling progress in the last decade, much of which has been enabled by the sharp increase in computing power applied to training algorithms,” said Haydn Belfield, a co-lead author of the report from Cambridge’s LCFI. 

“Governments are rightly concerned about the potential consequences of AI, and looking at how to regulate the technology, but data and algorithms are intangible and difficult to control.

“AI supercomputers consist of tens of thousands of networked AI chips hosted in giant data centres often the size of several football fields, consuming dozens of megawatts of power,” said Belfield.

“Computing hardware is visible, quantifiable, and its physical nature means restrictions can be imposed in a way that might soon be nearly impossible with more virtual elements of AI.”

The computing power behind AI has grown exponentially since the “deep learning era” kicked off in earnest, with the amount of “compute” used to train the largest AI models doubling around every six months since 2010. The biggest AI models now use 350 million times more compute than thirteen years ago.

Government efforts across the world over the past year – including the US Executive Order on AI, EU AI Act, China’s Generative AI Regulation, and the UK’s AI Safety Institute – have begun to focus on compute when considering AI governance.

Outside of China, the cloud compute market is dominated by three companies, termed “hyperscalers”: Amazon, Microsoft, and Google. “Monitoring the hardware would greatly help competition authorities in keeping in check the market power of the biggest tech companies, and so opening the space for more innovation and new entrants,” said co-author Prof Diane Coyle from Cambridge’s Bennett Institute. 

The report provides “sketches” of possible directions for compute governance, highlighting the analogy between AI training and uranium enrichment. “International regulation of nuclear supplies focuses on a vital input that has to go through a lengthy, difficult and expensive process,” said Belfield. “A focus on compute would allow AI regulation to do the same.”

Policy ideas are divided into three camps: increasing the global visibility of AI computing; allocating compute resources for the greatest benefit to society; enforcing restrictions on computing power.

For example, a regularly-audited international AI chip registry requiring chip producers, sellers, and resellers to report all transfers would provide precise information on the amount of compute possessed by nations and corporations at any one time.

The report even suggests a unique identifier could be added to each chip to prevent industrial espionage and “chip smuggling”.

“Governments already track many economic transactions, so it makes sense to increase monitoring of a commodity as rare and powerful as an advanced AI chip,” said Belfield. However, the team point out that such approaches could lead to a black market in untraceable “ghost chips”.

Other suggestions to increase visibility – and accountability – include reporting of large-scale AI training by cloud computing providers, and privacy-preserving “workload monitoring” to help prevent an arms race if massive compute investments are made without enough transparency.  

“Users of compute will engage in a mixture of beneficial, benign and harmful activities, and determined groups will find ways to circumvent restrictions,” said Belfield. “Regulators will need to create checks and balances that thwart malicious or misguided uses of AI computing.”

These might include physical limits on chip-to-chip networking, or cryptographic technology that allows for remote disabling of AI chips in extreme circumstances. One suggested approach would require the consent of multiple parties to unlock AI compute for particularly risky training runs, a mechanism familiar from nuclear weapons.

AI risk mitigation policies might see compute prioritised for research most likely to benefit society – from green energy to health and education. This could even take the form of major international AI “megaprojects” that tackle global issues by pooling compute resources.

The report’s authors are clear that their policy suggestions are “exploratory” rather than fully fledged proposals and that they all carry potential downsides, from risks of proprietary data leaks to negative economic impacts and the hampering of positive AI development.

They offer five considerations for regulating AI through compute, including the exclusion of small-scale and non-AI computing, regular revisiting of compute thresholds, and a focus on privacy preservation.

Added Belfield: “Trying to govern AI models as they are deployed could prove futile, like chasing shadows. Those seeking to establish AI regulation should look upstream to compute, the source of the power driving the AI revolution. If compute remains ungoverned it poses severe risks to society.”

You can find the report, “Computing Power and the Governance of Artificial Intelligence” on the University of Cambridge’s Centre for the Study of Existential Risk.

Authors include: Girish Sastry, Lennart Heim, Haydn Belfield, Markus Anderljung, Miles Brundage, Julian Hazell, Cullen O’Keefe, Gillian K. Hadfield, Richard Ngo, Konstantin Pilz, George Gor, Emma Bluemke, Sarah Shoker, Janet Egan, Robert F. Trager, Shahar Avin, Adrian Weller, Yoshua Bengio, and Diane Coyle.

The authors are associated with these companies/agencies: OpenAI, Centre for the Governance of AI (GovAI), Leverhulme Centre for the Future of Intelligence at the Uni. of Cambridge, Oxford Internet Institute, Institute for Law & AI, University of Toronto Vector Institute for AI, Georgetown University, ILINA Program, Harvard Kennedy School (of Government), *AI Governance Institute,* Uni. of Oxford, Centre for the Study of Existential Risk at Uni. of Cambridge, Uni. of Cambridge, Uni. of Montreal / Mila, Bennett Institute for Public Policy at the Uni. of Cambridge.

“The ILINIA program is dedicated to providing an outstanding platform for Africans to learn and work on questions around maximizing wellbeing and responding to global catastrophic risks” according to the organization’s homepage.

*As for the AI Governance Institute, I believe that should be the Centre for the Governance of AI at Oxford University since the associated academic is Robert F. Trager from the University of Oxford.

As the months (years?) fly by, I guess we’ll find out if this hardware approach gains any traction where AI regulation is concerned.

Lessons from Europe: Deployment of Artificial Intelligence in the Public Sphere—livestream on Thursday, June 9, 2022

It’s been a while since I’ve gotten an event announcement (via email) from the Woodrow Wilson International Center for Scholars (Wilson Center). This one about the use of artificial intelligence in government seems particularly interesting (from the Wilson Center’s event page),

Lessons from Europe: Deployment of Artificial Intelligence in the Public Sphere

Thursday
Jun. 9, 2022
10:00am – 11:30am ET

The application of AI has been largely a private sector phenomenon. The public sector has advanced regulatory questions, especially in Europe, but struggled to find its own role in how to use AI to improve society and well-being of its citizens. The Wilson Center invites you to take a critical look at the use of AI in public service, examining the societal implications across sectors: environmental sustainability, finance, and health. Where are the biases in the design, data, and application of AI and what is needed to ensure its ethical use? How can governments utilize AI to create more equitable societies? How can AI be used by governments to engage citizens and better meet societal needs? The webinar aims to engage in a dialogue between research and policy, inviting perspectives from Finland and the United States.

This webinar has been organized in coordination with the Finnish-American Research & Innovation Accelerator (FARIA)

Moderator

Elizabeth M H Newbury
Acting Director of the Science and Technology Innovation Program;
Director of the Serious Games Initiative

Panelists

Charlotta Collén
Short-term Scholar; Finnish Scholar;
Director, Hanken School of Economics

Laura Ruotsalainen
Associate Professor of Spatiotemporal Data Analysis for Sustainability Science at the Department of Computer Science at the University of Helsinki, Finland

Aleksi Kopponen
Special Advisor of Digitalization at Ministry of Finance in Finland

Nataliya Shok
George F. Kennan Fellow;
Professor, Privolzhsky Research Medical University

RSVP for event

Should you RSVP, you’ll see this is a virtual event.

Windows and roofs ‘self-adapt’ to heating and cooling conditions

I have two items about thermochromic coatings. It’s a little confusing since the American Association for the Advancement of Science (AAAS), which publishes the journal featuring both papers has issued a news release that seemingly refers to both papers as a single piece of research.

Onto, the press/new releases from the research institutions to be followed by the AAAS news release.

Nanyang Technological University (NTU) does windows

A December 16, 2021 news item on Nanowerk announced work on energy-saving glass,

An international research team led by scientists from Nanyang Technological University, Singapore (NTU Singapore) has developed a material that, when coated on a glass window panel, can effectively self-adapt to heat or cool rooms across different climate zones in the world, helping to cut energy usage.

Developed by NTU researchers and reported in the journal Science (“Scalable thermochromic smart windows with passive radiative cooling regulation”), the first-of-its-kind glass automatically responds to changing temperatures by switching between heating and cooling.

The self-adaptive glass is developed using layers of vanadium dioxide nanoparticles composite, Poly(methyl methacrylate) (PMMA), and low-emissivity coating to form a unique structure which could modulate heating and cooling simultaneously.

A December 17, 2021 NTU press release (PDF), also on EurekAlert but published December 16, 2021, which originated the news item, delves further into the research (Note: A link has been removed),

The newly developed glass, which has no electrical components, works by exploiting the spectrums of light responsible for heating and cooling.

During summer, the glass suppresses solar heating (near infrared light), while boosting radiative cooling (long-wave infrared) – a natural phenomenon where heat emits through surfaces towards the cold universe – to cool the room. In the winter, it does the opposite to warm up the room.

In lab tests using an infrared camera to visualise results, the glass allowed a controlled amount of heat to emit in various conditions (room temperature – above 70°C), proving its ability to react dynamically to changing weather conditions.

New glass regulates both heating and cooling

Windows are one of the key components in a building’s design, but they are also the least energy-efficient and most complicated part. In the United States alone, window-associated energy consumption (heating and cooling) in buildings accounts for approximately four per cent of their total primary energy usage each year according to an estimation based on data available from the Department of Energy in US.[1]

While scientists elsewhere have developed sustainable innovations to ease this energy demand – such as using low emissivity coatings to prevent heat transfer and electrochromic glass that regulate solar transmission from entering the room by becoming tinted – none of the solutions have been able to modulate both heating and cooling at the same time, until now.

The principal investigator of the study, Dr Long Yi of the NTU School of Materials Science and Engineering (MSE) said, “Most energy-saving windows today tackle the part of solar heat gain caused by visible and near infrared sunlight. However, researchers often overlook the radiative cooling in the long wavelength infrared. While innovations focusing on radiative cooling have been used on walls and roofs, this function becomes undesirable during winter. Our team has demonstrated for the first time a glass that can respond favourably to both wavelengths, meaning that it can continuously self-tune to react to a changing temperature across all seasons.”

As a result of these features, the NTU research team believes their innovation offers a convenient way to conserve energy in buildings since it does not rely on any moving components, electrical mechanisms, or blocking views, to function.

To improve the performance of windows, the simultaneous modulation of both solar transmission and radiative cooling are crucial, said co-authors Professor Gang Tan from The University of Wyoming, USA, and Professor Ronggui Yang from the Huazhong University of Science and Technology, Wuhan, China, who led the building energy saving simulation.

“This innovation fills the missing gap between traditional smart windows and radiative cooling by paving a new research direction to minimise energy consumption,” said Prof Gang Tan.

The study is an example of groundbreaking research that supports the NTU 2025 strategic plan, which seeks to address humanity’s grand challenges on sustainability, and accelerate the translation of research discoveries into innovations that mitigate human impact on the environment.

Innovation useful for a wide range of climate types

As a proof of concept, the scientists tested the energy-saving performance of their invention using simulations of climate data covering all populated parts of the globe (seven climate zones).

The team found the glass they developed showed energy savings in both warm and cool seasons, with an overall energy saving performance of up to 9.5%, or ~330,000 kWh per year (estimated energy required to power 60 household in Singapore for a year) less than commercially available low emissivity glass in a simulated medium sized office building.

First author of the study Wang Shancheng, who is Research Fellow and former PhD student of Dr Long Yi, said, “The results prove the viability of applying our glass in all types of climates as it is able to help cut energy use regardless of hot and cold seasonal temperature fluctuations. This sets our invention apart from current energy-saving windows which tend to find limited use in regions with less seasonal variations.”

Moreover, the heating and cooling performance of their glass can be customised to suit the needs of the market and region for which it is intended.

“We can do so by simply adjusting the structure and composition of special nanocomposite coating layered onto the glass panel, allowing our innovation to be potentially used across a wide range of heat regulating applications, and not limited to windows,” Dr Long Yi said.

Providing an independent view, Professor Liangbing Hu, Herbert Rabin Distinguished Professor, Director of the Center for Materials Innovation at the University of Maryland, USA, said, “Long and co-workers made the original development of smart windows that can regulate the near-infrared sunlight and the long-wave infrared heat. The use of this smart window could be highly important for building energy-saving and decarbonization.”  

A Singapore patent has been filed for the innovation. As the next steps, the research team is aiming to achieve even higher energy-saving performance by working on the design of their nanocomposite coating.

The international research team also includes scientists from Nanjing Tech University, China. The study is supported by the Singapore-HUJ Alliance for Research and Enterprise (SHARE), under the Campus for Research Excellence and Technological Enterprise (CREATE) programme, Minster of Education Research Fund Tier 1, and the Sino-Singapore International Joint Research Institute.

Here’s a link to and a citation for the paper,

Scalable thermochromic smart windows with passive radiative cooling regulation by Shancheng Wang, Tengyao Jiang, Yun Meng, Ronggui Yang, Gang Tan, and Yi Long. Science • 16 Dec 2021 • Vol 374, Issue 6574 • pp. 1501-1504 • DOI: 10.1126/science.abg0291

This paper is behind a paywall.

Lawrence Berkeley National Laboratory (Berkeley Lab; LBNL) does roofs

A December 16, 2021 Lawrence Berkeley National Laboratory news release (also on EurekAlert) announces an energy-saving coating for roofs (Note: Links have been removed),

Scientists have developed an all-season smart-roof coating that keeps homes warm during the winter and cool during the summer without consuming natural gas or electricity. Research findings reported in the journal Science point to a groundbreaking technology that outperforms commercial cool-roof systems in energy savings.

“Our all-season roof coating automatically switches from keeping you cool to warm, depending on outdoor air temperature. This is energy-free, emission-free air conditioning and heating, all in one device,” said Junqiao Wu, a faculty scientist in Berkeley Lab’s Materials Sciences Division and a UC Berkeley professor of materials science and engineering who led the study.

Today’s cool roof systems, such as reflective coatings, membranes, shingles, or tiles, have light-colored or darker “cool-colored” surfaces that cool homes by reflecting sunlight. These systems also emit some of the absorbed solar heat as thermal-infrared radiation; in this natural process known as radiative cooling, thermal-infrared light is radiated away from the surface.

The problem with many cool-roof systems currently on the market is that they continue to radiate heat in the winter, which drives up heating costs, Wu explained.

“Our new material – called a temperature-adaptive radiative coating or TARC – can enable energy savings by automatically turning off the radiative cooling in the winter, overcoming the problem of overcooling,” he said.

A roof for all seasons

Metals are typically good conductors of electricity and heat. In 2017, Wu and his research team discovered that electrons in vanadium dioxide behave like a metal to electricity but an insulator to heat – in other words, they conduct electricity well without conducting much heat. “This behavior contrasts with most other metals where electrons conduct heat and electricity proportionally,” Wu explained.

Vanadium dioxide below about 67 degrees Celsius (153 degrees Fahrenheit) is also transparent to (and hence not absorptive of) thermal-infrared light. But once vanadium dioxide reaches 67 degrees Celsius, it switches to a metal state, becoming absorptive of thermal-infrared light. This ability to switch from one phase to another – in this case, from an insulator to a metal – is characteristic of what’s known as a phase-change material.

To see how vanadium dioxide would perform in a roof system, Wu and his team engineered a 2-centimeter-by-2-centimeter TARC thin-film device.

TARC “looks like Scotch tape, and can be affixed to a solid surface like a rooftop,” Wu said.

In a key experiment, co-lead author Kechao Tang set up a rooftop experiment at Wu’s East Bay home last summer to demonstrate the technology’s viability in a real-world environment.

A wireless measurement device set up on Wu’s balcony continuously recorded responses to changes in direct sunlight and outdoor temperature from a TARC sample, a commercial dark roof sample, and a commercial white roof sample over multiple days.

How TARC outperforms in energy savings

The researchers then used data from the experiment to simulate how TARC would perform year-round in cities representing 15 different climate zones across the continental U.S.

Wu enlisted Ronnen Levinson, a co-author on the study who is a staff scientist and leader of the Heat Island Group in Berkeley Lab’s Energy Technologies Area, to help them refine their model of roof surface temperature. Levinson developed a method to estimate TARC energy savings from a set of more than 100,000 building energy simulations that the Heat Island Group previously performed to evaluate the benefits of cool roofs and cool walls across the United States.

Finnegan Reichertz, a 12th grade student at the East Bay Innovation Academy in Oakland who worked remotely as a summer intern for Wu last year, helped to simulate how TARC and the other roof materials would perform at specific times and on specific days throughout the year for each of the 15 cities or climate zones the researchers studied for the paper.

The researchers found that TARC outperforms existing roof coatings for energy saving in 12 of the 15 climate zones, particularly in regions with wide temperature variations between day and night, such as the San Francisco Bay Area, or between winter and summer, such as New York City.

“With TARC installed, the average household in the U.S. could save up to 10% electricity,” said Tang, who was a postdoctoral researcher in the Wu lab at the time of the study. He is now an assistant professor at Peking University in Beijing, China.

Standard cool roofs have high solar reflectance and high thermal emittance (the ability to release heat by emitting thermal-infrared radiation) even in cool weather.

According to the researchers’ measurements, TARC reflects around 75% of sunlight year-round, but its thermal emittance is high (about 90%) when the ambient temperature is warm (above 25 degrees Celsius or 77 degrees Fahrenheit), promoting heat loss to the sky. In cooler weather, TARC’s thermal emittance automatically switches to low, helping to retain heat from solar absorption and indoor heating, Levinson said.

Findings from infrared spectroscopy experiments using advanced tools at Berkeley Lab’s Molecular Foundry validated the simulations.

“Simple physics predicted TARC would work, but we were surprised it would work so well,” said Wu. “We originally thought the switch from warming to cooling wouldn’t be so dramatic. Our simulations, outdoor experiments, and lab experiments proved otherwise – it’s really exciting.”

The researchers plan to develop TARC prototypes on a larger scale to further test its performance as a practical roof coating. Wu said that TARC may also have potential as a thermally protective coating to prolong battery life in smartphones and laptops, and shield satellites and cars from extremely high or low temperatures. It could also be used to make temperature-regulating fabric for tents, greenhouse coverings, and even hats and jackets.

Co-lead authors on the study were Kaichen Dong and Jiachen Li.

The Molecular Foundry is a nanoscience user facility at Berkeley Lab.

This work was primarily supported by the DOE Office of Science and a Bakar Fellowship.

The technology is available for licensing and collaboration. If interested, please contact Berkeley Lab’s Intellectual Property Office, ipo@lbl.gov.

Here’s a link to and a citation for the paper,

Temperature-adaptive radiative coating for all-season household thermal regulation by Kechao Tang, Kaichen Dong, Jiachen Li, Madeleine P. Gordon, Finnegan G. Reichertz, Hyungjin Kim, Yoonsoo Rho, Qingjun Wang, Chang-Yu Lin, Costas P. Grigoropoulos, Ali Javey, Jeffrey J. Urban, Jie Yao, Ronnen Levinson, Junqiao Wu. Science • 16 Dec 2021 • Vol 374, Issue 6574 • pp. 1504-1509 • DOI: 10.1126/science.abf7136

This paper is behind a paywall.

An interesting news release from the AAAS

While it’s a little confusing as it cites only the ‘window’ research from NTU, the body of this news release offers some additional information about the usefulness of thermochromic materials and seemingly refers to both papers, from a December 16, 2021 AAAS news release,

Temperature-adaptive passive radiative cooling for roofs and windows

When it’s cold out, window glass and roof coatings that use passive radiative cooling to keep buildings cool can be designed to passively turn off radiative cooling to avoid heat loss, two new studies show.  Their proof-of-concept analyses demonstrate that passive radiative cooling can be expanded to warm and cold climate applications and regions, potentially providing all-season energy savings worldwide. Buildings consume roughly 40% of global energy, a large proportion of which is used to keep them cool in warmer climates. However, most temperature regulation systems commonly employed are not very energy efficient and require external power or resources. In contrast, passive radiative cooling technologies, which use outer space as a near-limitless natural heat sink, have been extensively examined as a means of energy-efficient cooling for buildings. This technology uses materials designed to selectively emit narrow-band radiation through the infrared atmospheric window to disperse heat energy into the coldness of space. However, while this approach has proven effective in cooling buildings to below ambient temperatures, it is only helpful during the warmer months or in regions that are perpetually hot. Furthermore, the inability to “turn off” passive cooling in cooler climes or in regions with large seasonal temperature variations means that continuous cooling during colder periods would exacerbate the energy costs of heating. In two different studies, by Shancheng Wang and colleagues and Kechao Tang and colleagues, researchers approach passive radiative cooling from an all-season perspective and present a new, scalable temperature-adaptive radiative technology that passively turns off radiative cooling at lower temperatures. Wang et al. and Tang et al. achieve this using a tungsten-doped vanadium dioxide and show how it can be applied to create both window glass and a flexible roof coating, respectively. Model simulations of the self-adapting materials suggest they could provide year-round energy savings across most climate zones, especially those with substantial seasonal temperature variations. 

I wish them all good luck with getting these materials to market.