Category Archives: medicine

Apply for 2024 summer school at Canada’s Waterloo Institute for Sustainable Nanotechnology (deadline: April 28, 2024)

This call is for Canadian undergraduate students in STEM (science, technology, engineering, and mathematics), from the University of Waterloo’s 2024 WIN Summer School on Sustainable Nanotechnology webpage,

WIN is pleased to host a Summer School on Sustainable Nanotechnology at UWaterloo on June 19 – 21, 2024.

This Summer School is open to Undergraduate Students in STEM across Canada .

The WIN Summer School will offer lab and facilities tours in the QNC, and in-class lectures by WIN members, senior PhD students and post-doctoral fellows.

Open to undergraduate students across Canada in STEM!

Topic areas:

* Smart & Functional Materials
* Connected Devices
* Next Generation Energy Systems
* Therapeutics & Theranostics

The WIN Summer School curriculum will be aligned with the United Nations Sustainable Development Goals.

To learn more about last year’s summer school: https://uwaterloo.ca/institute-nanotechnology/news/wins-inaugural-summer-school-attracted-outstanding-students

Summer School Details

DatesJune 19 – 21, 2024
Application Due DateApril 28, 2024
LocationMike & Ophelia Lazaridis Quantum-Nano Centre (QNC) University of Waterloo
200 University Avenue West,
Waterloo, ON N2L 3G1
Notification of AcceptanceApril 2024
Application requirementsCanadian Ungeraduate Student in STEM Completed their first year of undergraduate studies
Application DetailsPlease fill out the Application form and include:  CV 1-page Research Statement Broad research interest in nanoscience and nanotechnology Alignment of your research interest with UN Sustainable Development Goals Your career goals to accomplish your research interests
Other DetailsSuccessful candidates will be provided: On-campus housing free of cost All meals  An honorarium of $500 to cover full/partial travel costs

Apply Now!

Check out the University of Waterloo’s 2024 WIN Summer School on Sustainable Nanotechnology webpage for a detailed daily agenda and more.

Finally, good luck!

Neuromodulation-Curious? May 11, 2024 free event in Vancouver (Canada) hosted by Canadian Neuromodulation Society and the International Neuromodulation Society (INS)

Before leaping into the event details, I’ve got some information about neuromodulation for anyone who’s not familiar with the term, there are two bits (not mutually exclusive). First, there’s this Wikipedia Neuromodulation essay, which focuses on the physiological process of neuromodulation. Second, there are the answers to Frequently Asked Questions (FAQs), specifically, What is neuromodulation? on the International Neuromodulation Society (INS) website, which pertain more closely to the information being offered at the upcoming event,

WHAT IS NEUROMODULATION?

Neuromodulation is technology that acts directly upon nerves. It is the alteration—or modulation—of nerve activity by delivering electrical or pharmaceutical agents directly to a target area.

Neuromodulation devices and treatments can be life changing. They affect every area of the body and treat nearly every disease or symptom from headaches to tremors to spinal cord damage to urinary incontinence. With such a broad therapeutic scope, and significant ongoing improvements in biotechnology, it is not surprising that neuromodulation is poised as a major growth industry for the next decade.

Most frequently, people think of neuromodulation in the context of chronic pain relief, the most common indication. However, there are a plethora of neuromodulation applications, such as deep brain stimulation (DBS) treatment for Parkinson’s disease, sacral nerve stimulation for pelvic disorders and incontinence, and spinal cord stimulation for ischemic disorders (angina, peripheral vascular disease).

In addition, neuromodulation devices can stimulate a response where there was previously none, as in the case of a cochlear implant restoring hearing in a deaf patient.

And for every existing neuromodulatory treatment, there are many more on the horizon. An emerging technology called BrainGate Neural Interface System has been used to analyze brain signals and translate those signals into cursor movements, allowing severely motor-impaired individuals an alternate “pathway” to control a computer with thought, and offers potential for one day restoring some degree of limb movement.

This April 9, 2024 International Neuromodulation Society (INS) news release on EurekAlert announces the May 11, 2024 free public event in Vancouver (Canada),

The Canadian Neuromodulation Society and the International Neuromodulation Society (INS) are delighted to announce a public education event, “Understanding Neuromodulation of the Brain and Spinal Cord”. 

This complimentary event is scheduled to take place at the Vancouver Convention Centre, East Building, on Saturday, May 11, from 13:30 to 18:00, during the 16th INS World Congress.

Aimed at patients, their families, and friends dealing with conditions such as chronic pain, Parkinson’s disease, and tremor, this event is also open to interested members of the public, media representatives, and professionals. 

This gathering comprises several lectures that pair scientifically and clinically substantiated insights with firsthand, real-world experiences. It provides a unique opportunity to learn directly from both local and international medical experts and patients about neuromodulation therapies. Neuromodulation treatments involve “altering nerve activity through the targeted delivery of electrical stimulation or chemical agents to specific neurological sites in the body” (Source: INS).

This event will be moderated by Dr. Christopher Honey, MD, DPhil, FRCPC, FACS, Professor & Head, Division of Neurosurgery at the University of British Columbia, as well as esteemed leader, clinician, author and INS Congress Chair.

“I am both delighted and honoured to chair this meeting. We have brought the world’s experts in neuromodulation and more than a thousand clinicians to Vancouver for the scientific meeting. The public lectures will provide background information on neuromodulation and allow our patients to give a first-hand review of their experience with the technology.” 

Event Highlights:

* Educational Sessions: A series of talks covering various aspects of neuromodulation, including its application for Parkinson’s Disease, tremor, dystonia, back & leg pain, neuropathic pain (CRPS and post-surgical), and angina and peripheral vascular disease.

* Patient Experiences: Hear firsthand accounts from patients who have benefited from neuromodulation therapies, providing insights into their journeys and outcomes.

* Interactive Q&A: Dedicated Q&A sessions will allow attendees to engage with experts, ask questions, and deepen their understanding of neuromodulation and its risks and benefits.

* Networking: Opportunities for attendees to connect with healthcare professionals, researchers and others interested in neuromodulation.

This event is particularly significant as it precedes the INS 16th World Congress on Neuromodulation, highlighting the importance of public education alongside scientific discourse. It underlines the commitment of both the Canadian Neuromodulation Society and INS to raising awareness about therapies that can significantly improve the quality of life for individuals with chronic conditions.

Registration Information:

Attendance is free of charge, but registration is required. Interested participants are encouraged to register early to secure their place at this informative session.

About the International Neuromodulation Society:

The International Neuromodulation Society (INS) is a global non-profit organization focused on the scientific development and awareness of neuromodulation. The INS is dedicated to promoting improved patient care through education, research, and advocacy in the field of neuromodulation. The Canadian Neuromodulation Society has been an established chapter of the INS since 2006. [You can find the Canadian Neuromodulation Society website here.]

Good luck getting a seat!

Detect lung cancer early by inhaling a nanosensor

The technology described in a January 5, 2024 news item on Nanowerk has not been tried in human clinical trials but early pre-clinical trial testing offers promise,

Using a new technology developed at MIT, diagnosing lung cancer could become as easy as inhaling nanoparticle sensors and then taking a urine test that reveals whether a tumor is present.

Key Takeaways

*This non-invasive approach may serve as an alternative or supplement to traditional CT scans, particularly beneficial in areas with limited access to advanced medical equipment.

*The technology focuses on detecting cancer-linked proteins in the lungs, with results obtainable through a simple paper test strip.

*Designed for early-stage lung cancer detection, the method has shown promise in animal models and may soon advance to human clinical trials.

*This innovation holds potential for significantly improving lung cancer screening and early detection, especially in low-resource settings.

A January 5, 2024 Massachusetts Institute of Technology (MIT) news release (also on EurkeAlert), which originated the news item, goes on to provide some technical details,

The new diagnostic is based on nanosensors that can be delivered by an inhaler or a nebulizer. If the sensors encounter cancer-linked proteins in the lungs, they produce a signal that accumulates in the urine, where it can be detected with a simple paper test strip.

This approach could potentially replace or supplement the current gold standard for diagnosing lung cancer, low-dose computed tomography (CT). It could have an especially significant impact in low- and middle-income countries that don’t have widespread availability of CT scanners, the researchers say.

“Around the world, cancer is going to become more and more prevalent in low- and middle-income countries. The epidemiology of lung cancer globally is that it’s driven by pollution and smoking, so we know that those are settings where accessibility to this kind of technology could have a big impact,” says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and of Electrical Engineering and Computer Science at MIT, and a member of MIT’s Koch Institute for Integrative Cancer Research and the Institute for Medical Engineering and Science.

Bhatia is the senior author of the paper, which appears today [January 5, 2024] in Science Advances. Qian Zhong, an MIT research scientist, and Edward Tan, a former MIT postdoc, are the lead authors of the study.

Inhalable particles

To help diagnose lung cancer as early as possible, the U.S. Preventive Services Task Force recommends that heavy smokers over the age of 50 undergo annual CT scans. However, not everyone in this target group receives these scans, and the high false-positive rate of the scans can lead to unnecessary, invasive tests.

Bhatia has spent the last decade developing nanosensors for use in diagnosing cancer and other diseases, and in this study, she and her colleagues explored the possibility of using them as a more accessible alternative to CT screening for lung cancer.

These sensors consist of polymer nanoparticles coated with a reporter, such as a DNA barcode, that is cleaved from the particle when the sensor encounters enzymes called proteases, which are often overactive in tumors. Those reporters eventually accumulate in the urine and are excreted from the body.

Previous versions of the sensors, which targeted other cancer sites such as the liver and ovaries, were designed to be given intravenously. For lung cancer diagnosis, the researchers wanted to create a version that could be inhaled, which could make it easier to deploy in lower resource settings.

“When we developed this technology, our goal was to provide a method that can detect cancer with high specificity and sensitivity, and also lower the threshold for accessibility, so that hopefully we can improve the resource disparity and inequity in early detection of lung cancer,” Zhong says.

To achieve that, the researchers created two formulations of their particles: a solution that can be aerosolized and delivered with a nebulizer, and a dry powder that can be delivered using an inhaler.

Once the particles reach the lungs, they are absorbed into the tissue, where they encounter any proteases that may be present. Human cells can express hundreds of different proteases, and some of them are overactive in tumors, where they help cancer cells to escape their original locations by cutting through proteins of the extracellular matrix. These cancerous proteases cleave DNA barcodes from the sensors, allowing the barcodes to circulate in the bloodstream until they are excreted in the urine.

In the earlier versions of this technology, the researchers used mass spectrometry to analyze the urine sample and detect DNA barcodes. However, mass spectrometry requires equipment that might not be available in low-resource areas, so for this version, the researchers created a lateral flow assay, which allows the barcodes to be detected using a paper test strip.

The researchers designed the strip to detect up to four different DNA barcodes, each of which indicates the presence of a different protease. No pre-treatment or processing of the urine sample is required, and the results can be read about 20 minutes after the sample is obtained.

“We were really pushing this assay to be point-of-care available in a low-resource setting, so the idea was to not do any sample processing, not do any amplification, just to be able to put the sample right on the paper and read it out in 20 minutes,” Bhatia says.

Accurate diagnosis

The researchers tested their diagnostic system in mice that are genetically engineered to develop lung tumors similar to those seen in humans. The sensors were administered 7.5 weeks after the tumors started to form, a time point that would likely correlate with stage 1 or 2 cancer in humans.

In their first set of experiments in the mice, the researchers measured the levels of 20 different sensors designed to detect different proteases. Using a machine learning algorithm to analyze those results, the researchers identified a combination of just four sensors that was predicted to give accurate diagnostic results. They then tested that combination in the mouse model and found that it could accurately detect early-stage lung tumors.

For use in humans, it’s possible that more sensors might be needed to make an accurate diagnosis, but that could be achieved by using multiple paper strips, each of which detects four different DNA barcodes, the researchers say.

The researchers now plan to analyze human biopsy samples to see if the sensor panels they are using would also work to detect human cancers. In the longer term, they hope to perform clinical trials in human patients. A company called Sunbird Bio has already run phase 1 trials on a similar sensor developed by Bhatia’s lab, for use in diagnosing liver cancer and a form of hepatitis known as nonalcoholic steatohepatitis (NASH).

In parts of the world where there is limited access to CT scanning, this technology could offer a dramatic improvement in lung cancer screening, especially since the results can be obtained during a single visit.

“The idea would be you come in and then you get an answer about whether you need a follow-up test or not, and we could get patients who have early lesions into the system so that they could get curative surgery or lifesaving medicines,” Bhatia says.

Here’s a link to and a citation for the paper,

Inhalable point-of-care urinary diagnostic platform by Qian Zhong, Edward K. W. Tan, Carmen Martin-Alonso, Tiziana Parisi, Liangliang Hao, Jesse D. Kirkpatrick, Tarek Fadel, Heather E. Fleming, Tyler Jacks, and Sangeeta N. Bhatia. Science Advances 5 Jan 2024 Vol 10, Issue 1 DOI: 10.1126/sciadv.adj9591

This paper is open access.

Sunbird Bio (the company mentioned in the news release) can be found here.

Collaborative research agreement (CRA) with McMaster University (Canada) for development of catheter coating

I don’t always do as good a job at covering the commercialization of emerging technologies as I’d like, so, this December 13, 2023 news item on Yahoo News was a welcome discovery,

Oakville, Ontario–(Newsfile Corp. – December 13, 2023) – FendX Technologies Inc. (CSE: FNDX) (OTCQB: FDXTF) (FSE: E8D) (the “Company” or “FendX“), a nanotechnology company developing surface protection coatings is pleased to announce it has entered into a Collaborative Research Agreement (“CRA“) dated December 12, 2023 with McMaster University (“McMaster“) which details the research and development plan to create a protective catheter coating using our nanotechnology licensed pursuant to the license agreement dated February 5, 2021, as amended, between the Company and McMaster.

Dr. Carolyn Myers, President and CEO of FendX, stated, “We are excited about the prospect of developing a coating for catheters using our nanotechnology which we believe will reduce catheter blockage caused by either blood clots or bacterial biofilms. Early work conducted at McMaster has demonstrated significant reduction in the adherence of both bacteria and blood which could potentially translate to reduced bacterial biofilm or blood clot formation. [emphasis mine] Our aim is to further this research to tackle the medical need to reduce catheter blockage rates, which can be costly and interfere with patient therapy. We anticipate the development of this coating formulation will also strengthen our overall intellectual property portfolio.”

The CRA outlines more fully the research and development work to be conducted by McMaster on behalf of FendX as well as a payment schedule for the maximum research funding requirements. The term of the CRA is for 24 months commencing on the effective date of December 1, 2023, unless terminated in accordance with the provisions of the CRA. In the first and second year, maximum research funding to McMaster will be $150,547 each year.

About FendX Technologies Inc.

FendX is a Canada-based nanotechnology company focused on developing products to make people’s lives safer by reducing the spread of pathogens. The Company is developing both film and spray products to protect surfaces from contamination. The lead product under development, REPELWRAP™ film, is a protective surface coating film that, due to its repelling properties, prevents the adhesion of pathogens and reduces their transmission on surfaces prone to contamination. The spray nanotechnology is a bifunctional spray coating being developed to reduce contamination on surfaces by repelling and killing pathogens. The Company is conducting research and development activities using its nanotechnology in collaboration with industry-leading partners, including McMaster University. The Company has an exclusive worldwide license to its technology and IP portfolio from McMaster, which encompass both film and spray coating nanotechnology formulations.

For more information, please visit https://fendxtech.com/ and the Company’s profile on SEDAR+ at www.sedarplus.ca.

Neither the Canadian Securities Exchange nor the Market Regulator (as that term is defined in the policies of the Canadian Securities Exchange) accepts responsibility for the adequacy or accuracy of this release.

Forward-Looking Statements

This news release contains certain forward-looking statements within the meaning of Canadian securities legislation, including with respect to: the plans of the Company; statements regarding the catheter coating development and anticipated benefits; the Company’s belief that the catheter coating could reduce catheter occlusions caused by either blood clots or bacterial biofilms; statements regarding strengthening the Company’s overall intellectual property portfolio; the Company’s belief that REPELWRAP™ will have applications in healthcare settings and other industries; and products under development and any pathogen reduction benefits related thereto. Although the Company believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are statements that are not historical facts; they are generally, but not always, identified by the words “expects,” “plans,” “anticipates,” “believes,” “intends,” “estimates,” “projects,” “aims,” “potential,” “goal,” “objective,” “prospective,” and similar expressions, or that events or conditions “will,” “would,” “may,” “can,” “could” or “should” occur, or are those statements, which, by their nature, refer to future events. The Company cautions that forward-looking statements are based on the beliefs, estimates and opinions of the Company’s management on the date the statements are made and involve several risks and uncertainties. Consequently, there can be no assurances that such statements will prove to be accurate and that actual results and future events could differ materially from those anticipated in such statements.

Important factors that could cause future results to differ materially from those anticipated in these forward-looking statements include: product candidates only being in formulation/reformulation stages; limited operating history; research and development activities; dependence on collaborative partners, licensors and others; effect of general economic and political conditions; and other risk factors set forth in the Company’s public filings which are available on SEDAR+ at www.sedarplus.ca. Accordingly, the reader is urged to refer to the Company’s such filings for a more complete discussion of such risk factors and their potential effects. Except to the extent required by applicable securities laws and the policies of the Canadian Securities Exchange, the Company undertakes no obligation to update these forward-looking statements if management’s beliefs, estimates or opinions, or other factors should change.

FendX offers next to no information about their technology or the proposed work with McMaster as seen in this excerpt from the Our Technology webpage on the FendX website,

Our patent-pending licensed nanotechnology works by combining a hierarchical wrinkled molecular structure with chemical functionalization to create nano-surfaces with repelling properties that prevent adhesion of bacteria, viruses and liquids.

Inspired by the water-resistant surface of the lotus leaf

Our nanotechnology causes both high surface tension (e.g., water) and low surface tension (e.g., oil) liquids to form droplets when they come in contact with the nano-surface.

The repelling properties of our nano-surfaces prevents adhesion of bacteria and viruses.

We believe our technology will have numerous applications and opportunities in healthcare and other industries.

That’s it. No technical details and not a single research study is cited.

While McMaster University doesn’t seem to have issued any news releases about their joint research effort with FendX, there are two research papers that I’m reasonably confident are relevant. From the Didar Lab Publications webpage, here are links and citation for both papers,

An omniphobic lubricant-infused coating produced by chemical vapor deposition of hydrophobic organosilanes attenuates clotting on catheter surfaces by Maryam Badv, Iqbal H. Jaffer, Jeffrey I. Weitz & Tohid F. Didar. Scientific Reports volume 7, Article number: 11639 (2017) DOI: https://doi.org/10.1038/s41598-017-12149-1 Published: 14 September 2017

This paper is open access.

Highly Stable Hierarchically Structured All-Polymeric Lubricant-Infused Films Prevent Thrombosis and Repel Multidrug-Resistant Pathogens by Elisabet Afonso, Fereshteh Bayat, Liane Ladouceur, Shadman Khan, Aránzazu Martínez-Gómez, Jeffrey I. Weitz, Zeinab Hosseinidoust, Pilar Tiemblo, Nuria García, and Tohid F. Didar. CS Appl. Mater. Interfaces 2022, 14, 48, 53535–53545 DOI: https://doi.org/10.1021/acsami.2c17309 Publication Date: November 22, 2022 Copyright © 2022 American Chemical Society

This paper is behind a paywall.

Better vaccines for park producers?

From a February 27, 2024 Canadian Light Source (CLS) news release (also received via email) by Erin Matthews,

A long-term, international collaboration between researchers at the University of Manitoba and the Leiden University Medical Centre in the Netherlands has uncovered vital information about the porcine reproductive and respiratory syndrome virus (PRRSV). This pathogen causes severe disease in pigs, leading to significant economic losses for pork producers across the globe.

“This disease in pigs is important worldwide and is economically fairly significant,” says Marjolein Kikkert, Associate Professor of Virology at Leiden University Medical Centre. “The aim of the project was to improve vaccines for this disease, and it turned out that it was very difficult.” It’s estimated that PRRS costs the Canadian pork industry $130M annually.

Kikkert and collaborator Brian Mark, Dean of the Faculty of Science at the University of Manitoba, looked at targeting a type of protein called a protease. PRRSV uses these proteins to suppress a host’s immune system, causing severe illness. By changing the structure, researchers can design altered viruses upon which to base new vaccines.

With the help of the Canadian Light Source (CLS) at the University of Saskatchewan (USask), Mark and Kikkert were able to visualize the unique structure of the PRRSV protease. What they learned in their study is valuable for developing new vaccines against PRRSV and also helps inform development of vaccines against emerging human viruses.

The team has conducted similar research on coronaviruses —which also use proteases to suppress human and animal immune systems — and has successfully designed new vaccines.

“The trick and hypothesis we had for improving the PRRSV vaccine didn’t quite work.” Says Kikkert. “However, we did learn a lot about how these viruses work. And it may certainly be a basis for further work into possibilities for improving vaccines against these viruses and coronaviruses.”

The team’s findings also unlock new doors to understanding how viruses like PRRSV use proteins to replicate, making this a significant academic discovery.

“The Canadian Light Source provided the technology we needed to determine the structures of these proteases, and this knowledge has provided tremendous insight into the biochemistry of these viruses, which is the cornerstone of modern vaccine development,” says Mark.

Here’s a link to and a citation for the paper,

Demonstrating the importance of porcine reproductive and respiratory syndrome virus papain-like protease 2 deubiquitinating activity in viral replication by structure-guided mutagenesis by Ben A. Bailey-Elkin, Robert C. M. Knaap, Anuradha De Silva, Ilse M. Boekhoud, Sandra Mous, Niek van Vught, Mazdak Khajehpour, Erwin van den Born, Marjolein Kikkert, Brian L. Mark. PLOS DOI: https://doi.org/10.1371/journal.ppat.1011872 Published: December 14, 2023

This paper is open access.

Neural (brain) implants and hype (long read)

There was a big splash a few weeks ago when it was announced that Neuralink’s (Elon Musk company) brain implant had been surgically inserted into its first human patient.

Getting approval

David Tuffley, senior lecturer in Applied Ethics & CyberSecurity at Griffith University (Australia), provides a good overview of the road Neuralink took to getting FDA (US Food and Drug Administration) approval for human clinical trials in his May 29, 2023 essay for The Conversation, Note: Links have been removed,

Since its founding in 2016, Elon Musk’s neurotechnology company Neuralink has had the ambitious mission to build a next-generation brain implant with at least 100 times more brain connections than devices currently approved by the US Food and Drug Administration (FDA).

The company has now reached a significant milestone, having received FDA approval to begin human trials. So what were the issues keeping the technology in the pre-clinical trial phase for as long as it was? And have these concerns been addressed?

Neuralink is making a Class III medical device known as a brain-computer interface (BCI). The device connects the brain to an external computer via a Bluetooth signal, enabling continuous communication back and forth.

The device itself is a coin-sized unit called a Link. It’s implanted within a small disk-shaped cutout in the skull using a precision surgical robot. The robot splices a thousand tiny threads from the Link to certain neurons in the brain. [emphasis mine] Each thread is about a quarter the diameter of a human hair.

The company says the device could enable precise control of prosthetic limbs, giving amputees natural motor skills. It could revolutionise treatment for conditions such as Parkinson’s disease, epilepsy and spinal cord injuries. It also shows some promise for potential treatment of obesity, autism, depression, schizophrenia and tinnitus.

Several other neurotechnology companies and researchers have already developed BCI technologies that have helped people with limited mobility regain movement and complete daily tasks.

In February 2021, Musk said Neuralink was working with the FDA to secure permission to start initial human trials later that year. But human trials didn’t commence in 2021.

Then, in March 2022, Neuralink made a further application to the FDA to establish its readiness to begin humans trials.

One year and three months later, on May 25 2023, Neuralink finally received FDA approval for its first human clinical trial. Given how hard Neuralink has pushed for permission to begin, we can assume it will begin very soon. [emphasis mine]

The approval has come less than six months after the US Office of the Inspector General launched an investigation into Neuralink over potential animal welfare violations. [emphasis mine]

In accessible language, Tuffley goes on to discuss the FDA’s specific technical issues with implants and how they were addressed in his May 29, 2023 essay.

More about how Neuralink’s implant works and some concerns

Canadian Broadcasting Corporation (CBC) journalist Andrew Chang offers an almost 13 minute video, “Neuralink brain chip’s first human patient. How does it work?” Chang is a little overenthused for my taste but he offers some good information about neural implants, along with informative graphics in his presentation.

So, Tuffley was right about Neuralink getting ready quickly for human clinical trials as you can guess from the title of Chang’s CBC video.

Jennifer Korn announced that recruitment had started in her September 20, 2023 article for CNN (Cable News Network), Note: Links have been removed,

Elon Musk’s controversial biotechnology startup Neuralink opened up recruitment for its first human clinical trial Tuesday, according to a company blog.

After receiving approval from an independent review board, Neuralink is set to begin offering brain implants to paralysis patients as part of the PRIME Study, the company said. PRIME, short for Precise Robotically Implanted Brain-Computer Interface, is being carried out to evaluate both the safety and functionality of the implant.

Trial patients will have a chip surgically placed in the part of the brain that controls the intention to move. The chip, installed by a robot, will then record and send brain signals to an app, with the initial goal being “to grant people the ability to control a computer cursor or keyboard using their thoughts alone,” the company wrote.

Those with quadriplegia [sometimes known as tetraplegia] due to cervical spinal cord injury or amyotrophic lateral sclerosis (ALS) may qualify for the six-year-long study – 18 months of at-home and clinic visits followed by follow-up visits over five years. Interested people can sign up in the patient registry on Neuralink’s website.

Musk has been working on Neuralink’s goal of using implants to connect the human brain to a computer for five years, but the company so far has only tested on animals. The company also faced scrutiny after a monkey died in project testing in 2022 as part of efforts to get the animal to play Pong, one of the first video games.

I mentioned three Reuters investigative journalists who were reporting on Neuralink’s animal abuse allegations (emphasized in Tuffley’s essay) in a July 7, 2023 posting, “Global dialogue on the ethics of neurotechnology on July 13, 2023 led by UNESCO.” Later that year, Neuralink was cleared by the US Department of Agriculture (see September 24,, 2023 article by Mahnoor Jehangir for BNN Breaking).

Plus, Neuralink was being investigated over more allegations according to a February 9, 2023 article by Rachel Levy for Reuters, this time regarding hazardous pathogens,

The U.S. Department of Transportation said on Thursday it is investigating Elon Musk’s brain-implant company Neuralink over the potentially illegal movement of hazardous pathogens.

A Department of Transportation spokesperson told Reuters about the probe after the Physicians Committee of Responsible Medicine (PCRM), an animal-welfare advocacy group,wrote to Secretary of Transportation Pete Buttigieg, opens new tab earlier on Thursday to alert it of records it obtained on the matter.

PCRM said it obtained emails and other documents that suggest unsafe packaging and movement of implants removed from the brains of monkeys. These implants may have carried infectious diseases in violation of federal law, PCRM said.

There’s an update about the hazardous materials in the next section. Spoiler alert, the company got fined.

Neuralink’s first human implant

A January 30, 2024 article (Associated Press with files from Reuters) on the Canadian Broadcasting Corporation’s (CBC) online news webspace heralded the latest about Neurlink’s human clinical trials,

The first human patient received an implant from Elon Musk’s computer-brain interface company Neuralink over the weekend, the billionaire says.

In a post Monday [January 29, 2024] on X, the platform formerly known as Twitter, Musk said that the patient received the implant the day prior and was “recovering well.” He added that “initial results show promising neuron spike detection.”

Spikes are activity by neurons, which the National Institutes of Health describe as cells that use electrical and chemical signals to send information around the brain and to the body.

The billionaire, who owns X and co-founded Neuralink, did not provide additional details about the patient.

When Neuralink announced in September [2023] that it would begin recruiting people, the company said it was searching for individuals with quadriplegia due to cervical spinal cord injury or amyotrophic lateral sclerosis, commonly known as ALS or Lou Gehrig’s disease.

Neuralink reposted Musk’s Monday [January 29, 2024] post on X, but did not publish any additional statements acknowledging the human implant. The company did not immediately respond to requests for comment from The Associated Press or Reuters on Tuesday [January 30, 2024].

In a separate Monday [January 29, 2024] post on X, Musk said that the first Neuralink product is called “Telepathy” — which, he said, will enable users to control their phones or computers “just by thinking.” He said initial users would be those who have lost use of their limbs.

The startup’s PRIME Study is a trial for its wireless brain-computer interface to evaluate the safety of the implant and surgical robot.

Now for the hazardous materials, January 30, 2024 article, Note: A link has been removed,

Earlier this month [January 2024], a Reuters investigation found that Neuralink was fined for violating U.S. Department of Transportation (DOT) rules regarding the movement of hazardous materials. During inspections of the company’s facilities in Texas and California in February 2023, DOT investigators found the company had failed to register itself as a transporter of hazardous material.

They also found improper packaging of hazardous waste, including the flammable liquid Xylene. Xylene can cause headaches, dizziness, confusion, loss of muscle co-ordination and even death, according to the U.S. Centers for Disease Control and Prevention.

The records do not say why Neuralink would need to transport hazardous materials or whether any harm resulted from the violations.

Skeptical thoughts about Elon Musk and Neuralink

Earlier this month (February 2024), the British Broadcasting Corporation (BBC) published an article by health reporters, Jim Reed and Joe McFadden, that highlights the history of brain implants, the possibilities, and notes some of Elon Musk’s more outrageous claims for Neuralink’s brain implants,

Elon Musk is no stranger to bold claims – from his plans to colonise Mars to his dreams of building transport links underneath our biggest cities. This week the world’s richest man said his Neuralink division had successfully implanted its first wireless brain chip into a human.

Is he right when he says this technology could – in the long term – save the human race itself?

Sticking electrodes into brain tissue is really nothing new.

In the 1960s and 70s electrical stimulation was used to trigger or suppress aggressive behaviour in cats. By the early 2000s monkeys were being trained to move a cursor around a computer screen using just their thoughts.

“It’s nothing novel, but implantable technology takes a long time to mature, and reach a stage where companies have all the pieces of the puzzle, and can really start to put them together,” says Anne Vanhoestenberghe, professor of active implantable medical devices, at King’s College London.

Neuralink is one of a growing number of companies and university departments attempting to refine and ultimately commercialise this technology. The focus, at least to start with, is on paralysis and the treatment of complex neurological conditions.

Reed and McFadden’s February 2024 BBC article describes a few of the other brain implant efforts, Note: Links have been removed,

One of its [Neuralink’s] main rivals, a start-up called Synchron backed by funding from investment firms controlled by Bill Gates and Jeff Bezos, has already implanted its stent-like device into 10 patients.

Back in December 2021, Philip O’Keefe, a 62-year old Australian who lives with a form of motor neurone disease, composed the first tweet using just his thoughts to control a cursor.

And researchers at Lausanne University in Switzerland have shown it is possible for a paralysed man to walk again by implanting multiple devices to bypass damage caused by a cycling accident.

In a research paper published this year, they demonstrated a signal could be beamed down from a device in his brain to a second device implanted at the base of his spine, which could then trigger his limbs to move.

Some people living with spinal injuries are sceptical about the sudden interest in this new kind of technology.

“These breakthroughs get announced time and time again and don’t seem to be getting any further along,” says Glyn Hayes, who was paralysed in a motorbike accident in 2017, and now runs public affairs for the Spinal Injuries Association.

If I could have anything back, it wouldn’t be the ability to walk. It would be putting more money into a way of removing nerve pain, for example, or ways to improve bowel, bladder and sexual function.” [emphasis mine]

Musk, however, is focused on something far more grand for Neuralink implants, from Reed and McFadden’s February 2024 BBC article, Note: A link has been removed,

But for Elon Musk, “solving” brain and spinal injuries is just the first step for Neuralink.

The longer-term goal is “human/AI symbiosis” [emphasis mine], something he describes as “species-level important”.

Musk himself has already talked about a future where his device could allow people to communicate with a phone or computer “faster than a speed typist or auctioneer”.

In the past, he has even said saving and replaying memories may be possible, although he recognised “this is sounding increasingly like a Black Mirror episode.”

One of the experts quoted in Reed and McFadden’s February 2024 BBC article asks a pointed question,

… “At the moment, I’m struggling to see an application that a consumer would benefit from, where they would take the risk of invasive surgery,” says Prof Vanhoestenberghe.

“You’ve got to ask yourself, would you risk brain surgery just to be able to order a pizza on your phone?”

Rae Hodge’s February 11, 2024 article about Elon Musk and his hyped up Neuralink implant for Salon is worth reading in its entirety but for those who don’t have the time or need a little persuading, here are a few excerpts, Note 1: This is a warning; Hodge provides more detail about the animal cruelty allegations; Note 2: Links have been removed,

Elon Musk’s controversial brain-computer interface (BCI) tech, Neuralink, has supposedly been implanted in its first recipient — and as much as I want to see progress for treatment of paralysis and neurodegenerative disease, I’m not celebrating. I bet the neuroscientists he reportedly drove out of the company aren’t either, especially not after seeing the gruesome torture of test monkeys and apparent cover-up that paved the way for this moment. 

All of which is an ethics horror show on its own. But the timing of Musk’s overhyped implant announcement gives it an additional insulting subtext. Football players are currently in a battle for their lives against concussion-based brain diseases that plague autopsy reports of former NFL players. And Musk’s boast of false hope came just two weeks before living players take the field in the biggest and most brutal game of the year. [2024 Super Bowl LVIII]

ESPN’s Kevin Seifert reports neuro-damage is up this year as “players suffered a total of 52 concussions from the start of training camp to the beginning of the regular season. The combined total of 213 preseason and regular season concussions was 14% higher than 2021 but within range of the three-year average from 2018 to 2020 (203).”

I’m a big fan of body-tech: pacemakers, 3D-printed hips and prosthetic limbs that allow you to wear your wedding ring again after 17 years. Same for brain chips. But BCI is the slow-moving front of body-tech development for good reason. The brain is too understudied. Consequences of the wrong move are dire. Overpromising marketable results on profit-driven timelines — on the backs of such a small community of researchers in a relatively new field — would be either idiotic or fiendish. 

Brown University’s research in the sector goes back to the 1990s. Since the emergence of a floodgate-opening 2002 study and the first implant in 2004 by med-tech company BrainGate, more promising results have inspired broader investment into careful research. But BrainGate’s clinical trials started back in 2009, and as noted by Business Insider’s Hilary Brueck, are expected to continue until 2038 — with only 15 participants who have devices installed. 

Anne Vanhoestenberghe is a professor of active implantable medical devices at King’s College London. In a recent release, she cautioned against the kind of hype peddled by Musk.

“Whilst there are a few other companies already using their devices in humans and the neuroscience community have made remarkable achievements with those devices, the potential benefits are still significantly limited by technology,” she said. “Developing and validating core technology for long term use in humans takes time and we need more investments to ensure we do the work that will underpin the next generation of BCIs.” 

Neuralink is a metal coin in your head that connects to something as flimsy as an app. And we’ve seen how Elon treats those. We’ve also seen corporate goons steal a veteran’s prosthetic legs — and companies turn brain surgeons and dentists into repo-men by having them yank anti-epilepsy chips out of people’s skulls, and dentures out of their mouths. 

“I think we have a chance with Neuralink to restore full-body functionality to someone who has a spinal cord injury,” Musk said at a 2023 tech summit, adding that the chip could possibly “make up for whatever lost capacity somebody has.”

Maybe BCI can. But only in the careful hands of scientists who don’t have Musk squawking “go faster!” over their shoulders. His greedy frustration with the speed of BCI science is telling, as is the animal cruelty it reportedly prompted.

There have been other examples of Musk’s grandiosity. Notably, David Lee expressed skepticism about hyperloop in his August 13, 2013 article for BBC news online

Is Elon Musk’s Hyperloop just a pipe dream?

Much like the pun in the headline, the bright idea of transporting people using some kind of vacuum-like tube is neither new nor imaginative.

There was Robert Goddard, considered the “father of modern rocket propulsion”, who claimed in 1909 that his vacuum system could suck passengers from Boston to New York at 1,200mph.

And then there were Soviet plans for an amphibious monorail  – mooted in 1934  – in which two long pods would start their journey attached to a metal track before flying off the end and slipping into the water like a two-fingered Kit Kat dropped into some tea.

So ever since inventor and entrepreneur Elon Musk hit the world’s media with his plans for the Hyperloop, a healthy dose of scepticism has been in the air.

“This is by no means a new idea,” says Rod Muttram, formerly of Bombardier Transportation and Railtrack.

“It has been previously suggested as a possible transatlantic transport system. The only novel feature I see is the proposal to put the tubes above existing roads.”

Here’s the latest I’ve found on hyperloop, from the Hyperloop Wikipedia entry,

As of 2024, some companies continued to pursue technology development under the hyperloop moniker, however, one of the biggest, well funded players, Hyperloop One, declared bankruptcy and ceased operations in 2023.[15]

Musk is impatient and impulsive as noted in a September 12, 2023 posting by Mike Masnick on Techdirt, Note: A link has been removed,

The Batshit Crazy Story Of The Day Elon Musk Decided To Personally Rip Servers Out Of A Sacramento Data Center

Back on Christmas Eve [December 24, 2022] of last year there were some reports that Elon Musk was in the process of shutting down Twitter’s Sacramento data center. In that article, a number of ex-Twitter employees were quoted about how much work it would be to do that cleanly, noting that there’s a ton of stuff hardcoded in Twitter code referring to that data center (hold that thought).

That same day, Elon tweeted out that he had “disconnected one of the more sensitive server racks.”

Masnick follows with a story of reckless behaviour from someone who should have known better.

Ethics of implants—where to look for more information

While Musk doesn’t use the term when he describes a “human/AI symbiosis” (presumably by way of a neural implant), he’s talking about a cyborg. Here’s a 2018 paper, which looks at some of the implications,

Do you want to be a cyborg? The moderating effect of ethics on neural implant acceptance by Eva Reinares-Lara, Cristina Olarte-Pascual, and Jorge Pelegrín-Borondo. Computers in Human Behavior Volume 85, August 2018, Pages 43-53 DOI: https://doi.org/10.1016/j.chb.2018.03.032

This paper is open access.

Getting back to Neuralink, I have two blog posts that discuss the company and the ethics of brain implants from way back in 2021.

First, there’s Jazzy Benes’ March 1, 2021 posting on the Santa Clara University’s Markkula Center for Applied Ethics blog. It stands out as it includes a discussion of the disabled community’s issues, Note: Links have been removed,

In the heart of Silicon Valley we are constantly enticed by the newest technological advances. With the big influencers Grimes [a Canadian musician and the mother of three children with Elon Musk] and Lil Uzi Vert publicly announcing their willingness to become experimental subjects for Elon Musk’s Neuralink brain implantation device, we are left wondering if future technology will actually give us “the knowledge of the Gods.” Is it part of the natural order for humans to become omniscient beings? Who will have access to the devices? What other ethical considerations must be discussed before releasing such technology to the public?

A significant issue that arises from developing technologies for the disabled community is the assumption that disabled persons desire the abilities of what some abled individuals may define as “normal.” Individuals with disabilities may object to technologies intended to make them fit an able-bodied norm. “Normal” is relative to each individual, and it could be potentially harmful to use a deficit view of disability, which means judging a disability as a deficiency. However, this is not to say that all disabled individuals will reject a technology that may enhance their abilities. Instead, I believe it is a consideration that must be recognized when developing technologies for the disabled community, and it can only be addressed through communication with disabled persons. As a result, I believe this is a conversation that must be had with the community for whom the technology is developed–disabled persons.

With technologies that aim to address disabilities, we walk a fine line between therapeutics and enhancement. Though not the first neural implant medical device, the Link may have been the first BCI system openly discussed for its potential transhumanism uses, such as “enhanced cognitive abilities, memory storage and retrieval, gaming, telepathy, and even symbiosis with machines.” …

Benes also discusses transhumanism, privacy issues, and consent issues. It’s a thoughtful reading experience.

Second is a July 9, 2021 posting by anonymous on the University of California at Berkeley School of Information blog which provides more insight into privacy and other issues associated with data collection (and introduced me to the concept of decisional interference),

As the development of microchips furthers and advances in neuroscience occur, the possibility for seamless brain-machine interfaces, where a device decodes inputs from the user’s brain to perform functions, becomes more of a reality. These various forms of these technologies already exist. However, technological advances have made implantable and portable devices possible. Imagine a future where humans don’t need to talk to each other, but rather can transmit their thoughts directly to another person. This idea is the eventual goal of Elon Musk, the founder of Neuralink. Currently, Neuralink is one of the main companies involved in the advancement of this type of technology. Analysis of the Neuralink’s technology and their overall mission statement provide an interesting insight into the future of this type of human-computer interface and the potential privacy and ethical concerns with this technology.

As this technology further develops, several privacy and ethical concerns come into question. To begin, using Solove’s Taxonomy as a privacy framework, many areas of potential harm are revealed. In the realm of information collection, there is much risk. Brain-computer interfaces, depending on where they are implanted, could have access to people’s most private thoughts and emotions. This information would need to be transmitted to another device for processing. The collection of this information by companies such as advertisers would represent a major breach of privacy. Additionally, there is risk to the user from information processing. These devices must work concurrently with other devices and often wirelessly. Given the widespread importance of cloud computing in much of today’s technology, offloading information from these devices to the cloud would be likely. Having the data stored in a database puts the user at the risk of secondary use if proper privacy policies are not implemented. The trove of information stored within the information collected from the brain is vast. These datasets could be combined with existing databases such as browsing history on Google to provide third parties with unimaginable context on individuals. Lastly, there is risk for information dissemination, more specifically, exposure. The information collected and processed by these devices would need to be stored digitally. Keeping such private information, even if anonymized, would be a huge potential for harm, as the contents of the information may in itself be re-identifiable to a specific individual. Lastly there is risk for invasions such as decisional interference. Brain-machine interfaces would not only be able to read information in the brain but also write information. This would allow the device to make potential emotional changes in its users, which be a major example of decisional interference. …

For the most recent Neuralink and brain implant ethics piece, there’s this February 14, 2024 essay on The Conversation, which, unusually, for this publication was solicited by the editors, Note: Links have been removed,

In January 2024, Musk announced that Neuralink implanted its first chip in a human subject’s brain. The Conversation reached out to two scholars at the University of Washington School of Medicine – Nancy Jecker, a bioethicst, and Andrew Ko, a neurosurgeon who implants brain chip devices – for their thoughts on the ethics of this new horizon in neuroscience.

Information about the implant, however, is scarce, aside from a brochure aimed at recruiting trial subjects. Neuralink did not register at ClinicalTrials.gov, as is customary, and required by some academic journals. [all emphases mine]

Some scientists are troubled by this lack of transparency. Sharing information about clinical trials is important because it helps other investigators learn about areas related to their research and can improve patient care. Academic journals can also be biased toward positive results, preventing researchers from learning from unsuccessful experiments.

Fellows at the Hastings Center, a bioethics think tank, have warned that Musk’s brand of “science by press release, while increasingly common, is not science. [emphases mine]” They advise against relying on someone with a huge financial stake in a research outcome to function as the sole source of information.

When scientific research is funded by government agencies or philanthropic groups, its aim is to promote the public good. Neuralink, on the other hand, embodies a private equity model [emphasis mine], which is becoming more common in science. Firms pooling funds from private investors to back science breakthroughs may strive to do good, but they also strive to maximize profits, which can conflict with patients’ best interests.

In 2022, the U.S. Department of Agriculture investigated animal cruelty at Neuralink, according to a Reuters report, after employees accused the company of rushing tests and botching procedures on test animals in a race for results. The agency’s inspection found no breaches, according to a letter from the USDA secretary to lawmakers, which Reuters reviewed. However, the secretary did note an “adverse surgical event” in 2019 that Neuralink had self-reported.

In a separate incident also reported by Reuters, the Department of Transportation fined Neuralink for violating rules about transporting hazardous materials, including a flammable liquid.

…the possibility that the device could be increasingly shown to be helpful for people with disabilities, but become unavailable due to loss of research funding. For patients whose access to a device is tied to a research study, the prospect of losing access after the study ends can be devastating. [emphasis mine] This raises thorny questions about whether it is ever ethical to provide early access to breakthrough medical interventions prior to their receiving full FDA approval.

Not registering a clinical trial would seem to suggest there won’t be much oversight. As for Musk’s “science by press release” activities, I hope those will be treated with more skepticism by mainstream media although that seems unlikely given the current situation with journalism (more about that in a future post).

As for the issues associated with private equity models for science research and the problem of losing access to devices after a clinical trial is ended, my April 5, 2022 posting, “Going blind when your neural implant company flirts with bankruptcy (long read)” offers some cautionary tales, in addition to being the most comprehensive piece I’ve published on ethics and brain implants.

My July 17, 2023 posting, “Unveiling the Neurotechnology Landscape: Scientific Advancements, Innovations and Major Trends—a UNESCO report” offers a brief overview of the international scene.

Communicating thoughts by means of brain implants?

The Australian military announced mind-controlled robots in Spring 2023 (see my June 13, 2023 posting) and, recently, scientists at Duke University (North Carolina, US) have announced research that may allow people who are unable to speak to communicate their thoughts, from a November 6, 2023 news item on ScienceDaily,

A speech prosthetic developed by a collaborative team of Duke neuroscientists, neurosurgeons, and engineers can translate a person’s brain signals into what they’re trying to say.

Appearing Nov. 6 [2023] in the journal Nature Communications, the new technology might one day help people unable to talk due to neurological disorders regain the ability to communicate through a brain-computer interface.

One more plastic brain for this blog,

Caption: A device no bigger than a postage stamp (dotted portion within white band) packs 128 microscopic sensors that can translate brain cell activity into what someone intends to say. Credit: Dan Vahaba/Duke University

A November 6, 2023 Duke University news release (also on EurekAlert), which originated the news item, provides more detail, Note: Links have been removed,

“There are many patients who suffer from debilitating motor disorders, like ALS (amyotrophic lateral sclerosis) or locked-in syndrome, that can impair their ability to speak,” said Gregory Cogan, Ph.D., a professor of neurology at Duke University’s School of Medicine and one of the lead researchers involved in the project. “But the current tools available to allow them to communicate are generally very slow and cumbersome.”

Imagine listening to an audiobook at half-speed. That’s the best speech decoding rate currently available, which clocks in at about 78 words per minute. People, however, speak around 150 words per minute.

The lag between spoken and decoded speech rates is partially due the relatively few brain activity sensors that can be fused onto a paper-thin piece of material that lays atop the surface of the brain. Fewer sensors provide less decipherable information to decode.

To improve on past limitations, Cogan teamed up with fellow Duke Institute for Brain Sciences faculty member Jonathan Viventi, Ph.D., whose biomedical engineering lab specializes in making high-density, ultra-thin, and flexible brain sensors.

For this project, Viventi and his team packed an impressive 256 microscopic brain sensors onto a postage stamp-sized piece of flexible, medical-grade plastic. Neurons just a grain of sand apart can have wildly different activity patterns when coordinating speech, so it’s necessary to distinguish signals from neighboring brain cells to help make accurate predictions about intended speech.

After fabricating the new implant, Cogan and Viventi teamed up with several Duke University Hospital neurosurgeons, including Derek Southwell, M.D., Ph.D., Nandan Lad, M.D., Ph.D., and Allan Friedman, M.D., who helped recruit four patients to test the implants. The experiment required the researchers to place the device temporarily in patients who were undergoing brain surgery for some other condition, such as  treating Parkinson’s disease or having a tumor removed. Time was limited for Cogan and his team to test drive their device in the OR.

“I like to compare it to a NASCAR pit crew,” Cogan said. “We don’t want to add any extra time to the operating procedure, so we had to be in and out within 15 minutes. As soon as the surgeon and the medical team said ‘Go!’ we rushed into action and the patient performed the task.”

The task was a simple listen-and-repeat activity. Participants heard a series of nonsense words, like “ava,” “kug,” or “vip,” and then spoke each one aloud. The device recorded activity from each patient’s speech motor cortex as it coordinated nearly 100 muscles that move the lips, tongue, jaw, and larynx.

Afterwards, Suseendrakumar Duraivel, the first author of the new report and a biomedical engineering graduate student at Duke, took the neural and speech data from the surgery suite and fed it into a machine learning algorithm to see how accurately it could predict what sound was being made, based only on the brain activity recordings.

For some sounds and participants, like /g/ in the word “gak,”  the decoder got it right 84% of the time when it was the first sound in a string of three that made up a given nonsense word.

Accuracy dropped, though, as the decoder parsed out sounds in the middle or at the end of a nonsense word. It also struggled if two sounds were similar, like /p/ and /b/.

Overall, the decoder was accurate 40% of the time. That may seem like a humble test score, but it was quite impressive given that similar brain-to-speech technical feats require hours or days-worth of data to draw from. The speech decoding algorithm Duraivel used, however, was working with only 90 seconds of spoken data from the 15-minute test.

Duraivel and his mentors are excited about making a cordless version of the device with a recent $2.4M grant from the National Institutes of Health.

“We’re now developing the same kind of recording devices, but without any wires,” Cogan said. “You’d be able to move around, and you wouldn’t have to be tied to an electrical outlet, which is really exciting.”

While their work is encouraging, there’s still a long way to go for Viventi and Cogan’s speech prosthetic to hit the shelves anytime soon.

“We’re at the point where it’s still much slower than natural speech,” Viventi said in a recent Duke Magazine piece about the technology, “but you can see the trajectory where you might be able to get there.”

Here’s a link to and a citation for the paper,

High-resolution neural recordings improve the accuracy of speech decoding by Suseendrakumar Duraivel, Shervin Rahimpour, Chia-Han Chiang, Michael Trumpis, Charles Wang, Katrina Barth, Stephen C. Harward, Shivanand P. Lad, Allan H. Friedman, Derek G. Southwell, Saurabh R. Sinha, Jonathan Viventi & Gregory B. Cogan. Nature Communications volume 14, Article number: 6938 (2023) DO: Ihttps://doi.org/10.1038/s41467-023-42555-1 Published: 06 November 2023

This paper is open access.

Health/science journalists/editors: deadline is March 22, 2024 for media boot camp in Boston, Massachusetts

A February 14, 2023 Broad Institute news release presents an exciting opportunity for health/science journalists and editors,

The Broad Institute of MIT [Massachusetts Institute of Technology] and Harvard is now accepting applications for its 2024 Media Boot Camp.

This annual program connects health/science journalists and editors with faculty from the Broad Institute, Massachusetts Institute of Technology, Harvard University, and Harvard’s teaching hospitals for a two-day event exploring the latest advances in genomics and biomedicine. Journalists will explore possible future storylines, gain fundamental background knowledge, and build relationships with researchers. The program format includes presentations, discussions, and lab tours.

The 2024 Media Boot Camp will take place in person at the Broad Institute in Cambridge, MA on Thursday, May 16 and Friday, May 17 (with an evening welcome reception on Wednesday, May 15).

APPLICATION DEADLINE IS FRIDAY, MARCH 22 (5:00 PM US EASTERN TIME).

2024 Boot Camp topics include:

  • Gene editing
  • New approaches for therapeutic delivery  
  • Cancer biology, drug development
  • Data sciences, machine learning
  • Neurobiology (stem cell models of psychiatric disorders)
  • Antibiotic resistance, microbial biology
  • Medical and population genetics, genomic medicine

Current speakers include: Mimi Bandopadhayay, Clare Bernard,Roby Bhattacharyya, Todd Golub, Laura Kiessling, Eric Lander,David Liu, Ralda Nehme,Heidi Rehm, William Sellers, Feng Zhang, with potentially more to come.

This Media Boot Camp is an educational offering. All presentations are on-background.

Hotel accommodations and meals during the program will be provided by the Broad Institute. Attendees must cover travel costs to and from Boston.

Application Process

By Friday, March 22 [2024] (5:00 PM US Eastern time [2 pm PT]), please send at least one paragraph describing your interest in the program and how you hope it will benefit your reporting, as well as three recent news clips, to David Cameron, Director of External Communications, dcameron@broadinstitute.org

Please contact David at dcameron@broadinstitute.org, or 617-714-7184 with any questions.

I couldn’t find details about eligibility, that said, I wish you good luck with your ‘paragraph and three recent clips’ submission.

Mending a broken heart with hydrogels and cellulose nanocrystals (CNC)

Courtesy: University of Waterloo

This February 12, 2024 news item on ScienceDaily highlights work from the University of Waterloo,

You can mend a broken heart this valentine’s day now that researchers invented a new hydrogel that can be used to heal damaged heart tissue and improve cancer treatments.

University of Waterloo chemical engineering researcher Dr. Elisabeth Prince teamed up with researchers from the University of Toronto and Duke University to design the synthetic material made using cellulose nanocrystals [CNC], which are derived from wood pulp.

A February 12, 2024 University of Waterloo news release (also on EurekAlert), which originated the news item, fills in some details,

The material is engineered to replicate the fibrous nanostructures and properties of human tissues, thereby recreating its unique biomechanical properties.

“Cancer is a diverse disease and two patients with the same type of cancer will often respond to the same treatment in very different ways,” Prince said. “Tumour organoids are essentially a miniaturized version of an individual patient’s tumour that can be used for drug testing, which could allow researchers to develop personalized therapies for a specific patient.”

As director of the Prince Polymer Materials Lab, Prince designs synthetic biomimetic hydrogels for biomedical applications. The hydrogels have a nanofibrous architecture with large pores for nutrient and waste transport, which affect mechanical properties and cell interaction. 

Prince, a professor in Waterloo’s Department of Chemical Engineering, utilized these human-tissue mimetic hydrogels to promote the growth of small-scale tumour replicas derived from donated tumour tissue. 

She aims to test the effectiveness of cancer treatments on the mini-tumour organoids before administering the treatment to patients, potentially allowing for personalized cancer therapies. This research was conducted alongside Professor David Cescon at the Princess Margaret Cancer Center.

Prince’s research group at Waterloo is developing similar biomimetic hydrogels to be injectable for drug delivery and regenerative medical applications as Waterloo researchers continue to lead health innovation in Canada.

Her research aims to use injected filamentous hydrogel material to regrow heart tissue damaged after a heart attack. She used nanofibers as a scaffolding for the regrowth and healing of damaged heart tissue. 

“We are building on the work that I started during my PhD to design human-tissue mimetic hydrogels that can be injected into the human body to deliver therapeutics and repair the damage caused to the heart when a patient suffers a heart attack,” Prince said.

Prince’s research is unique as most gels currently used in tissue engineering or 3D cell culture don’t possess this nanofibrous architecture. Prince’s group uses nanoparticles and polymers as building blocks for materials and develops chemistry for nanostructures that accurately mimic human tissues.

The next step in Prince’s research is to use conductive nanoparticles to make electrically conductive nanofibrous gels that can be used to heal heart and skeletal muscle tissue.

Here’s a link to and a citation for the paper,

Nanocolloidal hydrogel mimics the structure and nonlinear mechanical properties of biological fibrous networks by Elisabeth Prince, Sofia Morozova, Zhengkun Chen, and Eugenia Kumacheva. Proceedings of the National Academy of Sciences (PNAS) December 13, 2023 120 (51) e2220755120 DOI: https://doi.org/10.1073/pnas.2220755120

This paper is behind a paywall.

Questioning or rewriting a ‘central’ dogma of biology?

Answering the question in the head, this December 12, 2023 news item on phys.org calls into question the principle behind how medicines based on antibodies work,

Today, medicines based on antibodies—proteins that fight infection and disease—are prescribed for everything from cancer to COVID-19 to high cholesterol. The antibody drugs are supplied by genetically-engineered cells that function as tiny protein-producing factories in the laboratory.

Meanwhile, researchers have been targeting cancer, injuries to internal organs and a host of other ailments with new strategies in which similarly engineered cells are implanted directly into patients.

These biotechnology applications rely on the principle that altering a cell’s DNA to produce more of the genetic instructions for making a given protein will cause the cell to release more of that protein.

A new UCLA [University of California at Los Angeles] study suggests that—at least in one type of stem cell—the principle doesn’t necessarily hold true.

A December 11, 2023 UCLA news release, which originated the news item, delves further into the topic but first the key points are noted, Note: Links have been removed,

Key takeaways

  • Mesenchymal stem cells, found in bone marrow, secrete therapeutic proteins that could potentially help regenerate damaged tissue.
  • A UCLA study examining these cells challenges the conventional understanding of which genetic instructions prompt the release of these therapeutic proteins.
  • The findings could help advance both regenerative medicine research and the laboratory production of biologic treatments already in use.

The researchers examined mesenchymal stem cells, which reside in bone marrow and can self-renew or develop into bone, fat or muscle cells. Mesenchymal cells secrete a protein growth factor called VEGF-A, which plays a role in regenerating blood vessels and which scientists believe may have the potential to repair damage from heart attacks, kidney injuries, arterial disease in limbs and other conditions.

When the researchers compared the amount of VEGF-A that each mesenchymal cell released with the expression of genes in the same cell that code for VEGF-A, the results were surprising: Gene expression correlated only weakly with the actual secretion of the growth factor.  

The scientists identified other genes better correlating with growth factor secretion, including one that codes for a protein found on the surface of some stem cells. Isolating stem cells with that protein on their surface, the team cultivated a population that secreted VEGF-A prolifically and kept doing so days later.

The findings, published today [December 11, 2023] in Nature Nanotechnology, suggest that a fundamental assumption in biology and biotechnology may be up for reconsideration, said co-corresponding author Dino Di Carlo, the Armond and Elena Hairapetian Professor of Engineering and Medicine at the UCLA Samueli School of Engineering.

“The central dogma has been, you have instructions in the DNA, they’re transcribed to RNA, and then the RNA is translated into protein,” said Di Carlo, who is also a member of UCLA’s California NanoSystems Institute and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. “Based on this, many scientists assumed that if you had more RNA, you’d have more protein, and then more protein released from the cell. We questioned that assumption.

“It seems we can’t assume that if a gene is expressed at higher levels, there will be higher secretion of the corresponding protein. We found a clear example where that doesn’t happen, and it opens up a lot of new questions.”

The results could help make the manufacturing of antibody-based treatments more efficient and define new cellular treatments that would be more effective. Knowing the right genetic switches to flip could enable the engineering or selection of extraordinarily productive cells for making or delivering therapies.

The UCLA study was conducted using standard lab equipment augmented with a technology invented by Di Carlo and his colleagues: nanovials, microscopic bowl-shaped hydrogel containers, each of which captures a single cell and its secretions. Leveraging a new nanovial-enabled analytic method, the scientists were able to connect the amount of VEGF-A released by each one of 10,000 mesenchymal stem cells to an atlas mapping tens of thousands of genes expressed by that same cell.

“The ability to link protein secretion to gene expression on the single-cell level holds great promise for the fields of life science research and therapeutic development,” said Kathrin Plath, a UCLA professor of biological chemistry, a member of the Broad Stem Cell Research Center and a co-corresponding author of the study. “Without it, we couldn’t have arrived at the unexpected results we found in this study. Now we have an exciting opportunity to learn new things about the mechanisms underpinning the basic processes of life and use what we learn to advance human health.”

While activation of the genetic instructions for VEGF-A displayed little correlation with release of the protein, the researchers identified a cluster of 153 genes with strong links to VEGF-A secretion. Many of them are known for their function in blood vessel development and wound healing; for others, their function is currently unknown.

One of the top matches encodes a cell-surface protein, IL13RA2, whose purpose is poorly understood. Its exterior location made it simpler for the scientists to use it as a marker and separate those cells from the others. Cells with IL13RA2 showed 30% more VEGF-A secretion than cells that lacked the marker.

In a similar experiment, the researchers kept the separated cells in culture for six days. At the end of that time, cells with the marker secreted 60% more VEGF-A compared to cells without it.

Although therapies based on mesenchymal stem cells have shown promise in laboratory studies, clinical trials with human participants have shown many of these new options to be safe but not effective. The ability to sort for high VEGF-A secreters using IL13RA2 may help turn that tide.

“Identifying a subpopulation that produces more, and markers associated with that population, means you can separate them out very easily,” Di Carlo said. “A very pure population of cells that’s going to produce high levels of your therapeutic protein should make a better therapy.”

Nanovials are available commercially from Partillion Bioscience, a company co-founded by Di Carlo that started up at the CNSI’s on-campus incubator, Magnify.

The first author of the study is Shreya Udani, who earned a doctorate from UCLA in 2023. Other co-authors, all affiliated with UCLA, are staff scientist Justin Langerman; Doyeon Koo, who earned a doctorate in 2023; graduate students Sevana Baghdasarian and Citradewi Soemardy; undergraduate Brian Cheng; Simran Kang, who earned a bachelor’s degree in 2023; and Joseph de Rutte, who earned a doctorate in 2020 and is a co-founder and CEO of Partillion.

The study was supported by the National Institutes of Health and a Stem Cell Nanomedicine Planning Award funded jointly by the CNSI and the Broad Stem Cell Research Center.

Researcher Dino Di Carlo describes his work,

Nanovials, a technology created by UCLA’s Dino Di Carlo and his colleagues, allowed researchers to capture single mesenchymal cells and their secretions. Withouth these vials, which are smaller than the width of a human hair, “we couldn’t have arrived at the unexpected results we found in this study,” said UCLA’s Kathrin Plath.

Here’s a link to and a citation for the paper,

Associating growth factor secretions and transcriptomes of single cells in nanovials using SEC-seq by Shreya Udani, Justin Langerman, Doyeon Koo, Sevana Baghdasarian, Brian Cheng, Simran Kang, Citradewi Soemardy, Joseph de Rutte, Kathrin Plath & Dino Di Carlo. Nature Nanotechnology (2023) DOI: https://doi.org/10.1038/s41565-023-01560-7 Published: 11 December 2023

This paper is behind a paywall.

As for the two companies mentioned in the news release, you find Partillion Bioscience here and Magnify at CNSI here.