Category Archives: robots

One of world’s most precise microchip sensors thanks to nanotechnology, machine learning, extended cognition, and spiderwebs

I love science stories about the inspirational qualities of spiderwebs. A November 26, 2021 news item on describes how spiderwebs have inspired advances in sensors and, potentially, quantum computing,,

A team of researchers from TU Delft [Delft University of Technology; Netherlands] managed to design one of the world’s most precise microchip sensors. The device can function at room temperature—a ‘holy grail’ for quantum technologies and sensing. Combining nanotechnology and machine learning inspired by nature’s spiderwebs, they were able to make a nanomechanical sensor vibrate in extreme isolation from everyday noise. This breakthrough, published in the Advanced Materials Rising Stars Issue, has implications for the study of gravity and dark matter as well as the fields of quantum internet, navigation and sensing.

Inspired by nature’s spider webs and guided by machine learning, Richard Norte (left) and Miguel Bessa (right) demonstrate a new type of sensor in the lab. [Photography: Frank Auperlé]

A November 24, 2021 TU Delft press release (also on EurekAlert but published on November 23, 2021), which originated the news item, describes the research in more detail,

One of the biggest challenges for studying vibrating objects at the smallest scale, like those used in sensors or quantum hardware, is how to keep ambient thermal noise from interacting with their fragile states. Quantum hardware for example is usually kept at near absolute zero (−273.15°C) temperatures, with refrigerators costing half a million euros apiece. Researchers from TU Delft created a web-shaped microchip sensor which resonates extremely well in isolation from room temperature noise. Among other applications, their discovery will make building quantum devices much more affordable.

Hitchhiking on evolution
Richard Norte and Miguel Bessa, who led the research, were looking for new ways to combine nanotechnology and machine learning. How did they come up with the idea to use spiderwebs as a model? Richard Norte: “I’ve been doing this work already for a decade when during lockdown, I noticed a lot of spiderwebs on my terrace. I realised spiderwebs are really good vibration detectors, in that they want to measure vibrations inside the web to find their prey, but not outside of it, like wind through a tree. So why not hitchhike on millions of years of evolution and use a spiderweb as an initial model for an ultra-sensitive device?” 

Since the team did not know anything about spiderwebs’ complexities, they let machine learning guide the discovery process. Miguel Bessa: “We knew that the experiments and simulations were costly and time-consuming, so with my group we decided to use an algorithm called Bayesian optimization, to find a good design using few attempts.” Dongil Shin, co-first author in this work, then implemented the computer model and applied the machine learning algorithm to find the new device design. 

Microchip sensor based on spiderwebs
To the researcher’s surprise, the algorithm proposed a relatively simple spiderweb out of 150 different spiderweb designs, which consists of only six strings put together in a deceivingly simple way. Bessa: “Dongil’s computer simulations showed that this device could work at room temperature, in which atoms vibrate a lot, but still have an incredibly low amount of energy leaking in from the environment – a higher Quality factor in other words. With machine learning and optimization we managed to adapt Richard’s spider web concept towards this much better quality factor.”

Based on this new design, co-first author Andrea Cupertino built a microchip sensor with an ultra-thin, nanometre-thick film of ceramic material called Silicon Nitride. They tested the model by forcefully vibrating the microchip ‘web’ and measuring the time it takes for the vibrations to stop. The result was spectacular: a record-breaking isolated vibration at room temperature. Norte: “We found almost no energy loss outside of our microchip web: the vibrations move in a circle on the inside and don’t touch the outside. This is somewhat like giving someone a single push on a swing, and having them swing on for nearly a century without stopping.”

Implications for fundamental and applied sciences
With their spiderweb-based sensor, the researchers’ show how this interdisciplinary strategy opens a path to new breakthroughs in science, by combining bio-inspired designs, machine learning and nanotechnology. This novel paradigm has interesting implications for quantum internet, sensing, microchip technologies and fundamental physics: exploring ultra-small forces for example, like gravity or dark matter which are notoriously difficult to measure. According to the researchers, the discovery would not have been possible without the university’s Cohesion grant, which led to this collaboration between nanotechnology and machine learning.

Here’s a link to and a citation for the paper,

Spiderweb Nanomechanical Resonators via Bayesian Optimization: Inspired by Nature and Guided by Machine Learning by Dongil Shin, Andrea Cupertino, Matthijs H. J. de Jong, Peter G. Steeneken, Miguel A. Bessa, Richard A. Norte. Advanced Materials Volume34, Issue3 January 20, 2022 2106248 DOI: First published (online): 25 October 2021

This paper is open access.

If spiderwebs can be sensors, can they also think?

it’s called ‘extended cognition’ or ‘extended mind thesis’ (Wikipedia entry) and the theory holds that the mind is not solely in the brain or even in the body. Predictably, the theory has both its supporters and critics as noted in Joshua Sokol’s article “The Thoughts of a Spiderweb” originally published on May 22, 2017 in Quanta Magazine (Note: Links have been removed),

Millions of years ago, a few spiders abandoned the kind of round webs that the word “spiderweb” calls to mind and started to focus on a new strategy. Before, they would wait for prey to become ensnared in their webs and then walk out to retrieve it. Then they began building horizontal nets to use as a fishing platform. Now their modern descendants, the cobweb spiders, dangle sticky threads below, wait until insects walk by and get snagged, and reel their unlucky victims in.

In 2008, the researcher Hilton Japyassú prompted 12 species of orb spiders collected from all over Brazil to go through this transition again. He waited until the spiders wove an ordinary web. Then he snipped its threads so that the silk drooped to where crickets wandered below. When a cricket got hooked, not all the orb spiders could fully pull it up, as a cobweb spider does. But some could, and all at least began to reel it in with their two front legs.

Their ability to recapitulate the ancient spiders’ innovation got Japyassú, a biologist at the Federal University of Bahia in Brazil, thinking. When the spider was confronted with a problem to solve that it might not have seen before, how did it figure out what to do? “Where is this information?” he said. “Where is it? Is it in her head, or does this information emerge during the interaction with the altered web?”

In February [2017], Japyassú and Kevin Laland, an evolutionary biologist at the University of Saint Andrews, proposed a bold answer to the question. They argued in a review paper, published in the journal Animal Cognition, that a spider’s web is at least an adjustable part of its sensory apparatus, and at most an extension of the spider’s cognitive system.

This would make the web a model example of extended cognition, an idea first proposed by the philosophers Andy Clark and David Chalmers in 1998 to apply to human thought. In accounts of extended cognition, processes like checking a grocery list or rearranging Scrabble tiles in a tray are close enough to memory-retrieval or problem-solving tasks that happen entirely inside the brain that proponents argue they are actually part of a single, larger, “extended” mind.

Among philosophers of mind, that idea has racked up citations, including supporters and critics. And by its very design, Japyassú’s paper, which aims to export extended cognition as a testable idea to the field of animal behavior, is already stirring up antibodies among scientists. …

It seems there is no definitive answer to the question of whether there is an ‘extended mind’ but it’s an intriguing question made (in my opinion) even more so with the spiderweb-inspired sensors from TU Delft.

Should AI algorithms get patents for their inventions and is anyone talking about copyright for texts written by AI algorithms?

A couple of Australian academics have written a comment for the journal Nature, which bears the intriguing subtitle: “The patent system assumes that inventors are human. Inventions devised by machines require their own intellectual property law and an international treaty.” (For the curious, I’ve linked to a few of my previous posts touching on intellectual property [IP], specifically the patent’s fraternal twin, copyright at the end of this piece.)

Before linking to the comment, here’s the May 27, 2022 University of New South Wales (UNCSW) press release (also on EurekAlert but published May 30, 2022) which provides an overview of their thinking on the subject, Note: Links have been removed,

It’s not surprising these days to see new inventions that either incorporate or have benefitted from artificial intelligence (AI) in some way, but what about inventions dreamt up by AI – do we award a patent to a machine?

This is the quandary facing lawmakers around the world with a live test case in the works that its supporters say is the first true example of an AI system named as the sole inventor.

In commentary published in the journal Nature, two leading academics from UNSW Sydney examine the implications of patents being awarded to an AI entity.

Intellectual Property (IP) law specialist Associate Professor Alexandra George and AI expert, Laureate Fellow and Scientia Professor Toby Walsh argue that patent law as it stands is inadequate to deal with such cases and requires legislators to amend laws around IP and patents – laws that have been operating under the same assumptions for hundreds of years.

The case in question revolves around a machine called DABUS (Device for the Autonomous Bootstrapping of Unified Sentience) created by Dr Stephen Thaler, who is president and chief executive of US-based AI firm Imagination Engines. Dr Thaler has named DABUS as the inventor of two products – a food container with a fractal surface that helps with insulation and stacking, and a flashing light for attracting attention in emergencies.

For a short time in Australia, DABUS looked like it might be recognised as the inventor because, in late July 2021, a trial judge accepted Dr Thaler’s appeal against IP Australia’s rejection of the patent application five months earlier. But after the Commissioner of Patents appealed the decision to the Full Court of the Federal Court of Australia, the five-judge panel upheld the appeal, agreeing with the Commissioner that an AI system couldn’t be named the inventor.

A/Prof. George says the attempt to have DABUS awarded a patent for the two inventions instantly creates challenges for existing laws which has only ever considered humans or entities comprised of humans as inventors and patent-holders.

“Even if we do accept that an AI system is the true inventor, the first big problem is ownership. How do you work out who the owner is? An owner needs to be a legal person, and an AI is not recognised as a legal person,” she says.

Ownership is crucial to IP law. Without it there would be little incentive for others to invest in the new inventions to make them a reality.

“Another problem with ownership when it comes to AI-conceived inventions, is even if you could transfer ownership from the AI inventor to a person: is it the original software writer of the AI? Is it a person who has bought the AI and trained it for their own purposes? Or is it the people whose copyrighted material has been fed into the AI to give it all that information?” asks A/Prof. George.

For obvious reasons

Prof. Walsh says what makes AI systems so different to humans is their capacity to learn and store so much more information than an expert ever could. One of the requirements of inventions and patents is that the product or idea is novel, not obvious and is useful.

“There are certain assumptions built into the law that an invention should not be obvious to a knowledgeable person in the field,” Prof. Walsh says.

“Well, what might be obvious to an AI won’t be obvious to a human because AI might have ingested all the human knowledge on this topic, way more than a human could, so the nature of what is obvious changes.”

Prof. Walsh says this isn’t the first time that AI has been instrumental in coming up with new inventions. In the area of drug development, a new antibiotic was created in 2019 – Halicin – that used deep learning to find a chemical compound that was effective against drug-resistant strains of bacteria.

“Halicin was originally meant to treat diabetes, but its effectiveness as an antibiotic was only discovered by AI that was directed to examine a vast catalogue of drugs that could be repurposed as antibiotics. So there’s a mixture of human and machine coming into this discovery.”

Prof. Walsh says in the case of DABUS, it’s not entirely clear whether the system is truly responsible for the inventions.

“There’s lots of involvement of Dr Thaler in these inventions, first in setting up the problem, then guiding the search for the solution to the problem, and then interpreting the result,” Prof. Walsh says.

“But it’s certainly the case that without the system, you wouldn’t have come up with the inventions.”

Change the laws

Either way, both authors argue that governing bodies around the world will need to modernise the legal structures that determine whether or not AI systems can be awarded IP protection. They recommend the introduction of a new ‘sui generis’ form of IP law – which they’ve dubbed ‘AI-IP’ – that would be specifically tailored to the circumstances of AI-generated inventiveness. This, they argue, would be more effective than trying to retrofit and shoehorn AI-inventiveness into existing patent laws.

Looking forward, after examining the legal questions around AI and patent law, the authors are currently working on answering the technical question of how AI is going to be inventing in the future.

Dr Thaler has sought ‘special leave to appeal’ the case concerning DABUS to the High Court of Australia. It remains to be seen whether the High Court will agree to hear it. Meanwhile, the case continues to be fought in multiple other jurisdictions around the world.

Here’s a link to and a citation for the paper,

Artificial intelligence is breaking patent law by Alexandra George & Toby Walsh. Nature (Nature) COMMENT ISSN 1476-4687 (online) 24 May 2022 ISSN 0028-0836 (print) Vol 605 26 May 2022 pp. 616-18 DOI: 10.1038/d41586-022-01391-x

This paper appears to be open access.

The Journey

DABIUS has gotten a patent in one jurisdiction, from an August 8, 2021 article on,

The patent application listing DABUS as the inventor was filed in patent offices around the world, including the US, Europe, Australia, and South Afica. But only South Africa granted the patent (Australia followed suit a few days later after a court judgment gave the go-ahard [and rejected it several months later]).

Natural person?

This September 27, 2021 article by Miguel Bibe for Inventa covers some of the same ground adding some some discussion of the ‘natural person’ problem,

The patent is for “a food container based on fractal geometry”, and was accepted by the CIPC [Companies and Intellectual Property Commission] on June 24, 2021. The notice of issuance was published in the July 2021 “Patent Journal”.  

South Africa does not have a substantive patent examination system and, instead, requires applicants to merely complete a filing for their inventions. This means that South Africa patent laws do not provide a definition for “inventor” and the office only proceeds with a formal examination in order to confirm if the paperwork was filled correctly.

… according to a press release issued by the University of Surrey: “While patent law in many jurisdictions is very specific in how it defines an inventor, the DABUS team is arguing that the status quo is not fit for purpose in the Fourth Industrial Revolution.”

On the other hand, this may not be considered as a victory for the DABUS team since several doubts and questions remain as to who should be considered the inventor of the patent. Current IP laws in many jurisdictions follow the traditional term of “inventor” as being a “natural person”, and there is no legal precedent in the world for inventions created by a machine.

August 2022 update

Mike Masnick in an August 15, 2022 posting on Techdirt provides the latest information on Stephen Thaler’s efforts to have patents and copyrights awarded to his AI entity, DABUS,

Stephen Thaler is a man on a mission. It’s not a very good mission, but it’s a mission. He created something called DABUS (Device for the Autonomous Bootstrapping of Unified Sentience) and claims that it’s creating things, for which he has tried to file for patents and copyrights around the globe, with his mission being to have DABUS named as the inventor or author. This is dumb for many reasons. The purpose of copyright and patents are to incentivize the creation of these things, by providing to the inventor or author a limited time monopoly, allowing them to, in theory, use that monopoly to make some money, thereby making the entire inventing/authoring process worthwhile. An AI doesn’t need such an incentive. And this is why patents and copyright only are given to persons and not animals or AI.

… Thaler’s somewhat quixotic quest continues to fail. The EU Patent Office rejected his application. The Australian patent office similarly rejected his request. In that case, a court sided with Thaler after he sued the Australian patent office, and said that his AI could be named as an inventor, but thankfully an appeals court set aside that ruling a few months ago. In the US, Thaler/DABUS keeps on losing as well. Last fall, he lost in court as he tried to overturn the USPTO ruling, and then earlier this year, the US Copyright Office also rejected his copyright attempt (something it has done a few times before). In June, he sued the Copyright Office over this, which seems like a long shot.

And now, he’s also lost his appeal of the ruling in the patent case. CAFC, the Court of Appeals for the Federal Circuit — the appeals court that handles all patent appeals — has rejected Thaler’s request just like basically every other patent and copyright office, and nearly all courts.

If you have the time, the August 15, 2022 posting is an interesting read.

Consciousness and ethical AI

Just to make things more fraught, an engineer at Google has claimed that one of their AI chatbots has consciousness. From a June 16, 2022 article (in Canada’s National Post [previewed on epaper]) by Patrick McGee,

Google has ignited a social media firestorm on the the nature of consciousness after placing an engineer on paid leave with his belief that the tech group’s chatbot has become “sentient.”

Blake Lemoine, a senior software engineer in Google’s Responsible AI unit, did not receive much attention when he wrote a Medium post saying he “may be fired soon for doing AI ethics work.”

But a Saturday [June 11, 2022] profile in the Washington Post characterized Lemoine as “the Google engineer who thinks “the company’s AI has come to life.”

This is not the first time that Google has run into a problem with ethics and AI. Famously, Timnit Gebru who co-led (with Margaret Mitchell) Google’s ethics and AI unit departed in 2020. Gebru said (and maintains to this day) she was fired. They said she was ?, they never did make a final statement although after an investigation Gebru did receive an apology. You read more about Gebru and the issues she brought to light in her Wikipedia entry. Coincidentally (or not), Margaret Mitchell was terminated/fired in February 2021 from Google after criticizing the company for Gebru’s ‘firing’. See a February 19, 2021 article by Megan Rose Dickey for TechCrunch for details about what the company has admitted is a firing or Margaret Mitchell’s termination from the company.

Getting back intellectual property and AI.

What about copyright?

There are no mentions of copyright in the earliest material I have here about the ‘creative’ arts and artificial intelligence is this, “Writing and AI or is a robot writing this blog?” posted July 16, 2014. More recently, there’s “Beer and wine reviews, the American Chemical Society’s (ACS) AI editors, and the Turing Test” posted May 20, 2022. The type of writing featured is not literary or typically considered creative writing.

On the more creative front, there’s “True love with AI (artificial intelligence): The Nature of Things explores emotional and creative AI (long read)” posted on December 3, 2021. The literary/creative portion of the post can be found under the ‘AI and creativity’ subhead approximately 30% of the way down and where I mention Douglas Coupland. Again, there’s no mention of copyright.

It’s with the visual arts that copyright gets mentioned. The first one I can find here is “Robot artists—should they get copyright protection” posted on July 10, 2017.

Fun fact: Andres Guadamuz who was mentioned in my posting took to his own blog where he gave my blog a shout out while implying that I wasn’t thoughtful. The gist of his August 8, 2017 posting was that he was misunderstood by many people, which led to the title for his post, “Should academics try to engage the public?” Thankfully, he soldiers on trying to educate us with his TechnoLama blog.

Lastly, there’s this August 16, 2019 posting “AI (artificial intelligence) artist got a show at a New York City art gallery” where you can scroll down to the ‘What about intellectual property?’ subhead about 80% of the way.

You look like a thing …

i am recommending a book for anyone who’d like to learn a little more about how artificial intelligence (AI) works, “You look like a thing and I love you; How Artificial Intelligence Works and Why It’s Making the World a Weirder Place” by Janelle Shane (2019).

It does not require an understanding of programming/coding/algorithms/etc.; Shane makes the subject as accessible as possible and gives you insight into why the term ‘artificial stupidity’ is more applicable than you might think. You can find Shane’s website here and you can find her 10 minute TED talk here.

Incorporating human cells into computer chips

What are the ethics of incorporating human cells into computer chips? That’s the question that Julian Savulescu (Visiting Professor in biomedical Ethics, University of Melbourne and Uehiro Chair in Practical Ethics, University of Oxford), Christopher Gyngell (Research Fellow in Biomedical Ethics, The University of Melbourne), and Tsutomu Sawai (Associate Professor, Humanities and Social Sciences, Hiroshima University) discuss in a May 24, 2022 essay on The Conversation (Note: A link has been removed),

The year is 2030 and we are at the world’s largest tech conference, CES in Las Vegas. A crowd is gathered to watch a big tech company unveil its new smartphone. The CEO comes to the stage and announces the Nyooro, containing the most powerful processor ever seen in a phone. The Nyooro can perform an astonishing quintillion operations per second, which is a thousand times faster than smartphone models in 2020. It is also ten times more energy-efficient with a battery that lasts for ten days.

A journalist asks: “What technological advance allowed such huge performance gains?” The chief executive replies: “We created a new biological chip using lab-grown human neurons. These biological chips are better than silicon chips because they can change their internal structure, adapting to a user’s usage pattern and leading to huge gains in efficiency.”

Another journalist asks: “Aren’t there ethical concerns about computers that use human brain matter?”

Although the name and scenario are fictional, this is a question we have to confront now. In December 2021, Melbourne-based Cortical Labs grew groups of neurons (brain cells) that were incorporated into a computer chip. The resulting hybrid chip works because both brains and neurons share a common language: electricity.

The authors explain their comment that brains and neurons share the common language of electricity (Note: Links have been removed),

In silicon computers, electrical signals travel along metal wires that link different components together. In brains, neurons communicate with each other using electric signals across synapses (junctions between nerve cells). In Cortical Labs’ Dishbrain system, neurons are grown on silicon chips. These neurons act like the wires in the system, connecting different components. The major advantage of this approach is that the neurons can change their shape, grow, replicate, or die in response to the demands of the system.

Dishbrain could learn to play the arcade game Pong faster than conventional AI systems. The developers of Dishbrain said: “Nothing like this has ever existed before … It is an entirely new mode of being. A fusion of silicon and neuron.”

Cortical Labs believes its hybrid chips could be the key to the kinds of complex reasoning that today’s computers and AI cannot produce. Another start-up making computers from lab-grown neurons, Koniku, believes their technology will revolutionise several industries including agriculture, healthcare, military technology and airport security. Other types of organic computers are also in the early stages of development.

Ethics issues arise (Note: Links have been removed),

… this raises questions about donor consent. Do people who provide tissue samples for technology research and development know that it might be used to make neural computers? Do they need to know this for their consent to be valid?

People will no doubt be much more willing to donate skin cells for research than their brain tissue. One of the barriers to brain donation is that the brain is seen as linked to your identity. But in a world where we can grow mini-brains from virtually any cell type, does it make sense to draw this type of distinction?

… Consider the scandal regarding Henrietta Lacks, an African-American woman whose cells were used extensively in medical and commercial research without her knowledge and consent.

Henrietta’s cells are still used in applications which generate huge amounts of revenue for pharmaceutical companies (including recently to develop COVID vaccines. The Lacks family still has not received any compensation. If a donor’s neurons end up being used in products like the imaginary Nyooro, should they be entitled to some of the profit made from those products?

Another key ethical consideration for neural computers is whether they could develop some form of consciousness and experience pain. Would neural computers be more likely to have experiences than silicon-based ones? …

This May 24, 2022 essay is fascinating and, if you have the time, I encourage you to read it all.

If you’re curious, you can find out about Cortical Labs here, more about Dishbrain in a February 22, 2022 article by Brian Patrick Green for iai (Institute for Art and Ideas) news, and more about Koniku in a May 31, 2018 posting about ‘wetware’ by Alissa Greenberg on Medium.

As for Henrietta Lacks, there’s this from my May 13, 2016 posting,

*HeLa cells are named for Henrietta Lacks who unknowingly donated her immortal cell line to medical research. You can find more about the story on the Oprah Winfrey website, which features an excerpt from the Rebecca Skloot book “The Immortal Life of Henrietta Lacks.”’ …

I checked; the excerpt is still on the Oprah Winfrey site.

h/t May 24, 2022 Nanowerk Spotlight article

Neuromorphic hardware could yield computational advantages for more than just artificial intelligence

Neuromorphic (brainlike) computing doesn’t have to be used for cognitive tasks only according to a research team at the US Dept. of Energy’s Sandia National Laboratories as per their March 11, 2022 news release by Neal Singer (also on EurekAlert but published March 10, 2022), Note: Links have been removed,

With the insertion of a little math, Sandia National Laboratories researchers have shown that neuromorphic computers, which synthetically replicate the brain’s logic, can solve more complex problems than those posed by artificial intelligence and may even earn a place in high-performance computing.

A random walk diffusion model based on data from Sandia National Laboratories algorithms running on an Intel Loihi neuromorphic platform. Video courtesy of Sandia National Laboratories. …

The findings, detailed in a recent article in the journal Nature Electronics, show that neuromorphic simulations employing the statistical method called random walks can track X-rays passing through bone and soft tissue, disease passing through a population, information flowing through social networks and the movements of financial markets, among other uses, said Sandia theoretical neuroscientist and lead researcher James Bradley Aimone.

“Basically, we have shown that neuromorphic hardware can yield computational advantages relevant to many applications, not just artificial intelligence to which it’s obviously kin,” said Aimone. “Newly discovered applications range from radiation transport and molecular simulations to computational finance, biology modeling and particle physics.”

In optimal cases, neuromorphic computers will solve problems faster and use less energy than conventional computing, he said.

The bold assertions should be of interest to the high-performance computing community because finding capabilities to solve statistical problems is of increasing concern, Aimone said.

“These problems aren’t really well-suited for GPUs [graphics processing units], which is what future exascale systems are likely going to rely on,” Aimone said. “What’s exciting is that no one really has looked at neuromorphic computing for these types of applications before.”

Sandia engineer and paper author Brian Franke said, “The natural randomness of the processes you list will make them inefficient when directly mapped onto vector processors like GPUs on next-generation computational efforts. Meanwhile, neuromorphic architectures are an intriguing and radically different alternative for particle simulation that may lead to a scalable and energy-efficient approach for solving problems of interest to us.”

Franke models photon and electron radiation to understand their effects on components.

The team successfully applied neuromorphic-computing algorithms to model random walks of gaseous molecules diffusing through a barrier, a basic chemistry problem, using the 50-million-chip Loihi platform Sandia received approximately a year and a half ago from Intel Corp., said Aimone. “Then we showed that our algorithm can be extended to more sophisticated diffusion processes useful in a range of applications.”

The claims are not meant to challenge the primacy of standard computing methods used to run utilities, desktops and phones. “There are, however, areas in which the combination of computing speed and lower energy costs may make neuromorphic computing the ultimately desirable choice,” he said.

Showing a neuromorphic advantage, both the IBM TrueNorth and Intel Loihi neuromorphic chips observed by Sandia National Laboratories researchers were significantly more energy efficient than conventional computing hardware. The graph shows Loihi can perform about 10 times more calculations per unit of energy than a conventional processor. Energy is the limiting factor — more chips can be inserted to run things in parallel, thus faster, but the same electric bill occurs whether it is one computer doing everything or 10,000 computers doing the work. Image courtesy of Sandia National Laboratories. Click on the thumbnail for a high-resolution image.

Unlike the difficulties posed by adding qubits to quantum computers — another interesting method of moving beyond the limitations of conventional computing — chips containing artificial neurons are cheap and easy to install, Aimone said.

There can still be a high cost for moving data on or off the neurochip processor. “As you collect more, it slows down the system, and eventually it won’t run at all,” said Sandia mathematician and paper author William Severa. “But we overcame this by configuring a small group of neurons that effectively computed summary statistics, and we output those summaries instead of the raw data.”

Severa wrote several of the experiment’s algorithms.

Like the brain, neuromorphic computing works by electrifying small pin-like structures, adding tiny charges emitted from surrounding sensors until a certain electrical level is reached. Then the pin, like a biological neuron, flashes a tiny electrical burst, an action known as spiking. Unlike the metronomical regularity with which information is passed along in conventional computers, said Aimone, the artificial neurons of neuromorphic computing flash irregularly, as biological ones do in the brain, and so may take longer to transmit information. But because the process only depletes energies from sensors and neurons if they contribute data, it requires less energy than formal computing, which must poll every processor whether contributing or not. The conceptually bio-based process has another advantage: Its computing and memory components exist in the same structure, while conventional computing uses up energy by distant transfer between these two functions. The slow reaction time of the artificial neurons initially may slow down its solutions, but this factor disappears as the number of neurons is increased so more information is available in the same time period to be totaled, said Aimone.

The process begins by using a Markov chain — a mathematical construct where, like a Monopoly gameboard, the next outcome depends only on the current state and not the history of all previous states. That randomness contrasts, said Sandia mathematician and paper author Darby Smith, with most linked events. For example, he said, the number of days a patient must remain in the hospital are at least partially determined by the preceding length of stay.

Beginning with the Markov random basis, the researchers used Monte Carlo simulations, a fundamental computational tool, to run a series of random walks that attempt to cover as many routes as possible.

“Monte Carlo algorithms are a natural solution method for radiation transport problems,” said Franke. “Particles are simulated in a process that mirrors the physical process.”

The energy of each walk was recorded as a single energy spike by an artificial neuron reading the result of each walk in turn. “This neural net is more energy efficient in sum than recording each moment of each walk, as ordinary computing must do. This partially accounts for the speed and efficiency of the neuromorphic process,” said Aimone. More chips will help the process move faster using the same amount of energy, he said.

The next version of Loihi, said Sandia researcher Craig Vineyard, will increase its current chip scale from 128,000 neurons per chip to up to one million. Larger scale systems then combine multiple chips to a board.

“Perhaps it makes sense that a technology like Loihi may find its way into a future high-performance computing platform,” said Aimone. “This could help make HPC much more energy efficient, climate-friendly and just all around more affordable.”

Here’s a link to and a citation for the paper,

Neuromorphic scaling advantages for energy-efficient random walk computations by J. Darby Smith, Aaron J. Hill, Leah E. Reeder, Brian C. Franke, Richard B. Lehoucq, Ojas Parekh, William Severa & James B. Aimone. Nature Electronics volume 5, pages 102–112 (2022) DOI: Issue Date February 2022 Published 14 February 2022

This paper is open access.

AI & creativity events for August and September 2022 (mostly)

This information about these events and papers comes courtesy of the Metacreation Lab for Creative AI (artificial intelligence) at Simon Fraser University and, as usual for the lab, the emphasis is on music.

Music + AI Reading Group @ Mila x Vector Institute

Philippe Pasquier, Metacreation Lab director and professor, is giving a presentation on Friday, August 12, 2022 at 11 am PST (2 pm EST). Here’s more from the August 10, 2022 Metacreation Lab announcement (received via email),

Metacreaton Lab director Philippe Pasquier and PhD researcher Jeff Enns will be presenting next week [tomorrow on August 12 ,2022] at the Music + AI Reading Group hosted by Mila. The presentation will be available as a Zoom meeting. 

Mila is a community of more than 900 researchers specializing in machine learning and dedicated to scientific excellence and innovation. The institute is recognized for its expertise and significant contributions in areas such as modelling language, machine translation, object recognition and generative models.

I believe it’s also possible to view the presentation from the Music + AI Reading Group at MILA: presentation by Dr. Philippe Pasquier webpage on the Simon Fraser University website.

For anyone curious about Mila – Québec Artificial Intelligence Institute (based in Montréal) and the Vector Institute for Artificial Intelligence (based in Toronto), both are part of the Pan-Canadian Artificial Intelligence Strategy (a Canadian federal government funding initiative).

Getting back to the Music + AI Reading Group @ Mila x Vector Institute, there is an invitation to join the group which meets every Friday at 2 pm EST, from the Google group page,

unread,Feb 24, 2022, 2:47:23 PMto Community Announcements🎹🧠🚨Online Music + AI Reading Group @ Mila x Vector Institute 🎹🧠🚨

Dear members of the ISMIR [International Society for Music Information Retrieval] Community,

Together with fellow researchers at Mila (the Québec AI Institute) in Montréal, canada [sic], we have the pleasure of inviting you to join the Music + AI Reading Group @ Mila x Vector Institute. Our reading group gathers every Friday at 2pm Eastern Time. Our purpose is to build an interdisciplinary forum of researchers, students and professors alike, across industry and academia, working at the intersection of Music and Machine Learning. 

During each meeting, a speaker presents a research paper of their choice during 45’, leaving 15 minutes for questions and discussion. The purpose of the reading group is to :
– Gather a group of Music+AI/HCI [human-computer interface]/others people to share their research, build collaborations, and meet peer students. We are not constrained to any specific research directions, and all people are welcome to contribute.
– People share research ideas and brainstorm with others.
– Researchers not actively working on music-related topics but interested in the field can join and keep up with the latest research in the area, sharing their thoughts and bringing in their own backgrounds.

Our topics of interest cover (beware : the list is not exhaustive !) :
🎹 Music Generation
🧠 Music Understanding
📇 Music Recommendation
🗣  Source Separation and Instrument Recognition
🎛  Acoustics
🗿 Digital Humanities …
🙌  … and more (we are waiting for you :]) !

If you wish to attend one of our upcoming meetings, simply join our Google Group : You will automatically subscribe to our weekly mailing list and be able to contact other members of the group.

Here is the link to our Youtube Channel where you’ll find recordings of our past meetings :
Here are general information about the reading group (presentation slides) :

Finally, if you would like to contribute and give a talk about your own research, feel free to fill in the following spreadhseet in the slot of your choice ! —>

Bravo to the two student organizers for putting this together!

Calliope Composition Environment for music makers

From the August 10, 2022 Metacreation Lab announcement,

Calling all music makers! We’d like to share some exciting news on one of the latest music creation tools from its creators, and   .

Calliope is an interactive environment based on MMM for symbolic music generation in computer-assisted composition. Using this environment, the user can generate or regenerate symbolic music from a “seed” MIDI file by using a practical and easy-to-use graphical user interface (GUI). Through MIDI streaming, the  system can interface with your favourite DAW (Digital Audio Workstation) such as Ableton Live, allowing creators to combine the possibilities of generative composition with their preferred virtual instruments sound design environments.

The project has now entered an open beta-testing phase, and inviting music creators to try the compositional system on their own! Head to the metacreation website to learn more and register for the beta testing.

Learn More About Calliope Here

You can also listen to a Calliope piece “the synthrider,” an Italo-disco fantasy of a machine, by Philippe Pasquier and Renaud Bougueng Tchemeube for the 2022 AI Song Contest.

3rd Conference on AI Music Creativity (AIMC 2022)

This in an online conference and it’s free but you do have to register. From the August 10, 2022 Metacreation Lab announcement,

Registration has opened  for the 3rd Conference on AI Music Creativity (AIMC 2022), which will be held 13-15 September, 2022. The conference features 22 accepted papers, 14 music works, and 2 workshops. Registered participants will get full access to the scientific and artistic program, as well as conference workshops and virtual social events. 

The full conference program is now available online

Registration, free but mandatory, is available here:

Free Registration for AIMC 2022 

The conference theme is “The Sound of Future Past — Colliding AI with Music Tradition” and I noticed that a number of the organizers are based in Japan. Often, the organizers’ home country gets some extra time in the spotlight, which is what makes these international conferences so interesting and valuable.

Autolume Live

This concerns generative adversarial networks (GANs) and a paper proposing “… Autolume-Live, the first GAN-based live VJing-system for controllable video generation.”

Here’s more from the August 10, 2022 Metacreation Lab announcement,

Jonas Kraasch & Phiippe Pasquier recently presented their latest work on the Autolume system at xCoAx, the 10th annual Conference on Computation, Communication, Aesthetics & X. Their paper is an in-depth exploration of the ways that creative artificial intelligence is increasingly used to generate static and animated visuals. 

While there are a host of systems to generate images, videos and music videos, there is a lack of real-time video synthesisers for live music performances. To address this gap, Kraasch and Pasquier propose Autolume-Live, the first GAN-based live VJing-system for controllable video generation.

Autolume Live on xCoAx proceedings  

As these things go, the paper is readable even by nonexperts (assuming you have some tolerance for being out of your depth from time to time). Here’s an example of the text and an installation (in Kelowna, BC) from the paper, Autolume-Live: Turning GANsinto a Live VJing tool,

Due to the 2020-2022 situation surrounding COVID-19, we were unable to use
our system to accompany live performances. We have used different iterations
of Autolume-Live to create two installations. We recorded some curated sessions
and displayed them at the Distopya sound art festival in Istanbul 2021 (Dystopia
Sound and Art Festival 2021) and Light-Up Kelowna 2022 (ARTSCO 2022) [emphasis mine]. In both iterations, we let the audio mapping automatically generate the video without using any of the additional image manipulations. These installations show
that the system on its own is already able to generate interesting and responsive
visuals for a musical piece.

For the installation at the Distopya sound art festival we trained a Style-GAN2 (-ada) model on abstract paintings and rendered a video using the de-scribed Latent Space Traversal mapping. For this particular piece we ran a super-resolution model on the final video as the original video output was in 512×512 and the wanted resolution was 4k. For our piece at Light-Up Kelowna [emphasis mine] we ran Autolume-Live with the Latent Space Interpolation mapping. The display included three urban screens, which allowed us to showcase three renders at the same time. We composed a video triptych using a dataset of figure drawings, a dataset of medical sketches and to tie the two videos together a model trained on a mixture of both datasets.

I found some additional information about the installation in Kelowna (from a February 7, 2022 article in The Daily Courier),

The artwork is called ‘Autolume Acedia’.

“(It) is a hallucinatory meditation on the ancient emotion called acedia. Acedia describes a mixture of contemplative apathy, nervous nostalgia, and paralyzed angst,” the release states. “Greek monks first described this emotion two millennia ago, and it captures the paradoxical state of being simultaneously bored and anxious.”

Algorithms created the set-to-music artwork but a team of humans associated with Simon Fraser University, including Jonas Kraasch and Philippe Pasquier, was behind the project.

These are among the artistic images generated by a form of artificial intelligence now showing nightly on the exterior of the Rotary Centre for the Arts in downtown Kelowna. [downloaded from]

You can find the videos used in the installation and more information on the Metacreation Lab’s Autolume Acedia webpage.

Movement and the Metacreation Lab

Here’s a walk down memory lane: Tom Calvert, a professor at Simon Fraser University (SFU) and deceased September 28, 2021, laid the groundwork for SFU’s School of Interactive Arts & Technology (SIAT) and, in particular studies in movement. From SFU’s In memory of Tom Calvert webpage,

As a researcher, Tom was most interested in computer-based tools for user interaction with multimedia systems, human figure animation, software for dance, and human-computer interaction. He made significant contributions to research in these areas resulting in the Life Forms system for human figure animation and the DanceForms system for dance choreography. These are now developed and marketed by Credo Interactive Inc., a software company of which he was CEO.

While the Metacreation Lab is largely focused on music, other fields of creativity are also studied, from the August 10, 2022 Metacreation Lab announcement,

MITACS Accelerate award – partnership with Kinetyx

We are excited to announce that the Metacreation Lab researchers will be expanding their work on motion capture and movement data thanks to a new MITACS Accelerate research award. 

The project will focus on ​​body pose estimation using Motion Capture data acquisition through a partnership with Kinetyx, a Calgary-based innovative technology firm that develops in-shoe sensor-based solutions for a broad range of sports and performance applications.

Movement Database – MoDa

On the subject of motion data and its many uses in conjunction with machine learning and AI, we invite you to check out the extensive Movement Database (MoDa), led by transdisciplinary artist and scholar Shannon Cyukendall, and AI Researcher Omid Alemi. 

Spanning a wide range of categories such as dance, affect-expressive movements, gestures, eye movements, and more, this database offers a wealth of experiments and captured data available in a variety of formats.

Explore the MoDa Database

MITACS (originally a federal government mathematics-focused Network Centre for Excellence) is now a funding agency (most of the funds they distribute come from the federal government) for innovation.

As for the Calgary-based company (in the province of Alberta for those unfamiliar with Canadian geography), here they are in their own words (from the Kinetyx About webpage),

Kinetyx® is a diverse group of talented engineers, designers, scientists, biomechanists, communicators, and creators, along with an energy trader, and a medical doctor that all bring a unique perspective to our team. A love of movement and the science within is the norm for the team, and we’re encouraged to put our sensory insoles to good use. We work closely together to make movement mean something.

We’re working towards a future where movement is imperceptibly quantified and indispensably communicated with insights that inspire action. We’re developing sensory insoles that collect high-fidelity data where the foot and ground intersect. Capturing laboratory quality data, out in the real world, unlocking entirely new ways to train, study, compete, and play. The insights we provide will unlock unparalleled performance, increase athletic longevity, and provide a clear path to return from injury. We transform lives by empowering our growing community to remain moved.

We believe that high quality data is essential for us to have a meaningful place in the Movement Metaverse [1]. Our team of engineers, sport scientists, and developers work incredibly hard to ensure that our insoles and the insights we gather from them will meet or exceed customer expectations. The forces that are created and experienced while standing, walking, running, and jumping are inferred by many wearables, but our sensory insoles allow us to measure, in real-time, what’s happening at the foot-ground intersection. Measurements of force and power in addition to other traditional gait metrics, will provide a clear picture of a part of the Kinesome [2] that has been inaccessible for too long. Our user interface will distill enormous amounts of data into meaningful insights that will lead to positive behavioral change. 

[1] The Movement Metaverse is the collection of ever-evolving immersive experiences that seamlessly span both the physical and virtual worlds with unprecedented interoperability.

[2] Kinesome is the dynamic characterization and quantification encoded in an individual’s movement and activity. Broadly; an individual’s unique and dynamic movement profile. View the kinesome nft. [Note: Was not able to successfully open link as of August 11, 2022)

“… make movement mean something … .” Really?

The reference to “… energy trader …” had me puzzled but an August 11, 2022 Google search at 11:53 am PST unearthed this,

An energy trader is a finance professional who manages the sales of valuable energy resources like gas, oil, or petroleum. An energy trader is expected to handle energy production and financial matters in such a fast-paced workplace.May 16, 2022

Perhaps a new meaning for the term is emerging?

AI and visual art show in Vancouver (Canada)

The Vancouver Art Gallery’s (VAG) latest exhibition, “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” is running March 5, 2022 – October 23, 2022. Should you be interested in an exhaustive examination of the exhibit and more, I have a two-part commentary: Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (1 of 2): The Objects and Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations.

Enjoy the show and/or the commentary, as well as, any other of the events and opportunities listed in this post.

Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations

Dear friend,

I thought it best to break this up a bit. There are a couple of ‘objects’ still to be discussed but this is mostly the commentary part of this letter to you. (Here’s a link for anyone who stumbled here but missed Part 1.)

Ethics, the natural world, social justice, eeek, and AI

Dorothy Woodend in her March 10, 2022 review for The Tyee) suggests some ethical issues in her critique of the ‘bee/AI collaboration’ and she’s not the only one with concerns. UNESCO (United Nations Educational, Scientific and Cultural Organization) has produced global recommendations for ethical AI (see my March 18, 2022 posting). More recently, there’s “Racist and sexist robots have flawed AI,” a June 23, 2022 posting, where researchers prepared a conference presentation and paper about deeply flawed AI still being used in robots.

Ultimately, the focus is always on humans and Woodend has extended the ethical AI conversation to include insects and the natural world. In short, something less human-centric.

My friend, this reference to the de Young exhibit may seem off topic but I promise it isn’t in more ways than one. The de Young Museum in San Francisco (February 22, 2020 – June 27, 2021) also held and AI and art show called, “Uncanny Valley: Being Human in the Age of AI”), from the exhibitions page,

In today’s AI-driven world, increasingly organized and shaped by algorithms that track, collect, and evaluate our data, the question of what it means to be human [emphasis mine] has shifted. Uncanny Valley is the first major exhibition to unpack this question through a lens of contemporary art and propose new ways of thinking about intelligence, nature, and artifice. [emphasis mine]

Courtesy: de Young Museum [downloaded from]

As you can see, it hinted (perhaps?) at an attempt to see beyond human-centric AI. (BTW, I featured this ‘Uncanny Valley’ show in my February 25, 2020 posting where I mentioned Stephanie Dinkins [featured below] and other artists.)

Social justice

While the VAG show doesn’t see much past humans and AI, it does touch on social justice. In particular there’s Pod 15 featuring the Algorithmic Justice League (AJL). The group “combine[s] art and research to illuminate the social implications and harms of AI” as per their website’s homepage.

In Pod 9, Stephanie Dinkins’ video work with a robot (Bina48), which was also part of the de Young Museum ‘Uncanny Valley’ show, addresses some of the same issues.

Still of Stephanie Dinkins, “Conversations with Bina48,” 2014–present. Courtesy of the artist [downloaded from]

From the the de Young Museum’s Stephanie Dinkins “Conversations with Bina48” April 23, 2020 article by Janna Keegan (Dinkins submitted the same work you see at the VAG show), Note: Links have been removed,

Transdisciplinary artist and educator Stephanie Dinkins is concerned with fostering AI literacy. The central thesis of her social practice is that AI, the internet, and other data-based technologies disproportionately impact people of color, LGBTQ+ people, women, and disabled and economically disadvantaged communities—groups rarely given a voice in tech’s creation. Dinkins strives to forge a more equitable techno-future by generating AI that includes the voices of multiple constituencies …

The artist’s ongoing Conversations with Bina48 takes the form of a series of interactions with the social robot Bina48 (Breakthrough Intelligence via Neural Architecture, 48 exaflops per second). The machine is the brainchild of Martine Rothblatt, an entrepreneur in the field of biopharmaceuticals who, with her wife, Bina, cofounded the Terasem Movement, an organization that seeks to extend human life through cybernetic means. In 2007 Martine commissioned Hanson Robotics to create a robot whose appearance and consciousness simulate Bina’s. The robot was released in 2010, and Dinkins began her work with it in 2014.

Part psychoanalytical discourse, part Turing test, Conversations with Bina48 also participates in a larger dialogue regarding bias and representation in technology. Although Bina Rothblatt is a Black woman, Bina48 was not programmed with an understanding of its Black female identity or with knowledge of Black history. Dinkins’s work situates this omission amid the larger tech industry’s lack of diversity, drawing attention to the problems that arise when a roughly homogenous population creates technologies deployed globally. When this occurs, writes art critic Tess Thackara, “the unconscious biases of white developers proliferate on the internet, mapping our social structures and behaviors onto code and repeating imbalances and injustices that exist in the real world.” One of the most appalling and public of these instances occurred when a Google Photos image-recognition algorithm mislabeled the faces of Black people as “gorillas.”


You will find as you go through the ‘imitation game’ a pod with a screen showing your movements through the rooms in realtime on a screen. The installation is called “Creepers” (2021-22). The student team from Vancouver’s Centre for Digital Media (CDM) describes their project this way, from the CDM’s AI-driven Installation Piece for the Vancouver Art Gallery webpage,

Project Description

Kaleidoscope [team name] is designing an installation piece that harnesses AI to collect and visualize exhibit visitor behaviours, and interactions with art, in an impactful and thought-provoking way.

There’s no warning that you’re being tracked and you can see they’ve used facial recognition software to track your movements through the show. It’s claimed on the pod’s signage that they are deleting the data once you’ve left.

‘Creepers’ is an interesting approach to the ethics of AI. The name suggests that even the student designers were aware it was problematic.

For the curious, there’s a description of the other VAG ‘imitation game’ installations provided by CDM students on the ‘Master of Digital Media Students Develop Revolutionary Installations for Vancouver Art Gallery AI Exhibition‘ webpage.

In recovery from an existential crisis (meditations)

There’s something greatly ambitious about “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” and walking up the VAG’s grand staircase affirms that ambition. Bravo to the two curators, Grenville and Entis for an exhibition.that presents a survey (or overview) of artificial intelligence, and its use in and impact on creative visual culture.

I’ve already enthused over the history (specifically Turing, Lovelace, Ovid), admitted to being mesmerized by Scott Eaton’s sculpture/AI videos, and confessed to a fascination (and mild repulsion) regarding Oxman’s honeycombs.

It’s hard to remember all of the ‘objects’ as the curators have offered a jumble of work, almost all of them on screens. Already noted, there’s Norbert Wiener’s The Moth (1949) and there are also a number of other computer-based artworks from the 1960s and 1970s. Plus, you’ll find works utilizing a GAN (generative adversarial network), an AI agent that is explained in the exhibit.

It’s worth going more than once to the show as there is so much to experience.

Why did they do that?

Dear friend, I’ve already commented on the poor flow through the show and It’s hard to tell if the curators intended the experience to be disorienting but this is to the point of chaos, especially when the exhibition is crowded.

I’ve seen Grenville’s shows before. In particular there was “MashUp: The Birth of Modern Culture, a massive survey documenting the emergence of a mode of creativity that materialized in the late 1800s and has grown to become the dominant model of cultural production in the 21st century” and there was “KRAZY! The Delirious World of Anime + Manga + Video Games + Art.” As you can see from the description, he pulls together disparate works and ideas into a show for you to ‘make sense’ of them.

One of the differences between those shows and the “imitation Game: …” is that most of us have some familiarity, whether we like it or not, with modern art/culture and anime/manga/etc. and can try to ‘make sense’ of it.

By contrast, artificial intelligence (which even experts have difficulty defining) occupies an entirely different set of categories; all of them associated with science/technology. This makes for a different kind of show so the curators cannot rely on the audience’s understanding of basics. It’s effectively an art/sci or art/tech show and, I believe, the first of its kind at the Vancouver Art Gallery. Unfortunately, the curators don’t seem to have changed their approach to accommodate that difference.

AI is also at the centre of a current panic over job loss, loss of personal agency, automated racism and sexism, etc. which makes the experience of viewing the show a little tense. In this context, their decision to commission and use ‘Creepers’ seems odd.

Where were Ai-Da and Dall-E-2 and the others?

Oh friend, I was hoping for a robot. Those roomba paintbots didn’t do much for me. All they did was lie there on the floor

To be blunt I wanted some fun and perhaps a bit of wonder and maybe a little vitality. I wasn’t necessarily expecting Ai-Da, an artisitic robot, but something three dimensional and fun in this very flat, screen-oriented show would have been nice.

This image has an empty alt attribute; its file name is image-asset.jpeg
Ai-Da was at the Glastonbury Festival in the U from 23-26th June 2022. Here’s Ai-Da and her Billie Eilish (one of the Glastonbury 2022 headliners) portrait. [downloaded from]

Ai-Da was first featured here in a December 17, 2021 posting about performing poetry that she had written in honour of the 700th anniversary of poet Dante Alighieri’s death.

Named in honour of Ada Lovelace, Ai-Da visited the 2022 Venice Biennale as Leah Henrickson and Simone Natale describe in their May 12, 2022 article for Fast Company (Note: Links have been removed),

Ai-Da sits behind a desk, paintbrush in hand. She looks up at the person posing for her, and then back down as she dabs another blob of paint onto the canvas. A lifelike portrait is taking shape. If you didn’t know a robot produced it, this portrait could pass as the work of a human artist.

Ai-Da is touted as the “first robot to paint like an artist,” and an exhibition of her work, called Leaping into the Metaverse, opened at the Venice Biennale.

Ai-Da produces portraits of sitting subjects using a robotic hand attached to her lifelike feminine figure. She’s also able to talk, giving detailed answers to questions about her artistic process and attitudes toward technology. She even gave a TEDx talk about “The Intersection of Art and AI” in Oxford a few years ago. While the words she speaks are programmed, Ai-Da’s creators have also been experimenting with having her write and perform her own poetry.

She has her own website.

If not Ai-Da, what about Dall-E-2? Aaron Hertzmann’s June 20, 2022 commentary, “Give this AI a few words of description and it produces a stunning image – but is it art?” investigates for Salon (Note: Links have been removed),

DALL-E 2 is a new neural network [AI] algorithm that creates a picture from a short phrase or sentence that you provide. The program, which was announced by the artificial intelligence research laboratory OpenAI in April 2022, hasn’t been released to the public. But a small and growing number of people – myself included – have been given access to experiment with it.

As a researcher studying the nexus of technology and art, I was keen to see how well the program worked. After hours of experimentation, it’s clear that DALL-E – while not without shortcomings – is leaps and bounds ahead of existing image generation technology. It raises immediate questions about how these technologies will change how art is made and consumed. It also raises questions about what it means to be creative when DALL-E 2 seems to automate so much of the creative process itself.

A July 4, 2022 article “DALL-E, Make Me Another Picasso, Please” by Laura Lane for The New Yorker has a rebuttal to Ada Lovelace’s contention that creativity is uniquely human (Note: A link has been removed),

“There was this belief that creativity is this deeply special, only-human thing,” Sam Altman, OpenAI’s C.E.O., explained the other day. Maybe not so true anymore, he said. Altman, who wore a gray sweater and had tousled brown hair, was videoconferencing from the company’s headquarters, in San Francisco. DALL-E is still in a testing phase. So far, OpenAI has granted access to a select group of people—researchers, artists, developers—who have used it to produce a wide array of images: photorealistic animals, bizarre mashups, punny collages. Asked by a user to generate “a plate of various alien fruits from another planet photograph,” DALL-E returned something kind of like rambutans. “The rest of mona lisa” is, according to DALL-E, mostly just one big cliff. Altman described DALL-E as “an extension of your own creativity.”

There are other AI artists, in my August 16, 2019 posting, I had this,

AI artists first hit my radar in August 2018 when Christie’s Auction House advertised an art auction of a ‘painting’ by an algorithm (artificial intelligence). There’s more in my August 31, 2018 posting but, briefly, a French art collective, Obvious, submitted a painting, “Portrait of Edmond de Belamy,” that was created by an artificial intelligence agent to be sold for an estimated to $7000 – $10,000. They weren’t even close. According to Ian Bogost’s March 6, 2019 article for The Atlantic, the painting sold for $432,500 In October 2018.

That posting also included AI artist, AICAN. Both artist-AI agents (Obvious and AICAN) are based on GANs (generative adversarial networks) for learning and eventual output. Both artist-AI agents work independently or with human collaborators on art works that are available for purchase.

As might be expected not everyone is excited about AI and visual art. Sonja Drimmer, Professor of Medieval Art, University of Massachusetts at Amherst, provides another perspective on AI, visual art, and, her specialty, art history in her November 1, 2021 essay for The Conversation (Note: Links have been removed),

Over the past year alone, I’ve come across articles highlighting how artificial intelligence recovered a “secret” painting of a “lost lover” of Italian painter Modigliani, “brought to life” a “hidden Picasso nude”, “resurrected” Austrian painter Gustav Klimt’s destroyed works and “restored” portions of Rembrandt’s 1642 painting “The Night Watch.” The list goes on.

As an art historian, I’ve become increasingly concerned about the coverage and circulation of these projects.

They have not, in actuality, revealed one secret or solved a single mystery.

What they have done is generate feel-good stories about AI.

Take the reports about the Modigliani and Picasso paintings.

These were projects executed by the same company, Oxia Palus, which was founded not by art historians but by doctoral students in machine learning.

In both cases, Oxia Palus relied upon traditional X-rays, X-ray fluorescence and infrared imaging that had already been carried out and published years prior – work that had revealed preliminary paintings beneath the visible layer on the artists’ canvases.

The company edited these X-rays and reconstituted them as new works of art by applying a technique called “neural style transfer.” This is a sophisticated-sounding term for a program that breaks works of art down into extremely small units, extrapolates a style from them and then promises to recreate images of other content in that same style.

As you can ‘see’ my friend, the topic of AI and visual art is a juicy one. In fact, I have another example in my June 27, 2022 posting, which is titled, “Art appraised by algorithm.” So, Grenville’s and Entis’ decision to focus on AI and its impact on visual culture is quite timely.

Visual culture: seeing into the future

The VAG Imitation Game webpage lists these categories of visual culture “animation, architecture, art, fashion, graphic design, urban design and video games …” as being represented in the show. Movies and visual art, not mentioned in the write up, are represented while theatre and other performing arts are not mentioned or represented. That’ s not a surprise.

In addition to an area of science/technology that’s not well understood even by experts, the curators took on the truly amorphous (and overwhelming) topic of visual culture. Given that even writing this commentary has been a challenge, I imagine pulling the show together was quite the task.

Grenville often grounds his shows in a history of the subject and, this time, it seems especially striking. You’re in a building that is effectively a 19th century construct and in galleries that reflect a 20th century ‘white cube’ aesthetic, while looking for clues into the 21st century future of visual culture employing technology that has its roots in the 19th century and, to some extent, began to flower in the mid-20th century.

Chung’s collaboration is one of the only ‘optimistic’ notes about the future and, as noted earlier, it bears a resemblance to Wiener’s 1949 ‘Moth’

Overall, it seems we are being cautioned about the future. For example, Oxman’s work seems bleak (bees with no flowers to pollinate and living in an eternal spring). Adding in ‘Creepers’ and surveillance along with issues of bias and social injustice reflects hesitation and concern about what we will see, who sees it, and how it will be represented visually.

Learning about robots, automatons, artificial intelligence, and more

I wish the Vancouver Art Gallery (and Vancouver’s other art galleries) would invest a little more in audience education. A couple of tours, by someone who may or may not know what they’re talking, about during the week do not suffice. The extra material about Stephanie Dinkins and her work (“Conversations with Bina48,” 2014–present) came from the de Young Museum’s website. In my July 26, 2021 commentary on North Vancouver’s Polygon Gallery 2021 show “Interior Infinite,” I found background information for artist Zanele Muholi on the Tate Modern’s website. There is nothing on the VAG website that helps you to gain some perspective on the artists’ works.

It seems to me that if the VAG wants to be considered world class, it should conduct itself accordingly and beefing up its website with background information about their current shows would be a good place to start.

Robots, automata, and artificial intelligence

Prior to 1921, robots were known exclusively as automatons. These days, the word ‘automaton’ (or ‘automata’ in the plural) seems to be used to describe purely mechanical representations of humans from over 100 years ago whereas the word ‘robot’ can be either ‘humanlike’ or purely machine, e.g. a mechanical arm that performs the same function over and over. I have a good February 24, 2017 essay on automatons by Miguel Barral for OpenMind BBVA*, which provides some insight into the matter,

The concept of robot is relatively recent. The idea was introduced in 1921 by the Czech writer Karel Capek in his work R.U.R to designate a machine that performs tasks in place of man. But their predecessors, the automatons (from the Greek automata, or “mechanical device that works by itself”), have been the object of desire and fascination since antiquity. Some of the greatest inventors in history, such as Leonardo Da Vinci, have contributed to our fascination with these fabulous creations:

The Al-Jazari automatons

The earliest examples of known automatons appeared in the Islamic world in the 12th and 13th centuries. In 1206, the Arab polymath Al-Jazari, whose creations were known for their sophistication, described some of his most notable automatons: an automatic wine dispenser, a soap and towels dispenser and an orchestra-automaton that operated by the force of water. This latter invention was meant to liven up parties and banquets with music while floating on a pond, lake or fountain.

As the water flowed, it started a rotating drum with pegs that, in turn, moved levers whose movement produced different sounds and movements. As the pegs responsible for the musical notes could be exchanged for different ones in order to interpret another melody, it is considered one of the first programmable machines in history.

If you’re curious about automata, my friend, I found this Sept. 26, 2016 ABC news radio news item about singer Roger Daltrey’s and his wife, Heather’s auction of their collection of 19th century French automata (there’s an embedded video showcasing these extraordinary works of art). For more about automata, robots, and androids, there’s an excellent May 4, 2022 article by James Vincent, ‘A visit to the human factory; How to build the world’s most realistic robot‘ for The Verge; Vincent’s article is about Engineered Arts, the UK-based company that built Ai-Da.

AI is often used interchangeably with ‘robot’ but they aren’t the same. Not all robots have AI integrated into their processes. At its simplest AI is an algorithm or set of algorithms, which may ‘live’ in a CPU and be effectively invisible or ‘live’ in or make use of some kind of machine and/or humanlike body. As the experts have noted, the concept of artificial intelligence is a slippery concept.

*OpenMind BBVA is a Spanish multinational financial services company, Banco Bilbao Vizcaya Argentaria (BBVA), which runs the non-profit project, OpenMind (About us page) to disseminate information on robotics and so much more.*

You can’t always get what you want

My friend,

I expect many of the show’s shortcomings (as perceived by me) are due to money and/or scheduling issues. For example, Ai-Da was at the Venice Biennale and if there was a choice between the VAG and Biennale, I know where I’d be.

Even with those caveats in mind, It is a bit surprising that there were no examples of wearable technology. For example, Toronto’s Tapestry Opera recently performed R.U.R. A Torrent of Light (based on the word ‘robot’ from Karel Čapek’s play, R.U.R., ‘Rossumovi Univerzální Roboti’), from my May 24, 2022 posting,

I have more about tickets prices, dates, and location later in this post but first, here’s more about the opera and the people who’ve created it from the Tapestry Opera’s ‘R.U.R. A Torrent of Light’ performance webpage,

“This stunning new opera combines dance, beautiful multimedia design, a chamber orchestra including 100 instruments creating a unique electronica-classical sound, and wearable technology [emphasis mine] created with OCAD University’s Social Body Lab, to create an immersive and unforgettable science-fiction experience.”

And, from later in my posting,

“Despite current stereotypes, opera was historically a launchpad for all kinds of applied design technologies. [emphasis mine] Having the opportunity to collaborate with OCAD U faculty is an invigorating way to reconnect to that tradition and foster connections between art, music and design, [emphasis mine]” comments the production’s Director Michael Hidetoshi Mori, who is also Tapestry Opera’s Artistic Director. 

That last quote brings me back to the my comment about theatre and performing arts not being part of the show. Of course, the curators couldn’t do it all but a website with my hoped for background and additional information could have helped to solve the problem.

The absence of the theatrical and performing arts in the VAG’s ‘Imitation Game’ is a bit surprising as the Council of Canadian Academies (CCA) in their third assessment, “Competing in a Global Innovation Economy: The Current State of R&D in Canada” released in 2018 noted this (from my April 12, 2018 posting),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphasis mine] It accounts for more than 5% of world research in these fields. Conversely, Canada has lower research output than expected in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]


My friend,

I was a little surprised that the show was so centered on work from the US given that Grenville has curated ate least one show where there was significant input from artists based in Asia. Both Japan and Korea are very active with regard to artificial intelligence and it’s hard to believe that their artists haven’t kept pace. (I’m not as familiar with China and its AI efforts, other than in the field of facial recognition, but it’s hard to believe their artists aren’t experimenting.)

The Americans, of course, are very important developers in the field of AI but they are not alone and it would have been nice to have seen something from Asia and/or Africa and/or something from one of the other Americas. In fact, anything which takes us out of the same old, same old. (Luba Elliott wrote this (2019/2020/2021?) essay, “Artificial Intelligence Art from Africa and Black Communities Worldwide” on Aya Data if you want to get a sense of some of the activity on the African continent. Elliott does seem to conflate Africa and Black Communities, for some clarity you may want to check out the Wikipedia entry on Africanfuturism, which contrasts with this August 12, 2020 essay by Donald Maloba, “What is Afrofuturism? A Beginner’s Guide.” Maloba also conflates the two.)

As it turns out, Luba Elliott presented at the 2019 Montréal Digital Spring event, which brings me to Canada’s artificial intelligence and arts scene.

I promise I haven’t turned into a flag waving zealot, my friend. It’s just odd there isn’t a bit more given that machine learning was pioneered at the University of Toronto. Here’s more about that (from Wikipedia entry for Geoffrey Hinston),

Geoffrey Everest HintonCCFRSFRSC[11] (born 6 December 1947) is a British-Canadian cognitive psychologist and computer scientist, most noted for his work on artificial neural networks.

Hinton received the 2018 Turing Award, together with Yoshua Bengio [Canadian scientist] and Yann LeCun, for their work on deep learning.[24] They are sometimes referred to as the “Godfathers of AI” and “Godfathers of Deep Learning“,[25][26] and have continued to give public talks together.[27][28]

Some of Hinton’s work was started in the US but since 1987, he has pursued his interests at the University of Toronto. He wasn’t proven right until 2012. Katrina Onstad’s February 29, 2018 article (Mr. Robot) for Toronto Life is a gripping read about Hinton and his work on neural networks. BTW, Yoshua Bengio (co-Godfather) is a Canadian scientist at the Université de Montréal and Yann LeCun (co-Godfather) is a French scientist at New York University.

Then, there’s another contribution, our government was the first in the world to develop a national artificial intelligence strategy. Adding those developments to the CCA ‘State of Science’ report findings about visual arts and performing arts, is there another word besides ‘odd’ to describe the lack of Canadian voices?

You’re going to point out the installation by Ben Bogart (a member of Simon Fraser University’s Metacreation Lab for Creative AI and instructor at the Emily Carr University of Art + Design (ECU)) but it’s based on the iconic US scifi film, 2001: A Space Odyssey. As for the other Canadian, Sougwen Chung, she left Canada pretty quickly to get her undergraduate degree in the US and has since moved to the UK. (You could describe hers as the quintessential success story, i.e., moving from Canada only to get noticed here after success elsewhere.)

Of course, there are the CDM student projects but the projects seem less like an exploration of visual culture than an exploration of technology and industry requirements, from the ‘Master of Digital Media Students Develop Revolutionary Installations for Vancouver Art Gallery AI Exhibition‘ webpage, Note: A link has been removed,

In 2019, Bruce Grenville, Senior Curator at Vancouver Art Gallery, approached [the] Centre for Digital Media to collaborate on several industry projects for the forthcoming exhibition. Four student teams tackled the project briefs over the course of the next two years and produced award-winning installations that are on display until October 23 [2022].

Basically, my friend, it would have been nice to see other voices or, at the least, an attempt at representing other voices and visual cultures informed by AI. As for Canadian contributions, maybe put something on the VAG website?

Playing well with others

it’s always a mystery to me why the Vancouver cultural scene seems comprised of a set of silos or closely guarded kingdoms. Reaching out to the public library and other institutions such as Science World might have cost time but could have enhanced the show

For example, one of the branches of the New York Public Library ran a programme called, “We are AI” in March 2022 (see my March 23, 2022 posting about the five-week course, which was run as a learning circle). The course materials are available for free (We are AI webpage) and I imagine that adding a ‘visual culture module’ wouldn’t be that difficult.

There is one (rare) example of some Vancouver cultural institutions getting together to offer an art/science programme and that was in 2017 when the Morris and Helen Belkin Gallery (at the University of British Columbia; UBC) hosted an exhibition of Santiago Ramon y Cajal’s work (see my Sept. 11, 2017 posting about the gallery show) along with that show was an ancillary event held by the folks at Café Scientifique at Science World and featuring a panel of professionals from UBC’s Faculty of Medicine and Dept. of Psychology, discussing Cajal’s work.

In fact, where were the science and technology communities for this show?

On a related note, the 2022 ACM SIGGRAPH conference (August 7 – 11, 2022) is being held in Vancouver. (ACM is the Association for Computing Machinery; SIGGRAPH is for Special Interest Group on Computer Graphics and Interactive Techniques.) SIGGRAPH has been holding conferences in Vancouver every few years since at least 2011.

At this year’s conference, they have at least two sessions that indicate interests similar to the VAG’s. First, there’s Immersive Visualization for Research, Science and Art which includes AI and machine learning along with other related topics. There’s also, Frontiers Talk: Art in the Age of AI: Can Computers Create Art?

This is both an international conference and an exhibition (of art) and the whole thing seems to have kicked off on July 25, 2022. If you’re interested, the programme can be found here and registration here.

Last time SIGGRAPH was here the organizers seemed interested in outreach and they offered some free events.

In the end

it was good to see the show. The curators brought together some exciting material. As is always the case, there were some missed opportunities and a few blind spots. But all is not lost.

July 27, 2022, the VAG held a virtual event with an artist,

Gwenyth Chao to learn more about what happened to the honeybees and hives in Oxman’s Synthetic Apiary project. As a transdisciplinary artist herself, Chao will also discuss the relationship between art, science, technology and design. She will then guide participants to create a space (of any scale, from insect to human) inspired by patterns found in nature.

Hopefully there will be more more events inspired by specific ‘objects’. Meanwhile, August 12, 2022, the VAG is hosting,

… in partnership with the Canadian Music Centre BC, New Music at the Gallery is a live concert series hosted by the Vancouver Art Gallery that features an array of musicians and composers who draw on contemporary art themes.

Highlighting a selection of twentieth- and twenty-first-century music compositions, this second concert, inspired by the exhibition The Imitation Game: Visual Culture in the Age of Artificial Intelligence, will spotlight The Iliac Suite (1957), the first piece ever written using only a computer, and Kaija Saariaho’s Terra Memoria (2006), which is in a large part dependent on a computer-generated musical process.

It would be lovely if they could include an Ada Lovelace Day event. This is an international celebration held on October 11, 2022.

Do go. Do enjoy, my friend.

Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (1 of 2): The Objects

To my imaginary AI friend

Dear friend,

I thought you might be amused by these Roomba-like* paintbots at the Vancouver Art Gallery’s (VAG) latest exhibition, “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” (March 5, 2022 – October 23, 2022).

Sougwen Chung, Omnia per Omnia, 2018, video (excerpt), Courtesy of the Artist

*A Roomba is a robot vacuum cleaner produced and sold by iRobot.

As far as I know, this is the Vancouver Art Gallery’s first art/science or art/technology exhibit and it is an alternately fascinating, exciting, and frustrating take on artificial intelligence and its impact on the visual arts. Curated by Bruce Grenville, VAG Senior Curator, and Glenn Entis, Guest Curator, the show features 20 ‘objects’ designed to both introduce viewers to the ‘imitation game’ and to challenge them. From the VAG Imitation Game webpage,

The Imitation Game surveys the extraordinary uses (and abuses) of artificial intelligence (AI) in the production of modern and contemporary visual culture around the world. The exhibition follows a chronological narrative that first examines the development of artificial intelligence, from the 1950s to the present [emphasis mine], through a precise historical lens. Building on this foundation, it emphasizes the explosive growth of AI across disciplines, including animation, architecture, art, fashion, graphic design, urban design and video games, over the past decade. Revolving around the important roles of machine learning and computer vision in AI research and experimentation, The Imitation Game reveals the complex nature of this new tool and demonstrates its importance for cultural production.

And now …

As you’ve probably guessed, my friend, you’ll find a combination of both background information and commentary on the show.

I’ve initially focused on two people (a scientist and a mathematician) who were seminal thinkers about machines, intelligence, creativity, and humanity. I’ve also provided some information about the curators, which hopefully gives you some insight into the show.

As for the show itself, you’ll find a few of the ‘objects’ highlighted with one of them being investigated at more length. The curators devoted some of the show to ethical and social justice issues, accordingly, the Vancouver Art Gallery hosted the University of British Columbia’s “Speculative Futures: Artificial Intelligence Symposium” on April 7, 2022,

Presented in conjunction with the exhibition The Imitation Game: Visual Culture in the Age of Artificial Intelligence, the Speculative Futures Symposium examines artificial intelligence and the specific uses of technology in its multifarious dimensions. Across four different panel conversations, leading thinkers of today will explore the ethical implications of technology and discuss how they are working to address these issues in cultural production.”

So, you’ll find more on these topics here too.

And for anyone else reading this (not you, my friend who is ‘strong’ AI and not similar to the ‘weak’ AI found in this show), there is a description of ‘weak’ and ‘strong’ AI on the webpage, Note: A link has been removed,

There are two types of AI: weak AI and strong AI.

Weak, sometimes called narrow, AI is less intelligent as it cannot work without human interaction and focuses on a more narrow, specific, or niched purpose. …

Strong AI on the other hand is in fact comparable to the fictitious AIs we see in media like the terminator. The theoretical Strong AI would be equivalent or greater to human intelligence.


My dear friend, I hope you will enjoy.

The Imitation Game and ‘mad, bad, and dangerous to know’

In some circles, it’s better known as ‘The Turing Test;” the Vancouver Art Gallery’s ‘Imitation Game’ hosts a copy of Alan Turing’s foundational paper for establishing whether artificial intelligence is possible (I thought this was pretty exciting).

Here’s more from The Turing Test essay by Graham Oppy and David Dowe for the Stanford Encyclopedia of Philosophy,

The phrase “The Turing Test” is most properly used to refer to a proposal made by Turing (1950) as a way of dealing with the question whether machines can think. According to Turing, the question whether machines can think is itself “too meaningless” to deserve discussion (442). However, if we consider the more precise—and somehow related—question whether a digital computer can do well in a certain kind of game that Turing describes (“The Imitation Game”), then—at least in Turing’s eyes—we do have a question that admits of precise discussion. Moreover, as we shall see, Turing himself thought that it would not be too long before we did have digital computers that could “do well” in the Imitation Game.

The phrase “The Turing Test” is sometimes used more generally to refer to some kinds of behavioural tests for the presence of mind, or thought, or intelligence in putatively minded entities. …

Next to the display holding Turing’s paper, is another display with an excerpt of an explanation from Turing about how he believed Ada Lovelace would have responded to the idea that machines could think based on a copy of some of her writing (also on display). She proposed that creativity, not thinking, is what set people apart from machines. (See the April 17, 2020 article “Thinking Machines? Has the Lovelace Test Been Passed?’ on

It’s like a dialogue between two seminal thinkers who lived about 100 years apart; Lovelace, born in 1815 and dead in 1852, and Turing, born in 1912 and dead in 1954. Both have fascinating back stories (more about those later) and both played roles in how computers and artificial intelligence are viewed.

Adding some interest to this walk down memory lane is a 3rd display, an illustration of the ‘Mechanical Turk‘, a chess playing machine that made the rounds in Europe from 1770 until it was destroyed in 1854. A hoax that fooled people for quite a while it is a reminder that we’ve been interested in intelligent machines for centuries. (Friend, Turing and Lovelace and the Mechanical Turk are found in Pod 1.)

Back story: Turing and the apple

Turing is credited with being instrumental in breaking the German ENIGMA code during World War II and helping to end the war. I find it odd that he ended up at the University of Manchester in the post-war years. One would expect him to have been at Oxford or Cambridge. At any rate, he died in 1954 of cyanide poisoning two years after he was arrested for being homosexual and convicted of indecency. Given the choice of incarceration or chemical castration, he chose the latter. There is, to this day, debate about whether or not it was suicide. Here’s how his death is described in this Wikipedia entry (Note: Links have been removed),

On 8 June 1954, at his house at 43 Adlington Road, Wilmslow,[150] Turing’s housekeeper found him dead. He had died the previous day at the age of 41. Cyanide poisoning was established as the cause of death.[151] When his body was discovered, an apple lay half-eaten beside his bed, and although the apple was not tested for cyanide,[152] it was speculated that this was the means by which Turing had consumed a fatal dose. An inquest determined that he had committed suicide. Andrew Hodges and another biographer, David Leavitt, have both speculated that Turing was re-enacting a scene from the Walt Disney film Snow White and the Seven Dwarfs (1937), his favourite fairy tale. Both men noted that (in Leavitt’s words) he took “an especially keen pleasure in the scene where the Wicked Queen immerses her apple in the poisonous brew”.[153] Turing’s remains were cremated at Woking Crematorium on 12 June 1954,[154] and his ashes were scattered in the gardens of the crematorium, just as his father’s had been.[155]

Philosopher Jack Copeland has questioned various aspects of the coroner’s historical verdict. He suggested an alternative explanation for the cause of Turing’s death: the accidental inhalation of cyanide fumes from an apparatus used to electroplate gold onto spoons. The potassium cyanide was used to dissolve the gold. Turing had such an apparatus set up in his tiny spare room. Copeland noted that the autopsy findings were more consistent with inhalation than with ingestion of the poison. Turing also habitually ate an apple before going to bed, and it was not unusual for the apple to be discarded half-eaten.[156] Furthermore, Turing had reportedly borne his legal setbacks and hormone treatment (which had been discontinued a year previously) “with good humour” and had shown no sign of despondency prior to his death. He even set down a list of tasks that he intended to complete upon returning to his office after the holiday weekend.[156] Turing’s mother believed that the ingestion was accidental, resulting from her son’s careless storage of laboratory chemicals.[157] Biographer Andrew Hodges theorised that Turing arranged the delivery of the equipment to deliberately allow his mother plausible deniability with regard to any suicide claims.[158]

The US Central Intelligence Agency (CIA) also has an entry for Alan Turing dated April 10, 2015 it’s titled, The Enigma of Alan Turing.

Back story: Ada Byron Lovelace, the 2nd generation of ‘mad, bad, and dangerous to know’

A mathematician and genius in her own right, Ada Lovelace’s father George Gordon Byron, better known as the poet Lord Byron, was notoriously described as ‘mad, bad, and dangerous to know’.

Lovelace too could have been been ‘mad, bad, …’ but she is described less memorably as “… manipulative and aggressive, a drug addict, a gambler and an adulteress, …” as mentioned in my October 13, 20215 posting. It marked the 200th anniversary of her birth, which was celebrated with a British Broadcasting Corporation (BBC) documentary and an exhibit at the Science Museum in London, UK.

She belongs in the Vancouver Art Gallery’s show along with Alan Turing due to her prediction that computers could be made to create music. She also published the first computer program. Her feat is astonishing when you know only one working model {1/7th of the proposed final size) of a computer was ever produced. (The machine invented by Charles Babbage was known as a difference engine. You can find out more about the Difference engine on Wikipedia and about Babbage’s proposed second invention, the Analytical engine.)

(Byron had almost nothing to do with his daughter although his reputation seems to have dogged her. You can find out more about Lord Byron here.)

AI and visual culture at the VAG: the curators

As mentioned earlier, the VAG’s “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” show runs from March 5, 2022 – October 23, 2022. Twice now, I have been to this weirdly exciting and frustrating show.

Bruce Grenville, VAG Chief/Senior Curator, seems to specialize in pulling together diverse materials to illustrate ‘big’ topics. His profile for Emily Carr University of Art + Design (where Grenville teaches) mentions these shows ,

… He has organized many thematic group exhibitions including, MashUp: The Birth of Modern Culture [emphasis mine], a massive survey documenting the emergence of a mode of creativity that materialized in the late 1800s and has grown to become the dominant model of cultural production in the 21st century; KRAZY! The Delirious World [emphasis mine] of Anime + Manga + Video Games + Art, a timely and important survey of modern and contemporary visual culture from around the world; Home and Away: Crossing Cultures on the Pacific Rim [emphasis mine] a look at the work of six artists from Vancouver, Beijing, Ho Chi Minh City, Seoul and Los Angeles, who share a history of emigration and diaspora. …

Glenn Entis, Guest Curator and founding faculty member of Vancouver’s Centre for Digital Media (CDM) is Grenville’s co-curator, from Entis’ CDM profile,

“… an Academy Award-winning animation pioneer and games industry veteran. The former CEO of Dreamworks Interactive, Glenn worked with Steven Spielberg and Jeffrey Katzenberg on a number of video games …,”

Steve Newton in his March 4, 2022 preview does a good job of describing the show although I strongly disagree with the title of his article which proclaims “The Vancouver Art Gallery takes a deep dive into artificial intelligence with The Imitation Game.” I think it’s more of a shallow dive meant to cover more distance than depth,

… The exhibition kicks off with an interactive introduction inviting visitors to actively identify diverse areas of cultural production influenced by AI.

“That was actually one of the pieces that we produced in collaboration with the Centre for Digital Media,” Grenville notes, “so we worked with some graduate-student teams that had actually helped us to design that software. It was the beginning of COVID when we started to design this, so we actually wanted a no-touch interactive. So, really, the idea was to say, ‘Okay, this is the very entrance to the exhibition, and artificial intelligence, this is something I’ve heard about, but I’m not really sure how it’s utilized in ways. But maybe I know something about architecture; maybe I know something about video games; maybe I know something about the history of film.

“So you point to these 10 categories of visual culture [emphasis mine]–video games, architecture, fashion design, graphic design, industrial design, urban design–so you point to one of those, and you might point to ‘film’, and then when you point at it that opens up into five different examples of what’s in the show, so it could be 2001: A Space Odyssey, or Bladerunner, or World on a Wire.”

After the exhibition’s introduction—which Grenville equates to “opening the door to your curiosity” about artificial intelligence–visitors encounter one of its main categories, Objects of Wonder, which speaks to the history of AI and the critical advances the technology has made over the years.

“So there are 20 Objects of Wonder [emphasis mine],” Grenville says, “which go from 1949 to 2022, and they kind of plot out the history of artificial intelligence over that period of time, focusing on a specific object. Like [mathematician and philosopher] Norbert Wiener made this cybernetic creature, he called it a ‘Moth’, in 1949. So there’s a section that looks at this idea of kind of using animals–well, machine animals–and thinking about cybernetics, this idea of communication as feedback, early thinking around neuroscience and how neuroscience starts to imagine this idea of a thinking machine.

And there’s this from Newton’s March 4, 2022 preview,

“It’s interesting,” Grenville ponders, “artificial intelligence is virtually unregulated. [emphasis mine] You know, if you think about the regulatory bodies that govern TV or radio or all the types of telecommunications, there’s no equivalent for artificial intelligence, which really doesn’t make any sense. And so what happens is, sometimes with the best intentions [emphasis mine]—sometimes not with the best intentions—choices are made about how artificial intelligence develops. So one of the big ones is facial-recognition software [emphasis mine], and any body-detection software that’s being utilized.

In addition to it being the best overview of the show I’ve seen so far, this is the only one where you get a little insight into what the curators were thinking when they were developing it.

A deep dive into AI?

it was only while searching for a little information before the show that I realized I don’t have any definitions for artificial intelligence! What is AI? Sadly, there are no definitions of AI in the exhibit.

It seems even experts don’t have a good definition. Take a look at this,

The definition of AI is fluid [emphasis mine] and reflects a constantly shifting landscape marked by technological advancements and growing areas of application. Indeed, it has frequently been observed that once AI becomes capable of solving a particular problem or accomplishing a certain task, it is often no longer considered to be “real” intelligence [emphasis mine] (Haenlein & Kaplan, 2019). A firm definition was not applied for this report [emphasis mine], given the variety of implementations described above. However, for the purposes of deliberation, the Panel chose to interpret AI as a collection of statistical and software techniques, as well as the associated data and the social context in which they evolve — this allows for a broader and more inclusive interpretation of AI technologies and forms of agency. The Panel uses the term AI interchangeably to describe various implementations of machine-assisted design and discovery, including those based on machine learning, deep learning, and reinforcement learning, except for specific examples where the choice of implementation is salient. [p. 6 print version; p. 34 PDF version]

The above is from the Leaps and Boundaries report released May 10, 2022 by the Council of Canadian Academies’ Expert Panel on Artificial Intelligence for Science and Engineering.

Sometimes a show will take you in an unexpected direction. I feel a lot better ‘not knowing’. Still, I wish the curators had acknowledged somewhere in the show that artificial intelligence is a slippery concept. Especially when you add in robots and automatons. (more about them later)

21st century technology in a 19th/20th century building

Void stairs inside the building. Completed in 1906, the building was later designated as a National Historic Site in 1980 [downloaded from]

Just barely making it into the 20th century, the building where the Vancouver Art Gallery currently resides was for many years the provincial courthouse (1911 – 1978). In some ways, it’s a disconcerting setting for this show.

They’ve done their best to make the upstairs where the exhibit is displayed look like today’s galleries with their ‘white cube aesthetic’ and strong resemblance to the scientific laboratories seen in movies.

(For more about the dominance, since the 1930s, of the ‘white cube aesthetic’ in art galleries around the world, see my July 26, 2021 posting; scroll down about 50% of the way.)

It makes for an interesting tension, the contrast between the grand staircase, the cupola, and other architectural elements and the sterile, ‘laboratory’ environment of the modern art gallery.

20 Objects of Wonder and the flow of the show

It was flummoxing. Where are the 20 objects? Why does it feel like a maze in a laboratory? Loved the bees, but why? Eeeek Creepers! What is visual culture anyway? Where am I?

The objects of the show

It turns out that the curators have a more refined concept for ‘object’ than I do. There weren’t 20 material objects, there were 20 numbered ‘pods’ with perhaps a screen or a couple of screens or a screen and a material object or two illustrating the pod’s topic.

Looking up a definition for the word (accessed from a June 9, 2022 search). yielded this, (the second one seems à propos),

objectŏb′jĭkt, -jĕkt″


1. Something perceptible by one or more of the senses, especially by vision or touch; a material thing.

2. A focus of attention, feeling, thought, or action.

3. A limiting factor that must be considered.

The American Heritage® Dictionary of the English Language, 5th Edition.

Each pod = a focus of attention.

The show’s flow is a maze. Am I a rat?

The pods are defined by a number and by temporary walls. So if you look up, you’ll see a number and a space partly enclosed by a temporary wall or two.

It’s a very choppy experience. For example, one minute you can be in pod 1 and, when you turn the corner, you’re in pod 4 or 5 or ? There are pods I’ve not seen, despite my two visits, because I kept losing my way. This led to an existential crisis on my second visit. “Had I missed the greater meaning of this show? Was there some sort of logic to how it was organized? Was there meaning to my life? Was I a rat being nudged around in a maze?” I didn’t know.

Thankfully, I have since recovered. But, I will return to my existential crisis later, with a special mention for “Creepers.”

The fascinating

My friend, you know I appreciated the history and in addition to Alan Turing, Ada Lovelace and the Mechanical Turk, at the beginning of the show, they included a reference to Ovid (or Pūblius Ovidius Nāsō), a Roman poet who lived from 43 BCE – 17/18 CE in one of the double digit (17? or 10? or …) in one of the pods featuring a robot on screen. As to why Ovid might be included, this excerpt from a February 12, 2018 posting on the website provides a clue (Note. Links have been removed),

The University of King’s College [Halifax, Nova Scotia] presents Automatons! From Ovid to AI, a nine-lecture series examining the history, issues and relationships between humans, robots, and artificial intelligence [emphasis mine]. The series runs from January 10 to April 4 [2018], and features leading scholars, performers and critics from Canada, the US and Britain.

“Drawing from theatre, literature, art, science and philosophy, our 2018 King’s College Lecture Series features leading international authorities exploring our intimate relationships with machines,” says Dr. Gordon McOuat, professor in the King’s History of Science and Technology (HOST) and Contemporary Studies Programs.

“From the myths of Ovid [emphasis mine] and the automatons [emphasis mine] of the early modern period to the rise of robots, cyborgs, AI and artificial living things in the modern world, the 2018 King’s College Lecture Series examines the historical, cultural, scientific and philosophical place of automatons in our lives—and our future,” adds McOuat.

I loved the way the curators managed to integrate the historical roots for artificial intelligence and, by extension, the world of automatons, robots, cyborgs, and androids. Yes, starting the show with Alan Turing and Ada Lovelace could be expected but Norbert Wiener’s Moth (1949) acts as a sort of preview for Sougwen Chung’s “Omnia per Omnia, 2018” (GIF seen at the beginning of this post). Take a look for yourself (from the September 19, 2009 posting by cyberne1. Do you see the similarity or am I the only one?

[sourced from Google images, Source:life) & downloaded from]


This is the first time I’ve come across an AI/sculpture project. The VAG show features Scott Eaton’s sculptures on screens in a room devoted to his work.

Scott Eaton: Entangled II, 2019 4k video (still) Courtesy of the Artist [downloaded from]

This looks like an image of a piece of ginger root and It’s fascinating to watch the process as the AI agent ‘evolves’ Eaton’s drawings into onscreen sculptures. It would have enhanced the experience if at least one of Eaton’s ‘evolved’ and physically realized sculptures had been present in the room but perhaps there were financial and/or logistical reasons for the absence.

Both Chung and Eaton are collaborating with an AI agent. In Chung’s case the AI is integrated into the paintbots with which she interacts and paints alongside and in Eaton’s case, it’s via a computer screen. In both cases, the work is mildly hypnotizing in a way that reminds me of lava lamps.

One last note about Chung and her work. She was one of the artists invited to present new work at an invite-only April 22, 2022 Embodied Futures workshop at the “What will life become?” event held by the Berrgruen Institute and the University of Southern California (USC),

Embodied Futures invites participants to imagine novel forms of life, mind, and being through artistic and intellectual provocations on April 22 [2022].

Beginning at 1 p.m., together we will experience the launch of five artworks commissioned by the Berggruen Institute. We asked these artists: How does your work inflect how we think about “the human” in relation to alternative “embodiments” such as machines, AIs, plants, animals, the planet, and possible alien life forms in the cosmos? [emphases mine]  Later in the afternoon, we will take provocations generated by the morning’s panels and the art premieres in small breakout groups that will sketch futures worlds, and lively entities that might dwell there, in 2049.

This leads to (and my friend, while I too am taking a shallow dive, for this bit I’m going a little deeper):

Bees and architecture

Neri Oxman’s contribution (Golden Bee Cube, Synthetic Apiary II [2020]) is an exhibit featuring three honeycomb structures and a video featuring the bees in her synthetic apiary.

Neri Oxman and the MIT Mediated Matter Group, Golden Bee Cube, Synthetic Apiary II, 2020, beeswax, acrylic, gold particles, gold powder Courtesy of Neri Oxman and the MIT Mediated Matter Group

Neri Oxman (then a faculty member of the Mediated Matter Group at the Massachusetts Institute of Technology) described the basis for the first and all other iterations of her synthetic apiary in Patrick Lynch’s October 5, 2016 article for ‘ArchDaily; Broadcasting Architecture Worldwide’, Note: Links have been removed,

Designer and architect Neri Oxman and the Mediated Matter group have announced their latest design project: the Synthetic Apiary. Aimed at combating the massive bee colony losses that have occurred in recent years, the Synthetic Apiary explores the possibility of constructing controlled, indoor environments that would allow honeybee populations to thrive year-round.

“It is time that the inclusion of apiaries—natural or synthetic—for this “keystone species” be considered a basic requirement of any sustainability program,” says Oxman.

In developing the Synthetic Apiary, Mediated Matter studied the habits and needs of honeybees, determining the precise amounts of light, humidity and temperature required to simulate a perpetual spring environment. [emphasis mine] They then engineered an undisturbed space where bees are provided with synthetic pollen and sugared water and could be evaluated regularly for health.

In the initial experiment, the honeybees’ natural cycle proved to adapt to the new environment, as the Queen was able to successfully lay eggs in the apiary. The bees showed the ability to function normally in the environment, suggesting that natural cultivation in artificial spaces may be possible across scales, “from organism- to building-scale.”

“At the core of this project is the creation of an entirely synthetic environment enabling controlled, large-scale investigations of hives,” explain the designers.

Mediated Matter chose to research into honeybees not just because of their recent loss of habitat, but also because of their ability to work together to create their own architecture, [emphasis mine] a topic the group has explored in their ongoing research on biologically augmented digital fabrication, including employing silkworms to create objects and environments at product, architectural, and possibly urban, scales.

“The Synthetic Apiary bridges the organism- and building-scale by exploring a “keystone species”: bees. Many insect communities present collective behavior known as “swarming,” prioritizing group over individual survival, while constantly working to achieve common goals. Often, groups of these eusocial organisms leverage collaborative behavior for relatively large-scale construction. For example, ants create extremely complex networks by tunneling, wasps generate intricate paper nests with materials sourced from local areas, and bees deposit wax to build intricate hive structures.”

This January 19, 2022 article by Crown Honey for its eponymous blog updates Oxman’s work (Note 1: All emphases are mine; Note 2: A link has been removed),

Synthetic Apiary II investigates co-fabrication between humans and honey bees through the use of designed environments in which Apis mellifera colonies construct comb. These designed environments serve as a means by which to convey information to the colony. The comb that the bees construct within these environments comprises their response to the input information, enabling a form of communication through which we can begin to understand the hive’s collective actions from their perspective.

Some environments are embedded with chemical cues created through a novel pheromone 3D-printing process, while others generate magnetic fields of varying strength and direction. Others still contain geometries of varying complexity or designs that alter their form over time.

When offered wax augmented with synthetic biomarkers, bees appear to readily incorporate it into their construction process, likely due to the high energy cost of producing fresh wax. This suggests that comb construction is a responsive and dynamic process involving complex adaptations to perturbations from environmental stimuli, not merely a set of predefined behaviors building toward specific constructed forms. Each environment therefore acts as a signal that can be sent to the colony to initiate a process of co-fabrication.

Characterization of constructed comb morphology generally involves visual observation and physical measurements of structural features—methods which are limited in scale of analysis and blind to internal architecture. In contrast, the wax structures built by the colonies in Synthetic Apiary II are analyzed through high-throughput X-ray computed tomography (CT) scans that enable a more holistic digital reconstruction of the hive’s structure.

Geometric analysis of these forms provides information about the hive’s design process, preferences, and limitations when tied to the inputs, and thereby yields insights into the invisible mediations between bees and their environment.
Developing computational tools to learn from bees can facilitate the very beginnings of a dialogue with them. Refined by evolution over hundreds of thousands of years, their comb-building behaviors and social organizations may reveal new forms and methods of formation that can be applied across our human endeavors in architecture, design, engineering, and culture.

Further, with a basic understanding and language established, methods of co-fabrication together with bees may be developed, enabling the use of new biocompatible materials and the creation of more efficient structural geometries that modern technology alone cannot achieve.

In this way, we also move our built environment toward a more synergistic embodiment, able to be more seamlessly integrated into natural environments through material and form, even providing habitats of benefit to both humans and nonhumans. It is essential to our mutual survival for us to not only protect but moreover to empower these critical pollinators – whose intrinsic behaviors and ecosystems we have altered through our industrial processes and practices of human-centric design – to thrive without human intervention once again.

In order to design our way out of the environmental crisis that we ourselves created, we must first learn to speak nature’s language. …

The three (natural, gold nanoparticle, and silver nanoparticle) honeycombs in the exhibit are among the few physical objects (the others being the historical documents and the paintbots with their canvasses) in the show and it’s almost a relief after the parade of screens. It’s the accompanying video that’s eerie. Everything is in white, as befits a science laboratory, in this synthetic apiary where bees are fed sugar water and fooled into a spring that is eternal.

Courtesy: Massachusetts Institute of Technology Copyright: Mediated Matter [downloaded from]

(You may want to check out Lynch’s October 5, 2016 article or Crown Honey’s January 19, 2022 article as both have embedded images and the Lynch article includes a Synthetic Apiary video. The image above is a still from the video.)

As I asked a friend, where are the flowers? Ron Miksha, a bee ecologist working at the University of Calgary, details some of the problems with Oxman’s Synthetic Apiary this way in his October 7, 2016 posting on his Bad Beekeeping Blog,

In a practical sense, the synthetic apiary fails on many fronts: Bees will survive a few months on concoctions of sugar syrup and substitute pollen, but they need a natural variety of amino acids and minerals to actually thrive. They need propolis and floral pollen. They need a ceiling 100 metres high and a 2-kilometre hallway if drone and queen will mate, or they’ll die after the old queen dies. They need an artificial sun that travels across the sky, otherwise, the bees will be attracted to artificial lights and won’t return to their hive. They need flowery meadows, fresh water, open skies. [emphasis mine] They need a better holodeck.

Dorothy Woodend’s March 10, 2022 review of the VAG show for The Tyee poses other issues with the bees and the honeycombs,

When AI messes about with other species, there is something even more unsettling about the process. American-Israeli artist Neri Oxman’s Golden Bee Cube, Synthetic Apiary II, 2020 uses real bees who are proffered silver and gold [nanoparticles] to create their comb structures. While the resulting hives are indeed beautiful, rendered in shades of burnished metal, there is a quality of unease imbued in them. Is the piece akin to apiary torture chambers? I wonder how the bees feel about this collaboration and whether they’d like to renegotiate the deal.

There’s no question the honeycombs are fascinating and disturbing but I don’t understand how artificial intelligence was a key factor in either version of Oxman’s synthetic apiary. In the 2022 article by Crown Honey, there’s this “Developing computational tools to learn from bees can facilitate the very beginnings of a dialogue with them [honeybees].” It’s probable that the computational tools being referenced include AI and the Crown Honey article seems to suggest those computational tools are being used to analyze the bees behaviour after the fact.

Yes, I can imagine a future where ‘strong’ AI (such as you, my friend) is in ‘dialogue’ with the bees and making suggestions and running the experiments but it’s not clear that this is the case currently. The Oxman exhibit contribution would seem to be about the future and its possibilities whereas many of the other ‘objects’ concern the past and/or the present.

Friend, let’s take a break, shall we? Part 2 is coming up.

An emotional android child

Caption: The six emotional expressions assessed in the second experiment. See if you can identify them! Note: this is a video made by filming Nikola’s head as it sat on a desk – it is not a computer animated graphic. Credit: RIKEN

This work comes from Japan according to a February 16, 2022 news item on ScienceDaily,

Researchers from the RIKEN Guardian Robot Project in Japan have made an android child named Nikola that successfully conveys six basic emotions. The new study, published in Frontiers in Psychology, tested how well people could identify six facial expressions — happiness, sadness, fear, anger, surprise, and disgust — which were generated by moving “muscles” in Nikola’s face. This is the first time that the quality of android-expressed emotion has been tested and verified for these six emotions.

A February 11, 2022 RIKEN press release (also on EurekAlert but published February 15, 2022), which originated the news item, provides more detail about the work,

Rosie the robot maid was considered science fiction when she debuted on the Jetson’s cartoon over 50 years ago. Although the reality of the helpful robot is currently more science and less fiction, there are still many challenges that need to be met, including being able to detect and express emotions. The recent study led by Wataru Sato from the RIKEN Guardian Robot Project focused on building a humanoid robot, or android, that can use its face to express a variety of emotions. The result is Nikola, an android head that looks like a hairless boy.

Inside Nikola’s face are 29 pneumatic actuators that control the movements of artificial muscles. Another 6 actuators control head and eyeball movements. Pneumatic actuators are controlled by air pressure, which makes the movements silent and smooth. The team placed the actuators based on the Facial Action Coding System (FACS), which has been used extensively to study facial expressions. Past research has identified numerous facial action units—such as ‘cheek raiser’ and ‘lip pucker’—that comprise typical emotions such as happiness or disgust, and the researchers incorporated these action units in Nikola’s design.

Typically, studies of emotions, particularly how people react to emotions, have a problem. It is difficult to do a properly controlled experiment with live people interacting, but at the same time, looking at photos or videos of people is less natural, and reactions aren’t the same. “The hope is that with androids like Nikola, we can have our cake and eat it too,” says Sato. “We can control every aspect of Nikola’s behavior, and at the same time study live interactions.” The first step was to see if Nikola’s facial expressions were understandable.

A person certified in FACS [Facial Action Coding System] scoring was able to identify each facial action unit, indicating that Nikola’s facial movements accurately resemble those of a real human. A second test showed that everyday people could recognize the six prototypical emotions—happiness, sadness, fear, anger, surprise, and disgust—in Nikola’s face, albeit to varying accuracies. This is because Nikola’s silicone skin is less elastic than real human skin and cannot form wrinkles very well. Thus, emotions like disgust were harder to identify because the action unit for nose wrinkling could not be included.

“In the short term, androids like Nikola can be important research tools for social psychology or even social neuroscience,” says Sato. “Compared with human confederates, androids are good at controlling behaviors and can facilitate rigorous empirical investigation of human social interactions.” As an example, the researchers asked people to rate the naturalness of Nikola’s emotions as the speed of his facial movements was systematically controlled. They researchers found that the most natural speed was slower for some emotions like sadness than it was for others like surprise.

While Nikola still lacks a body, the ultimate goal of the Guardian Robot Project is to build an android that can assist people, particularly those which physical needs who might live alone. “Androids that can emotionally communicate with us will be useful in a wide range of real-life situations, such as caring for older people, and can promote human wellbeing,” says Sato.

Here’s a link to and a citation for the paper,

An Android for Emotional Interaction: Spatiotemporal Validation of Its Facial Expressions by Wataru Sato, Shushi Namba, Dongsheng Yang, Shin’ya Nishida, Carlos Ishi, and Takashi Minato. Front. Psychol., 04 February 2022 DOI:

This paper is open access.

For anyone who’d like to investigate the worlds of robots, artificial intelligence, and emotions, I have my December 3, 2021 posting “True love with AI (artificial intelligence): The Nature of Things explores emotional and creative AI (long read)” and there’s also Hiroshi Ishiguro’s work, which I’ve mentioned a number of times here, most recently in a March 27, 2017 posting “Ishiguro’s robots and Swiss scientist question artificial intelligence at SXSW (South by Southwest) 2017.”

A robot that morphs from a ground vehicle to an air vehicle using liquid metal

This video starts slow but the part where the robot morphs is pretty good stuff,

A February 9, 2022 news item on ScienceDaily announces a new approach to shape-changing materials,

Imagine a small autonomous vehicle that could drive over land, stop, and flatten itself into a quadcopter. The rotors start spinning, and the vehicle flies away. Looking at it more closely, what do you think you would see? What mechanisms have caused it to morph from a land vehicle into a flying quadcopter? You might imagine gears and belts, perhaps a series of tiny servo motors that pulled all its pieces into place.

If this mechanism was designed by a team at Virginia Tech led by Michael Bartlett, assistant professor in mechanical engineering, you would see a new approach for shape changing at the material level. These researchers use rubber, metal, and temperature to morph materials and fix them into place with no motors or pulleys. The team’s work has been published in Science Robotics. Co-authors of the paper include graduate students Dohgyu Hwang and Edward J. Barron III and postdoctoral researcher A. B. M. Tahidul Haque.

A February 9, 2022 Virginia Tech news release (also on EurekAlert) by Alex Parrish, which originated the news item, provides more detail,

Getting into shape

Nature is rich with organisms that change shape to perform different functions. The octopus dramatically reshapes to move, eat, and interact with its environment; humans flex muscles to support loads and hold shape; and plants move to capture sunlight throughout the day. How do you create a material that achieves these functions to enable new types of multifunctional, morphing robots?

“When we started the project, we wanted a material that could do three things: change shape, hold that shape, and then return to the original configuration, and to do this over many cycles,” said Bartlett. “One of the challenges was to create a material that was soft enough to dramatically change shape, yet rigid enough to create adaptable machines that can perform different functions.”

To create a structure that could be morphed, the team turned to kirigami, the Japanese art of making shapes out of paper by cutting. (This  method differs from origami, which uses folding.) By observing the strength of those kirigami patterns in rubbers and composites, the team was able to create a material architecture of a repeating geometric pattern.

Next, they needed a material that would hold shape but allow for that shape to be erased on demand. Here they introduced an endoskeleton made of a low melting point alloy (LMPA) embedded inside a rubber skin. Normally, when a metal is stretched too far, the metal becomes permanently bent, cracked, or stretched into a fixed, unusable shape. However, with this special metal embedded in rubber, the researchers turned this typical failure mechanism into a strength. When stretched, this composite would now hold a desired shape rapidly, perfect for soft morphing materials that can become instantly load bearing.

Finally, the material had to return the structure back to its original shape. Here, the team incorporated soft, tendril-like heaters next to the LMPA mesh. The heaters cause the metal to be converted to a liquid at 60 degrees Celsius (140 degrees Fahrenheit), or 10 percent of the melting temperature of aluminum. The elastomer skin keeps the melted metal contained and in place, and then pulls the material back into the original shape, reversing the stretching, giving the composite what the researchers call “reversible plasticity.” After the metal cools, it again contributes to holding the structure’s shape.

“These composites have a metal endoskeleton embedded into a rubber with soft heaters, where the kirigami-inspired cuts define an array of metal beams. These cuts combined with the unique properties of the materials were really important to morph, fix into shape rapidly, then return to the original shape,” Hwang said.

The researchers found that this kirigami-inspired composite design could create complex shapes, from cylinders to balls to the bumpy shape of the bottom of a pepper. Shape change could also be achieved quickly: After impact with a ball, the shape changed and fixed into place in less than 1/10 of a second. Also, if the material broke, it could be healed multiple times by melting and reforming the metal endoskeleton.

One drone for land and air, one for sea

The applications for this technology are only starting to unfold. By combining this material with onboard power, control, and motors, the team created a functional drone that autonomously morphs from a ground to air vehicle. The team also created a small, deployable submarine, using the morphing and returning of the material to retrieve objects from an aquarium by scraping the belly of the sub along the bottom.

“We’re excited about the opportunities this material presents for multifunctional robots. These composites are strong enough to withstand the forces from motors or propulsion systems, yet can readily shape morph, which allows machines to adapt to their environment,” said Barron.

Looking forward, the researchers envision the morphing composites playing a role in the emerging field of soft robotics to create machines that can perform diverse functions, self-heal after being damaged to increase resilience, and spur different ideas in human-machine interfaces and wearable devices.

Here’s link to and a citation for the paper,

Shape morphing mechanical metamaterials through reversible plasticity by Dohgyu Hwang, Edward J. Barron III, A. B. M. Tahidul Haque and Michael D. Bartlett. Science Robotics • 9 Feb 2022 • Vol 7, Issue 63 • DOI: 10.1126/scirobotics.abg2171

This paper is behind a paywall.