Tag Archives: Austria

Key to quantum electronics could be germanium-bonded aluminium

I have not seen aluminum called aluminium in quite some time. (I’ve always had a fondness for that extra syllable.) I first saw notice of this work from Austria in an October 11, 2021 news item on Nanowerk,

A novel electronic component from TU Wien (Vienna) could be an important key to the era of quantum information technology: Using a special manufacturing process, pure germanium is bonded with aluminium in a way that atomically sharp interfaces are created. This results in a so-called monolithic metal-semiconductor-metal heterostructure.

This structure shows unique effects that are particularly evident at low temperatures. The aluminium becomes superconducting – but not only that, this property is also transferred to the adjacent germanium semiconductor and can be specifically controlled with electric fields. This makes it excellently suited for complex applications in quantum technology, such as processing quantum bits.

A particular advantage is that using this approach, it is not necessary to develop completely new technologies. Instead, mature and well established semiconductor fabrication techniqueses can be used to enable germanium-based quantum electronics.

An October 6, 2021 Technical University of Vienna (TU Wien) press release (also on EurekAlert but published October 12, 2021), which originated the news item, delves into the technical details and the importance of temperature,

Germanium: difficult to form high-quality contacts

“Germanium is a material which will definitely play an important role in semiconductor technology for the development of faster and more energy-efficient components,” says Dr. Masiar Sistani from the Institute for Solid State Electronics at TU Wien. However, if it is used to produce components on a nanometre scale, major problems arise: the material makes it extremely difficult to produce high-quality electrical contacts. This is related to the high impact of even smallest impurities at the contact points that significantly alter the electrical properties. “We have therefore set ourselves the task of developing a new manufacturing method that enables reliable and reproducible contact properties”, says Masiar Sistani.

Diffusing atoms

The key is temperature: when nanometre-structured germanium and aluminium are brought into contact and heated, the atoms of both materials begin to diffuse into the neighbouring material – but to very different extents: the germanium atoms move rapidly into the aluminium, whereas aluminium hardly diffuses into the germanium at all. “Thus, if you connect two aluminium contacts to a thin germanium nanowire and raise the temperature to 350 degrees Celsius, the germanium atoms diffuse off the edge of the nanowire. This creates empty spaces into which the aluminium can then easily penetrate,” explains Masiar Sistani. “In the end, only a few nanometre area in the middle of the nanowire consists of germanium, the rest has been filled up by aluminium.”

Normally, aluminium is made up of tiny crystal grains, but this novel fabrication method forms a perfect single crystal in which the aluminium atoms are arranged in a uniform pattern. As can be seen under the transmission electron microscope, a perfectly clean and atomically sharp transition is formed between germanium and aluminium, with no disordered region in between. In contrast to conventional methods where electrical contacts are applied to a semiconductor, for example by evaporating a metal, no oxides can form at the boundary layer.

Quantum transport in Grenoble

In order to take a closer look at the properties of this monolithic metal-semiconductor heterostructure of germanium and aluminium at low temperature, we collaborated with Dr. Olivier Buisson and Dr. Cécile Naud from the quantum electronics circuits group at Néel Institute – CNRS-UGA [Centre National de la Recherche Scientifique; Université Grenoble Alpes] in Grenoble. It turned out that the novel structure indeed has quite remarkable properties: “Not only were we able to demonstrate superconductivity in pure, undoped germanium for the first time, we were also able to show that this structure can be switched between quite different operating states using electric fields. Such a germanium quantum dot device can not only be superconducting but also completely insulating, or it can behave like a Josephson transistor, an important basic element of quantum electronic circuits,” explains Masiar Sistani.

This new heterostructure combines a whole range of advantages: The structure has excellent physical properties needed for quantum technologies, such as high carrier mobility and excellent manipulability with electric fields, and it has the additional advantage of fitting well with already established microelectronics technologies: Germanium is already used in current chip architectures and the temperatures required for heterostructure formation are compatible with well-established semiconductor processing schemes. The novel structures not only have theoretically interesting quantum properties, but also opens up a technologically very realistic possibility of enabling further novel and energy-saving devices.

Here’s a link to and a citation for the paper,

Al–Ge–Al Nanowire Heterostructure: From Single-Hole Quantum Dot to Josephson Effect by Jovian Delaforce, Masiar Sistani, Roman B. G. Kramer, Minh A. Luong, Nicolas Roch, Walter M. Weber, Martien I. den Hertog, Eric Robin, Cecile Naud, Alois Lugstein, Olivier Buisson. Advanced Materials Volume 33, Issue 39 October 1, 2021 2101989 DOI: https://doi.org/10.1002/adma.202101989 First published [online]: 08 August 2021

This paper is behind a paywall.

Science policy updates (INGSA in Canada and SCWIST)

I had just posted my Aug. 30, 2021 piece (4th International Conference on Science Advice to Governments (INGSA2021) August 30 – September 2, 2021) when the organization issued a news release, which was partially embargoed. By the time this is published (after 8 am ET on Wednesday, Sept. 1, 2021), the embargo will have lifted and i can announce that Rémi Quirion, Chief Scientist of Québec (Canada), has been selected to replace Sir Peter Gluckman (New Zealand) as President of INGSA.

Here’s the whole August 30, 2021 International Network for Government Science Advice (INGSA) news release on EurekAlert, Note: This looks like a direct translation from a French language news release, which may account for some unusual word choices and turns of phrase,

What? 4th International Conference on Science Advice to Governments, INGSA2021.

Where? Palais des Congrès de Montréal, Québec, Canada and online at www.ingsa2021.org

When? 30 August – 2 September, 2021.

CONTEXT: The largest ever independent gathering of interest groups, thought-leaders, science advisors to governments and global institutions, researchers, academics, communicators and diplomats is taking place in Montreal and online. Organized by Prof Rémi Quirion, Chief Scientist of Québec, speakers from over 50 countries[1] from Brazil to Burkina Faso and from Ireland to Indonesia, plus over 2000 delegates from over 130 countries, will spotlight what is really at stake in the relationship between science and policy-making, both during crises and within our daily lives. From the air we breathe, the food we eat and the cars we drive, to the medical treatments or the vaccines we take, and the education we provide to children, this relationship, and the decisions it can influence, matter immensely.  

Prof Rémi Quirion, Conference Organizer, Chief Scientist of Québec and incoming President of INGSA added: “For those of us who believe wholeheartedly in evidence and the integrity of science, the past 18 months have been challenging. Information, correct and incorrect, can spread like a virus. The importance of open science and access to data to inform our UN sustainable development goals discussions or domestically as we strengthen the role of cities and municipalities, has never been more critical. I have no doubt that this transparent and honest platform led from Montréal will act as a carrier-wave for greater engagement”.

Chief Science Advisor of Canada and Conference co-organizer, Dr Mona Nemer, stated that: “Rapid scientific advances in managing the Covid pandemic have generated enormous public interest in evidence-based decision making. This attention comes with high expectations and an obligation to achieve results. Overcoming the current health crisis and future challenges will require global coordination in science advice, and INGSA is well positioned to carry out this important work. Canada and our international peers can benefit greatly from this collaboration.”

Sir Peter Gluckman, founding Chair of INGSA stated that: “This is a timely conference as we are at a turning point not just in the pandemic, but globally in our management of longer-term challenges that affect us all. INGSA has helped build and elevate open and ongoing public and policy dialogue about the role of robust evidence in sound policy making”.

He added that: “Issues that were considered marginal seven years ago when the network was created are today rightly seen as central to our social, environmental and economic wellbeing. The pandemic highlights the strengths and weaknesses of evidence-based policy-making at all levels of governance. Operating on all continents, INGSA demonstrates the value of a well-networked community of emerging and experienced practitioners and academics, from countries at all levels of development. Learning from each other, we can help bring scientific evidence more centrally into policy-making. INGSA has achieved much since its formation in 2014, but the energy shown in this meeting demonstrates our potential to do so much more”.

Held previously in Auckland 2014, Brussels 2016, Tokyo 2018 and delayed for one year due to Covid, the advantage of the new hybrid and virtual format is that organizers have been able to involve more speakers, broaden the thematic scope and offer the conference as free to view online, reaching thousands more people. Examining the complex interactions between scientists, public policy and diplomatic relations at local, national, regional and international levels, especially in times of crisis, the overarching INGSA2021 theme is: “Build back wiser: knowledge, policy & publics in dialogue”.

The first three days will scrutinize everything from concrete case-studies outlining successes and failures in our advisory systems to how digital technologies and AI are reshaping the profession itself. The final day targets how expertize and action in the cultural context of the French-speaking world is encouraging partnerships and contributing to economic and social development. A highlight of the conference is the 2 September announcement of a new ‘Francophonie Science Advisory Network’.       

Prof. Salim Abdool Karim, a member of the World Health Organization’s Science Council, and the face of South Africa’s Covid-19 science, speaking in the opening plenary outlined that: “As a past anti-apartheid activist now providing scientific advice to policy-makers, I have learnt that science and politics share common features. Both operate at the boundaries of knowledge and uncertainty, but approach problems differently. We scientists constantly question and challenge our assumptions, constantly searching for empiric evidence to determine the best options. In contrast, politicians are most often guided by the needs or demands of voters and constituencies, and by ideology”.

He added: “What is changing is that grass-roots citizens worldwide are no longer ill-informed and passive bystanders. And they are rightfully demanding greater transparency and accountability. This has brought the complex contradictions between evidence and ideology into the public eye. Covid-19 is not just a disease, its social fabric exemplifies humanity’s interdependence in slowing global spread and preventing new viral mutations through global vaccine equity. This starkly highlights the fault-lines between the rich and poor countries, especially the maldistribution of life-saving public health goods like vaccines. I will explore some of the key lessons from Covid-19 to guide a better response to the next pandemic”.

Speaking on a panel analysing different advisory models, Prof. Mark Ferguson, Chair of the European Innovation Council’s Advisory Board and Chief Science Advisor to the Government of Ireland, sounded a note of optimism and caution in stating that: “Around the world, many scientists have become public celebrities as citizens engage with science like never before. Every country has a new, much followed advisory body. With that comes tremendous opportunities to advance the status of science and the funding of scientific research. On the flipside, my view is that we must also be mindful of the threat of science and scientists being viewed as a political force”.

Strength in numbers

What makes the 4th edition of this biennial event stand out is the perhaps never-before assembled range of speakers from all continents working at the boundary between science, society and policy willing to make their voices heard. In a truly ‘Olympics’ approach to getting all stakeholders on-board, organisers succeeded in involving, amongst others, the UN Office for Disaster Risk Reduction, the United Nations Development Programme, UNESCO and the OECD. The in-house science services of the European Commission and Parliament, plus many country-specific science advisors also feature prominently.

As organisers foster informed debate, we get a rare glimpse inside the science advisory worlds of the Comprehensive Nuclear Test Ban Treaty Organisation, the World Economic Forum and the Global Young Academy to name a few. From Canadian doctors, educators and entrepreneurs and charitable foundations like the Welcome Trust, to Science Europe and media organisations, the programme is rich in its diversity. The International Organisation of the Francophonie and a keynote address by H.E. Laurent Fabius, President of the Constitutional Council of the French Republic are just examples of two major draws on the final day dedicated to spotlighting advisory groups working through French. 

INGSA’s Elections: New Canadian President and Three Vice Presidents from Chile, Ethiopia, UK

The International Network for Government Science Advice has recently undertaken a series of internal reforms intended to better equip it to respond to the growing demands for support from its international partners, while realising the project proposals and ideas of its members.

Part of these reforms included the election in June, 2021 of a new President replacing Sir Peter Gluckman (2014 – 2021) and the creation of three new Vice President roles.

These results will be announced at 13h15 on Wednesday, 1st September during a special conference plenary and awards ceremony. While noting the election results below, media are asked to respect this embargo.

Professor Rémi Quirion, Chief Scientist of Québec (Canada), replaces Sir Peter Gluckman (New Zealand) as President of INGSA.
 

Professor Claire Craig (United Kingdom), CBE, Provost of Queen’s College Oxford and a member of the UK government’s AI Council, has been elected by members as the inaugural Vice President for Evidence.
 

Professor Binyam Sisay Mendisu (Egypt), PhD, Lecture at the University of Addis Ababa and Programme Advisor, UNESCO Institute for Building Capacity in Africa, has been elected by members as the inaugural Vice President for Capacity Building.
 

Professor Soledad Quiroz Valenzuela (Chile), Science Advisor on Climate Change to the Ministry of Science, Technology, Knowledge and Innovation of the government of Chile, has been elected by members as the Vice President for Policy.

Satellite Events: From 7 – 9 September, as part of INGSA2021, the conference is partnering with local,  national and international organisations to ignite further conversations about the science/policy/society interface. Six satellite events are planned to cover everything from climate science advice and energy policy, open science and publishing during a crisis, to the politicisation of science and pre-school scientific education. International delegates are equally encouraged to join in online. 

About INGSA: Founded in 2014 with regional chapters in Africa, Asia and Latin America and the Caribbean, INGSA has quicky established an important reputation as aa collaborative platform for policy exchange, capacity building and research across diverse global science advisory organisations and national systems. Currently, over 5000 individuals and institutions are listed as members. Science communicators and members of the media are warmly welcomed to join.

As the body of work detailed on its website shows (www.ingsa.org) through workshops, conferences and a growing catalogue of tools and guidance, the network aims to enhance the global science-policy interface to improve the potential for evidence-informed policy formation at sub-national, national and transnational levels. INGSA operates as an affiliated body of the International Science Council which acts as trustee of INGSA funds and hosts its governance committee. INGSA’s secretariat is based in Koi Tū: The Centre for Informed Futures at the University of Auckland in New Zealand.

Conference Programme: 4th International Conference on Science Advice to Government (ingsa2021.org)

Newly released compendium of Speaker Viewpoints: Download Essays From The Cutting Edge Of Science Advice – Viewpoints

[1] Argentina, Australia, Austria, Barbados, Belgium, Benin, Brazil, Burkina Faso, Cameroon, Canada, Chad, Colombia, Costa Rica, Côte D’Ivoire, Denmark, Estonia, Finland, France, Germany, Hong Kong, Indonesia, Ireland, Japan, Lebanon, Luxembourg, Malaysia, Mexico, Morocco, Netherlands, New Zealand, Pakistan, Papua New Guinea, Rwanda, Senegal, Singapore, Slovakia, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Thailand, UK, USA. 

Society for Canadian Women in Science and Technology (SCWIST)

As noted earlier this year in my January 28, 2021 posting, it’s SCWIST’s 40th anniversary and the organization is celebrating with a number of initiatives, here are some of the latest including as talk on science policy (from the August 2021 newsletter received via email),

SCWIST “STEM Forward Project”
Receives Federal Funding

SCWIST’s “STEM Forward for Economic Prosperity” project proposal was among 237 projects across the country to receive funding from the $100 million Feminist Response Recovery Fund of the Government of Canada through the Women and Gender Equality Canada (WAGE) federal department.

Read more. 

iWIST and SCWIST Ink Affiliate MOU [memorandum of understanding]

Years in planning, the Island Women in Science and Technology (iWIST) of Victoria, British Columbia and SCWIST finally signed an Affiliate MOU (memorandum of understanding) on Aug 11, 2021.

The MOU strengthens our commitment to collaborate on advocacy (e.g. grants, policy and program changes at the Provincial and Federal level), events (networking, workshops, conferences), cross promotion ( event/ program promotion via digital media), and membership growth (discounts for iWIST members to join SCWIST and vice versa).

Dr. Khristine Carino, SCWIST President, travelled to Victoria to sign the MOU in person. She was invited as an honoured guest to the iWIST annual summer picnic by Claire Skillen, iWIST President. Khristine’s travel expenses were paid from her own personal funds.

Discovery Foundation x SBN x SCWIST Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape

The Discovery Foundation, Student Biotechnology Network, and Society for Canadian Women in Science and Technology are proud to bring you the first-ever “Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape”. 

The Business Mentorship Program aims to support historically underrepresented communities (BIPOC, Women, LGBTQIAS+ and more) in navigating the growth of the biotechnology industry. The program aims to foster relationships between individuals and professionals through networking and mentorship, providing education and training through workshops and seminars, and providing 1:1 consultation with industry leaders. Participants will be paired with mentors throughout the week and have the opportunity to deliver a pitch for the chance to win prizes at the annual Building Biotechnology Expo. 

This is a one week intensive program running from September 27th – October 1st, 2021 and is limited to 10 participants. Please apply early. 

Events

September 10

Art of Science and Policy-Making Go Together

Science and policy-making go together. Acuitas’ [emphasis mine] Molly Sung shares her journey and how more scientists need to engage in this important area.

September 23

Au-delà de l’apparence :

des femmes de courage et de résilience en STIM

Dans le cadre de la semaine de l’égalité des sexes au Canada, ce forum de la division québécoise de la Société pour les femmes canadiennes en science et technologie (la SCWIST) mettra en vedette quatre panélistes inspirantes avec des parcours variés qui étudient ou travaillent en science, technologie, ingénierie et mathématiques (STIM) au Québec. Ces femmes immigrantes ont laissé leurs proches et leurs pays d’origine pour venir au Québec et contribuer activement à la recherche scientifique québécoise. 

….

The ‘Art and Science Policy-Making Go Together’ talk seems to be aimed at persuasion and is not likely to offer any insider information as to how the BC life sciences effort is progressing. For a somewhat less rosy view of science and policy efforts, you can check out my August 23, 2021 posting, Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?; scroll down to ‘The BC biotech gorillas’ subhead for more about Acuitas and some of the other life sciences companies in British Columbia (BC).

For some insight into how competitive the scene is here in BC, you can see my August 20, 2021 posting (Getting erased from the mRNA/COVID-19 story) about Ian MacLachlan.

You can check out more at the SCWIST website and I’m not sure when the August issue will be placed there but they do have a Newsletter Archive.

4th International Conference on Science Advice to Governments (INGSA2021) August 30 – September 2, 2021

What I find most exciting about this conference is the range of countries being represented. At first glance, I’ve found Argentina, Thailand, Senegal, Ivory Coast, Costa Rica and more in a science meeting being held in Canada. Thank you to the organizers and to the organization International Network for Government Science Advice (INGSA)

As I’ve noted many times here in discussing the science advice we (Canadians) get through the Council of Canadian Academies (CCA), there’s far too much dependence on the same old, same old countries for international expertise. Let’s hope this meeting changes things.

The conference (with the theme Build Back Wiser: Knowledge, Policy and Publics in Dialogue) started on Monday, August 30, 2021 and is set to run for four days in Montréal, Québec. and as an online event The Premier of Québec, François Legault, and Mayor of Montréal, Valérie Plante (along with Peter Gluckman, Chair of INGSA and Rémi Quirion, Chief Scientist of Québec; this is the only province with a chief scientist) are there to welcome those who are present in person.

You can find a PDF of the four day programme here or go to the INGSA 2021 website for the programme and more. Here’s a sample from the programme of what excited me, from Day 1 (August 30, 2021),

8:45 | Plenary | Roundtable: Reflections from Covid-19: Where to from here?

Moderator:
Mona Nemer – Chief Science Advisor of Canada

Speakers:
Joanne Liu – Professor, School of Population and Global Health, McGill University, Quebec, Canada
Chor Pharn Lee – Principal Foresight Strategist at Centre for Strategic Futures, Prime Minister’s Office, Singapore
Andrea Ammon – Director of the European Centre for Disease Prevention and Control, Sweden
Rafael Radi – President of the National Academy of Sciences; Coordinator of Scientific Honorary Advisory Group to the President on Covid-19, Uruguay

9:45 | Panel: Science advice during COVID-19: What factors made the difference?

Moderator:

Romain Murenzi – Executive Director, The World Academy of Sciences (TWAS), Italy

Speakers:

Stephen Quest – Director-General, European Commission’s Joint Research Centre (JRC), Belgium
Yuxi Zhang – Postdoctoral Research Fellow, Blavatnik School of Government, University of Oxford, United Kingdom
Amadou Sall – Director, Pasteur Institute of Dakar, Senegal
Inaya Rakhmani – Director, Asia Research Centre, Universitas Indonesia

One last excerpt, from Day 2 (August 31, 2021),

Studio Session | Panel: Science advice for complex risk assessment: dealing with complex, new, and interacting threats

Moderator:
Eeva Hellström – Senior Lead, Strategy and Foresight, Finnish Innovation Fund Sitra, Finland

Speakers:
Albert van Jaarsveld – Director General and Chief Executive Officer, International Institute for Applied Systems Analysis, Austria
Abdoulaye Gounou – Head, Benin’s Office for the Evaluation of Public Policies and Analysis of Government Action
Catherine Mei Ling Wong – Sociologist, LRF Institute for the Public Understanding of Risk, National University of Singapore
Andria Grosvenor – Deputy Executive Director (Ag), Caribbean Disaster Emergency Management Agency, Barbados

Studio Session | Innovations in Science Advice – Science Diplomacy driving evidence for policymaking

Moderator:
Mehrdad Hariri – CEO and President of the Canadian Science Policy Centre, Canada

Speakers:
Primal Silva – Canadian Food Inspection Agency’s Chief Science Operating Officer, Canada
Zakri bin Abdul Hamid – Chair of the South-East Asia Science Advice Network (SEA SAN); Pro-Chancellor of Multimedia University in Malaysia
Christian Arnault Emini – Senior Economic Adviser to the Prime Minister’s Office in Cameroon
Florence Gauzy Krieger and Sebastian Goers – RLS-Sciences Network [See more about RLS-Sciences below]
Elke Dall and Angela Schindler-Daniels – European Union Science Diplomacy Alliance
Alexis Roig – CEO, SciTech DiploHub – Barcelona Science and Technology Diplomacy Hub, Spain

RLS-Sciences (RLS-Sciences Network) has this description for itself on the About/Background webpage,

RLS-Sciences works under the framework of the Regional Leaders Summit. The Regional Leaders Summit (RLS) is a forum comprising seven regional governments (state, federal state, or provincial), which together represent approximately one hundred eighty million people across five continents, and a collective GDP of three trillion USD. The regions are: Bavaria (Germany), Georgia (USA), Québec (Canada), São Paulo (Brazil), Shandong (China), Upper Austria (Austria), and Western Cape (South Africa). Since 2002, the heads of government for these regions have met every two years for a political summit. These summits offer the RLS regions an opportunity for political dialogue.

Getting back to the main topic of this post, INGSA has some satellite events on offer, including this on Open Science,

Open Science: Science for the 21st century |

Science ouverte : la science au XXIe siècle

Thursday September 9, 2021; 11am-2pm EST |
Jeudi 9 septembre 2021, 11 h à 14 h (HNE).

Places Limited – Registrations Required – Click to register now

This event will be in English and French (using simultaneous translation)  | 
Cet événement se déroulera en anglais et en français (traduction simultanée)

In the past 18 months we have seen an unprecedented level of sharing as medical scientists worked collaboratively and shared data to find solutions to the COVID-19 pandemic. The pandemic has accelerated the ongoing cultural shift in research practices towards open science. 

This acceleration of the discovery/research process presents opportunities for institutions and governments to develop infrastructure, tools, funding, policies, and training to support, promote, and reward open science efforts. It also presents new opportunities to accelerate progress towards the UN Agenda 2030 Sustainable Development Goals through international scientific cooperation.

At the same time, it presents new challenges: rapid developments in open science often outpace national open science policies, funding, and infrastructure frameworks. Moreover, the development of international standard setting instruments, such as the future UNESCO Recommendation on Open Science, requires international harmonization of national policies, the establishment of frameworks to ensure equitable participation, and education, training, and professional development.

This 3-hour satellite event brings together international and national policy makers, funders, and experts in open science infrastructure to discuss these issues. 

The outcome of the satellite event will be a summary report with recommendations for open science policy alignment at institutional, national, and international levels.

The event will be hosted on an events platform, with simultaneous interpretation in English and French.  Participants will be able to choose which concurrent session they participate in upon registration. Registration is free but will be closed when capacity is reached.

This satellite event takes place in time for an interesting anniversary. The Montreal Neurological Institute (MNI), also known as Montreal Neuro, declared itself as Open Science in 2016, the first academic research institute (as far as we know) to do so in the world (see my January 22, 2016 posting for details about their open science initiative and my December 19, 2016 posting for more about their open science and their decision to not pursue patents for a five year period).

The Open Science satellite event is organized by:

The Canadian Commission for UNESCO [United Nations Educational, Scientific and Cultural Organization],

The Neuro (Montreal Neurological Institute-Hospital),

The Knowledge Equity Lab [Note: A University of Toronto initiative with Leslie Chan as director, this website is currently under maintenance]

That’s all folks (for now)!

Five country survey of reactions to food genome editing

Weirdly and even though most of this paper’s authors are from the University of British Columbia (UBC; Canada), only one press release was issued and that was by the lead author’s (Gesa Busch) home institution, the University of Göttingen (Germany).

I’m glad Busch, the other authors, and the work are getting some attention (if not as much as I think they should).

From a July 9, 2021 University of Göttingen press release (also on EurekAlert but published on July 12, 2021),

A research team from the University of Göttingen and the University of British Columbia (Canada) has investigated how people in five different countries react to various usages of genome editing in agriculture. The researchers looked at which uses are accepted and how the risks and benefits of the new breeding technologies are rated by people. The results show only minor differences between the countries studied – Germany, Italy, Canada, Austria and the USA. In all countries, making changes to the genome is more likely to be deemed acceptable when used in crops rather than in livestock. The study was published in Agriculture and Human Values.

Relatively new breeding technologies, such as CRISPR [clustered regularly interspaced short palindromic repeats) gene editing, have enabled a range of new opportunities for plant and animal breeding. In the EU, the technology falls under genetic engineering legislation and is therefore subject to rigorous restrictions. However, the use of gene technologies remains controversial. Between June and November 2019, the research team collected views on this topic via online surveys from around 3,700 people from five countries. Five different applications of gene editing were evaluated: three relate to disease resistance in people, plants, or animals; and two relate to achieving either better quality of produce or a larger quantity of product from cattle.

“We were able to observe that the purpose of the gene modification plays a major role in how it is rated,” says first author Dr Gesa Busch from the University of Göttingen. “If the technology is used to make animals resistant to disease, approval is greater than if the technology is used to increase the output from animals.” Overall, however, the respondents reacted very differently to the uses of the new breeding methods. Four different groups can be identified: strong supporters, supporters, neutrals, and opponents of the technology. The opponents (24 per cent) identify high risks and calls for a ban of the technology, regardless of possible benefits. The strong supporters (21 per cent) see few risks and many advantages. The supporters (26 per cent) see many advantages but also risks. Whereas those who were neutral (29 per cent) show no strong opinion on the subject.

This study was made possible through funding from the Free University of Bozen-Bolzano and Genome BC.

Here’s a link to and a citation for the paper,

Citizen views on genome editing: effects of species and purpose by Gesa Busch, Erin Ryan, Marina A. G. von Keyserlingk & Daniel M. Weary. Agriculture and Human Values (2021) Published: DOI: https://doi.org/10.1007/s10460-021-10235-9

This paper is open access.

Methodology

I have one quick comment about the methodology. It can be difficult to get a sample that breaks down along demographic lines that is close to or identical to national statistics. That said, it was striking to me that every country was under represented in the ’60 years+ ‘ category. In Canada, it was by 10 percentage points (roughly). For other countries the point spread was significantly wider. In Italy, it was a 30 percentage point spread (roughly).

I found the data in the Supplementary Materials yesterday (July 13, 2021). When I looked this morning, that information was no longer there but you will find what appears to be the questionnaire. I wonder if this removal is temporary or permanent and, if permanent, I wonder why it was removed.

Participants for the Canadian portion of the survey were supplied by Dynata, a US-based market research company. Here’s the company’s Wikipedia entry and its website.

Information about how participants were recruited was also missing this morning (July 14, 2021).

Genome British Columbia (Genome BC)

I was a little surprised when I couldn’t find any information about the program or the project on the Genome BC website as the organization is listed as a funder.

There is a ‘Genomics and Society’ tab (seems promising, eh?) on the homepage where you can find the answer to this question: What is GE³LS Research?,

GE3LS research is interdisciplinary, conducted by researchers across many disciplines within social science and humanities, including economics, environment, law, business, communications, and public policy.

There’s also a GE3LS Research in BC page titled Project Search; I had no luck there either.

It all seems a bit mysterious to me and, just in case anything else disappears off the web, here’s a July 13, 2021 news item about the research on phys.org as backup to what I have here.

Living with a mind-controlled prosthetic

This could be described as the second half of an October 10, 2014 post (Mind-controlled prostheses ready for real world activities). Five and a half years later, Sweden’s Chalmers University of Technology has announced mind-controlled prosthetics in daily use that feature the sense of touch. From an April 30, 2020 Chalmers University of Technology press release (also on EurekAlert but published April 29, 2020) by Johanna Wilde,

For the first time, people with arm amputations can experience sensations of touch in a mind-controlled arm prosthesis that they use in everyday life. A study in the New England Journal of Medicine reports on three Swedish patients who have lived, for several years, with this new technology – one of the world’s most integrated interfaces between human and machine.

See the film: “The most natural robotic prosthesis in the world” [Should you not have Swedish language skills, you can click on the subtitle option in the video’s settings field]

The advance is unique: the patients have used a mind-controlled prosthesis in their everyday life for up to seven years. For the last few years, they have also lived with a new function – sensations of touch in the prosthetic hand. This is a new concept for artificial limbs, which are called neuromusculoskeletal prostheses – as they are connected to the user’s nerves, muscles, and skeleton.

The research was led by Max Ortiz Catalan, Associate Professor at Chalmers University of Technology, in collaboration with Sahlgrenska University Hospital, University of Gothenburg, and Integrum AB, all in Gothenburg, Sweden. Researchers at Medical University of Vienna in Austria and the Massachusetts Institute of Technology in the USA were also involved.

“Our study shows that a prosthetic hand, attached to the bone and controlled by electrodes implanted in nerves and muscles, can operate much more precisely than conventional prosthetic hands. We further improved the use of the prosthesis by integrating tactile sensory feedback that the patients use to mediate how hard to grab or squeeze an object. Over time, the ability of the patients to discern smaller changes in the intensity of sensations has improved,” says Max Ortiz Catalan.

“The most important contribution of this study was to demonstrate that this new type of prosthesis is a clinically viable replacement for a lost arm. No matter how sophisticated a neural interface becomes, it can only deliver real benefit to patients if the connection between the patient and the prosthesis is safe and reliable in the long term. Our results are the product of many years of work, and now we can finally present the first bionic arm prosthesis that can be reliably controlled using implanted electrodes, while also conveying sensations to the user in everyday life”, continues Max Ortiz Catalan.

Since receiving their prostheses, the patients have used them daily in all their professional and personal activities.

The new concept of a neuromusculoskeletal prosthesis is unique in that it delivers several different features which have not been presented together in any other prosthetic technology in the world:

[1] It has a direct connection to a person’s nerves, muscles, and skeleton.

[2] It is mind-controlled and delivers sensations that are perceived by the user as arising from the missing hand.

[3] It is self-contained; all electronics needed are contained within the prosthesis, so patients do not need to carry additional equipment or batteries.

[4] It is safe and stable in the long term; the technology has been used without interruption by patients during their everyday activities, without supervision from the researchers, and it is not restricted to confined or controlled environments.

The newest part of the technology, the sensation of touch, is possible through stimulation of the nerves that used to be connected to the biological hand before the amputation. Force sensors located in the thumb of the prosthesis measure contact and pressure applied to an object while grasping. This information is transmitted to the patients’ nerves leading to their brains. Patients can thus feel when they are touching an object, its characteristics, and how hard they are pressing it, which is crucial for imitating a biological hand.

“Currently, the sensors are not the obstacle for restoring sensation,” says Max Ortiz Catalan. “The challenge is creating neural interfaces that can seamlessly transmit large amounts of artificially collected information to the nervous system, in a way that the user can experience sensations naturally and effortlessly.”
The implantation of this new technology took place at Sahlgrenska University Hospital, led by Professor Rickard Brånemark and Doctor Paolo Sassu. Over a million people worldwide suffer from limb loss, and the end goal for the research team, in collaboration with Integrum AB, is to develop a widely available product suitable for as many of these people as possible.

“Right now, patients in Sweden are participating in the clinical validation of this new prosthetic technology for arm amputation,” says Max Ortiz Catalan. “We expect this system to become available outside Sweden within a couple of years, and we are also making considerable progress with a similar technology for leg prostheses, which we plan to implant in a first patient later this year.”

More about: How the technology works:

The implant system for the arm prosthesis is called e-OPRA and is based on the OPRA implant system created by Integrum AB. The implant system anchors the prosthesis to the skeleton in the stump of the amputated limb, through a process called osseointegration (osseo = bone). Electrodes are implanted in muscles and nerves inside the amputation stump, and the e-OPRA system sends signals in both directions between the prosthesis and the brain, just like in a biological arm.

The prosthesis is mind-controlled, via the electrical muscle and nerve signals sent through the arm stump and captured by the electrodes. The signals are passed into the implant, which goes through the skin and connects to the prosthesis. The signals are then interpreted by an embedded control system developed by the researchers. The control system is small enough to fit inside the prosthesis and it processes the signals using sophisticated artificial intelligence algorithms, resulting in control signals for the prosthetic hand’s movements.

The touch sensations arise from force sensors in the prosthetic thumb. The signals from the sensors are converted by the control system in the prosthesis into electrical signals which are sent to stimulate a nerve in the arm stump. The nerve leads to the brain, which then perceives the pressure levels against the hand.

The neuromusculoskeletal implant can connect to any commercially available arm prosthesis, allowing them to operate more effectively.

More about: How the artificial sensation is experienced:

People who lose an arm or leg often experience phantom sensations, as if the missing body part remains although not physically present. When the force sensors in the prosthetic thumb react, the patients in the study feel that the sensation comes from their phantom hand. Precisely where on the phantom hand varies between patients, depending on which nerves in the stump receive the signals. The lowest level of pressure can be compared to touching the skin with the tip of a pencil. As the pressure increases, the feeling becomes stronger and increasingly ‘electric’.

I have read elsewhere that one of the most difficult aspects of dealing with a prosthetic is the loss of touch. This has to be exciting news for a lot of people. Here’s a link to and a citation for the paper,

Self-Contained Neuromusculoskeletal Arm Prostheses by Max Ortiz-Catalan, Enzo Mastinu, Paolo Sassu, Oskar Aszmann, and Rickard Brånemark. N Engl J Med 2020; 382:1732-1738 DOI: 10.1056/NEJMoa1917537 Published: April 30, 2020

This paper is behind a paywall.

Entanglement at 50 km

An August 29, 2019 news item on phys.org broke the news about breaking a record for transferring quantum entanglement between matter and light ,

The quantum internet promises absolutely tap-proof communication and powerful distributed sensor networks for new science and technology. However, because quantum information cannot be copied, it is not possible to send this information over a classical network. Quantum information must be transmitted by quantum particles, and special interfaces are required for this. The Innsbruck-based experimental physicist Ben Lanyon, who was awarded the Austrian START Prize in 2015 for his research, is investigating these important intersections of a future quantum Internet.

Now his team at the Department of Experimental Physics at the University of Innsbruck and at the Institute of Quantum Optics and Quantum Information of the Austrian Academy of Sciences has achieved a record for the transfer of quantum entanglement between matter and light. For the first time, a distance of 50 kilometers was covered using fiber optic cables. “This is two orders of magnitude further than was previously possible and is a practical distance to start building inter-city quantum networks,” says Ben Lanyon.

An August 29, 2019 University of Innsbruck press release (also on EurekAlert), which originated the news item,

Converted photon for transmission

Lanyon’s team started the experiment with a calcium atom trapped in an ion trap. Using laser beams, the researchers write a quantum state onto the ion and simultaneously excite it to emit a photon in which quantum information is stored. As a result, the quantum states of the atom and the light particle are entangled. But the challenge is to transmit the photon over fiber optic cables. “The photon emitted by the calcium ion has a wavelength of 854 nanometers and is quickly absorbed by the optical fiber”, says Ben Lanyon. His team therefore initially sends the light particle through a nonlinear crystal illuminated by a strong laser. Thereby the photon wavelength is converted to the optimal value for long-distance travel: the current telecommunications standard wavelength of 1550 nanometers. The researchers from Innsbruck then send this photon through a 50-kilometer-long optical fiber line. Their measurements show that atom and light particle are still entangled even after the wavelength conversion and this long journey.

Even greater distances in sight

As a next step, Lanyon and his team show that their methods would enable entanglement to be generated between ions 100 kilometers apart and more. Two nodes send each an entangled photon over a distance of 50 kilometers to an intersection where the light particles are measured in such a way that they lose their entanglement with the ions, which in turn would entangle them. With 100-kilometer node spacing now a possibility, one could therefore envisage building the world’s first intercity light-matter quantum network in the coming years: only a handful of trapped ion-systems would be required on the way to establish a quantum internet between Innsbruck and Vienna, for example.

Lanyon’s team is part of the Quantum Internet Alliance, an international project within the Quantum Flagship framework of the European Union. The current results have been published in the Nature journal Quantum Information. Financially supported was the research among others by the Austrian Science Fund FWF and the European Union.

Here’s a link to and a citation for the paper,

Light-matter entanglement over 50 km of optical fibre by V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer & B. P. Lanyon. npj Quantum Information volume 5, Article number: 72 (2019) DOI: https://doi.org/10.1038/s41534-019-0186-3 Published: 27 August 2019

This paper is open access.

The medical community and art/science: two events in Canada in November 2019

This time it’s the performing arts. I have one theatre and psychiatry production in Toronto and a music and medical science event in Vancouver.

Toronto’s Here are the Fragments opening on November 19, 2019

From a November 2, 2019 ArtSci Salon announcement (received via email),

An immersive theatre experience inspired by the psychiatric writing of Frantz Fanon

Here are the Fragments.
Co-produced by The ECT Collective and The Theatre Centre
November 19-December 1, 2019
Tickets: Preview $17 | Student/senior/arts worker $22 | Adult $30
Service charges may apply
Book 416-538-0988 | PURCHASE ONLINE

An immigrant psychiatrist develops psychosis and then schizophrenia. He walks a long path towards reconnection with himself, his son, and humanity.

Walk with him.

Within our immersive design (a fabric of sound, video, and live actors) lean in close to the possibilities of perceptual experience.

Schizophrenics ‘hear voices’. Schizophrenics fear loss of control over their own thoughts and bodies. But how does any one of us actually separate internal and external voices? How do we trust what we see or feel? How do we know which voices are truly our own?

Within the installation find places of retreat from chaos. Find poetry. Find critical analysis.

Explore archival material, Fanon’s writings and contemporary interviews with psychiatrists, neuroscientists, artists, and people living with schizophrenia, to reflect on the relationships between identity, history, racism and mental health.

I was able to find out more in a November 6, 2019 article at broadwayworld.com (Note: Some of this is repetitive),

How do we trust what we see or feel? How do we know which voices are truly our own? THE THEATRE CENTRE and THE ECT COLLECTIVE are proud to Co-produce HERE ARE THE FRAGMENTS., an immersive work of theatre written by Suvendrini Lena, Theatre Centre Residency artist and CAMH [ Centre for Addiction and Mental Health] Neurologist. Based on the psychiatric writing of famed political theorist Frantz Fanon and combining narratives, sensory exploration, and scientific and historical analysis, HERE ARE THE FRAGMENTS. reflects on the relationships between identity, history, racism, and mental health. FRAGMENTS. will run November 19 to December 1 at The Theatre Centre (Opening Night November 21).

HERE ARE THE FRAGMENTS. consists of live performances within an interactive installation. The plot, told in fragments, follows a psychiatrist early in his training as he develops psychosis and ultimately, treatment resistant schizophrenia. Eduard, his son, struggles to connect with his father, while the young man must also make difficult treatment decisions.

The Theatre Centre’s Franco Boni Theatre and Gallery will be transformed into an immersive interactive installation. The design will offer many spaces for exploration, investigation, and discovery, bringing audiences into the perceptual experience of Schizophrenia. The scenes unfold around you, incorporating a fabric of sound, video, and live actors. Amidst the seeming chaos there will also be areas of retreat; whispering voices, Fanon’s own books, archival materials, interviews with psychiatrists, neuroscientists, and people living with schizophrenia all merge to provoke analysis and reflection on the intersection of racism and mental health.

Suvendrini Lena (Writer) is a playwright and neurologist. She works as the staff neurologist at the Centre for Addiction and Mental Health and at the Centre for Headache at Women’s College Hospital [Toronto]. She is an Assistant Professor of Psychiatry and Neurology at the University of Toronto where she teaches medical students, residents, and fellows. She also teaches a course called Staging Medicine, a collaboration between The Theatre Centre and University of Toronto Postgraduate Medical Education.

Frantz Fanon (1925-1961), was a French West Indian psychiatrist, political philosopher, revolutionary, and writer, whose works are influential in the fields of post-colonial studies, critical theory, and Marxism. Fanon published numerous books, including Black Skin, White Masks (1952) and The Wretched of the Earth (1961).

In addition to performances, The Theatre Centre will host a number of panels and events. Highlights include a post-show talkback with Ngozi Paul (Development Producer, Artist/Activist) and Psychiatrist Collaborator Araba Chintoh on November 22. Also of note is Our Patients and Our Selves: Experiences of Racism Among Health Care Workers with facilitator Dr. Fatimah Jackson-Best of Black Health Alliance on November 23rd and Fanon Today: A Creative Symposium on November 24th, a panel, reading, and creative discussion featuring David Austin, Frank Francis, Doris Rajan and George Elliot Clarke [formerly Toronto’s Poet Laureate and Canadian Parliamentary Poet Laureate; emphasis and link mine].

You can get more details and a link for ticket purchase here.

Sounds and Science: Vienna meets Vancouver on November 30, 2019

‘Sounds and Science’ originated at the Medical University of Vienna (Austria) as the November 6, 2019 event posting on the University of British Columbia’s (UBC) Faculty of Medicine website,

The University of British Columbia will host the first Canadian concert bringing leading musical talents of Vienna together with dramatic narratives from science and medicine.

“Sounds and Science: Vienna Meets Vancouver” is part of the President’s Concert Series, to be held Nov. 30, 2019 on UBC campus. The event is modeled on a successful concert series launched in Austria in 2014, in cooperation with the Medical University of Vienna.

“Basic research tends to always stay within its own box, yet research is telling the most beautiful stories,” says Dr. Josef Penninger, director of UBC’s Life Sciences Institute, a professor of medical genetics and a Canada 150 Chair. “With this concert, we are bringing science out of the ivory tower, using the music of great composers such as Mozart, Schubert or Strauss to transport stories of discovery and insight into the major diseases that affected the composers themselves, and continue to have a significant impact on our society.”

Famous composers of the past are often seen as icons of classical music, but in fact, they were human beings, living under enormous physical constraints – perhaps more than people today, according to Dr. Manfred Hecking, an associate professor of internal medicine at the Medical University of Vienna.

“But ‘Sounds and Science’ is not primarily about suffering and disease,” says Dr. Hecking, a former member of the Vienna Philharmonic Orchestra who will be playing double bass during the concert. “It is a fun way of bringing music and science together. Combining music and thought, we hope that we will reach the attendees of the ‘Sounds and Science’ concert in Vancouver on an emotional, perhaps even personal level.”

A showcase for Viennese music, played in the tradition of the Vienna Philharmonic by several of its members, as well as the world-class science being done here at UBC, “Sounds and Science” will feature talks by UBC clinical and research faculty, including Dr. Penninger. Their topics will range from healthy aging and cancer research to the historical impact of bacterial infections.

Combining music and thought, we hope that we will reach the attendees of the ‘Sounds and Science’ concert in Vancouver on an emotional, perhaps even personal level.
Dr. Manfred Hecking

Faculty speaking at “Sounds and Science” will be:
Dr. Allison Eddy, professor and head, department of pediatrics, and chief, pediatric medicine, BC Children’s Hospital and BC Women’s Hospital;
Dr. Troy Grennan, clinical assistant professor, division of infectious diseases, UBC faculty of medicine;
Dr. Poul Sorensen, professor, department of pathology and laboratory medicine, UBC faculty of medicine; and
Dr. Roger Wong, executive associate dean, education and clinical professor of geriatric medicine, UBC faculty of medicine
UBC President and Vice-Chancellor Santa J. Ono and Vice President Health and Dr. Dermot Kelleher, dean, faculty of medicine and vice-president, health at UBC will also speak during the evening.

The musicians include two outstanding members of the Vienna Philharmonic – violinist Prof. Günter Seifert and violist-conductor Hans Peter Ochsenhofer, who will be joined by violinist-conductor Rémy Ballot and double bassist Dr. Manfred Hecking, who serves as a regular substitute in the orchestra.

For those in whose lives intertwine music and science, the experience of cross-connection will be familiar. For Dr. Penninger, the concert represents an opportunity to bring the famous sound of the Vienna Philharmonic to UBC and British Columbia, to a new audience. “That these musicians are coming here is a fantastic recognition and acknowledgement of the amazing work being done at UBC,” he says.

“Like poetry, music is a universal language that all of us immediately understand and can relate to. Science tells the most amazing stories. Both of them bring meaning and beauty to our world.”

“Sounds and Science” – Vienna Meets Vancouver is part of the President’s Concert Series | November 30, 2019 on campus at the Old Auditorium from 6:30 to 9:30 p.m.

To learn more about the Sounds and Science concert series hosted in cooperation with the Medical University of Vienna, visit www.soundsandscience.com.

I found more information regarding logistics,

Saturday, November 30, 2019
6:30 pm
The Old Auditorium, 6344 Memorial Road, UBC

Box office and Lobby: Opens at 5:30 pm (one hour prior to start of performance)
Old Auditorium Concert Hall: Opens at 6:00 pm

Sounds
Günter Seifert  VIOLIN
Rémy Ballot VIOLIN
Hans Peter Ochsenhofer VIOLA
Manfred Hecking DOUBLE BASS

Science
Josef Penninger GENETICS
Manfred Hecking INTERNAL MEDICINE
Troy Grennan INFECTIOUS DISEASE
Poul Sorensen PATHOLOGY & LABORATORY MEDICINE
Allison Eddy PEDIATRICS
Roger Wong GERIATRICS

Tickets are also available in person at UBC concert box-office locations:
– Old Auditorium
– Freddie Wood Theatre
– The Chan Centre for the Performing Art

General admission: $10.00
Free seating for UBC students
Purchase tickets for both President’s Concert Series events to make it a package, and save 10% on both performances

Transportation
Public and Bike Transportation
Please visit Translink for bike and transit information.
Parking
Suggested parking in the Rose Garden Parkade.

Buy Tickets

The Sounds and Science website has a feature abut the upcoming Vancouver concert and it offers a history dating from 2008,

MUSIC AND MEDICINE

The idea of combining music and medicine into the “Sounds & Science” – scientific concert series started in 2008, when the Austrian violinist Rainer Honeck played Bach’s Chaconne in d-minor directly before a keynote lecture, held by Nobel laureate Peter Doherty, at the Austrian Society of Allergology and Immunology’s yearly meeting in Vienna. The experience at that lecture was remarkable, truly a special moment. “Sounds & Science” was then taken a step further by bringing several concepts together: Anton Neumayr’s medical histories of composers, John Brockman’s idea of a “Third Culture” (very broadly speaking: combining humanities and science), and finally, our perception that science deserves a “Red Carpet” to walk on, in front of an audience. Attendees of the “Sounds & Science” series have also described that music opens the mind, and enables a better understanding of concepts in life and thereby science in general. On a typical concert/lecture, we start with a chamber music piece, continue with the pathobiography of the composer, go back to the music, and then introduce our main speaker, whose talk should be genuinely understandable to a broad, not necessarily scientifically trained audience. In the second half, we usually try to present a musical climax. One prerequisite that “Sounds & Science” stands for, is the outstanding quality of the principal musicians, and of the main speakers. Our previous concerts/lectures have so far covered several aspects of medicine like “Music & Cancer” (Debussy, Brahms, Schumann), “Music and Heart” (Bruckner, Mahler, Wagner), and “Music and Diabetes” (Bach, Ysaÿe, Puccini). For many individuals who have combined music and medicine or music and science inside of their own lives and biographies, the experience of a cross-connection between sounds and science is quite familiar. But there is also this “fun” aspect of sharing and participating, and at the “Sounds & Science” events, we usually try to ensure that the event location can easily be turned into a meeting place.

At a guess, Science and Sounds started informally in 2008 and became a formal series in 2014.

There is a video but it’s in German. It’s enjoyable viewing with beautiful music but unless you have German language skills you won’t get the humour. Also it runs for over 9 minutes (a little longer than most of videos you’ll find here on FrogHeart),

Enjoy!

Computers made of gold embroidery and an Organic Bioelectronics conference (ORBITALY) in Naples, Italy

Spend enough time reading about emerging technologies and, at some point, you will find yourself questioning some of your dearly held beliefs. It gives a whole new meaning to term, mind altering (also, mind blowing or mind expanding), which in the 1960s was used to refer to the effects of LSD and other hallucinogens. Today <September 1, 2019 (Labour Day in Canada and elsewhere), I have two news bits that could be considered mind expanding, sans hallucinogens.

Gold-embroidered computers

The Embroidered Computer. Artists: Irene Posch and Ebru Kurbak .[downloaded from http://www.ireneposch.net/the-embroidered-computer/]

If you look closely, you’ll see the beads shift position and that’s how the ones and zeroes make themselves known on this embroidered computer. An August 23, 2019 article (updated from a March 8, 2019 article) on the CBC’s (Canadian Broadcasting Corporation) Radio, Spark programme web space, provides insight into the work,

A beautiful ’embroidered computer’ may explode our categories of what computers are supposed to look like.

After all, we may think the design of a computer is permanent, but what a computer ‘looks like’ depends a lot on what era it’s from.

“We use gold-coloured copper wire to form a coil, in a donut shape” Posch told Spark host Nora Young. “Then we have a magnetic bead that sits in the middle of this coil, and when this coil is [connected to] power, the magnetic bead is either attracted or pushed away….

Depending on how we power… the embroidered coil, we can direct the magnetic bead in different positions.”

More gold embroidery on top of the bead will flip one way or another, based on the bead [above].

The process is analogous to the zeros and ones of computation.

As well as being an artist, Posch is a professor at the University for Art and Industrial Design in Linz, Austria. Much of her work and research uses textile art to explore digital technology.

In this case, it’s not like Irene expects people to start doing today’s heavy-duty computing on a two-metre-long, eight-bit golden embroidered fabric computer. But The Embroidered Computer project opens up space to question the design of computers in particular, but also our technologies in general

“I understand The Embroidered Computer as an alternative, as an example, but also a critique of what we assume a computer to be today, and how it technically could be different,” Posch said. “If this is actually what we want is a whole different question, but I think it’s interesting to propose an alternative.”

Bringing together textiles and electronics, which are normally seen as worlds apart, can bring new insights. “Going into the history of computing we very soon become aware that they’re not that apart as we sometimes think they are, if you think of the Jacquard weaving loom as one of the predecessors of computing today.”

You can find our more about the artists (Ebru Kurkak here) and (Irene Posch here). Finally, you can hear the Spark radio interview with Irene Posch here.

ORBITALY 2019

I don’t have a lot of information about this event but what I do have looks intriguing. From the ORBITALY 2019 conference home page,

OrBItaly (Organic BIoelectronics Italy) is an international conference, organized by the Italian Scientific Community and attended by scientists of the highest reputation, dedicated to the most recent results in the field of bioelectronics, with a particular focus on the employment of organic materials.

OrBItaly has attracted in the years a growing interest by scientists coming from all over the world. The 2019 edition is the fifth one of this cross-disciplinary conference, and will be held in Naples, on October 21st-23rd, 2019, at the Congress Center of the University Federico II

This year the conference will be preceded by the first edition of the Graduate School in Organic Bioelectronics, that will be held at the Congress Center of the University of Naples Federico II in Naples (Italy), on October 20th, 2019. The school is mainly targeted to PhD students, post-docs and young researchers as well as to senior scientists and industry-oriented researchers, giving them the opportunity to attend an overview of the latest advances in the fields of organic bioelectronics presented by leading scientists of the highest international repute. Invited lecturers will provide highly stimulating lessons at advanced levels in their own field of research, and closely interact with the attendees during platform discussions, outreach events and informal meetings.

Organizing Committee

Mario Barra, CNR – SPIN, mario.barra@spin.cnr.it
Irene Bonadies, CNR – IPCB, irene.bonadies@ipcb.cnr.it
Antonio Cassinese, Univ. Napoli Federico II, cassinese@na.infn.it
Valeria Criscuolo, IIT, valeria.criscuolo@iit.it
Claudia Lubrano, IIT, claudia.lubrano@iit.it
Maria Grazia Maglione, ENEA, mariagrazia.maglione@enea.it
Paola Manini, Univ. Napoli Federico II, paola.manini@unina.it
Alessandro Pezzella, Univ. Napoli Federico II, alessandro.pezzella@unina.it
Maria Grazia Raucci, CNR – IPCB, mariagrazia.raucci@cnr.it
Francesca Santoro, IIT, francesca.santoro@iit.it
Paolo Tassini, ENEA, paolo.tassini@enea.it

So, the conference runs from the 21st to the 23rd of October 2019 and there’s a one-day graduate school programme being held one day prior to the conference on the 20th of October 2019.

Regular readers may notice that some of the ORBITALY 2019 organizers have recently been mentioned here in an August 25, 2019 posting titled, Cyborgs based on melanin circuits.