Tag Archives: Spain

Restoring artworks in Valencia (Spain) with bacteria

I’m glad to see this follow up to a post (my June 7, 2011 posting) which featured research on using bacteria to benefit art restoration in Spain. Maria Mocerino’s September 30, 2024 article for Interesting Engineering provides the update,

A mother [Pilar Roig] and daughter have teamed up to restore frescos in Valencia’s Santos Juanes church using bacteria.

When her mother ran into trouble with a restoration project in Spain, Pilar Bosch, her daughter, a microbiologist, found an old paper on the application of bacteria in art restoration.

As a microbiologist, she was only searching for a subject for PhD, but her mother’s troubles restoring 18th-century paintings in Santos Juanes church made her take a closer look.

The restoration project in Valencia faced particular challenges. A botched effort in the 1960s damaged the priceless artwork even further, leaving behind a layer of glue made of animal collagen, according to the Beijing Times.

Having found a lead that could benefit her mother’s work and a historical and cultural landmark, science and art joined forces in a 4-million-euro initiative to apply this technique. And it worked.

Here’s more about the project along with some technical details, from my June 7, 2011 posting,

Here’s the background on the problem the art restorers were trying to fix (from the news item),

The project came about when the IRP [Institute of Heritage Restoration] was in the process of restoring the murals of the Church of Santos Juanes that were virtually destroyed after a fire in 1936 and were improperly restored in the 1960s. The researchers tested new techniques for filling with transferred printed digital images in spaces without painting, but had great difficulty dealing with salt efflorescence, the white scabs caused by the build up of crystallized salts and the enormous amount of gelatine glue remaining on the pulled-off murals.

With the problem defined, the researchers then investigated a technique developed in Italy that looked promising (from the news item),

Therefore, Rosa María Montes and Pilar Bosch travelled to Italy to learn from the authors about the pioneering studies that used bacteria to remove hardened glue that was very difficult to treat with conventional methods.

The restoration of the Campo Santo di Pisa wall paintings was performed under the direction of Gianluiggi Colalucci, restorer of the Sistine Chapel, and his colleagues Donatella Zari and Carlo Giantomassi who applied the technique developed by microbiologist Giancarlo Ranalli. The researcher had also been testing with black crusts that appear on sculptures and artistic monuments.

The team returned to Spain to practice the technique and add some refinements (from the news item),

Back in Valencia, the multidisciplinary team perfected this method and trained the most suitable strain of Pseudomonas bacteria to literally eat the saline efflorescence found in the lunettes of the vault behind which pigeons nest.

“By the action of gravity and evaporation, the salts of organic matter in decomposition migrate to the paintings and produce a white crust hiding the work of art and sometimes can also cause the loose of the painting layer” says Pilar Bosch.

These scientists have managed to reduce the application time, and have also innovated in the way of extending the bacteria. According to Dr. Bosch: “In Italy they use cotton wool to apply the micro-organisms. We, however, have developed a gel that acts on the surface, which prevents moisture from penetrating deep into the material and causing new problems.

“After an hour and a half, we remove the gel with the bacteria. The surface is then cleaned and dried.” Without a wet environment, the remaining bacteria die.

13 years! Brava to the two Pilars!

A Reuters article (September 27, 2024 by Horaci Garcia and Eva Manez) was the basis for most of the other articles about the two Pilars and their project that you’ll find on an internet search; you can find the Reuters article here.

You can find listings for (and possibly get access to) Pilar Bosch-Roig’s (also known as, Pilar Bosch) research publications on her ResearchGate profile page or on her Loop Frontiers profile page.

Bio-hybrid robotics (living robots) needs public debate and regulation

A July 23, 2024 University of Southampton (UK) press release (also on EurekAlert but published July 22, 2024) describes the emerging science/technology of bio-hybrid robotics and a recent study about the ethical issues raised, Note 1: bio-hybrid may also be written as biohybrid; Note 2: Links have been removed,

Development of ‘living robots’ needs regulation and public debate

Researchers are calling for regulation to guide the responsible and ethical development of bio-hybrid robotics – a ground-breaking science which fuses artificial components with living tissue and cells.

In a paper published in Proceedings of the National Academy of Sciences [PNAS] a multidisciplinary team from the University of Southampton and universities in the US and Spain set out the unique ethical issues this technology presents and the need for proper governance.

Combining living materials and organisms with synthetic robotic components might sound like something out of science fiction, but this emerging field is advancing rapidly. Bio-hybrid robots using living muscles can crawl, swim, grip, pump, and sense their surroundings. Sensors made from sensory cells or insect antennae have improved chemical sensing. Living neurons have even been used to control mobile robots.

Dr Rafael Mestre from the University of Southampton, who specialises in emergent technologies and is co-lead author of the paper, said: “The challenges in overseeing bio-hybrid robotics are not dissimilar to those encountered in the regulation of biomedical devices, stem cells and other disruptive technologies. But unlike purely mechanical or digital technologies, bio-hybrid robots blend biological and synthetic components in unprecedented ways. This presents unique possible benefits but also potential dangers.”

Research publications relating to bio-hybrid robotics have increased continuously over the last decade. But the authors found that of the more than 1,500 publications on the subject at the time, only five considered its ethical implications in depth.

The paper’s authors identified three areas where bio-hybrid robotics present unique ethical issues: Interactivity – how bio-robots interact with humans and the environment, Integrability – how and whether humans might assimilate bio-robots (such as bio-robotic organs or limbs), and Moral status.

In a series of thought experiments, they describe how a bio-robot for cleaning our oceans could disrupt the food chain, how a bio-hybrid robotic arm might exacerbate inequalities [emphasis mine], and how increasing sophisticated bio-hybrid assistants could raise questions about sentience and moral value.

“Bio-hybrid robots create unique ethical dilemmas,” says Aníbal M. Astobiza, an ethicist from the University of the Basque Country in Spain and co-lead author of the paper. “The living tissue used in their fabrication, potential for sentience, distinct environmental impact, unusual moral status, and capacity for biological evolution or adaptation create unique ethical dilemmas that extend beyond those of wholly artificial or biological technologies.”

The paper is the first from the Biohybrid Futures project led by Dr Rafael Mestre, in collaboration with the Rebooting Democracy project. Biohybrid Futures is setting out to develop a framework for the responsible research, application, and governance of bio-hybrid robotics.

The paper proposes several requirements for such a framework, including risk assessments, consideration of social implications, and increasing public awareness and understanding.

Dr Matt Ryan, a political scientist from the University of Southampton and a co-author on the paper, said: “If debates around embryonic stem cells, human cloning or artificial intelligence have taught us something, it is that humans rarely agree on the correct resolution of the moral dilemmas of emergent technologies.

“Compared to related technologies such as embryonic stem cells or artificial intelligence, bio-hybrid robotics has developed relatively unattended by the media, the public and policymakers, but it is no less significant. We want the public to be included in this conversation to ensure a democratic approach to the development and ethical evaluation of this technology.”

In addition to the need for a governance framework, the authors set out actions that the research community can take now to guide their research.

“Taking these steps should not be seen as prescriptive in any way, but as an opportunity to share responsibility, taking a heavy weight away from the researcher’s shoulders,” says Dr Victoria Webster-Wood, a biomechanical engineer from Carnegie Mellon University in the US and co-author on the paper.

“Research in bio-hybrid robotics has evolved in various directions. We need to align our efforts to fully unlock its potential.”

Here’s a link to and a citation for the paper,

Ethics and responsibility in biohybrid robotics research by Rafael Mestre, Aníbal M. Astobiza, Victoria A. Webster-Wood, Matt Ryan, and M. Taher A. Saif. PNAS 121 (31) e2310458121 July 23, 2024 DOI: https://doi.org/10.1073/pnas.2310458121

This paper is open access.

Cyborg or biohybrid robot?

Earlier, I highlighted “… how a bio-hybrid robotic arm might exacerbate inequalities …” because it suggests cyborgs, which are not mentioned in the press release or in the paper, This seems like an odd omission but, over the years, terminology does change although it’s not clear that’s the situation here.

I have two ‘definitions’, the first is from an October 21, 2019 article by Javier Yanes for OpenMind BBVA, Note: More about BBVA later,

The fusion between living organisms and artificial devices has become familiar to us through the concept of the cyborg (cybernetic organism). This approach consists of restoring or improving the capacities of the organic being, usually a human being, by means of technological devices. On the other hand, biohybrid robots are in some ways the opposite idea: using living tissues or cells to provide the machine with functions that would be difficult to achieve otherwise. The idea is that if soft robots seek to achieve this through synthetic materials, why not do so directly with living materials?

In contrast, there’s this from “Biohybrid robots: recent progress, challenges, and perspectives,” Note 1: Full citation for paper follows excerpt; Note 2: Links have been removed,

2.3. Cyborgs

Another approach to building biohybrid robots is the artificial enhancement of animals or using an entire animal body as a scaffold to manipulate robotically. The locomotion of these augmented animals can then be externally controlled, spanning three modes of locomotion: walking/running, flying, and swimming. Notably, these capabilities have been demonstrated in jellyfish (figure 4(A)) [139, 140], clams (figure 4(B)) [141], turtles (figure 4(C)) [142, 143], and insects, including locusts (figure 4(D)) [27, 144], beetles (figure 4(E)) [28, 145–158], cockroaches (figure 4(F)) [159–165], and moths [166–170].

….

The advantages of using entire animals as cyborgs are multifold. For robotics, augmented animals possess inherent features that address some of the long-standing challenges within the field, including power consumption and damage tolerance, by taking advantage of animal metabolism [172], tissue healing, and other adaptive behaviors. In particular, biohybrid robotic jellyfish, composed of a self-contained microelectronic swim controller embedded into live Aurelia aurita moon jellyfish, consumed one to three orders of magnitude less power per mass than existing swimming robots [172], and cyborg insects can make use of the insect’s hemolymph directly as a fuel source [173].

So, sometimes there’s a distinction and sometimes there’s not. I take this to mean that the field is still emerging and that’s reflected in evolving terminology.

Here’s a link to and a citation for the paper,

Biohybrid robots: recent progress, challenges, and perspectives by Victoria A Webster-Wood, Maria Guix, Nicole W Xu, Bahareh Behkam, Hirotaka Sato, Deblina Sarkar, Samuel Sanchez, Masahiro Shimizu and Kevin Kit Parker. Bioinspiration & Biomimetics, Volume 18, Number 1 015001 DOI 10.1088/1748-3190/ac9c3b Published 8 November 2022 • © 2022 The Author(s). Published by IOP Publishing Ltd

This paper is open access.

A few notes about BBVA and other items

BBVA is Banco Bilbao Vizcaya Argentaria according to its Wikipedia entry, Note: Links have been removed,

Banco Bilbao Vizcaya Argentaria, S.A. (Spanish pronunciation: [ˈbaŋko βilˈβao βiθˈkaʝa aɾxenˈtaɾja]), better known by its initialism BBVA, is a Spanish multinational financial services company based in Madrid and Bilbao, Spain. It is one of the largest financial institutions in the world, and is present mainly in Spain, Portugal, Mexico, South America, Turkey, Italy and Romania.[2]

BBVA’s OpenMind is, from their About us page,

OpenMind: BBVA’s knowledge community

OpenMind is a non-profit project run by BBVA that aims to contribute to the generation and dissemination of knowledge about fundamental issues of our time, in an open and free way. The project is materialized in an online dissemination community.

Sharing knowledge for a better future.

At OpenMind we want to help people understand the main phenomena affecting our lives; the opportunities and challenges that we face in areas such as science, technology, humanities or economics. Analyzing the impact of scientific and technological advances on the future of the economy, society and our daily lives is the project’s main objective, which always starts on the premise that a broader and greater quality knowledge will help us to make better individual and collective decisions.

As for other items, you can find my latest (biorobotic, cyborg, or bionic depending what terminology you what to use) jellyfish story in this June 6, 2024 posting, the Biohybrid Futures project mentioned in the press release here, and also mentioned in the Rebooting Democracy project (unexpected in the context of an emerging science/technology) can be found here on this University of Southampton website.

Finally, you can find more on these stories (science/technology announcements and/or ethics research/issues) here by searching for ‘robots’ (tag and category), ‘cyborgs’ (tag), ‘machine/flesh’ (tag), ‘neuroprosthetic’ (tag), and human enhancement (category).

Portable and non-invasive (?) mind-reading AI (artificial intelligence) turns thoughts into text and some thoughts about the near future

First, here’s some of the latest research and if by ‘non-invasive,’ you mean that electrodes are not being planted in your brain, then this December 12, 2023 University of Technology Sydney (UTS) press release (also on EurekAlert) highlights non-invasive mind-reading AI via a brain-computer interface (BCI), Note: Links have been removed,

In a world-first, researchers from the GrapheneX-UTS Human-centric Artificial Intelligence Centre at the University of Technology Sydney (UTS) have developed a portable, non-invasive system that can decode silent thoughts and turn them into text. 

The technology could aid communication for people who are unable to speak due to illness or injury, including stroke or paralysis. It could also enable seamless communication between humans and machines, such as the operation of a bionic arm or robot.

The study has been selected as the spotlight paper at the NeurIPS conference, a top-tier annual meeting that showcases world-leading research on artificial intelligence and machine learning, held in New Orleans on 12 December 2023.

The research was led by Distinguished Professor CT Lin, Director of the GrapheneX-UTS HAI Centre, together with first author Yiqun Duan and fellow PhD candidate Jinzhou Zhou from the UTS Faculty of Engineering and IT.

In the study participants silently read passages of text while wearing a cap that recorded electrical brain activity through their scalp using an electroencephalogram (EEG). A demonstration of the technology can be seen in this video [See UTS press release].

The EEG wave is segmented into distinct units that capture specific characteristics and patterns from the human brain. This is done by an AI model called DeWave developed by the researchers. DeWave translates EEG signals into words and sentences by learning from large quantities of EEG data. 

“This research represents a pioneering effort in translating raw EEG waves directly into language, marking a significant breakthrough in the field,” said Distinguished Professor Lin.

“It is the first to incorporate discrete encoding techniques in the brain-to-text translation process, introducing an innovative approach to neural decoding. The integration with large language models is also opening new frontiers in neuroscience and AI,” he said.

Previous technology to translate brain signals to language has either required surgery to implant electrodes in the brain, such as Elon Musk’s Neuralink [emphasis mine], or scanning in an MRI machine, which is large, expensive, and difficult to use in daily life.

These methods also struggle to transform brain signals into word level segments without additional aids such as eye-tracking, which restrict the practical application of these systems. The new technology is able to be used either with or without eye-tracking.

The UTS research was carried out with 29 participants. This means it is likely to be more robust and adaptable than previous decoding technology that has only been tested on one or two individuals, because EEG waves differ between individuals. 

The use of EEG signals received through a cap, rather than from electrodes implanted in the brain, means that the signal is noisier. In terms of EEG translation however, the study reported state-of the art performance, surpassing previous benchmarks.

“The model is more adept at matching verbs than nouns. However, when it comes to nouns, we saw a tendency towards synonymous pairs rather than precise translations, such as ‘the man’ instead of ‘the author’,” said Duan. [emphases mine; synonymous, eh? what about ‘woman’ or ‘child’ instead of the ‘man’?]

“We think this is because when the brain processes these words, semantically similar words might produce similar brain wave patterns. Despite the challenges, our model yields meaningful results, aligning keywords and forming similar sentence structures,” he said.

The translation accuracy score is currently around 40% on BLEU-1. The BLEU score is a number between zero and one that measures the similarity of the machine-translated text to a set of high-quality reference translations. The researchers hope to see this improve to a level that is comparable to traditional language translation or speech recognition programs, which is closer to 90%.

The research follows on from previous brain-computer interface technology developed by UTS in association with the Australian Defence Force [ADF] that uses brainwaves to command a quadruped robot, which is demonstrated in this ADF video [See my June 13, 2023 posting, “Mind-controlled robots based on graphene: an Australian research story” for the story and embedded video].

About one month after the research announcement regarding the University of Technology Sydney’s ‘non-invasive’ brain-computer interface (BCI), I stumbled across an in-depth piece about the field of ‘non-invasive’ mind-reading research.

Neurotechnology and neurorights

Fletcher Reveley’s January 18, 2024 article on salon.com (originally published January 3, 2024 on Undark) shows how quickly the field is developing and raises concerns, Note: Links have been removed,

One afternoon in May 2020, Jerry Tang, a Ph.D. student in computer science at the University of Texas at Austin, sat staring at a cryptic string of words scrawled across his computer screen:

“I am not finished yet to start my career at twenty without having gotten my license I never have to pull out and run back to my parents to take me home.”

The sentence was jumbled and agrammatical. But to Tang, it represented a remarkable feat: A computer pulling a thought, however disjointed, from a person’s mind.

For weeks, ever since the pandemic had shuttered his university and forced his lab work online, Tang had been at home tweaking a semantic decoder — a brain-computer interface, or BCI, that generates text from brain scans. Prior to the university’s closure, study participants had been providing data to train the decoder for months, listening to hours of storytelling podcasts while a functional magnetic resonance imaging (fMRI) machine logged their brain responses. Then, the participants had listened to a new story — one that had not been used to train the algorithm — and those fMRI scans were fed into the decoder, which used GPT1, a predecessor to the ubiquitous AI chatbot ChatGPT, to spit out a text prediction of what it thought the participant had heard. For this snippet, Tang compared it to the original story:

“Although I’m twenty-three years old I don’t have my driver’s license yet and I just jumped out right when I needed to and she says well why don’t you come back to my house and I’ll give you a ride.”

The decoder was not only capturing the gist of the original, but also producing exact matches of specific words — twenty, license. When Tang shared the results with his adviser, a UT Austin neuroscientist named Alexander Huth who had been working towards building such a decoder for nearly a decade, Huth was floored. “Holy shit,” Huth recalled saying. “This is actually working.” By the fall of 2021, the scientists were testing the device with no external stimuli at all — participants simply imagined a story and the decoder spat out a recognizable, albeit somewhat hazy, description of it. “What both of those experiments kind of point to,” said Huth, “is the fact that what we’re able to read out here was really like the thoughts, like the idea.”

The scientists brimmed with excitement over the potentially life-altering medical applications of such a device — restoring communication to people with locked-in syndrome, for instance, whose near full-body paralysis made talking impossible. But just as the potential benefits of the decoder snapped into focus, so too did the thorny ethical questions posed by its use. Huth himself had been one of the three primary test subjects in the experiments, and the privacy implications of the device now seemed visceral: “Oh my god,” he recalled thinking. “We can look inside my brain.”

Huth’s reaction mirrored a longstanding concern in neuroscience and beyond: that machines might someday read people’s minds. And as BCI technology advances at a dizzying clip, that possibility and others like it — that computers of the future could alter human identities, for example, or hinder free will — have begun to seem less remote. “The loss of mental privacy, this is a fight we have to fight today,” said Rafael Yuste, a Columbia University neuroscientist. “That could be irreversible. If we lose our mental privacy, what else is there to lose? That’s it, we lose the essence of who we are.”

Spurred by these concerns, Yuste and several colleagues have launched an international movement advocating for “neurorights” — a set of five principles Yuste argues should be enshrined in law as a bulwark against potential misuse and abuse of neurotechnology. But he may be running out of time.

Reveley’s January 18, 2024 article provides fascinating context and is well worth reading if you have the time.

For my purposes, I’m focusing on ethics, Note: Links have been removed,

… as these and other advances propelled the field forward, and as his own research revealed the discomfiting vulnerability of the brain to external manipulation, Yuste found himself increasingly concerned by the scarce attention being paid to the ethics of these technologies. Even Obama’s multi-billion-dollar BRAIN Initiative, a government program designed to advance brain research, which Yuste had helped launch in 2013 and supported heartily, seemed to mostly ignore the ethical and societal consequences of the research it funded. “There was zero effort on the ethical side,” Yuste recalled.

Yuste was appointed to the rotating advisory group of the BRAIN Initiative in 2015, where he began to voice his concerns. That fall, he joined an informal working group to consider the issue. “We started to meet, and it became very evident to me that the situation was a complete disaster,” Yuste said. “There was no guidelines, no work done.” Yuste said he tried to get the group to generate a set of ethical guidelines for novel BCI technologies, but the effort soon became bogged down in bureaucracy. Frustrated, he stepped down from the committee and, together with a University of Washington bioethicist named Sara Goering, decided to independently pursue the issue. “Our aim here is not to contribute to or feed fear for doomsday scenarios,” the pair wrote in a 2016 article in Cell, “but to ensure that we are reflective and intentional as we prepare ourselves for the neurotechnological future.”

In the fall of 2017, Yuste and Goering called a meeting at the Morningside Campus of Columbia, inviting nearly 30 experts from all over the world in such fields as neurotechnology, artificial intelligence, medical ethics, and the law. By then, several other countries had launched their own versions of the BRAIN Initiative, and representatives from Australia, Canada [emphasis mine], China, Europe, Israel, South Korea, and Japan joined the Morningside gathering, along with veteran neuroethicists and prominent researchers. “We holed ourselves up for three days to study the ethical and societal consequences of neurotechnology,” Yuste said. “And we came to the conclusion that this is a human rights issue. These methods are going to be so powerful, that enable to access and manipulate mental activity, and they have to be regulated from the angle of human rights. That’s when we coined the term ‘neurorights.’”

The Morningside group, as it became known, identified four principal ethical priorities, which were later expanded by Yuste into five clearly defined neurorights: The right to mental privacy, which would ensure that brain data would be kept private and its use, sale, and commercial transfer would be strictly regulated; the right to personal identity, which would set boundaries on technologies that could disrupt one’s sense of self; the right to fair access to mental augmentation, which would ensure equality of access to mental enhancement neurotechnologies; the right of protection from bias in the development of neurotechnology algorithms; and the right to free will, which would protect an individual’s agency from manipulation by external neurotechnologies. The group published their findings in an often-cited paper in Nature.

But while Yuste and the others were focused on the ethical implications of these emerging technologies, the technologies themselves continued to barrel ahead at a feverish speed. In 2014, the first kick of the World Cup was made by a paraplegic man using a mind-controlled robotic exoskeleton. In 2016, a man fist bumped Obama using a robotic arm that allowed him to “feel” the gesture. The following year, scientists showed that electrical stimulation of the hippocampus could improve memory, paving the way for cognitive augmentation technologies. The military, long interested in BCI technologies, built a system that allowed operators to pilot three drones simultaneously, partially with their minds. Meanwhile, a confusing maelstrom of science, science-fiction, hype, innovation, and speculation swept the private sector. By 2020, over $33 billion had been invested in hundreds of neurotech companies — about seven times what the NIH [US National Institutes of Health] had envisioned for the 12-year span of the BRAIN Initiative itself.

Now back to Tang and Huth (from Reveley’s January 18, 2024 article), Note: Links have been removed,

Central to the ethical questions Huth and Tang grappled with was the fact that their decoder, unlike other language decoders developed around the same time, was non-invasive — it didn’t require its users to undergo surgery. Because of that, their technology was free from the strict regulatory oversight that governs the medical domain. (Yuste, for his part, said he believes non-invasive BCIs pose a far greater ethical challenge than invasive systems: “The non-invasive, the commercial, that’s where the battle is going to get fought.”) Huth and Tang’s decoder faced other hurdles to widespread use — namely that fMRI machines are enormous, expensive, and stationary. But perhaps, the researchers thought, there was a way to overcome that hurdle too.

The information measured by fMRI machines — blood oxygenation levels, which indicate where blood is flowing in the brain — can also be measured with another technology, functional Near-Infrared Spectroscopy, or fNIRS. Although lower resolution than fMRI, several expensive, research-grade, wearable fNIRS headsets do approach the resolution required to work with Huth and Tang’s decoder. In fact, the scientists were able to test whether their decoder would work with such devices by simply blurring their fMRI data to simulate the resolution of research-grade fNIRS. The decoded result “doesn’t get that much worse,” Huth said.

And while such research-grade devices are currently cost-prohibitive for the average consumer, more rudimentary fNIRS headsets have already hit the market. Although these devices provide far lower resolution than would be required for Huth and Tang’s decoder to work effectively, the technology is continually improving, and Huth believes it is likely that an affordable, wearable fNIRS device will someday provide high enough resolution to be used with the decoder. In fact, he is currently teaming up with scientists at Washington University to research the development of such a device.

Even comparatively primitive BCI headsets can raise pointed ethical questions when released to the public. Devices that rely on electroencephalography, or EEG, a commonplace method of measuring brain activity by detecting electrical signals, have now become widely available — and in some cases have raised alarm. In 2019, a school in Jinhua, China, drew criticism after trialing EEG headbands that monitored the concentration levels of its pupils. (The students were encouraged to compete to see who concentrated most effectively, and reports were sent to their parents.) Similarly, in 2018 the South China Morning Post reported that dozens of factories and businesses had begun using “brain surveillance devices” to monitor workers’ emotions, in the hopes of increasing productivity and improving safety. The devices “caused some discomfort and resistance in the beginning,” Jin Jia, then a brain scientist at Ningbo University, told the reporter. “After a while, they got used to the device.”

But the primary problem with even low-resolution devices is that scientists are only just beginning to understand how information is actually encoded in brain data. In the future, powerful new decoding algorithms could discover that even raw, low-resolution EEG data contains a wealth of information about a person’s mental state at the time of collection. Consequently, nobody can definitively know what they are giving away when they allow companies to collect information from their brains.

Huth and Tang concluded that brain data, therefore, should be closely guarded, especially in the realm of consumer products. In an article on Medium from last April, Tang wrote that “decoding technology is continually improving, and the information that could be decoded from a brain scan a year from now may be very different from what can be decoded today. It is crucial that companies are transparent about what they intend to do with brain data and take measures to ensure that brain data is carefully protected.” (Yuste said the Neurorights Foundation recently surveyed the user agreements of 30 neurotech companies and found that all of them claim ownership of users’ brain data — and most assert the right to sell that data to third parties. [emphases mine]) Despite these concerns, however, Huth and Tang maintained that the potential benefits of these technologies outweighed their risks, provided the proper guardrails [emphasis mine] were put in place.

It would seem the first guardrails are being set up in South America (from Reveley’s January 18, 2024 article), Note: Links have been removed,

On a hot summer night in 2019, Yuste sat in the courtyard of an adobe hotel in the north of Chile with his close friend, the prominent Chilean doctor and then-senator Guido Girardi, observing the vast, luminous skies of the Atacama Desert and discussing, as they often did, the world of tomorrow. Girardi, who every year organizes the Congreso Futuro, Latin America’s preeminent science and technology event, had long been intrigued by the accelerating advance of technology and its paradigm-shifting impact on society — “living in the world at the speed of light,” as he called it. Yuste had been a frequent speaker at the conference, and the two men shared a conviction that scientists were birthing technologies powerful enough to disrupt the very notion of what it meant to be human.

Around midnight, as Yuste finished his pisco sour, Girardi made an intriguing proposal: What if they worked together to pass an amendment to Chile’s constitution, one that would enshrine protections for mental privacy as an inviolable right of every Chilean? It was an ambitious idea, but Girardi had experience moving bold pieces of legislation through the senate; years earlier he had spearheaded Chile’s famous Food Labeling and Advertising Law, which required companies to affix health warning labels on junk food. (The law has since inspired dozens of countries to pursue similar legislation.) With BCI, here was another chance to be a trailblazer. “I said to Rafael, ‘Well, why don’t we create the first neuro data protection law?’” Girardi recalled. Yuste readily agreed.

… Girardi led the political push, promoting a piece of legislation that would amend Chile’s constitution to protect mental privacy. The effort found surprising purchase across the political spectrum, a remarkable feat in a country famous for its political polarization. In 2021, Chile’s congress unanimously passed the constitutional amendment, which Piñera [Sebastián Piñera] swiftly signed into law. (A second piece of legislation, which would establish a regulatory framework for neurotechnology, is currently under consideration by Chile’s congress.) “There was no divide between the left or right,” recalled Girardi. “This was maybe the only law in Chile that was approved by unanimous vote.” Chile, then, had become the first country in the world to enshrine “neurorights” in its legal code.

Even before the passage of the Chilean constitutional amendment, Yuste had begun meeting regularly with Jared Genser, an international human rights lawyer who had represented such high-profile clients as Desmond Tutu, Liu Xiaobo, and Aung San Suu Kyi. (The New York Times Magazine once referred to Genser as “the extractor” for his work with political prisoners.) Yuste was seeking guidance on how to develop an international legal framework to protect neurorights, and Genser, though he had just a cursory knowledge of neurotechnology, was immediately captivated by the topic. “It’s fair to say he blew my mind in the first hour of discussion,” recalled Genser. Soon thereafter, Yuste, Genser, and a private-sector entrepreneur named Jamie Daves launched the Neurorights Foundation, a nonprofit whose first goal, according to its website, is “to protect the human rights of all people from the potential misuse or abuse of neurotechnology.”

To accomplish this, the organization has sought to engage all levels of society, from the United Nations and regional governing bodies like the Organization of American States, down to national governments, the tech industry, scientists, and the public at large. Such a wide-ranging approach, said Genser, “is perhaps insanity on our part, or grandiosity. But nonetheless, you know, it’s definitely the Wild West as it comes to talking about these issues globally, because so few people know about where things are, where they’re heading, and what is necessary.”

This general lack of knowledge about neurotech, in all strata of society, has largely placed Yuste in the role of global educator — he has met several times with U.N. Secretary-General António Guterres, for example, to discuss the potential dangers of emerging neurotech. And these efforts are starting to yield results. Guterres’s 2021 report, “Our Common Agenda,” which sets forth goals for future international cooperation, urges “updating or clarifying our application of human rights frameworks and standards to address frontier issues,” such as “neuro-technology.” Genser attributes the inclusion of this language in the report to Yuste’s advocacy efforts.

But updating international human rights law is difficult, and even within the Neurorights Foundation there are differences of opinion regarding the most effective approach. For Yuste, the ideal solution would be the creation of a new international agency, akin to the International Atomic Energy Agency — but for neurorights. “My dream would be to have an international convention about neurotechnology, just like we had one about atomic energy and about certain things, with its own treaty,” he said. “And maybe an agency that would essentially supervise the world’s efforts in neurotechnology.”

Genser, however, believes that a new treaty is unnecessary, and that neurorights can be codified most effectively by extending interpretation of existing international human rights law to include them. The International Covenant of Civil and Political Rights, for example, already ensures the general right to privacy, and an updated interpretation of the law could conceivably clarify that that clause extends to mental privacy as well.

There is no need for immediate panic (from Reveley’s January 18, 2024 article),

… while Yuste and the others continue to grapple with the complexities of international and national law, Huth and Tang have found that, for their decoder at least, the greatest privacy guardrails come not from external institutions but rather from something much closer to home — the human mind itself. Following the initial success of their decoder, as the pair read widely about the ethical implications of such a technology, they began to think of ways to assess the boundaries of the decoder’s capabilities. “We wanted to test a couple kind of principles of mental privacy,” said Huth. Simply put, they wanted to know if the decoder could be resisted.

In late 2021, the scientists began to run new experiments. First, they were curious if an algorithm trained on one person could be used on another. They found that it could not — the decoder’s efficacy depended on many hours of individualized training. Next, they tested whether the decoder could be thrown off simply by refusing to cooperate with it. Instead of focusing on the story that was playing through their headphones while inside the fMRI machine, participants were asked to complete other mental tasks, such as naming random animals, or telling a different story in their head. “Both of those rendered it completely unusable,” Huth said. “We didn’t decode the story they were listening to, and we couldn’t decode anything about what they were thinking either.”

Given how quickly this field of research is progressing, it seems like a good idea to increase efforts to establish neurorights (from Reveley’s January 18, 2024 article),

For Yuste, however, technologies like Huth and Tang’s decoder may only mark the beginning of a mind-boggling new chapter in human history, one in which the line between human brains and computers will be radically redrawn — or erased completely. A future is conceivable, he said, where humans and computers fuse permanently, leading to the emergence of technologically augmented cyborgs. “When this tsunami hits us I would say it’s not likely it’s for sure that humans will end up transforming themselves — ourselves — into maybe a hybrid species,” Yuste said. He is now focused on preparing for this future.

In the last several years, Yuste has traveled to multiple countries, meeting with a wide assortment of politicians, supreme court justices, U.N. committee members, and heads of state. And his advocacy is beginning to yield results. In August, Mexico began considering a constitutional reform that would establish the right to mental privacy. Brazil is currently considering a similar proposal, while Spain, Argentina, and Uruguay have also expressed interest, as has the European Union. In September [2023], neurorights were officially incorporated into Mexico’s digital rights charter, while in Chile, a landmark Supreme Court ruling found that Emotiv Inc, a company that makes a wearable EEG headset, violated Chile’s newly minted mental privacy law. That suit was brought by Yuste’s friend and collaborator, Guido Girardi.

“This is something that we should take seriously,” he [Huth] said. “Because even if it’s rudimentary right now, where is that going to be in five years? What was possible five years ago? What’s possible now? Where’s it gonna be in five years? Where’s it gonna be in 10 years? I think the range of reasonable possibilities includes things that are — I don’t want to say like scary enough — but like dystopian enough that I think it’s certainly a time for us to think about this.”

You can find The Neurorights Foundation here and/or read Reveley’s January 18, 2024 article on salon.com or as originally published January 3, 2024 on Undark. Finally, thank you for the article, Fletcher Reveley!

Using natural proteins to grow gold nanoclusters for hybrid bionanomaterials

While there’s a January 10, 2022 news item on Nanowerk, the research being announced was made available online in the Fall of 2021 and is now available in print,

Gold nanoclusters are groups of a few gold atoms with interesting photoluminescent properties. The features of gold nanoclusters depend not only on their structure, but their size and also by the ligands coordinated to them. These inorganic nanomaterials have been used in sensing, biomedicine and optics and their coordination with biomolecules can endow multiple capabilities in biological media.

A research collaboration between the groups of Dr. Juan Cabanillas, Research Professor at IMDEA Nanociencia and Dr. Aitziber L. Cortajarena, Ikerbasque Professor and Principal Investigator at CIC biomaGUNE have explored the use of natural proteins to grow gold nanoclusters, resulting in hybrid bionanomaterials with tunable photoluminescent properties and with a plethora of potential applications.

A January 10, 2022 IMDEA Nanociencia press release, which originated the news item, provides more technical detail about the research,

The nanoclusters –with less than 2 nm in size- differentiate from larger nanoparticles (plasmonic) since they present discrete energy levels coupled optically. The groups of amino acids within the proteins coordinate the gold atoms and allow the groups to be arranged around the gold nanocluster, facilitating the stabilization and adding an extra level of tailoring. These nanoclusters have interesting energy harvesting features. Since the discrete energy levels are optically coupled, the absorption of a photon leads to promotion of an electron to higher levels, which can trigger a photophysical process or a photochemical reaction.  

The results by Cabanillas and Cortajarena groups, published in Advanced Optical Materials and Nano Letters, explore the origin of the photoluminescence in protein-designed gold nanoclusters and shed light into the strong influence of environmental conditions on the nature of luminescence. Nanocluster capping by two types of amino acids (histidine and cysteine) allow for changing the emission spectral range from blue to red, paving the way to tune the optical properties by an appropriate ligand choice. The nature of emission is also changed with capping, from fluorescence to phosphorescence, respectively. The synergistic protein-nanocluster effects on emission are still not clear, and the groups at IMDEA Nanociencia and CIC biomaGUNE are working to elucidate the mechanisms behind. There are potential applications for the aforementioned nanoclusters, in solid state as active medium in laser cavities. Optical gain properties from these nanoclusters are yet to be demonstrated, which could pave the way to a new generation of potentially interesting laser devices. As the combination of gold plus proteins is potentially biocompatible, many potential applications in biomedicine can also be envisaged.

A related publication of the groups in Nano Letters demonstrates that the insertion of tryptophans, amino acids with high electron density, in the vicinity of the nanocluster boosts its photoluminescence quantum efficiency up to 40% in some cases, values relevant for solid state light emission applications. Researchers also observed an antenna effect: the tryptophans can absorb light in a discrete manner and transfer the energy to the cluster. This effect has interest for energy harvesting and for sensing purposes as well.

The proteins through the biocapping enable the synthesis of the nanoclusters and largely improve their quantum efficiency. “The photoluminescence quantum efficiency is largely improved when using the biocapping” Dr. Cabanillas says. He believes this research work means “a new field opening for the tuning of optical properties of nanoclusters through protein engineering, and much work is ahead for the understanding of the amplification mechanism”. Dr. Cortajarena emphasizes “we have already demonstrated the great potential of engineered photoluminescent protein-nanocluster in biomedical and technological fields, and understanding the fundamental emission mechanisms is pivotal for future applications“. A variety of further applications include biosensors, as the protein admits functionalization with recognition molecules, energy harvesting, imaging and photodynamic therapies. Further work is ahead this opening avenue for photophysics research.

This research is a collaboration led by Dr. Juan Cabanillas and Dr. Aitziber L. Cortajarena research groups at IMDEA Nanociencia and CIC biomaGUNE, with contributions from researchers at the Diamond Light Source Ltd. [synchrotron] and DIPC. It has been cofounded by the projects AMAPOLA, NMAT2D, FULMATEN, Atracción de Talento from Comunidad de Madrid and the Severo Ochoa Centre of Excellence award to IMDEA Nanociencia. CIC biomaGUNE acknowledges support by the projects ERC-ProNANO, ERC-NIMM, ProTOOLs and the Maria de Maeztu Units of Excellence Programme.

Here are links to and citations for the papers,

Tuning the Optical Properties of Au Nanoclusters by Designed Proteins by Elena Lopez-Martinez, Diego Gianolio, Saül Garcia-Orrit, Victor Vega-Mayoral, Juan Cabanillas-Gonzalez, Carlos Sanchez-Cano, Aitziber L. Cortajarena. Advanced Optical Materials Volume 10, Issue 1 January 4, 2022 2101332 DOI: https://doi.org/10.1002/adom.202101332 First published: 31 October 2021

This paper is open access.

Boosting the Photoluminescent Properties of Protein-Stabilized Gold Nanoclusters through Protein Engineering by Antonio Aires, Ahmad Sousaraei, Marco Möller, Juan Cabanillas-Gonzalez, and Aitziber L. Cortajarena. Nano Lett. 2021, 21, 21, 9347–9353 DOI: https://doi.org/10.1021/acs.nanolett.1c03768 Publication Date: November 1, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

Not being familiar with either of the two research institutions mentioned in the press release, I did a little digging.

Here’s a little information about IMDEA Nanociencia (IMDEA Nanoscience Institute), from its Wikipedia entry, Note: All links have been removed,

IMDEA Nanoscience Institute is a private non-profit foundation within the IMDEA Institutes network, created in 2006-2007 as a result of collaboration agreement between the Community of Madrid and Spanish Ministry of Education and Science. The foundation manages IMDEA-Nanoscience Institute,[1] a scientific centre dedicated to front-line research in nanoscience, nanotechnology and molecular design and aiming at transferable innovations and close contact with industries. IMDEA Nanoscience is a member of the Campus of International excellence, a consortium of research institutes promoted by the Autonomous University of Madrid and Spanish National Research Council (UAM/CSIC).[2]

As for CIC biomaGUNE, here’s more from its institutional profile on the science.eus website,

The Centre for Cooperative Research in Biomaterials-CIC biomaGUNE, located in San Sebastian (Spain), was officially opened in December 2006. CIC biomaGUNE is a non-profit research organization created to promote scientific research and technological innovation at the highest levels in the Basque Country following the BioBasque policy in order to create a new business sector based on biosciences. Established by the Department of Industry, Technology & Innovation of the Government of the Autonomous Community of the Basque Country, CIC biomaGUNE constitutes one of the Centres of the CIC network, the largest Basque Country research network on specific strategic areas, having the mission to contribute to the economical and social development of the country through the generation of knowledge and speeding up the process that leads to technological innovation.

Science policy updates (INGSA in Canada and SCWIST)

I had just posted my Aug. 30, 2021 piece (4th International Conference on Science Advice to Governments (INGSA2021) August 30 – September 2, 2021) when the organization issued a news release, which was partially embargoed. By the time this is published (after 8 am ET on Wednesday, Sept. 1, 2021), the embargo will have lifted and i can announce that Rémi Quirion, Chief Scientist of Québec (Canada), has been selected to replace Sir Peter Gluckman (New Zealand) as President of INGSA.

Here’s the whole August 30, 2021 International Network for Government Science Advice (INGSA) news release on EurekAlert, Note: This looks like a direct translation from a French language news release, which may account for some unusual word choices and turns of phrase,

What? 4th International Conference on Science Advice to Governments, INGSA2021.

Where? Palais des Congrès de Montréal, Québec, Canada and online at www.ingsa2021.org

When? 30 August – 2 September, 2021.

CONTEXT: The largest ever independent gathering of interest groups, thought-leaders, science advisors to governments and global institutions, researchers, academics, communicators and diplomats is taking place in Montreal and online. Organized by Prof Rémi Quirion, Chief Scientist of Québec, speakers from over 50 countries[1] from Brazil to Burkina Faso and from Ireland to Indonesia, plus over 2000 delegates from over 130 countries, will spotlight what is really at stake in the relationship between science and policy-making, both during crises and within our daily lives. From the air we breathe, the food we eat and the cars we drive, to the medical treatments or the vaccines we take, and the education we provide to children, this relationship, and the decisions it can influence, matter immensely.  

Prof Rémi Quirion, Conference Organizer, Chief Scientist of Québec and incoming President of INGSA added: “For those of us who believe wholeheartedly in evidence and the integrity of science, the past 18 months have been challenging. Information, correct and incorrect, can spread like a virus. The importance of open science and access to data to inform our UN sustainable development goals discussions or domestically as we strengthen the role of cities and municipalities, has never been more critical. I have no doubt that this transparent and honest platform led from Montréal will act as a carrier-wave for greater engagement”.

Chief Science Advisor of Canada and Conference co-organizer, Dr Mona Nemer, stated that: “Rapid scientific advances in managing the Covid pandemic have generated enormous public interest in evidence-based decision making. This attention comes with high expectations and an obligation to achieve results. Overcoming the current health crisis and future challenges will require global coordination in science advice, and INGSA is well positioned to carry out this important work. Canada and our international peers can benefit greatly from this collaboration.”

Sir Peter Gluckman, founding Chair of INGSA stated that: “This is a timely conference as we are at a turning point not just in the pandemic, but globally in our management of longer-term challenges that affect us all. INGSA has helped build and elevate open and ongoing public and policy dialogue about the role of robust evidence in sound policy making”.

He added that: “Issues that were considered marginal seven years ago when the network was created are today rightly seen as central to our social, environmental and economic wellbeing. The pandemic highlights the strengths and weaknesses of evidence-based policy-making at all levels of governance. Operating on all continents, INGSA demonstrates the value of a well-networked community of emerging and experienced practitioners and academics, from countries at all levels of development. Learning from each other, we can help bring scientific evidence more centrally into policy-making. INGSA has achieved much since its formation in 2014, but the energy shown in this meeting demonstrates our potential to do so much more”.

Held previously in Auckland 2014, Brussels 2016, Tokyo 2018 and delayed for one year due to Covid, the advantage of the new hybrid and virtual format is that organizers have been able to involve more speakers, broaden the thematic scope and offer the conference as free to view online, reaching thousands more people. Examining the complex interactions between scientists, public policy and diplomatic relations at local, national, regional and international levels, especially in times of crisis, the overarching INGSA2021 theme is: “Build back wiser: knowledge, policy & publics in dialogue”.

The first three days will scrutinize everything from concrete case-studies outlining successes and failures in our advisory systems to how digital technologies and AI are reshaping the profession itself. The final day targets how expertize and action in the cultural context of the French-speaking world is encouraging partnerships and contributing to economic and social development. A highlight of the conference is the 2 September announcement of a new ‘Francophonie Science Advisory Network’.       

Prof. Salim Abdool Karim, a member of the World Health Organization’s Science Council, and the face of South Africa’s Covid-19 science, speaking in the opening plenary outlined that: “As a past anti-apartheid activist now providing scientific advice to policy-makers, I have learnt that science and politics share common features. Both operate at the boundaries of knowledge and uncertainty, but approach problems differently. We scientists constantly question and challenge our assumptions, constantly searching for empiric evidence to determine the best options. In contrast, politicians are most often guided by the needs or demands of voters and constituencies, and by ideology”.

He added: “What is changing is that grass-roots citizens worldwide are no longer ill-informed and passive bystanders. And they are rightfully demanding greater transparency and accountability. This has brought the complex contradictions between evidence and ideology into the public eye. Covid-19 is not just a disease, its social fabric exemplifies humanity’s interdependence in slowing global spread and preventing new viral mutations through global vaccine equity. This starkly highlights the fault-lines between the rich and poor countries, especially the maldistribution of life-saving public health goods like vaccines. I will explore some of the key lessons from Covid-19 to guide a better response to the next pandemic”.

Speaking on a panel analysing different advisory models, Prof. Mark Ferguson, Chair of the European Innovation Council’s Advisory Board and Chief Science Advisor to the Government of Ireland, sounded a note of optimism and caution in stating that: “Around the world, many scientists have become public celebrities as citizens engage with science like never before. Every country has a new, much followed advisory body. With that comes tremendous opportunities to advance the status of science and the funding of scientific research. On the flipside, my view is that we must also be mindful of the threat of science and scientists being viewed as a political force”.

Strength in numbers

What makes the 4th edition of this biennial event stand out is the perhaps never-before assembled range of speakers from all continents working at the boundary between science, society and policy willing to make their voices heard. In a truly ‘Olympics’ approach to getting all stakeholders on-board, organisers succeeded in involving, amongst others, the UN Office for Disaster Risk Reduction, the United Nations Development Programme, UNESCO and the OECD. The in-house science services of the European Commission and Parliament, plus many country-specific science advisors also feature prominently.

As organisers foster informed debate, we get a rare glimpse inside the science advisory worlds of the Comprehensive Nuclear Test Ban Treaty Organisation, the World Economic Forum and the Global Young Academy to name a few. From Canadian doctors, educators and entrepreneurs and charitable foundations like the Welcome Trust, to Science Europe and media organisations, the programme is rich in its diversity. The International Organisation of the Francophonie and a keynote address by H.E. Laurent Fabius, President of the Constitutional Council of the French Republic are just examples of two major draws on the final day dedicated to spotlighting advisory groups working through French. 

INGSA’s Elections: New Canadian President and Three Vice Presidents from Chile, Ethiopia, UK

The International Network for Government Science Advice has recently undertaken a series of internal reforms intended to better equip it to respond to the growing demands for support from its international partners, while realising the project proposals and ideas of its members.

Part of these reforms included the election in June, 2021 of a new President replacing Sir Peter Gluckman (2014 – 2021) and the creation of three new Vice President roles.

These results will be announced at 13h15 on Wednesday, 1st September during a special conference plenary and awards ceremony. While noting the election results below, media are asked to respect this embargo.

Professor Rémi Quirion, Chief Scientist of Québec (Canada), replaces Sir Peter Gluckman (New Zealand) as President of INGSA.
 

Professor Claire Craig (United Kingdom), CBE, Provost of Queen’s College Oxford and a member of the UK government’s AI Council, has been elected by members as the inaugural Vice President for Evidence.
 

Professor Binyam Sisay Mendisu (Egypt), PhD, Lecture at the University of Addis Ababa and Programme Advisor, UNESCO Institute for Building Capacity in Africa, has been elected by members as the inaugural Vice President for Capacity Building.
 

Professor Soledad Quiroz Valenzuela (Chile), Science Advisor on Climate Change to the Ministry of Science, Technology, Knowledge and Innovation of the government of Chile, has been elected by members as the Vice President for Policy.

Satellite Events: From 7 – 9 September, as part of INGSA2021, the conference is partnering with local,  national and international organisations to ignite further conversations about the science/policy/society interface. Six satellite events are planned to cover everything from climate science advice and energy policy, open science and publishing during a crisis, to the politicisation of science and pre-school scientific education. International delegates are equally encouraged to join in online. 

About INGSA: Founded in 2014 with regional chapters in Africa, Asia and Latin America and the Caribbean, INGSA has quicky established an important reputation as aa collaborative platform for policy exchange, capacity building and research across diverse global science advisory organisations and national systems. Currently, over 5000 individuals and institutions are listed as members. Science communicators and members of the media are warmly welcomed to join.

As the body of work detailed on its website shows (www.ingsa.org) through workshops, conferences and a growing catalogue of tools and guidance, the network aims to enhance the global science-policy interface to improve the potential for evidence-informed policy formation at sub-national, national and transnational levels. INGSA operates as an affiliated body of the International Science Council which acts as trustee of INGSA funds and hosts its governance committee. INGSA’s secretariat is based in Koi Tū: The Centre for Informed Futures at the University of Auckland in New Zealand.

Conference Programme: 4th International Conference on Science Advice to Government (ingsa2021.org)

Newly released compendium of Speaker Viewpoints: Download Essays From The Cutting Edge Of Science Advice – Viewpoints

[1] Argentina, Australia, Austria, Barbados, Belgium, Benin, Brazil, Burkina Faso, Cameroon, Canada, Chad, Colombia, Costa Rica, Côte D’Ivoire, Denmark, Estonia, Finland, France, Germany, Hong Kong, Indonesia, Ireland, Japan, Lebanon, Luxembourg, Malaysia, Mexico, Morocco, Netherlands, New Zealand, Pakistan, Papua New Guinea, Rwanda, Senegal, Singapore, Slovakia, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Thailand, UK, USA. 

Society for Canadian Women in Science and Technology (SCWIST)

As noted earlier this year in my January 28, 2021 posting, it’s SCWIST’s 40th anniversary and the organization is celebrating with a number of initiatives, here are some of the latest including as talk on science policy (from the August 2021 newsletter received via email),

SCWIST “STEM Forward Project”
Receives Federal Funding

SCWIST’s “STEM Forward for Economic Prosperity” project proposal was among 237 projects across the country to receive funding from the $100 million Feminist Response Recovery Fund of the Government of Canada through the Women and Gender Equality Canada (WAGE) federal department.

Read more. 

iWIST and SCWIST Ink Affiliate MOU [memorandum of understanding]

Years in planning, the Island Women in Science and Technology (iWIST) of Victoria, British Columbia and SCWIST finally signed an Affiliate MOU (memorandum of understanding) on Aug 11, 2021.

The MOU strengthens our commitment to collaborate on advocacy (e.g. grants, policy and program changes at the Provincial and Federal level), events (networking, workshops, conferences), cross promotion ( event/ program promotion via digital media), and membership growth (discounts for iWIST members to join SCWIST and vice versa).

Dr. Khristine Carino, SCWIST President, travelled to Victoria to sign the MOU in person. She was invited as an honoured guest to the iWIST annual summer picnic by Claire Skillen, iWIST President. Khristine’s travel expenses were paid from her own personal funds.

Discovery Foundation x SBN x SCWIST Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape

The Discovery Foundation, Student Biotechnology Network, and Society for Canadian Women in Science and Technology are proud to bring you the first-ever “Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape”. 

The Business Mentorship Program aims to support historically underrepresented communities (BIPOC, Women, LGBTQIAS+ and more) in navigating the growth of the biotechnology industry. The program aims to foster relationships between individuals and professionals through networking and mentorship, providing education and training through workshops and seminars, and providing 1:1 consultation with industry leaders. Participants will be paired with mentors throughout the week and have the opportunity to deliver a pitch for the chance to win prizes at the annual Building Biotechnology Expo. 

This is a one week intensive program running from September 27th – October 1st, 2021 and is limited to 10 participants. Please apply early. 

Events

September 10

Art of Science and Policy-Making Go Together

Science and policy-making go together. Acuitas’ [emphasis mine] Molly Sung shares her journey and how more scientists need to engage in this important area.

September 23

Au-delà de l’apparence :

des femmes de courage et de résilience en STIM

Dans le cadre de la semaine de l’égalité des sexes au Canada, ce forum de la division québécoise de la Société pour les femmes canadiennes en science et technologie (la SCWIST) mettra en vedette quatre panélistes inspirantes avec des parcours variés qui étudient ou travaillent en science, technologie, ingénierie et mathématiques (STIM) au Québec. Ces femmes immigrantes ont laissé leurs proches et leurs pays d’origine pour venir au Québec et contribuer activement à la recherche scientifique québécoise. 

….

The ‘Art and Science Policy-Making Go Together’ talk seems to be aimed at persuasion and is not likely to offer any insider information as to how the BC life sciences effort is progressing. For a somewhat less rosy view of science and policy efforts, you can check out my August 23, 2021 posting, Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?; scroll down to ‘The BC biotech gorillas’ subhead for more about Acuitas and some of the other life sciences companies in British Columbia (BC).

For some insight into how competitive the scene is here in BC, you can see my August 20, 2021 posting (Getting erased from the mRNA/COVID-19 story) about Ian MacLachlan.

You can check out more at the SCWIST website and I’m not sure when the August issue will be placed there but they do have a Newsletter Archive.

4th International Conference on Science Advice to Governments (INGSA2021) August 30 – September 2, 2021

What I find most exciting about this conference is the range of countries being represented. At first glance, I’ve found Argentina, Thailand, Senegal, Ivory Coast, Costa Rica and more in a science meeting being held in Canada. Thank you to the organizers and to the organization International Network for Government Science Advice (INGSA)

As I’ve noted many times here in discussing the science advice we (Canadians) get through the Council of Canadian Academies (CCA), there’s far too much dependence on the same old, same old countries for international expertise. Let’s hope this meeting changes things.

The conference (with the theme Build Back Wiser: Knowledge, Policy and Publics in Dialogue) started on Monday, August 30, 2021 and is set to run for four days in Montréal, Québec. and as an online event The Premier of Québec, François Legault, and Mayor of Montréal, Valérie Plante (along with Peter Gluckman, Chair of INGSA and Rémi Quirion, Chief Scientist of Québec; this is the only province with a chief scientist) are there to welcome those who are present in person.

You can find a PDF of the four day programme here or go to the INGSA 2021 website for the programme and more. Here’s a sample from the programme of what excited me, from Day 1 (August 30, 2021),

8:45 | Plenary | Roundtable: Reflections from Covid-19: Where to from here?

Moderator:
Mona Nemer – Chief Science Advisor of Canada

Speakers:
Joanne Liu – Professor, School of Population and Global Health, McGill University, Quebec, Canada
Chor Pharn Lee – Principal Foresight Strategist at Centre for Strategic Futures, Prime Minister’s Office, Singapore
Andrea Ammon – Director of the European Centre for Disease Prevention and Control, Sweden
Rafael Radi – President of the National Academy of Sciences; Coordinator of Scientific Honorary Advisory Group to the President on Covid-19, Uruguay

9:45 | Panel: Science advice during COVID-19: What factors made the difference?

Moderator:

Romain Murenzi – Executive Director, The World Academy of Sciences (TWAS), Italy

Speakers:

Stephen Quest – Director-General, European Commission’s Joint Research Centre (JRC), Belgium
Yuxi Zhang – Postdoctoral Research Fellow, Blavatnik School of Government, University of Oxford, United Kingdom
Amadou Sall – Director, Pasteur Institute of Dakar, Senegal
Inaya Rakhmani – Director, Asia Research Centre, Universitas Indonesia

One last excerpt, from Day 2 (August 31, 2021),

Studio Session | Panel: Science advice for complex risk assessment: dealing with complex, new, and interacting threats

Moderator:
Eeva Hellström – Senior Lead, Strategy and Foresight, Finnish Innovation Fund Sitra, Finland

Speakers:
Albert van Jaarsveld – Director General and Chief Executive Officer, International Institute for Applied Systems Analysis, Austria
Abdoulaye Gounou – Head, Benin’s Office for the Evaluation of Public Policies and Analysis of Government Action
Catherine Mei Ling Wong – Sociologist, LRF Institute for the Public Understanding of Risk, National University of Singapore
Andria Grosvenor – Deputy Executive Director (Ag), Caribbean Disaster Emergency Management Agency, Barbados

Studio Session | Innovations in Science Advice – Science Diplomacy driving evidence for policymaking

Moderator:
Mehrdad Hariri – CEO and President of the Canadian Science Policy Centre, Canada

Speakers:
Primal Silva – Canadian Food Inspection Agency’s Chief Science Operating Officer, Canada
Zakri bin Abdul Hamid – Chair of the South-East Asia Science Advice Network (SEA SAN); Pro-Chancellor of Multimedia University in Malaysia
Christian Arnault Emini – Senior Economic Adviser to the Prime Minister’s Office in Cameroon
Florence Gauzy Krieger and Sebastian Goers – RLS-Sciences Network [See more about RLS-Sciences below]
Elke Dall and Angela Schindler-Daniels – European Union Science Diplomacy Alliance
Alexis Roig – CEO, SciTech DiploHub – Barcelona Science and Technology Diplomacy Hub, Spain

RLS-Sciences (RLS-Sciences Network) has this description for itself on the About/Background webpage,

RLS-Sciences works under the framework of the Regional Leaders Summit. The Regional Leaders Summit (RLS) is a forum comprising seven regional governments (state, federal state, or provincial), which together represent approximately one hundred eighty million people across five continents, and a collective GDP of three trillion USD. The regions are: Bavaria (Germany), Georgia (USA), Québec (Canada), São Paulo (Brazil), Shandong (China), Upper Austria (Austria), and Western Cape (South Africa). Since 2002, the heads of government for these regions have met every two years for a political summit. These summits offer the RLS regions an opportunity for political dialogue.

Getting back to the main topic of this post, INGSA has some satellite events on offer, including this on Open Science,

Open Science: Science for the 21st century |

Science ouverte : la science au XXIe siècle

Thursday September 9, 2021; 11am-2pm EST |
Jeudi 9 septembre 2021, 11 h à 14 h (HNE).

Places Limited – Registrations Required – Click to register now

This event will be in English and French (using simultaneous translation)  | 
Cet événement se déroulera en anglais et en français (traduction simultanée)

In the past 18 months we have seen an unprecedented level of sharing as medical scientists worked collaboratively and shared data to find solutions to the COVID-19 pandemic. The pandemic has accelerated the ongoing cultural shift in research practices towards open science. 

This acceleration of the discovery/research process presents opportunities for institutions and governments to develop infrastructure, tools, funding, policies, and training to support, promote, and reward open science efforts. It also presents new opportunities to accelerate progress towards the UN Agenda 2030 Sustainable Development Goals through international scientific cooperation.

At the same time, it presents new challenges: rapid developments in open science often outpace national open science policies, funding, and infrastructure frameworks. Moreover, the development of international standard setting instruments, such as the future UNESCO Recommendation on Open Science, requires international harmonization of national policies, the establishment of frameworks to ensure equitable participation, and education, training, and professional development.

This 3-hour satellite event brings together international and national policy makers, funders, and experts in open science infrastructure to discuss these issues. 

The outcome of the satellite event will be a summary report with recommendations for open science policy alignment at institutional, national, and international levels.

The event will be hosted on an events platform, with simultaneous interpretation in English and French.  Participants will be able to choose which concurrent session they participate in upon registration. Registration is free but will be closed when capacity is reached.

This satellite event takes place in time for an interesting anniversary. The Montreal Neurological Institute (MNI), also known as Montreal Neuro, declared itself as Open Science in 2016, the first academic research institute (as far as we know) to do so in the world (see my January 22, 2016 posting for details about their open science initiative and my December 19, 2016 posting for more about their open science and their decision to not pursue patents for a five year period).

The Open Science satellite event is organized by:

The Canadian Commission for UNESCO [United Nations Educational, Scientific and Cultural Organization],

The Neuro (Montreal Neurological Institute-Hospital),

The Knowledge Equity Lab [Note: A University of Toronto initiative with Leslie Chan as director, this website is currently under maintenance]

That’s all folks (for now)!

Mite silk as the basis for a new nanobiomaterial

For the record, this is spider mite silk (I have many posts about spider silk and its possible applications on this blog; just search ‘spider silk’)..

The international collaborative team includes a Canadian university in combination with a Spanish university and a Serbian university. The composition of the team is one I haven’t seen here before. From a December 17, 2020 news item on phys.org (Note: A link has been removed),

An international team of researchers has developed a new nanomaterial from the silk produced by the Tetranychus lintearius mite. This nanomaterial has the ability to penetrate human cells without damaging them and, therefore, has “promising biomedical properties”.

The Nature Scientific Reports journal has published an article by an international scientific team led by Miodrag Grbiç, a researcher from the universities of La Rioja (Spain), Western Ontario (Canada) and Belgrade (Serbia), in its latest issue entitled “The silk of gorse spider mite Tetranychus lintearius represents a novel natural source of nanoparticles and biomaterials.”

In it, researchers from the Murcian Institute for Agricultural and Food Research and Development (IMIDA), the Barcelona Institute of Photonic Sciences, the University of Western Ontario (Canada), the University of Belgrade (Serbia) and the University of La Rioja describe the discovery and characterisation of this mite silk. They also demonstrate its great potential as a source of nanoparticles and biomaterials for medical and technological uses.

A December 17, 2020 Universidad de La Rioja press release (also on EurekAlert), which originated the news item, further explains the research,

The interest of this new material, which is more resistant than steel, ultra flexible, nano-sized, biodegradable, biocompatible and has an excellent ability to penetrate human cells without damaging them, lies in its natural character and its size (a thousand times smaller than human hair), which facilitates cell penetration.

These characteristics are ideal for use in pharmacology and biomedicine since it is biocompatible with organic tissues (stimulates cell proliferation without producing toxicity) and, in principle, biodegradable due to its protein structure (it does not produce residues).

Researcher Miodrag Grbi?, who heads the international group that has researched this mite silk, highlights “its enormous potential for biomedical applications, as thanks to its size it is able to easily penetrate both healthy and cancerous human cells”, which makes it ideal for transporting drugs in cancer therapies, as well as for the development of biosensors to detect pathogens and viruses.

THE ‘RIOJANO BUG’

Tetranychus lintearius is an endemic mite from the European Atlantic coast that feeds exclusively on gorse (Ulex europaeus). It is around 0.3 mm in size, making it smaller than the comma on a keyboard, while the strength of its silk is twice as high as standard spider silk.

It is a very rare species that has only been found so far in the municipality of Valgañón (La Rioja, Spain), in Sierra de la Demanda. It was located thanks to the collaboration of Rosario García, a botanist and former dean of the Faculty of Science and Technology at the University of La Rioja, which is why researchers call it “the Rioja bug” (“El Bicho Riojano”).

The resistance of the silk produced by Tetranychus lintearius is twice that of spider silk, a standard material used for this type of research, and stronger than steel. It also has advantages over the fibres secreted by the silkworm due to its higher Young’s modulus, its electrical charge and its smaller size. These characteristics, along with its lightness, make it a promising natural nanomaterial for technological uses.

This finding is the result of work carried out by the international group of researchers led by Miodrag Grbi?, who sequenced the genome of the red spider Tetranychus urticae in 2011, publishing the results in Nature: https://www.nature.com/articles/nature10640.

Unlike the red spider (Tetranychus urticae), the gorse mite (Tetranychus lintearius) produces a large amount of silk. It has been reared in the laboratories of the Department of Agriculture and Food of the University of La Rioja, under the care of Professor Ignacio Pérez Moreno, allowing research to continue. Red spider silk is difficult to handle and has a lower production rate.

Here’s a link to and a citation for the 2020 paper,

The silk of gorse spider mite Tetranychus lintearius represents a novel natural source of nanoparticles and biomaterials by Antonio Abel Lozano-Pérez, Ana Pagán, Vladimir Zhurov, Stephen D. Hudson, Jeffrey L. Hutter, Valerio Pruneri, Ignacio Pérez-Moreno, Vojislava Grbic’, José Luis Cenis, Miodrag Grbic’ & Salvador Aznar-Cervantes. Scientific Reports volume 10, Article number: 18471 (2020) DOI: https://doi.org/10.1038/s41598-020-74766-7 Published: 28 October 2020

This paper is open access.

Natural nanodiamonds found in the ocean

An Oct. 16, 2020 news item on phys.org announces research that contradicts a common belief about how diamonds are formed ,

Natural diamonds can form through low pressure and temperature geological processes on Earth, as stated in an article published in the journal Geochemical Perspectives Letters. The newfound mechanism, far from the classic view on the formation of diamonds under ultra-high pressure, is confirmed in the study, which draws on the participation of experts from the Mineral Resources Research Group of the Faculty of Earth Sciences of the University of Barcelona (UB).

Other participants in the study are the experts from the Institute of Nanoscience and Nanotechnology of the UB (IN2UB), the University of Granada (UGR), the Andalusian Institute of Earth Sciences (IACT), the Institute of Ceramics and Glass (CSIC), and the National Autonomous University of Mexico (UNAM). The study has been carried out within the framework of the doctoral thesis carried out by researcher Núria Pujol-Solà (UB), first author of the article, under the supervision of researchers Joaquín A. Proenza (UB) and Antonio García-Casco (UGR).

An Oct. 9, 2020 University of Barcelona (UB) press release (also on EurekAlert but published Oct. 16, 2020), which originated the news item, further explains the research,

A symbol of luxury and richness, the diamond (from the Greek αδ?μας, “invincible”) is the most valuable gem and the toughest mineral (value of 10 in Mohs scale). It formed by chemically pure carbon, and according to the traditional hypothesis, it crystalizes the cubic system under ultra-high-pressure conditions at great depths in the Earth’s mantle.

The study confirms for the first time the formation of the natural diamond under low pressures in oceanic rocks in the Moa-Baracoa Ophiolitic Massif, in Cuba. This great geological structure is in the north-eastern side of the island and is formed by ophiolites, representative rocks of the Oceanic lithosphere.

These oceanic rocks were placed on the continental edge of North America during the collision of the Caribbean oceanic island arch, between 70 and 40 million years ago. “During its formation in the abysmal marine seafloors, in the cretaceous period -about 120 million years ago-, these oceanic rocks underwent mineral alterations due to marine water infiltrations, a process that led to small fluid inclusions inside the olivine, the most common mineral in this kind of rock”, note Joaquín A. Proenza, member of the Department of Mineralogy, Petrology and Applied Geology at the UB and principal researcher of the project in which the article appears, and Antonio García-Casco, from the Department of Mineralogy and Petrology of the UGR.

“These fluid inclusions contain nanodiamonds -of about 200 and 300 nanometres-, apart from serpentine, magnetite, metallic silicon and pure methane. All these materials have formed under low pressure (<200 MPa) and temperature (<350 ºC), during the olivine alteration that contains fluid inclusions”, add the researchers.

“Therefore, this is the first description of ophiolitic diamond formed under low pressure and temperature, whose formation under natural processes does not bear any doubts”, they highlight.

Diamonds formed under low pressure and temperature

It is notable to bear in mind that the team published, in 2019, a first description of the formation of ophiolitic diamonds under low pressure conditions (Geology), a study carried out as part of the doctoral thesis by the UB researcher Júlia Farré de Pablo, supervised by Joaquín A. Proenza and the UGR professor José María González Jiménez. This study was highly debated on among the members of the international scientific community.

In the published article in Geochemical Perspectives Letters, a journal of the European Association of Geochemistry, the experts detected the nanodiamonds in small fluid inclusions under the surface of the samples. The finding was carried out by using the confocal Raman maps and using focused ion beams (FIB), combined with transmission electron microscopy (FIB-TEM). This is how they could confirm the presence of the diamond in the depth of the sample, and therefore, the formation of a natural diamond under low pressure in exhumed oceanic rocks. The Scientific and Technological Centres of the UB (CCiTUB) have taken part in this study, among other infrastructures supporting the country.

In this case, the study focuses its debate on the validity of some geodynamic models that, based on the presence of ophiolite diamonds, imply circulation in the mantle and large-scale lithosphere recycling. For instance, the ophiolitic diamond was thought to reflect the passing of ophiolitic rocks over the deep earth’s mantle up to the transition area (210-660 km deep) before settling into a normal ophiolite formed under low pressure (~10 km deep).

According to the experts, the low state of oxidation in this geological system would explain the formation of nano-çdiamonds instead of graphite -which would be expected under physical and chemical formation conditions of fluid inclusions.

The study counted on the support from the former Ministry for Economy and Competitiveness (MINECO), the Ramón y Cajal Program and the EU European Regional Development Fund (ERDF).

The researchers have an image showing inclusions which contain nanodiamonds,

Caption: The fluid inclusions inside the olivine contain nanodiamonds, apart from serpentine, magnetite, metallic silicon and pure methane.. Credit: UNIVERSITY OF BARCELONA

Here`s a link to and a citation for the paper,

Diamond forms during low pressure serpentinisation of oceanic lithosphere by
N. Pujol-Solà, A. Garcia-Casco, J.A. Proenza, J.M. González-Jiménez, A. del Campo, V. Colás, À. Canals, A. Sánchez-Navas, J. Roqué-Rosell. Geochemical Perspectives Letters v15 DOI: 10.7185/geochemlet.2029 Published 10 September 2020

This paper is open access.

Nanodevices show (from the inside) how cells change

Embryo cells + nanodevices from University of Bath on Vimeo.

Caption: Five mouse embryos, each containing a nanodevice that is 22-millionths of a metre long. The film begins when the embryos are 2-hours old and continues for 5 hours. Each embryo is about 100-millionths of a metre in diameter. Credit: Professor Tony Perry

Fascinating, yes? As I often watch before reading the caption, these were mysterious grey blobs moving around was my first impression. Given the headline for the May 26, 2020 news item on ScienceDaily, I was expecting the squarish-shaped devices inside,

For the first time, scientists have introduced minuscule tracking devices directly into the interior of mammalian cells, giving an unprecedented peek into the processes that govern the beginning of development.

This work on one-cell embryos is set to shift our understanding of the mechanisms that underpin cellular behaviour in general, and may ultimately provide insights into what goes wrong in ageing and disease.

The research, led by Professor Tony Perry from the Department of Biology and Biochemistry at the University of Bath [UK], involved injecting a silicon-based nanodevice together with sperm into the egg cell of a mouse. The result was a healthy, fertilised egg containing a tracking device.

This image looks to have been enhanced with colour,

Fluorescence of an embryo containing a nanodevice. Courtesy: University of Bath

A May 25, 2020 University of Bath press release (also on EurekAlert but published May 26, 2020)

The tiny devices are a little like spiders, complete with eight highly flexible ‘legs’. The legs measure the ‘pulling and pushing’ forces exerted in the cell interior to a very high level of precision, thereby revealing the cellular forces at play and showing how intracellular matter rearranged itself over time.

The nanodevices are incredibly thin – similar to some of the cell’s structural components, and measuring 22 nanometres, making them approximately 100,000 times thinner than a pound coin. This means they have the flexibility to register the movement of the cell’s cytoplasm as the one-cell embryo embarks on its voyage towards becoming a two-cell embryo.

“This is the first glimpse of the physics of any cell on this scale from within,” said Professor Perry. “It’s the first time anyone has seen from the inside how cell material moves around and organises itself.”

WHY PROBE A CELL’S MECHANICAL BEHAVIOUR?

The activity within a cell determines how that cell functions, explains Professor Perry. “The behaviour of intracellular matter is probably as influential to cell behaviour as gene expression,” he said. Until now, however, this complex dance of cellular material has remained largely unstudied. As a result, scientists have been able to identify the elements that make up a cell, but not how the cell interior behaves as a whole.

“From studies in biology and embryology, we know about certain molecules and cellular phenomena, and we have woven this information into a reductionist narrative of how things work, but now this narrative is changing,” said Professor Perry. The narrative was written largely by biologists, who brought with them the questions and tools of biology. What was missing was physics. Physics asks about the forces driving a cell’s behaviour, and provides a top-down approach to finding the answer.

“We can now look at the cell as a whole, not just the nuts and bolts that make it.”

Mouse embryos were chosen for the study because of their relatively large size (they measure 100 microns, or 100-millionths of a metre, in diameter, compared to a regular cell which is only 10 microns [10-millionths of a metre] in diameter). This meant that inside each embryo, there was space for a tracking device.

The researchers made their measurements by examining video recordings taken through a microscope as the embryo developed. “Sometimes the devices were pitched and twisted by forces that were even greater than those inside muscle cells,” said Professor Perry. “At other times, the devices moved very little, showing the cell interior had become calm. There was nothing random about these processes – from the moment you have a one-cell embryo, everything is done in a predictable way. The physics is programmed.”

The results add to an emerging picture of biology that suggests material inside a living cell is not static, but instead changes its properties in a pre-ordained way as the cell performs its function or responds to the environment. The work may one day have implications for our understanding of how cells age or stop working as they should, which is what happens in disease.

The study is published this week in Nature Materials and involved a trans-disciplinary partnership between biologists, materials scientists and physicists based in the UK, Spain and the USA.

Here’s a link to and a citation for the paper,

Tracking intracellular forces and mechanical property changes in mouse one-cell embryo development by Marta Duch, Núria Torras, Maki Asami, Toru Suzuki, María Isabel Arjona, Rodrigo Gómez-Martínez, Matthew D. VerMilyea, Robert Castilla, José Antonio Plaza & Anthony C. F. Perry. Nature Materials (2020) DOI: https://doi.org/10.1038/s41563-020-0685-9 Published 25 May 2020

This paper is behind a paywall.