Tag Archives: textiles

Designers make dissolvable textiles from gelatin

Am I the only one wondering what happens if your textiles start dissolving early? This excerpt from a June 17, 2024 news item on ScienceDaily announcing the research does not address my quandary,

Introducing the fashion of the future: A T-shirt that you can wear a few times, then, when you get bored with it, dissolve and recycle to make a new shirt.

Researchers at the ATLAS Institute at the University of Colorado Boulder are now one step closer to that goal. In a new study, the team of engineers and designers developed a DIY machine that spins textile fibers made of materials like sustainably sourced gelatin. The group’s “biofibers” feel a bit like flax fiber and dissolve in hot water in minutes to an hour.

The quandary is addressed in a manner of speaking in a June 17, 2024 University of Colorado at Boulder news release (also on EurekAlert) by Daniel Strain, which originated the news item, that also gives more context for the research and explains what the researchers are hoping to achieve, Note: A link has been removed,

“When you don’t want these textiles anymore, you can dissolve them and recycle the gelatin to make more fibers,” said Michael Rivera, a co-author of the new research and assistant professor in the ATLAS Institute and Department of Computer Science.

The study tackles a growing problem around the world: In 2018 alone, people in the United States added more than 11 million tons of textiles to landfills, according to the Environmental Protection Agency—nearly 8% of all municipal solid waste produced that year. 

The researchers envision a different path for fashion.

Their machine is small enough to fit on a desk and cost just $560 to build. Lázaro Vásquez [Eldy Lázaro Vásquez, doctoral student in the ATLAS Institute,] hopes the device will help designers around the world experiment with making their own biofibers.

“You could customize fibers with the strength and elasticity you want, the color you want,” she said. “With this kind of prototyping machine, anyone can make fibers. You don’t need the big machines that are only in university chemistry departments.”

Spinning threads

The study arrives as fashionistas, roboticists and more are embracing a trend known as “smart textiles.” Levi’s Trucker Jacket with Jacquard by Google, for example, looks like a denim coat but includes sensors that can connect to your smartphone. 

But such clothing of the future comes with a downside, Rivera said:

“That jacket isn’t really recyclable. It’s difficult to separate the denim from the copper yarns and the electronics.”

To imagine a new way of making clothes, the team started with gelatin. This springy protein is common in the bones and hooves of many animals, including pigs and cows. Every year, meat producers throw away large volumes of gelatin that doesn’t meet requirements for cosmetics or food products like Jell-O. (Lázaro Vásquez bought her own gelatin, which comes as a powder, from a local butcher shop).

She and her colleagues decided to turn that waste into wearable treasure.

The group’s machine uses a plastic syringe to heat up and squeeze out droplets of a liquid gelatin mixture. Two sets of rollers in the machine then tug on the gelatin, stretching it out into long, skinny fibers—not unlike a spider spinning a web from silk. In the process, the fibers also pass through liquid baths where the researchers can introduce bio-based dyes or other additives to the material. Adding a little bit of genipin, an extract from fruit, for example, makes the fibers stronger.

Dissolving duds

Lázaro Vásquez said designers may be able to do anything they can imagine with these sorts of textiles.

As a proof of concept, the researchers made small sensors out of gelatin fibers and cotton and conductive yarns, similar to the makeup of a Jacquard jacket. The team then submerged these patches in warm water. The gelatin dissolved, releasing the yarns for easy recycling and reuse.

Designers could tweak the chemistry of the fibers to make them a little more resilient, Lázaro Vásquez said—you wouldn’t want your jacket to disappear in the rain. [emphases mine] They could also play around with spinning similar fibers from other natural ingredients. Those materials include chitin, a component of crab shells, or agar-agar, which comes from algae.

“We’re trying to think about the whole lifecycle of our textiles,” Lázaro Vásquez said. “That begins with where the material is coming from. Can we get it from something that normally goes to waste?”

Here’s a link to and a citation for the paper,

Desktop Biofibers Spinning: An Open-Source Machine for Exploring Biobased Fibers and Their Application Towards Sustainable Smart Textile Design by Eldy S. Lazaro Vasquez, Mirela Alistar, Laura Devendorf, and Michael L. Rivera. CHI ’24: Proceedings of the CHI Conference on Human Factors in Computing Systems May 2024 Article No.: 856, Pages 1 – 18 DOI: https://doi.org/10.1145/3613904.3642387 Published: 11 May 2024

This paper is behind a paywall.

Let’s hope somebody (researcher or designer or ???) take a more extensive approach to solving the problem of fabrics that could dissolve prematurely.

Fashion, sustainability, and the protein threads that bind textiles and cosmetics

I’m starting with a somewhat enthusiastic overview of the role synthetic biology is playing in the world of clothing and cosmetics in The Scientist and following it up with some stories about fish leather, no synthetic biology involved but all of these stories are about sustainability and fashion and, in one case, cosmetics.

Fashionable synthetic biology

Meenakshi Prabhune’s June 14, 2024 article in The Scientist, in addition to the overview, provides information that explains how some of the work on textiles and leather is being used in the production of cosmetics. She starts with a little history/mythology and then launches into the synthetic biology efforts to produce silk and leather suitable for consumer use, Note: Links have been removed,

Once upon a time, circa 2700 BC in China, empress Xi Ling Shi was enjoying her afternoon tea under a mulberry tree, when a silkworm cocoon fell from the tree into her tea. She noticed that on contact with the hot beverage, the cocoon unraveled into a long silky thread. This happy accident inspired her to acquire these threads in abundance and fashion them into an elegant fabric. 

So goes the legend, according to the writings of Confucius, about the discovery of silk and the development of sericulture in ancient China. Although archaeological evidence from Chinese ruins dates the presence of silk to 8500 years ago, hinting that the royal discovery story was spun just like the silk fabric, one part of the legend rings true.1 The Chinese royals played a pivotal role in popularizing silk as a symbol of status and wealth. By 130 BC, emperors in the Ancient Civilizations across the world desired to be clad in silken garments, paving the Silk Road that opened trade routes from China to the West. 

While silk maintained its high-society status over the next thousands of years, the demand for easy-to-use materials grew among mass consumers. In the early 20th century, textile developers applied their new-found technological prowess to make synthetic materials: petrochemical-based polymer blended textiles with improved durability, strength, and convenience. 

In their quest to make silk powerful again, not by status but rather by thread strength, scientists turned to an arachnoid. Dragline silk, the thread by which the spider hangs itself from the web, is one of the strongest fibers; its tensile strength—a measure of how much a polymer deforms when strained—is almost thrice that of silkworm silk.2 

Beyond durable fashion garments, tough silk fibers are coveted in parachutes, military protective gear, and automobile safety belts, among other applications, so scientists are keen to pull on these threads. While traditional silk production relies on sericulture, arachnophobes can relax: spider farms are not a thing.

“Spiders make very little silk and are quite territorial. So, the only way to do it is to make microbes that make the protein,” said David Breslauer, cofounder and chief technology officer at Bolt Threads, a bio apparel company. 

For decades, researchers have coaxed microbes into churning their metabolites in large fermentation tanks, which they have harvested to solve dire crises in many areas. For instance, when pharmaceuticals struggled to meet the growing demand for insulin through the traditional methods of extraction from animal pancreas, researchers at Genentech sought the aid of E. coli to generate recombinant insulin for mass production in 1978.3  [emphases mine]

Prabhune’s June 14, 2024 article notes some difficulties with spider silk, Note: Links have been removed,

… researchers soon realized that producing spider silk in microbes was no easy feat. The spider silk protein, spidroin, is larger than 300 kDa in size—a huge jump from the small 6 kDa recombinant insulin. Bulky proteins impose a heavy metabolic load on the microbes and their production yield tanks. Also, spidroin consists of repeating regions of glycine and alanine amino acids that impart strength and elasticity to the material, but the host microbes struggle with protein folding and overexpression of the corresponding tRNA molecules.4  

… researchers had gotten close, but they hadn’t been able to synthesize the full spidroin protein. Since the molecular weight of the silk protein correlates with the strength of the silk thread, Zhang [Fuzhong Zhang, a synthetic biologist at Washington University in St. Louis] was determined to produce the entire protein to mimic the silk’s natural properties.5

To achieve this goal without pushing the metabolic limits of the bacteria, Zhang and his team literally broke down the problem. In 2018, they devised a recombinant spidroin by constructing two protein halves with split inteins—peptides known to catalyze ligation between proteins while splicing out their own residues—tagged at their ends. They synthesized the halves in separate E. coli cultures, mixed the two cultures, and ligated the proteins to yielded a recombinant spidroin of 556 kDa—a size that was previously considered unobtainable.6 The resulting silk fiber made from these recombinant spidroins matched the mechanical properties of natural spider silk fiber.

While synthesizing the high molecular weight protein validated their technical prowess and strategy, Zhang knew that the yield with this approach was going to be unavoidably low. “It was not even enough to make a simple shirt,” he said.

Zhang and his team did solve the problem of getting a higher yield but that led to another problem, from Prabhune’s June 14, 2024 article,

Breslauer echoed the importance of this step. He recalled how scaling up was the biggest challenge when he and his cofounder Dan Widmaier, chief executive officer at Bolt Threads, first set up shop in 2009. The duo met during their graduate studies. Breslauer, a material science student at the University of California, Berkeley, was fascinated by spider silk and sought help for synthesizing the protein in microbes. Luckily, he met Widmaier, a synthetic biology graduate student who was optimizing systems to study complex proteins.

When their collaboration to produce recombinant spider silk proteins in yeast yielded promising results, the duo decided to challenge the status quo in the textile industry by commercially producing bio-silk apparel, and Bolt Threads was born. The market transition, however, was not as smooth as the threads they produced. 

“There was so little innovation in the textile space, and brands were really eager to talk about innovation. It felt like there was demand there. Turns out, the desire for storytelling outweighed the desire for actual innovation with those brands,” Breslauer said. “We didn’t realize how adverse [sic] people were going to be to the idea because it was so unfamiliar.”

Prabhune’s June 14, 2024 article also covers leather and cosmetics, Note: Links have been removed,

David Williamson, a chemist and the chief operations officer at Modern Meadow and his team wanted to separate themselves from the herd. In their quest for sustainable alternatives, they went back to the basic biology and chemistry of the material. As leather is made from animal skin, it is rich in collagen, a structural protein abundant in the extracellular matrix of connective tissues. If the team could produce this primary component protein at scale, they would be able to process it into leather downstream. 

In about 2017, Williamson and his team developed a fermentation-based approach to produce collagen from yeast. While they achieved scalable production, there was one small hiccup. The protein properties of collagen alone did not yield the mechanical properties they needed for their leather-like material. 

The team went to the drawing board and analyzed the amino acid residues that contributed to collagen’s characteristics to look for a substitute protein. They found an alternative that had the desirable functional elements of collagen but was also sustainable and cost effective for industrial scale up: soy protein isolate. While tinkering with their recipes, they found the perfect combination for material strength by mixing in a bio-based polyurethane polymer with the protein to yield a refined bioalloy called Bio-VERA. 

As natural textiles are derived from animal skin, hair, or proteins, it is no surprise that many synthetic biologists in the textile space have also found a niche in cosmetics. Even as the Modern Meadow team transitioned away from their protein fermentation strategies to innovate Bio-VERA, they realized that they could still apply their expertise in skincare. While leathery is not an adjective one desires to associate with skin, collagen is an integral component in both. “When our bodies make collagen and build our extracellular matrices, one of the first proteins that they deposit is type three collagen. So, you can think of type three collagen almost like the structure or scaffold of a building,” explained Williamson.

To cater to the increasing demand for solutions to achieve younger looking skin, Williamson and his team engineered a recombinant collagen type three protein containing part of the protein sequence that is rich in binding domains for fibroblast interactions.9,10  “After you expose the extracellular matrix to this protein, it stimulates the fibroblasts to make more type three collagen. That type three collagen lays down type one collagen and elastin and fibronectin in a way that actually helps to turn back time, so to speak, to increase the ratio of type three collagen relative to type one collagen,” Williamson said. 

The Modern Meadow team are not the only ones to weave their textile strands into cosmetic applications. When Artur Cavaco-Paulo, a biological engineer at the University of Minho [Portugal], was studying wool fibers, he was struck by their structural similarities to human hair. “We decided that it would be a really good idea to transfer some of the knowledge that we had in wool textiles to human hair,” said Cavaco-Paulo. Particularly, he was interested in investigating solutions to fix hair strands damaged by highly alkaline chemical products. 

Over the next few years, Cavaco-Paulo developed […] shortlisted peptides into the K18 peptide product, which is now part of a commercially available leave-in conditioner. Cavaco-Paulo serves as the chief scientific officer at the biotech company K18. 

Although he started his career with textile research, Cavaco-Paulo favors the cosmetics sector with regards to returns on research and technology investment. “The personal care market is much more accustomed to innovation and has a much better and more fluid pipeline on innovation,” seconded Breslauer. “Whereas, [in] apparel, you really have to twist arms to get people to work with your material.” Bolt Threads ventured into the personal care space when Breslauer and his team serendipitously stumbled upon an alternative use for one of their textile proteins. 

While it’s not mentioned in Prabhune’s June 14, 2024 article, sustainability is mentioned on two of the company websites,

Bolt Threads

Bolt Threads is a material solutions company. With nature as our inspiration, we invent cutting-edge materials for the fashion and beauty industries to put us on a path toward a more sustainable future.

Through innovative collaborations with world-class brands and supply chain partners, we are on a mission to create way better materials for a way better world. Join us.

Modern Meadow

Modern Meadow is a climate-tech pioneer creating the future of materials through innovations in biology and material science.

​Our bio-materials technology platform with nature-inspired protein solutions delivers better performance, sustainability, scalability, and cost while reducing reliance on petrochemical and animal-based inputs.​

K18 has not adopted a ‘sustainability’ approach to marketing its hair care products.

Sustainability without synthetic biology: fish leather

In a January 3, 2022 posting I featured fish leather/skin in a story about the “Futures exhibition/festival” held at the Smithsonian Institute from November 20, 2021 to July 6, 2022.

Before getting to Futures, here’s a brief excerpt from a June 11, 2021 Smithsonian Magazine exhibition preview article by Gia Yetikyel about one of the contributors, Elisa Palomino-Perez (Note: A link has been removed),

Elisa Palomino-Perez sheepishly admits to believing she was a mermaid as a child. Growing up in Cuenca, Spain in the 1970s and ‘80s, she practiced synchronized swimming and was deeply fascinated with fish. Now, the designer’s love for shiny fish scales and majestic oceans has evolved into an empowering mission, to challenge today’s fashion industry to be more sustainable, by using fish skin as a material.

Luxury fashion is no stranger to the artist, who has worked with designers like Christian Dior, John Galliano and Moschino in her 30-year career. For five seasons in the early 2000s, Palomino-Perez had her own fashion brand, inspired by Asian culture and full of color and embroidery. It was while heading a studio for Galliano in 2002 that she first encountered fish leather: a material made when the skin of tuna, cod, carp, catfish, salmon, sturgeon, tilapia or pirarucu gets stretched, dried and tanned.

The history of using fish leather in fashion is a bit murky. The material does not preserve well in the archeological record, and it’s been often overlooked as a “poor person’s” material due to the abundance of fish as a resource. But Indigenous groups living on coasts and rivers from Alaska to Scandinavia to Asia have used fish leather for centuries. Icelandic fishing traditions can even be traced back to the ninth century. While assimilation policies, like banning native fishing rights, forced Indigenous groups to change their lifestyle, the use of fish skin is seeing a resurgence. Its rise in popularity in the world of sustainable fashion has led to an overdue reclamation of tradition for Indigenous peoples.

Brendan Jones provides an update of sorts in his Alaska-forward take in his February 22, 2024 article “Fish Leather Is Incredibly Strong and Beautiful. Can Makers ‘Scale Up’? Meet artisans in Alaska and BC who are sustaining, and advancing, an ancient art.” for The Tyee,

Fish leather artist June Pardue began her journey into the craft not knowing where to start. Which was a problem, considering that she had been given the job of demonstrating for tourists how to tan fish skin at the Alaska Native Heritage Center in Anchorage. “I couldn’t find anyone to teach me,” Pardue said with a laugh.

“One day a guy from Mississippi noticed me fumbling around. He kindly waited until everyone had left. Then he said, ‘Do you want me to share my grandpappy’s recipe for tanning snake skins?’”

His cocktail of alcohol and glycerin allowed her to soften the skins — as tourists looked on — for future use in clothing and bags. This worked fine until she began to grow uncomfortable dumping toxins down the drain. Now she uses plant-based tannins like those found in willow branches after the season’s first snowmelt. She harvests the branches gingerly, allowing the trees to survive for the next generation of fish tanners.

Pardue, who teaches at the University of Alaska, was born on Kodiak Island, off the southern coast of the state, in Old Harbor village. Alutiiq and Iñupiaq, she was raised in Akhiok, population about 50, and Old Harbor.

Following her bumpy start at the heritage center, Pardue has since gone on to become one of Alaska’s and Canada’s most celebrated instructors and practitioners in the field of fish leather, lighting the way for others in Alaska and Canada.

Among the people Pardue has advised is CEO and founder of 7 Leagues tannery Tasha Nathanson, who is based in Vancouver. She met with Pardue to share her idea of creating a business built on making fish leather into boots and other items for a large customer base.

Before making her move to open a business, Nathanson spent a year running the numbers, she said. In 2022, the global fish leather market was valued at US$36.22 million. As fish tanneries open their doors and fashion houses take notice, the number is expected to grow 16 per cent annually, topping $100 million by 2030.

“Salmon certainly don’t come to mind when you think of tanning, but people are catching on,” said Judith Lehmann, a Sitka-based expert in fish leather, who took Pardue’s class. (The Tyee reached Lehmann in Panama, where she was experimenting with skins of bonito and mahi mahi.)

Growing numbers of buyers are willing to pay for not only the beauty but also the remarkable durability fish leather can offer. California-based eco-fashion designer Hailey Harmon’s company Aitch Aitch sells the Amelia, a teal backpack made of panelled salmon leather, for $795.

One company in France has started to collect fish skins from restaurants — material that would otherwise end up in trash cans — to make luxury watch bands and accessories. Designers like Prada, Louis Vuitton and Christian Dior have incorporated fish leather into their lines. Even Nike introduced running shoes made of perch skin.

Whether they know it or not, today’s trendsetters are rooted in ancient history. “People have been working with fish skins for thousands of years,” Pardue said. “Ireland, Iceland, Norway, China, Japan — it’s an age-old practice.”

“On a molecular level, fibres in fish leather are cross-hatched, as opposed to cow leather, which is just parallel,” Nathanson explained. “So, pound for pound, this leather is stronger, which is great for shoes. And it’s more available, and eco-conscious. It’s a win across the board.”

Jones’s February 22, 2024 article has some wonderful embedded pictures and Beth Timmins’s May 1, 2019 article for the BBC (British Broadcasting Corporation), while a little dated, offers more information about the international scene.

Synthetic biology is a scientific practice that I find disconcerting at times. That said, I’m glad to see more work on sustainable products however they are derived. On that note I have a couple of recent stories:

  • “Three century long development of a scientific idea: body armor made from silk” is the title of my July 11, 2024 posting
  • “Grown from bacteria: plastic-free vegan leather that dyes itself” is the title of my June 26, 2024 posting

Enjoy!

Sound-suppressing silk

I keep telling a friend that noise will be the ‘new smoking’; i.e., there will be more rules and people will demand enforcement. She doesn’t agree, vociferously so. With the mounting research into the effects that noise has on health and on longevity, it doesn’t matter if I win the ‘argument’, I’m just happy to see research dedicated to mitigating noise levels. From a May 7, 2024 news item on ScienceDaily,

We are living in a very noisy world. From the hum of traffic outside your window to the next-door neighbor’s blaring TV to sounds from a co-worker’s cubicle, unwanted noise remains a resounding problem. [nice bit of wordplay]

Caption: The fabric can suppress sound by generating sound waves that interfere with an unwanted noise to cancel it out (as seen in figure C) or by being held still to suppress vibrations that are key to the transmission of sound (as seen in figure D). Credit: Courtesy of Yoel Fink and Grace (Noel) Yang and Massachusetts Institute of Technology (MIT)

A May 7, 2024 Massachusetts Institute of Technology (MIT) news release (also on EurekAlert), which originated the news item, describes how a surprising material, silk, can be used for suppressing sound, Note: Links have been removed,

To cut through the din, an interdisciplinary collaboration of researchers from MIT and elsewhere developed a sound-suppressing silk fabric that could be used to create quiet spaces. 

The fabric, which is barely thicker than a human hair, contains a special fiber that vibrates when a voltage is applied to it. The researchers leveraged those vibrations to suppress sound in two different ways.

In one, the vibrating fabric generates sound waves that interfere with an unwanted noise to cancel it out, similar to noise-canceling headphones, which work well in a small space like your ears but do not work in large enclosures like rooms or planes. 

In the other, more surprising technique, the fabric is held still to suppress vibrations that are key to the transmission of sound. This prevents noise from being transmitted through the fabric and quiets the volume beyond. This second approach allows for noise reduction in much larger spaces like rooms or cars.

By using common materials like silk, canvas, and muslin, the researchers created noise-suppressing fabrics which would be practical to implement in real-world spaces. For instance, one could use such a fabric to make dividers in open workspaces or thin fabric walls that prevent sound from getting through. 

“Noise is a lot easier to create than quiet. In fact, to keep noise out we dedicate a lot of space to thick walls. [First author] Grace’s work provides a new mechanism for creating quiet spaces with a thin sheet of fabric,” says Yoel Fink, a professor in the departments of Materials Science and Engineering and Electrical Engineering and Computer Science, a Research Laboratory of Electronics principal investigator, and senior author of a paper on the fabric.

The study’s lead author is Grace (Noel) Yang SM ’21, PhD ’24. Co-authors include MIT graduate students Taigyu Joo, Hyunhee Lee, Henry Cheung, and Yongyi Zhao; Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering at MIT; graduate student Guanchun Rui and professor Lei Zhu of Case Western [Reserve] University; graduate student Jinuan Lin and Assistant Professor Chu Ma of the University of Wisconsin at Madison; and Latika Balachander, a graduate student at the Rhode Island School of Design. The an open-access paper about the research appeared recently in Advanced Materials.

Silky silence

The sound-suppressing silk builds off the group’s prior work to create fabric microphones.

In that research, they sewed a single strand of piezoelectric fiber into fabric. Piezoelectric materials produce an electrical signal when squeezed or bent. When a nearby noise causes the fabric to vibrate, the piezoelectric fiber converts those vibrations into an electrical signal, which can capture the sound. 

In the new work, the researchers flipped that idea to create a fabric loudspeaker that can be used to cancel out soundwaves. 

“While we can use fabric to create sound, there is already so much noise in our world. We thought creating silence could be even more valuable,” Yang says.

Applying an electrical signal to the piezoelectric fiber causes it to vibrate, which generates sound. The researchers demonstrated this by playing Bach’s “Air” using a 130-micrometer sheet of silk mounted on a circular frame.

To enable direct sound suppression, the researchers use a silk fabric loudspeaker to emit sound waves that destructively interfere with unwanted sound waves. They control the vibrations of the piezoelectric fiber so that sound waves emitted by the fabric are opposite of unwanted sound waves that strike the fabric, which can cancel out the noise.

However, this technique is only effective over a small area. So, the researchers built off this idea to develop a technique that uses fabric vibrations to suppress sound in much larger areas, like a bedroom.

Let’s say your next-door neighbors are playing foosball in the middle of the night. You hear noise in your bedroom because the sound in their apartment causes your shared wall to vibrate, which forms sound waves on your side.

To suppress that sound, the researchers could place the silk fabric onto your side of the shared wall, controlling the vibrations in the fiber to force the fabric to remain still. This vibration-mediated suppression prevents sound from being transmitted through the fabric.

“If we can control those vibrations and stop them from happening, we can stop the noise that is generated, as well,” Yang says.

A mirror for sound

Surprisingly, the researchers found that holding the fabric still causes sound to be reflected by the fabric, resulting in a thin piece of silk that reflects sound like a mirror does with light. 

Their experiments also revealed that both the mechanical properties of a fabric and the size of its pores affect the efficiency of sound generation. While silk and muslin have similar mechanical properties, the smaller pore sizes of silk make it a better fabric loudspeaker. 

But the effective pore size also depends on the frequency of sound waves. If the frequency is low enough, even a fabric with relatively large pores could function effectively, Yang says.

When they tested the silk fabric in direct suppression mode, the researchers found that it could significantly reduce the volume of sounds up to 65 decibels (about as loud as enthusiastic human conversation). In vibration-mediated suppression mode, the fabric could reduce sound transmission up to 75 percent.

These results were only possible due to a robust group of collaborators, Fink says. Graduate students at the Rhode Island School of Design helped the researchers understand the details of constructing fabrics; scientists at the University of Wisconsin at Madison conducted simulations; researchers at Case Western Reserve University characterized materials; and chemical engineers in the Smith Group at MIT used their expertise in gas membrane separation to measure airflow through the fabric.

Moving forward, the researchers want to explore the use of their fabric to block sound of multiple frequencies. This would likely require complex signal processing and additional electronics. 

In addition, they want to further study the architecture of the fabric to see how changing things like the number of piezoelectric fibers, the direction in which they are sewn, or the applied voltages could improve performance.

“There are a lot of knobs we can turn to make this sound-suppressing fabric really effective. We want to get people thinking about controlling structural vibrations to suppress sound. This is just the beginning,” says Yang.

This work is funded, in part, by the National Science Foundation (NSF), the Army Research Office (ARO), the Defense Threat Reduction Agency (DTRA), and the Wisconsin Alumni Research Foundation.

Here’s a link to and a citation for the paper,

Single Layer Silk and Cotton Woven Fabrics for Acoustic Emission and Active Sound Suppression by Grace H. Yang, Jinuan Lin, Henry Cheung, Guanchun Rui, Yongyi Zhao, Latika Balachander, Taigyu Joo, Hyunhee Lee, Zachary P. Smith, Lei Zhu, Chu Ma, Yoel Fink. Advanced Materials DOI: https://doi.org/10.1002/adma.202313328 First published: 01 April 2024

This paper is open access.

Carbon nanotubes and stab-resistant fabric

The use of carbon nanotubes (CNTs) in protective clothing is not new (see my November 4, 2013 post titled, “A $20,000+, bulletproof, carbon nanotube-enabled business suit from a Toronto-based company (Canada) being tested Nov. 5, 2013“).

This is, however, the first time I’ve seen CNTs used for ‘stab-resistant’ clothing. From an April 19, 2023 news item on ScienceDaily,

Fabrics that resist knife cuts can help prevent injuries and save lives. But a sharp enough knife or a very forceful jab can get through some of these materials. Now, researchers report in ACS Applied Nano Materials that carbon nanotubes and polyacrylate strengthen conventional aramid to produce lightweight, soft fabrics that provide better protection. Applications include anti-stabbing clothing, helmets and insoles, as well as cut-resistant packaging.

An April 19, 2023 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, describes the current situation with body armo(u)r and how this research could change things,

Soft body armor is typically made from aramid, ultra-high-molecular-weight polyethylene, or carbon and glass fabrics. Their puncture resistance depends, in part, on the friction between yarn fibers within these materials. Up to a point, greater friction means greater protection. Manufacturers can boost friction by roughening the fiber surfaces, but that requires a complicated process, and product yield is low. Alternatively, the bonding force between yarns can be enhanced by adding another component, such as a sheer thickening fluid (STF) or a polyurethane (PU) coating. But these composite fabrics can’t simultaneously satisfy the requirements for thinness, flexibility and light weight. Ting-Ting Li, Xing-xiang Zhang and colleagues wanted to find another way to improve performance while satisfying these criteria.

The researchers tested a polyacrylate emulsion (PAE), STF and PU as coatings on aramid fabric. In simulated stabbing tests, aramid fabric coated with PAE outperformed the uncoated material used by itself or in combination with STF or PU. Carbon nanotubes are known to make composites tougher, and adding them to aramid/PAE further improved impact resistance. The team says that’s because the nanotubes created bridges between the fibers, thereby increasing friction. The nanotubes also formed a thin, protective network that dispersed stress away from the point of impact and helped prevent fiber disintegration. The new lightweight, flexible, puncture-resistant composite fabric could be useful in military and civilian applications, according to the researchers.

Here’s a link to and a citation for the paper,

Polyacrylate and Carboxylic Multi-Walled Carbon Nanotube-Strengthened Aramid Fabrics as Flexible Puncture-Resistant Composites for Anti-Stabbing Applications by Wen-hua Cai, Ting-ting Li, and Xing-xiang Zhang. ACS Appl. Nano Mater. 2023, 6, 7, 6334–6344 DOI: https://doi.org/10.1021/acsanm.3c00738 Publication Date:April 5, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

Smart fabric from University of Waterloo (Canada) responds to temperature and electricity

This textile from the University of Waterloo is intriguing,

Caption: An electric current is applied to an engineered smart fabric consisting of plastic and steel fibres. Credit: University of Waterloo

An April 24, 2023 news item on phys.org introduces this new material,

A new smart material developed by researchers at the University of Waterloo is activated by both heat and electricity, making it the first ever to respond to two different stimuli.

The unique design paves the way for a wide variety of potential applications, including clothing that warms up while you walk from the car to the office in winter and vehicle bumpers that return to their original shape after a collision.

An April 24, 2023 University of Waterloo news release (also on EurekAlert), which originated the news item, provides more detail, Note: A link has been removed,

Inexpensively made with polymer nano-composite fibres from recycled plastic, the programmable fabric can change its colour and shape when stimuli are applied.

“As a wearable material alone, it has almost infinite potential in AI, robotics and virtual reality games and experiences,” said Dr. Milad Kamkar, a chemical engineering professor at Waterloo. “Imagine feeling warmth or a physical trigger eliciting a more in-depth adventure in the virtual world.”

The novel fabric design is a product of the happy union of soft and hard materials, featuring a combination of highly engineered polymer composites and stainless steel in a woven structure. 

Researchers created a device similar to a traditional loom to weave the smart fabric. The resulting process is extremely versatile, enabling design freedom and macro-scale control of the fabric’s properties.

The fabric can also be activated by a lower voltage of electricity than previous systems, making it more energy-efficient and cost-effective. In addition, lower voltage allows integration into smaller, more portable devices, making it suitable for use in biomedical devices and environment sensors.

“The idea of these intelligent materials was first bred and born from biomimicry science,” said Kamkar, director of the Multi-scale Materials Design (MMD) Centre at Waterloo.

“Through the ability to sense and react to environmental stimuli such as temperature, this is proof of concept that our new material can interact with the environment to monitor ecosystems without damaging them.”

The next step for researchers is to improve the fabric’s shape-memory performance for applications in the field of robotics. The aim is to construct a robot that can effectively carry and transfer weight to complete tasks.

Here’s a link to and a citation for the paper,

Multi-Stimuli Dually-Responsive Intelligent Woven Structures with Local Programmability for Biomimetic Applications by Runxin Xu, Guanzheng Wu, Mengmeng Jiang, Shaojie Cao, Mahyar Panahi-Sarmad, Milad Kamkar, Xueliang Xiao. Nano-Micro Small DOI: https://doi.org/10.1002/smll.202207900 First published: 19 February 2023

This paper is open access.

Ada Lovelace’s skills (embroidery, languages, and more) led to her pioneering computer work in the 19th century

This is a cleaned up version of the Ada Lovelace story,

A pioneer in the field of computing, she has a remarkable life story as noted in this October 13, 2014 posting, and explored further in this October 13, 2015 posting (Ada Lovelace “… manipulative, aggressive, a drug addict …” and a genius but was she likable?) published to honour the 200th anniversary of her birth.

In a December 8, 2022 essay for The Conversation, Corinna Schlombs focuses on skills other than mathematics that influenced her thinking about computers (Note: Links have been removed),

Growing up in a privileged aristocratic family, Lovelace was educated by home tutors, as was common for girls like her. She received lessons in French and Italian, music and in suitable handicrafts such as embroidery. Less common for a girl in her time, she also studied math. Lovelace continued to work with math tutors into her adult life, and she eventually corresponded with mathematician and logician Augustus De Morgan at London University about symbolic logic.

Lovelace drew on all of these lessons when she wrote her computer program – in reality, it was a set of instructions for a mechanical calculator that had been built only in parts.

The computer in question was the Analytical Engine designed by mathematician, philosopher and inventor Charles Babbage. Lovelace had met Babbage when she was introduced to London society. The two related to each other over their shared love for mathematics and fascination for mechanical calculation. By the early 1840s, Babbage had won and lost government funding for a mathematical calculator, fallen out with the skilled craftsman building the precision parts for his machine, and was close to giving up on his project. At this point, Lovelace stepped in as an advocate.

To make Babbage’s calculator known to a British audience, Lovelace proposed to translate into English an article that described the Analytical Engine. The article was written in French by the Italian mathematician Luigi Menabrea and published in a Swiss journal. Scholars believe that Babbage encouraged her to add notes of her own.

In her notes, which ended up twice as long as the original article, Lovelace drew on different areas of her education. Lovelace began by describing how to code instructions onto cards with punched holes, like those used for the Jacquard weaving loom, a device patented in 1804 that used punch cards to automate weaving patterns in fabric.

Having learned embroidery herself, Lovelace was familiar with the repetitive patterns used for handicrafts. Similarly repetitive steps were needed for mathematical calculations. To avoid duplicating cards for repetitive steps, Lovelace used loops, nested loops and conditional testing in her program instructions.

Finally, Lovelace recognized that the numbers manipulated by the Analytical Engine could be seen as other types of symbols, such as musical notes. An accomplished singer and pianist, Lovelace was familiar with musical notation symbols representing aspects of musical performance such as pitch and duration, and she had manipulated logical symbols in her correspondence with De Morgan. It was not a large step for her to realize that the Analytical Engine could process symbols — not just crunch numbers — and even compose music.

… Lovelace applied knowledge from what we today think of as disparate fields in the sciences, arts and the humanities. A well-rounded thinker, she created solutions that were well ahead of her time.

If you have time, do check out Schlombs’ essay (h/t December 9, 2022 news item on phys.org).

For more about Jacquard looms and computing, there’s Sarah Laskow’s September 16, 2014 article for The Atlantic, which includes some interesting details (Note: Links have been removed),

…, one of the very first machines that could run something like what we now call a “program” was used to make fabric. This machine—a loom—could process so much information that the fabric it produced could display pictures detailed enough that they might be mistaken for engravings.

Like, for instance, the image above [as of March 3, 2023, the image is not there]: a woven piece of fabric that depicts Joseph-Marie Jacquard, the inventor of the weaving technology that made its creation possible. As James Essinger recounts in Jacquard’s Web, in the early 1840s Charles Babbage kept a copy at home and would ask guests to guess how it was made. They were usually wrong.

.. At its simplest, weaving means taking a series of parallel strings (the warp) lifting a selection of them up, and running another string (the weft) between the two layers, creating a crosshatch. …

The Jacquard loom, though, could process information about which of those strings should be lifted up and in what order. That information was stored in punch cards—often 2,000 or more strung together. The holes in the punch cards would let through only a selection of the rods that lifted the warp strings. In other words, the machine could replace the role of a person manually selecting which strings would appear on top. Once the punch cards were created, Jacquard looms could quickly make pictures with subtle curves and details that earlier would have take months to complete. …

… As Ada Lovelace wrote him: “We may say most aptly that the Analytical Engine weaves algebraical patterns just as the Jacquard-loom weaves flowers and leaves.”

For anyone who’s very curious about Jacquard looms, there’s a June 25, 2019 Objects and Stories article (Programming patterns: the story of the Jacquard loom) on the UK’s Science and Industry Museum (in Manchester) website.

Embroidery as a low-cost solution for making wearable electronics?

A November 22, 2022 news item on Nanowerk explores embroidery as a means for affixing wearable electronics to textiles,

Embroidering power-generating yarns onto fabric allowed researchers to embed a self-powered, numerical touch-pad and movement sensors into clothing. The technique offers a low-cost, scalable potential method for making wearable devices.

“Our technique uses embroidery, which is pretty simple – you can stitch our yarns directly on the fabric,” said the study’s lead author Rong Yin, assistant professor of textile engineering, chemistry and science at North Carolina State University. “During fabric production, you don’t need to consider anything about the wearable devices. You can integrate the power-generating yarns after the clothing item has been made.”

Caption: Yu Chen, graduate student at NC State, demonstrates embroidery techniques. Courtesy: North Caroline State University

A North Carolina State University November 22, 2022 news release (also on EurekAlert), which originated the news item, describes the research in more detail,

In the study published in Nano Energy, researchers tested multiple designs for power-generating yarns. To make them durable enough to withstand the tension and bending of the embroidery stitching process, they ultimately used five commercially available copper wires, which had a thin polyurethane coating, together. Then, they stitched them onto cotton fabric with another material called PTFE.

“This is a low-cost method for making wearable electronics using commercially available products,” Yin said. “The electrical properties of our prototypes were comparable to other designs that relied on the same power generation mechanism.”

The researchers relied on a method of generating electricity called the “triboelectric effect,” which involves harnessing electrons exchanged by two different materials, like static electricity. They found the PTFE fabric had the best performance in terms of voltage and current when in contact with the polyurethane-coated copper wires, as compared to other types of fabric that they tested, including cotton and silk. They also tested coating the embroidery samples in plasma to increase the effect.

In our design, you have two layers – one is your conductive, polyurethane-coated copper wires, and the other is PTFE, and they have a gap between them,” Yin said. “When the two non-conductive materials come into contact with each other, one material will lose some electrons, and some will get some electrons. When you link them together, there will be a current.”

Researchers tested their yarns as motion sensors by embroidering them with the PTFE fabric on denim. They placed the embroidery patches on the palm, under the arm, at the elbow and at the knee to track electrical signals generated as a person moves. They also attached fabric with their embroidery on the insole of a shoe to test its use as a pedometer, finding their electrical signals varied depending on whether the person was walking, running or jumping.

Lastly, they tested their yarns in a textile-based numeric keypad on the arm, which they made by embroidering numbers on a piece of cotton fabric, and attaching them to a piece of PTFE fabric. Depending on the number that the person pushed on the keypad, they saw different electrical signals generated for each number.

“You can embroider our yarns onto clothes, and when you move, it generates an electrical signal, and those signals can be used as a sensor,” Yin said. “When we put the embroidery in a shoe, if you are running, it generates a higher voltage than if you were just walking. When we stitched numbers onto fabric, and press them, it generates a different voltage for each number. It could be used as an interface.”

Since textile products will inevitably be washed, they tested the durability of their embroidery design in a series of washing and rubbing tests. After hand washing and rinsing the embroidery with detergent, and drying it in an oven, they found no difference or a slight increase in voltage. For the prototype coated in plasma, they found weakened but still superior performance compared with the original sample. After an abrasion test, they found that there was no significant change in electrical output performance of their designs after 10,000 rubbing cycles.

In future work, they plan to integrate their sensors with other devices to add more functions.

“The next step is to integrate these sensors into a wearable system,” Yin said.

Here’s a link to and a citation for the paper,

Flexible, durable, and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction by Yu Chen, Erdong Chen, Zihao Wang, Yali Ling, Rosie Fisher, Mengjiao Li, Jacob Hart, Weilei Mu, Wei Gao, Xiaoming Tao, Bao Yang and Rong Yin. Nano Energy Volume 104, Part A, 15 December 2022, 107929 DOI: 10.1016/j.nanoen.2022.107929 Available online: 27 October 2022 Version of Record: 4 November 2022.

This paper is behind a paywall.

A spray-on dress with nanoparticles as the base?

Even a month after the fact, this is still fascinating. The magic is in watching the paint/textile get sprayed onto model, Bella Hadid’s body, and watching the liquid transform into a textile. (Note: Ms. Hadid has a minimal amount of clothing at the start),

Fashion designer/scientist, Manel Torres developed the technology, Fabrican, about 20 years ago according to an October 14, 2022 article by Gooseed for complex.com,

Coperni, the Parisian ready-to-wear brand founded by Sébastien Meyer and Arnaud Vaillant, has always focused on tailored minimalism since it launched in 2013. Yet it also strives to take an innovative approach to design that connects its collections with the current fashion moment and pay homage to the past.  

The finale of their Spring/Summer 2023 presentation for Paris Fashion Week, where model Bella Hadid walked onto stage half-naked to get sprayed with a white substance, gave the brand a viral moment. At first glance, most of us thought it was a performance. But after a few minutes, the white shell that appeared on Bella’s body looked like a dress solidified into a texture that almost resembled latex. It wasn’t a body painting, but an actual dress. Charlotte Raymond, Coperni’s Head of Design, even helped style the dress by cutting a slit into the garment and altering the straps to make it an off the shoulder silhouette. The rest is history. Videos of the dress blew up on social media and are now anchored in the digital ether.

The truth is that this magic behind the dress is not new. It has been around for almost two decades.

The innovative technology behind Hadid’s Coperni dress was created by Manel Torres, a Spanish fashion designer turned scientist. Torres has been nicknamed “The Chemist Tailor” because of Fabrican, a liquid tissue made up of polymers, additives, and fiber that turns into a solid nonwoven material when it comes into contact with air. That’s why Fabrican can come out of a spray can to instantly create something like Bella’s Coperni dress. It can also be used to create protective covering for furniture or car interiors. Torres founded his business in 2003 and has been researching the possibility of creating clothes, chairs, and medical patches with just one spray for over 20 years and counting.

His journey started first at the La Escuela de Artes y Técnicas de la Moda in Barcelona, where Torres studied arts with a specialty in fashion design. He then enrolled at the Royal College of Art in London where he graduated with an MA in womenswear. He went on to graduate with a PhD from the Royal College of Art in 2001 by publishing a thesis centered on spray-on fabrics from an aerosol can. It was a collaborative thesis between his school’s fashion department and the chemical engineering department at the Imperial College of London. Torres then started creating his own collections with the first versions of Fabrican fabric. Before Coperni, he presented Fabrican at several runway shows like Science in Style in 2010 and during Moscow Fashion Week in 2011.

Despite Torres’ fashion background, he mostly works with clients within the automobile, medical, and sportswear industry. “I’m a fashion guy so my wish is that this industry starts to invest more in technology and not rely so much on branding,” says Torres when sharing his views on the fashion industry a couple days after the Coperni moment.

Torres’ drive to push Fabrican into the fashion business has also garnered the interest of other industries outside of apparel. He says it has made him realize that there are possibilities for new production models in all aspects of design. “This is completely a new idea so it requires a completely new approach. That in an industry like fashion, and in any industry in general, is going to take some time,” says Torres. He is patient and persistent about achieving his number one goal, which is to make Fabrican available for everybody.

Additionally, since Fabrican is plant-based and composed of natural fibers, it can be used as an alternative to animal-derived leathers. The fabric can also be washed and reused and sprayed on to again to extend the garment. Torres hopes to grow Fabrican to an industrial scale with the help of a robotic arm spray system that could quickly create complex forms in a very precise way and operate 24 hours a day, which could significantly reduce human labor and product costs associated with garment production. The durability of the fabric is also something that Torres assures to be “very similar to the clothes we use daily but needs to be improved.” He reveals that he’s currently working with the German government to apply Fabrican technology to produce uniforms.

…  

For the curious, there are more images and videos embedded, as well as, the links I’ve have eliminated from the excerpts, in Gooseed’s October 14, 2022 article.

Eglė Radžiūtė’s October 3 (?), 2022 article for boredpanda.com fills out the fashion commentary with a bit more detail about the science, Note: Links have been removed,

In about 9 minutes, Bella’s body was engulfed in a light layer of fabric. Once the fabric had a second to settle, Coperni’s Head of Design Charlotte Raymond came up to wipe off the excess and shape the dress into its final form. Lowering the shoulder straps, cutting the bottom to mid-calf length, and adding a slit on Bella’s left leg, Charlotte completed something that was out of this world.

The segment was not previously rehearsed with Bella due to her Paris Fashion Week schedule, adding to the magic, as well as showing off the professionalism of the dress’s engineers, the designers, and Bella herself. The night before the show, a model stood in for Bella, but she couldn’t control her shivering on the chilly runway as the cold material hit her skin.

“I was so nervous,” Bella said backstage, as it would have been her first experience being sprayed. But she didn’t let it show. She was steely and delicate, occasionally raising her arms above her head with an elegant flair, or offering a little smile at the people working on her. “I kind of just became the character, whoever she is.”

Wasn’t it cold up there? “Honey, cold is an understatement,” Bella said, as reported by the NYTimes. “I really blacked out.” Yet as soon as she left the runway, she felt like the performance had been a “pinnacle moment” in her career.

Let’s dive into the science behind the dress. Partnering with Doctor Manel Torres, Founder and Managing Director of Fabrican Ltd, they utilized a spray-on fabric that, once sprayed, dries to create a wearable, non-woven textile. It can be made using different types of fibers: from natural to synthetic, including wool, cotton, nylon, cellulose, and carbon nanofibers. [emphasis mine]

Based in London [UK], at the London Bioscience Innovation Center, Doctor Torres has been working on this multifaceted piece of technology since 2003. A liquid suspension—a finely distributed solid in a liquid, which is not dissolved—is applied via spray gun or aerosol to a surface, creating a fabric. The cross-linking of fibers, which adhere to one another, creates an instant non-woven fabric.

The future-forward invention may be used for more than just creating intricate fashion; they believe it can revolutionize multiple industries. As stated on BBC’s The Imagineers, the fabric is sterile and thus can be made into bandages. It can be made to set hard and, thus, could be used as a cast for broken bones. But perhaps most crucially, the fabric absorbs oil, and so it could be used to clean up after oil tanker disasters.

Whilst in pictures the dress looked to be made of a kind of silk or cotton, those who got close enough to touch it discovered that it felt soft but elastic, bumpy like a sponge. According to Arnaud, the dress was taken off like any other tight, slightly stretchy one: a process of peeling off and shimmying out. It can be hung and washed, or put back into the bottle of its original solution to regenerate.

Coperni is an ultra-modern Parisian ready-to-wear and accessories brand designed by Sébastien Meyer and Arnaud Vaillant. Established in 2013, the pair have been on a mission to find the intersection between fashion and technology, “marrying exhaustive origami-like technique with a neat, ‘sportif’ silhouette.”

You can better see the dress’s texture in this image,

Image credits: bellahadid [downloaded from https://www.boredpanda.com/bella-hadid-coperni-spray-on-dress/?utm_source=duckduckgo&utm_medium=referral&utm_campaign=organic]

Health concerns

Do read the comments at the end of Eglė Radžiūtė’s October 3 (?), 2022 article. Most are admiring but there is a cautionary note from a construction painter noting that no one wore any “respiratory protective devices.” An ‘industrial hygienist’ seconded the the painter’s concern “that stuff is in their lungs,” as would anyone concerned with lung health.

The science of a spray-on textile

You can glean some information from his patent filings (where you’ll find mention of nanosilica but not of the carbon nanofibers mentioned in Radžiūtė’s article), Non-woven fabric Patent number: 8124549; Non-woven fabric Patent number: 8088315; Non-Woven Fabric Publication number: 20100286583; Non-Woven Fabric Publication number: 20090036014; and Non-woven fabric Publication number: 20050222320 on justia.com. The full list of Torres’ patents is here.

I’m guessing there’s more than one kind of engineered nanomaterial to be found in Torres’ mixtures but he’s pretty careful about spilling too much information. Charlotte Hu in her October 4, 2022 article for Popular Science helps to decode further the information in the patents (Note: Links have been removed),

This instantaneously materialized dress is not a magic trick, but a testament to innovations in material science more than two decades in the making. The man behind the creation is Manel Torres, who in 2003 created the substance used on Hadid, Fabrican (presumably a portmanteau of the phrase “fabric in a can”). His inspiration? Silly string and spiderwebs. His idea was to elevate the coarse cords of the silly string into a finer fabric that could be dispersed through a mist. Torres explained in a 2013 Ted Talk that when this spray-on fabric comes in contact with air, it turns into a solid material that’s stretchy and feels like suede. 

What exactly is in Fabrican? According to the patents granted to the company, the liquid fabric is made up of a suspension of liquid polymers (large molecules bonded together), additives, binders like natural latex, cross-linked natural and synthetic fibers, and a fast-evaporating solvent like acetone. The fibers can be polyester, polypropylene, cotton, linen, or wool. 

Torres added that they can easily form the material around 3D molds or patterns and tweak the textures, so they can get something that’s fleece-like, paper-like, lace-like, or rubber-like. He imagined that people could go into a booth, customize their dress, and instantly have it 3D printed onto their bodies. The spray could even be used for spot repairs on existing clothing.  

… Fabrican states on its website that it uses “fibres recycled from discarded clothes and other fabrics. The technology can also utilise biodegradable fibres and binders in place of fossil-based polymers to reduce the carbon footprint of material and manufacturing.” Additionally, the company said that “at the end of their useful life, sprayed fabrics can be re-dissolved and sprayed anew.”  

For the curious, here’s the Fabrican Ltd. website, the Coperni website, and a Wikipedia entry for Silly String.

I have another story about producing something in midair in a May 17, 2016 posting titled: Printing in midair. That was about 3D printing metallic devices in midair.

H/t to the Celebrity Social Media October 3, 2022 posting (keep scrolling down about 75% of the way down) on Laineygossip.com and to Rosemary Hurst because her comments about the dress led me to Charlotte Hu’s article. *ETA: November 4, 2022 at 1550 PT: Rosemary compared to a process for handmaking paper.*

Computers made of gold embroidery and an Organic Bioelectronics conference (ORBITALY) in Naples, Italy

Spend enough time reading about emerging technologies and, at some point, you will find yourself questioning some of your dearly held beliefs. It gives a whole new meaning to term, mind altering (also, mind blowing or mind expanding), which in the 1960s was used to refer to the effects of LSD and other hallucinogens. Today <September 1, 2019 (Labour Day in Canada and elsewhere), I have two news bits that could be considered mind expanding, sans hallucinogens.

Gold-embroidered computers

The Embroidered Computer. Artists: Irene Posch and Ebru Kurbak .[downloaded from http://www.ireneposch.net/the-embroidered-computer/]

If you look closely, you’ll see the beads shift position and that’s how the ones and zeroes make themselves known on this embroidered computer. An August 23, 2019 article (updated from a March 8, 2019 article) on the CBC’s (Canadian Broadcasting Corporation) Radio, Spark programme web space, provides insight into the work,

A beautiful ’embroidered computer’ may explode our categories of what computers are supposed to look like.

After all, we may think the design of a computer is permanent, but what a computer ‘looks like’ depends a lot on what era it’s from.

“We use gold-coloured copper wire to form a coil, in a donut shape” Posch told Spark host Nora Young. “Then we have a magnetic bead that sits in the middle of this coil, and when this coil is [connected to] power, the magnetic bead is either attracted or pushed away….

Depending on how we power… the embroidered coil, we can direct the magnetic bead in different positions.”

More gold embroidery on top of the bead will flip one way or another, based on the bead [above].

The process is analogous to the zeros and ones of computation.

As well as being an artist, Posch is a professor at the University for Art and Industrial Design in Linz, Austria. Much of her work and research uses textile art to explore digital technology.

In this case, it’s not like Irene expects people to start doing today’s heavy-duty computing on a two-metre-long, eight-bit golden embroidered fabric computer. But The Embroidered Computer project opens up space to question the design of computers in particular, but also our technologies in general

“I understand The Embroidered Computer as an alternative, as an example, but also a critique of what we assume a computer to be today, and how it technically could be different,” Posch said. “If this is actually what we want is a whole different question, but I think it’s interesting to propose an alternative.”

Bringing together textiles and electronics, which are normally seen as worlds apart, can bring new insights. “Going into the history of computing we very soon become aware that they’re not that apart as we sometimes think they are, if you think of the Jacquard weaving loom as one of the predecessors of computing today.”

You can find our more about the artists (Ebru Kurkak here) and (Irene Posch here). Finally, you can hear the Spark radio interview with Irene Posch here.

ORBITALY 2019

I don’t have a lot of information about this event but what I do have looks intriguing. From the ORBITALY 2019 conference home page,

OrBItaly (Organic BIoelectronics Italy) is an international conference, organized by the Italian Scientific Community and attended by scientists of the highest reputation, dedicated to the most recent results in the field of bioelectronics, with a particular focus on the employment of organic materials.

OrBItaly has attracted in the years a growing interest by scientists coming from all over the world. The 2019 edition is the fifth one of this cross-disciplinary conference, and will be held in Naples, on October 21st-23rd, 2019, at the Congress Center of the University Federico II

This year the conference will be preceded by the first edition of the Graduate School in Organic Bioelectronics, that will be held at the Congress Center of the University of Naples Federico II in Naples (Italy), on October 20th, 2019. The school is mainly targeted to PhD students, post-docs and young researchers as well as to senior scientists and industry-oriented researchers, giving them the opportunity to attend an overview of the latest advances in the fields of organic bioelectronics presented by leading scientists of the highest international repute. Invited lecturers will provide highly stimulating lessons at advanced levels in their own field of research, and closely interact with the attendees during platform discussions, outreach events and informal meetings.

Organizing Committee

Mario Barra, CNR – SPIN, mario.barra@spin.cnr.it
Irene Bonadies, CNR – IPCB, irene.bonadies@ipcb.cnr.it
Antonio Cassinese, Univ. Napoli Federico II, cassinese@na.infn.it
Valeria Criscuolo, IIT, valeria.criscuolo@iit.it
Claudia Lubrano, IIT, claudia.lubrano@iit.it
Maria Grazia Maglione, ENEA, mariagrazia.maglione@enea.it
Paola Manini, Univ. Napoli Federico II, paola.manini@unina.it
Alessandro Pezzella, Univ. Napoli Federico II, alessandro.pezzella@unina.it
Maria Grazia Raucci, CNR – IPCB, mariagrazia.raucci@cnr.it
Francesca Santoro, IIT, francesca.santoro@iit.it
Paolo Tassini, ENEA, paolo.tassini@enea.it

So, the conference runs from the 21st to the 23rd of October 2019 and there’s a one-day graduate school programme being held one day prior to the conference on the 20th of October 2019.

Regular readers may notice that some of the ORBITALY 2019 organizers have recently been mentioned here in an August 25, 2019 posting titled, Cyborgs based on melanin circuits.

Gold at the nanoscale in medieval textiles

It takes a while (i.e., you have to read the abstract for the paper) to get to the nanoscale part of the story. In the meantime, here are the broad brushstrokes (as it were) from a group of researchers in Hungary, from an Oct. 11, 2017 American Chemical Society (ACS) news release (also on EurekAlert),

Gold has long been valued for its luxurious glitter and hue, and threads of the gleaming metal have graced clothing and tapestries for centuries. Determining how artisans accomplished these adornments in the distant past can help scientists restore, preserve and date artifacts, but solutions to these puzzles have been elusive. Now scientists, reporting in ACS’ journal Analytical Chemistry, have revealed that medieval artisans used a gilding technology that has endured for centuries.

Researchers can learn a lot about vanished cultures from objects left behind. But one detail that has escaped understanding has been the manufacturing method of gold-coated silver threads found in textiles from the Middle Ages. Four decades of intensive research yielded some clues, but the findings have been very limited. Study of the materials has been hindered by their extremely small size: A single metal thread is sometimes only as thick as a human hair, and the thickness of its gold coating is a hundredth of that. Tamás G. Weiszburg, Katalin Gherdán and colleagues set out to fill this gap.

Using a suite of lab techniques, the researchers examined medieval gilded silver threads, and silver and gold strips produced during and after the Middle Ages. The items come from European cultures spanning the 13th to 17th centuries. The researchers characterized the chemistry of the silver thread, its gold coating, the interactions between the two and the shape of metal strips’ edges. To characterize the threads and strips, the researchers combined high-resolution scanning electron microscopy, electron back-scattered diffraction with energy-dispersive electron probe microanalysis and other analytical methods. Though previous studies indicated that these tiny objects were manufactured by a mercury-based method in fashion at that time, the new results suggest that the threads were gilded exclusively by using an ancient method that survived for a millennium. The goldsmiths simply heated and hammered the silver sheets and the gold foil together, and then cut them into strips. It was also possible to determine whether scissor- or knife-like tools were used for cutting. The results also show that this process was used widely in the region well into the 17th century.

The authors acknowledge funding from the European Social Fund.

Here’s an image of medieval bling,

Caption: A new study unravels how medieval artisans embellished textiles with gold. Credit: The American Chemical Society

Finally, here’s the abstract with the information about the nanoscale elements (link to paper follows abstract),

Although gilt silver threads were widely used for decorating historical textiles, their manufacturing techniques have been elusive for centuries. Contemporary written sources give only limited, sometimes ambiguous information, and detailed cross-sectional study of the microscale soft noble metal objects has been hindered by sample preparation. In this work, to give a thorough characterization of historical gilt silver threads, nano- and microscale textural, chemical, and structural data on cross sections, prepared by focused ion beam milling, were collected, using various electron-optical methods (high-resolution scanning electron microscopy (SEM), wavelength-dispersive electron probe microanalysis (EPMA), electron backscattered diffraction (EBSD) combined with energy-dispersive electron probe microanalysis (EDX), transmission electron microscopy (TEM) combined with EDX, and micro-Raman spectroscopy. The thickness of the gold coating varied between 70–400 nm [emphasis mine]. Data reveal nano- and microscale metallurgy-related, gilding-related and corrosion-related inhomogeneities in the silver base. These inhomogeneities account for the limitations of surface analysis when tracking gilding methods of historical metal threads, and explain why chemical information has to be connected to 3D texture on submicrometre scale. The geometry and chemical composition (lack of mercury, copper) of the gold/silver interface prove that the ancient gilding technology was diffusion bonding. The observed differences in the copper content of the silver base of the different thread types suggest intentional technological choice. Among the examined textiles of different ages (13th–17th centuries) and provenances narrow technological variation has been found.

Here’s a link to the paper,

Medieval Gilding Technology of Historical Metal Threads Revealed by Electron Optical and Micro-Raman Spectroscopic Study of Focused Ion Beam-Milled Cross Sections by Tamás G. Weiszburg, Katalin Gherdán, Kitti Ratter, Norbert Zajzon, Zsolt Bendő, György Radnóczi, Ágnes Takács, Tamás Váczi, Gábor Varga and György Szakmány. Anal. Chem., Article ASAP DOI: 10.1021/acs.analchem.7b01917 Publication Date (Web): September 19, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

One final comment, if you read the abstract, you’ll see how many technologies the researchers needed to use to examine the textiles. How did medieval artisans create nanoscale and microscale gilding when they couldn’t see it? I realize there are now some optical microscopes that can provide a view of the nanoscale but presumably those artisans of the Middle Ages did not have access to that kind of equipment. So, how did they create those textiles with the technology of the day?