Monthly Archives: May 2022

Windows and roofs ‘self-adapt’ to heating and cooling conditions

I have two items about thermochromic coatings. It’s a little confusing since the American Association for the Advancement of Science (AAAS), which publishes the journal featuring both papers has issued a news release that seemingly refers to both papers as a single piece of research.

Onto, the press/new releases from the research institutions to be followed by the AAAS news release.

Nanyang Technological University (NTU) does windows

A December 16, 2021 news item on Nanowerk announced work on energy-saving glass,

An international research team led by scientists from Nanyang Technological University, Singapore (NTU Singapore) has developed a material that, when coated on a glass window panel, can effectively self-adapt to heat or cool rooms across different climate zones in the world, helping to cut energy usage.

Developed by NTU researchers and reported in the journal Science (“Scalable thermochromic smart windows with passive radiative cooling regulation”), the first-of-its-kind glass automatically responds to changing temperatures by switching between heating and cooling.

The self-adaptive glass is developed using layers of vanadium dioxide nanoparticles composite, Poly(methyl methacrylate) (PMMA), and low-emissivity coating to form a unique structure which could modulate heating and cooling simultaneously.

A December 17, 2021 NTU press release (PDF), also on EurekAlert but published December 16, 2021, which originated the news item, delves further into the research (Note: A link has been removed),

The newly developed glass, which has no electrical components, works by exploiting the spectrums of light responsible for heating and cooling.

During summer, the glass suppresses solar heating (near infrared light), while boosting radiative cooling (long-wave infrared) – a natural phenomenon where heat emits through surfaces towards the cold universe – to cool the room. In the winter, it does the opposite to warm up the room.

In lab tests using an infrared camera to visualise results, the glass allowed a controlled amount of heat to emit in various conditions (room temperature – above 70°C), proving its ability to react dynamically to changing weather conditions.

New glass regulates both heating and cooling

Windows are one of the key components in a building’s design, but they are also the least energy-efficient and most complicated part. In the United States alone, window-associated energy consumption (heating and cooling) in buildings accounts for approximately four per cent of their total primary energy usage each year according to an estimation based on data available from the Department of Energy in US.[1]

While scientists elsewhere have developed sustainable innovations to ease this energy demand – such as using low emissivity coatings to prevent heat transfer and electrochromic glass that regulate solar transmission from entering the room by becoming tinted – none of the solutions have been able to modulate both heating and cooling at the same time, until now.

The principal investigator of the study, Dr Long Yi of the NTU School of Materials Science and Engineering (MSE) said, “Most energy-saving windows today tackle the part of solar heat gain caused by visible and near infrared sunlight. However, researchers often overlook the radiative cooling in the long wavelength infrared. While innovations focusing on radiative cooling have been used on walls and roofs, this function becomes undesirable during winter. Our team has demonstrated for the first time a glass that can respond favourably to both wavelengths, meaning that it can continuously self-tune to react to a changing temperature across all seasons.”

As a result of these features, the NTU research team believes their innovation offers a convenient way to conserve energy in buildings since it does not rely on any moving components, electrical mechanisms, or blocking views, to function.

To improve the performance of windows, the simultaneous modulation of both solar transmission and radiative cooling are crucial, said co-authors Professor Gang Tan from The University of Wyoming, USA, and Professor Ronggui Yang from the Huazhong University of Science and Technology, Wuhan, China, who led the building energy saving simulation.

“This innovation fills the missing gap between traditional smart windows and radiative cooling by paving a new research direction to minimise energy consumption,” said Prof Gang Tan.

The study is an example of groundbreaking research that supports the NTU 2025 strategic plan, which seeks to address humanity’s grand challenges on sustainability, and accelerate the translation of research discoveries into innovations that mitigate human impact on the environment.

Innovation useful for a wide range of climate types

As a proof of concept, the scientists tested the energy-saving performance of their invention using simulations of climate data covering all populated parts of the globe (seven climate zones).

The team found the glass they developed showed energy savings in both warm and cool seasons, with an overall energy saving performance of up to 9.5%, or ~330,000 kWh per year (estimated energy required to power 60 household in Singapore for a year) less than commercially available low emissivity glass in a simulated medium sized office building.

First author of the study Wang Shancheng, who is Research Fellow and former PhD student of Dr Long Yi, said, “The results prove the viability of applying our glass in all types of climates as it is able to help cut energy use regardless of hot and cold seasonal temperature fluctuations. This sets our invention apart from current energy-saving windows which tend to find limited use in regions with less seasonal variations.”

Moreover, the heating and cooling performance of their glass can be customised to suit the needs of the market and region for which it is intended.

“We can do so by simply adjusting the structure and composition of special nanocomposite coating layered onto the glass panel, allowing our innovation to be potentially used across a wide range of heat regulating applications, and not limited to windows,” Dr Long Yi said.

Providing an independent view, Professor Liangbing Hu, Herbert Rabin Distinguished Professor, Director of the Center for Materials Innovation at the University of Maryland, USA, said, “Long and co-workers made the original development of smart windows that can regulate the near-infrared sunlight and the long-wave infrared heat. The use of this smart window could be highly important for building energy-saving and decarbonization.”  

A Singapore patent has been filed for the innovation. As the next steps, the research team is aiming to achieve even higher energy-saving performance by working on the design of their nanocomposite coating.

The international research team also includes scientists from Nanjing Tech University, China. The study is supported by the Singapore-HUJ Alliance for Research and Enterprise (SHARE), under the Campus for Research Excellence and Technological Enterprise (CREATE) programme, Minster of Education Research Fund Tier 1, and the Sino-Singapore International Joint Research Institute.

Here’s a link to and a citation for the paper,

Scalable thermochromic smart windows with passive radiative cooling regulation by Shancheng Wang, Tengyao Jiang, Yun Meng, Ronggui Yang, Gang Tan, and Yi Long. Science • 16 Dec 2021 • Vol 374, Issue 6574 • pp. 1501-1504 • DOI: 10.1126/science.abg0291

This paper is behind a paywall.

Lawrence Berkeley National Laboratory (Berkeley Lab; LBNL) does roofs

A December 16, 2021 Lawrence Berkeley National Laboratory news release (also on EurekAlert) announces an energy-saving coating for roofs (Note: Links have been removed),

Scientists have developed an all-season smart-roof coating that keeps homes warm during the winter and cool during the summer without consuming natural gas or electricity. Research findings reported in the journal Science point to a groundbreaking technology that outperforms commercial cool-roof systems in energy savings.

“Our all-season roof coating automatically switches from keeping you cool to warm, depending on outdoor air temperature. This is energy-free, emission-free air conditioning and heating, all in one device,” said Junqiao Wu, a faculty scientist in Berkeley Lab’s Materials Sciences Division and a UC Berkeley professor of materials science and engineering who led the study.

Today’s cool roof systems, such as reflective coatings, membranes, shingles, or tiles, have light-colored or darker “cool-colored” surfaces that cool homes by reflecting sunlight. These systems also emit some of the absorbed solar heat as thermal-infrared radiation; in this natural process known as radiative cooling, thermal-infrared light is radiated away from the surface.

The problem with many cool-roof systems currently on the market is that they continue to radiate heat in the winter, which drives up heating costs, Wu explained.

“Our new material – called a temperature-adaptive radiative coating or TARC – can enable energy savings by automatically turning off the radiative cooling in the winter, overcoming the problem of overcooling,” he said.

A roof for all seasons

Metals are typically good conductors of electricity and heat. In 2017, Wu and his research team discovered that electrons in vanadium dioxide behave like a metal to electricity but an insulator to heat – in other words, they conduct electricity well without conducting much heat. “This behavior contrasts with most other metals where electrons conduct heat and electricity proportionally,” Wu explained.

Vanadium dioxide below about 67 degrees Celsius (153 degrees Fahrenheit) is also transparent to (and hence not absorptive of) thermal-infrared light. But once vanadium dioxide reaches 67 degrees Celsius, it switches to a metal state, becoming absorptive of thermal-infrared light. This ability to switch from one phase to another – in this case, from an insulator to a metal – is characteristic of what’s known as a phase-change material.

To see how vanadium dioxide would perform in a roof system, Wu and his team engineered a 2-centimeter-by-2-centimeter TARC thin-film device.

TARC “looks like Scotch tape, and can be affixed to a solid surface like a rooftop,” Wu said.

In a key experiment, co-lead author Kechao Tang set up a rooftop experiment at Wu’s East Bay home last summer to demonstrate the technology’s viability in a real-world environment.

A wireless measurement device set up on Wu’s balcony continuously recorded responses to changes in direct sunlight and outdoor temperature from a TARC sample, a commercial dark roof sample, and a commercial white roof sample over multiple days.

How TARC outperforms in energy savings

The researchers then used data from the experiment to simulate how TARC would perform year-round in cities representing 15 different climate zones across the continental U.S.

Wu enlisted Ronnen Levinson, a co-author on the study who is a staff scientist and leader of the Heat Island Group in Berkeley Lab’s Energy Technologies Area, to help them refine their model of roof surface temperature. Levinson developed a method to estimate TARC energy savings from a set of more than 100,000 building energy simulations that the Heat Island Group previously performed to evaluate the benefits of cool roofs and cool walls across the United States.

Finnegan Reichertz, a 12th grade student at the East Bay Innovation Academy in Oakland who worked remotely as a summer intern for Wu last year, helped to simulate how TARC and the other roof materials would perform at specific times and on specific days throughout the year for each of the 15 cities or climate zones the researchers studied for the paper.

The researchers found that TARC outperforms existing roof coatings for energy saving in 12 of the 15 climate zones, particularly in regions with wide temperature variations between day and night, such as the San Francisco Bay Area, or between winter and summer, such as New York City.

“With TARC installed, the average household in the U.S. could save up to 10% electricity,” said Tang, who was a postdoctoral researcher in the Wu lab at the time of the study. He is now an assistant professor at Peking University in Beijing, China.

Standard cool roofs have high solar reflectance and high thermal emittance (the ability to release heat by emitting thermal-infrared radiation) even in cool weather.

According to the researchers’ measurements, TARC reflects around 75% of sunlight year-round, but its thermal emittance is high (about 90%) when the ambient temperature is warm (above 25 degrees Celsius or 77 degrees Fahrenheit), promoting heat loss to the sky. In cooler weather, TARC’s thermal emittance automatically switches to low, helping to retain heat from solar absorption and indoor heating, Levinson said.

Findings from infrared spectroscopy experiments using advanced tools at Berkeley Lab’s Molecular Foundry validated the simulations.

“Simple physics predicted TARC would work, but we were surprised it would work so well,” said Wu. “We originally thought the switch from warming to cooling wouldn’t be so dramatic. Our simulations, outdoor experiments, and lab experiments proved otherwise – it’s really exciting.”

The researchers plan to develop TARC prototypes on a larger scale to further test its performance as a practical roof coating. Wu said that TARC may also have potential as a thermally protective coating to prolong battery life in smartphones and laptops, and shield satellites and cars from extremely high or low temperatures. It could also be used to make temperature-regulating fabric for tents, greenhouse coverings, and even hats and jackets.

Co-lead authors on the study were Kaichen Dong and Jiachen Li.

The Molecular Foundry is a nanoscience user facility at Berkeley Lab.

This work was primarily supported by the DOE Office of Science and a Bakar Fellowship.

The technology is available for licensing and collaboration. If interested, please contact Berkeley Lab’s Intellectual Property Office, ipo@lbl.gov.

Here’s a link to and a citation for the paper,

Temperature-adaptive radiative coating for all-season household thermal regulation by Kechao Tang, Kaichen Dong, Jiachen Li, Madeleine P. Gordon, Finnegan G. Reichertz, Hyungjin Kim, Yoonsoo Rho, Qingjun Wang, Chang-Yu Lin, Costas P. Grigoropoulos, Ali Javey, Jeffrey J. Urban, Jie Yao, Ronnen Levinson, Junqiao Wu. Science • 16 Dec 2021 • Vol 374, Issue 6574 • pp. 1504-1509 • DOI: 10.1126/science.abf7136

This paper is behind a paywall.

An interesting news release from the AAAS

While it’s a little confusing as it cites only the ‘window’ research from NTU, the body of this news release offers some additional information about the usefulness of thermochromic materials and seemingly refers to both papers, from a December 16, 2021 AAAS news release,

Temperature-adaptive passive radiative cooling for roofs and windows

When it’s cold out, window glass and roof coatings that use passive radiative cooling to keep buildings cool can be designed to passively turn off radiative cooling to avoid heat loss, two new studies show.  Their proof-of-concept analyses demonstrate that passive radiative cooling can be expanded to warm and cold climate applications and regions, potentially providing all-season energy savings worldwide. Buildings consume roughly 40% of global energy, a large proportion of which is used to keep them cool in warmer climates. However, most temperature regulation systems commonly employed are not very energy efficient and require external power or resources. In contrast, passive radiative cooling technologies, which use outer space as a near-limitless natural heat sink, have been extensively examined as a means of energy-efficient cooling for buildings. This technology uses materials designed to selectively emit narrow-band radiation through the infrared atmospheric window to disperse heat energy into the coldness of space. However, while this approach has proven effective in cooling buildings to below ambient temperatures, it is only helpful during the warmer months or in regions that are perpetually hot. Furthermore, the inability to “turn off” passive cooling in cooler climes or in regions with large seasonal temperature variations means that continuous cooling during colder periods would exacerbate the energy costs of heating. In two different studies, by Shancheng Wang and colleagues and Kechao Tang and colleagues, researchers approach passive radiative cooling from an all-season perspective and present a new, scalable temperature-adaptive radiative technology that passively turns off radiative cooling at lower temperatures. Wang et al. and Tang et al. achieve this using a tungsten-doped vanadium dioxide and show how it can be applied to create both window glass and a flexible roof coating, respectively. Model simulations of the self-adapting materials suggest they could provide year-round energy savings across most climate zones, especially those with substantial seasonal temperature variations. 

I wish them all good luck with getting these materials to market.

Cellulose nanocrystals (CNC), protein, and starch eletrospun to develop ‘smart’ food packaging

A December 29, 2021 news item on ScienceDaily announces research into ;smart’ sustainable packaging from a joint Nanyang Technical University and Harvard University,

A team of scientists from Nanyang Technological University, Singapore (NTU Singapore) and Harvard T.H. Chan School of Public Health, US, has developed a ‘smart’ food packaging material that is biodegradable, sustainable and kills microbes that are harmful to humans. It could also extend the shelf-life of fresh fruit by two to three days.

The waterproof food packaging is made from a type of corn protein called zein, starch and other naturally derived biopolymers, infused with a cocktail of natural antimicrobial compounds. These include oil from thyme, a common herb used in cooking, and citric acid, which is commonly found in citrus fruits.

A December 28, 2021 Nanyang Technological University press release (PDF), also on EurekAlert but published December 27, 2021, which originated the news item, offers a few more details about the research (Note 1: Links have been removed; Note 2: I had to dig into the abstract to find the cellulose nanocrystals),

In lab experiments, when exposed to an increase in humidity or enzymes from harmful bacteria, the fibres in the packaging have been shown to release the natural antimicrobial compounds, killing common dangerous bacteria that contaminate food, such as E. Coli and Listeria, as well as fungi.

The packaging is designed to release the necessary miniscule amounts of antimicrobial compounds only in response to the presence of additional humidity or bacteria. This ensures that the packaging can endure several exposures, and last for months.

As the compounds combat any bacteria that grow on the surface of the packaging as well as on the food product itself, it has the potential to be used for a large variety of products, including ready-to-eat foods, raw meat, fruits, and vegetables.

In an experiment, strawberries that were wrapped in the packaging stayed fresh for seven days before developing mould, compared to counterparts that were kept in mainstream fruit plastic boxes, which only stayed fresh for four days.

The invention is the result of the collaboration by scientists from the NTU-Harvard T. H. Chan School of Public Health Initiative for Sustainable Nanotechnology (NTU-Harvard SusNano), which brings together NTU and Harvard Chan School researchers to work on cutting edge applications in agriculture and food, with an emphasis on developing non-toxic and environmentally safe nanomaterials.

The development of this advanced food packaging material is part of the University’s efforts to promote sustainable food tech solutions, that is aligned with the NTU 2025 strategic plan, which aims to develop sustainable solutions to address some of humanity’s pressing grand challenges.

Professor Mary Chan, Director of NTU’s Centre of Antimicrobial Bioengineering, who co-led the project, said: “This invention would serve as a better option for packaging in the food industry, as it has demonstrated superior antimicrobial qualities in combatting a myriad of food-related bacteria and fungi that could be harmful to humans. The packaging can be applied to various produces such as fish, meat, vegetables, and fruits. The smart release of antimicrobials only when bacteria or high humidity is present, provides protection only when needed thus minimising the use of chemicals and preserving the natural composition of foods packaged.”

Professor Philip Demokritou, Adjunct Professor of Environmental Health at Harvard Chan School, who is also Director of Nanotechnology and Nanotoxicology Center and Co-director of NTU-Harvard Initiative on Sustainable Nanotechnology, who co-led the study, said: “Food safety and waste have become a major societal challenge of our times with immense public health and economic impact which compromises food security. One of the most efficient ways to enhance food safety and reduce spoilage and waste is to develop efficient biodegradable non-toxic food packaging materials. In this study, we used nature-derived compounds including biopolymers, non-toxic solvents, and nature-inspired antimicrobials and develop scalable systems to synthesise smart antimicrobial materials which can be used not only to enhance food safety and quality but also to eliminate the harm to the environment and health and reduce the use of non-biodegradable plastics at global level and promote sustainable agri-food systems.” 

Providing an independent assessment of the work done by the NTU research team, Mr Peter Barber, CEO of ComCrop, a Singapore company that pioneered urban rooftop farming, said: “The NTU-Harvard Chan School food packaging material would serve as a sustainable solution for companies like us who want to cut down on the usage of plastic and embrace greener alternatives. As ComCrop looks to ramp up product to boost Singapore’s food production capabilities, the volume of packaging we need will increase in sync, and switching to a material such as this would help us have double the impact. The wrapping’s antimicrobial properties, which could potentially extend the shelf life of our vegetables, would serve us well. The packaging material holds promise to the industry, and we look forward to learning more about the wrapping and possibly adopting it for our usage someday.”

The results of the study were published in the peer-reviewed academic journal ACS Applied Materials & Interfacesin October [2021].

Cutting down on packaging waste

The packaging industry is the largest and growing consumer of synthetic plastics derived from fossil fuels, with food packaging plastics accounting for the bulk of plastic waste that are polluting the environment.

In Singapore, packaging is a major source of trash, with data from Singapore’s National Environment Agency showing that out of the 1.76 million tonnes of waste disposed of by domestic sources in 2018, one third of it was packaging waste, and over half of it (55 per cent) was plastic.

The smart food package material, when scaled up, could serve as an alternative to cut down on the amount of plastic waste, as it is biodegradable. Its main ingredient, zein, is also produced from corn gluten meal, which is a waste by-product from using corn starch or oils in order to produce ethanol.

The food packaging material is produced by electrospinning[1] the zein, the antimicrobial compounds with cellulose, a natural polymer starch that makes up plant cell walls, and acetic acid, which is commonly found in vinegar.

Prof Mary Chan added: “The sustainable and biodegradable active food packaging, which has inbuilt technology to keep bacteria and fungus at bay, is of great importance to the food industry. It could serve as an environmentally friendly alternative to petroleum-based polymers used in commercial food packaging, such as plastic, which have a significant negative environmental impact.”

Prof Demokritou added: “Due to the globalisation of food supply and attitude shift towards a healthier lifestyle and environmentally friendly food packaging, there is a need to develop biodegradable, non-toxic and smart/responsive materials to enhance food safety and quality. Development of scalable synthesis platforms for developing food packaging materials that are composed of nature derived, biodegradable biopolymers and nature inspired antimicrobials, coupled with stimuli triggered approaches will meet the emerging societal needs to reduce food waste and enhance food safety and quality.”

The team of NTU and Harvard Chan School researchers hope to scale up their technology with an industrial partner, with the aim of commercialisation within the next few years.

They are also currently working on developing other technologies to develop biopolymer-based smart food package materials to enhance food safety and quality.

Here’s a link to and a citation for the paper, followed by the key (nanocellulose crystal mention) sentences in the abstract,

Enzyme- and Relative Humidity-Responsive Antimicrobial Fibers for Active Food Packaging by Zeynep Aytac, Jie Xu, Suresh Kumar Raman Pillai, Brian D. Eitzer, Tao Xu, Nachiket Vaze, Kee Woei Ng, Jason C. White, Mary B. Chan-Park, Yaguang Luo, and Philip Demokritou. ACS Appl. Mater. Interfaces 2021, 13, 42, 50298–50308 I: https://doi.org/10.1021/acsami.1c12319 Publication Date: October 14, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

Excerpt from abstract,

Active food packaging materials that are sustainable, biodegradable, and capable of precise delivery of antimicrobial active ingredients (AIs) are in high demand. Here, we report the development of novel enzyme- and relative humidity (RH)-responsive antimicrobial fibers with an average diameter of 225 ± 50 nm, which can be deposited as a functional layer for packaging materials. Cellulose nanocrystals (CNCs) [emphasis mine], zein (protein), and starch were electrospun to form multistimuli-responsive fibers that incorporated a cocktail of both free nature-derived antimicrobials such as thyme oil, citric acid, and nisin and cyclodextrin-inclusion complexes (CD-ICs) of thyme oil, sorbic acid, and nisin. …

I have been following the CNC story for some time. If you’re curious, just use ‘cellulose nanocrystal(s)’ as your search term. You can find out more about ComCrop here.

The sound of the mushroom

A May 13, 2022 article by Philip Drost for the Canadian Broadcasting Corporation’s (CBC) As It Happens radio programme highlights the “From funky fungi to melodious mangos, this artist makes music out of nature” segment of the show, Note: Links have been removed,

At the intersection of biology and electronic music, you can find Tarun Nayar plugging his synthesizer equipment into mushrooms and other forms of plant life, hoping to capture their invisible bioelectric rhythms and build them into tranquil soundscapes. 

“What I’m really doing is trying to stimulate joy and wonder and create these little sketches or vignettes using the plants themselves, so I like to think of it as definitely a collaboration,” Nayar told As It Happens guest host Helen Mann.

Nayar is an electronic musician and former biologist in Vancouver who uses his TikTok account and Youtube page, Modern Biology, to show off his serenading spores. And his videos have millions of views.

To make his fungi sing, Nayar uses little jumper cables to connect the vegetation with his synthesizer and measure their biological energy, or bioelectricity, which has an effect on the notes. 

“The mushroom is contributing the pitch changes and the rhythm, and the synthesizer, which I have the mushroom plugged into, is contributing the timbre or the quality of the sound,” Nayar said. 

You may be familiar with Nayar’s work (from a Creative Mornings Vancouver About The Speaker webpage for a talk given on July 3, 2020), Note: Links have been removed,

Tarun Nayar has built his world at intersections. Of east and west. Of music and business. Of science and art. Born to a white Canadian mother and an immigrant Indian father in French Canada, he has always lived in multiple worlds. He is comfortable in discomfort and fascinated with helping people find common ground, opening doors, and equalling the playing field. He is passionate about changing perceptions and championing unheard stories and talent.

rained formally in Indian Classical Music from the age of seven, Tarun’s involvement in Vancouver’s underground electronic music scene in his early 20s led to the formation of well-known Canadian band Delhi 2 Dublin [emphasis mine] in 2006. He has since led the band to Glastonbury (UK), Hardly Strictly Bluegrass (US), Woodford (AUS) and hundreds of other club and festival gigs around the world. Tarun is passionate about creating opportunities in the arts for people of colour. He is Executive Director of 5X Festival [emphasis mine], one of North America’s largest South Asian festivals. He is on the board of Vancouver’s New Forms Festival, the Canadian Live Music Association, and a member of BC’s Ministry of Education Advisory Committee, Vancouver’s Music City Task Force, and Vancouver’s 2018 Juno Host City Committee. Tarun manages emerging Pakistani-Canadian electronic artist Khanvict, and is the co-founder and owner of digital label Snakes x Ladders [emphasis mine] which focuses on the new wave of hybrid South Asian artists.

As best I can determine after looking at the Modern Biology YouTube channel and Tik Tok account, Nayar seems to have started his project or made it public about 10 months ago (August 2021?). There’s lots of mushroom music along with fruit music, and flower music in either location although Tik Tok seems have a more complete collection.

There’s also a Modern Biology page on linktree.ee where you can sign up for an email list. It also features a link to PlantWave, (Note: This is not a product endorsement),

$299.00 USD

Listen to the music of plants. Tune into Nature with PlantWave!

PlantWave allows you to wirelessly connect from your plant to your phone, making it easier than ever to listen to nature’s song.

Pre-orders will ship June of 2022. We sold out of our January run of devices before shipping. Thank you for your patience as we do our best to meet demand for this experience.

Package Includes:

Hardware

PlantWave Plant Music Device

Electrode leads

3 pairs of reusable sticky pads for leaves

Duck beak clips for smaller plants

USB C cable for charging / data transmission

Free iOS / Android App

….

Enjoy!

Transformational machine learning (TML)

It seems machine learning is getting a tune-up. A November 29, 2021 news item on ScienceDaily describes research into improving machine learning from an international team of researchers,

Researchers have developed a new approach to machine learning that ‘learns how to learn’ and out-performs current machine learning methods for drug design, which in turn could accelerate the search for new disease treatments.

The method, called transformational machine learning (TML), was developed by a team from the UK, Sweden, India and Netherlands. It learns from multiple problems and improves performance while it learns.

A November 29, 2021 University of Cambridge press release (also on EurekAlert), which originated the news item, describes the potential this new technique may have on drug discovery and more,

TML could accelerate the identification and production of new drugs by improving the machine learning systems which are used to identify them. The results are reported in the Proceedings of the National Academy of Sciences.

Most types of machine learning (ML) use labelled examples, and these examples are almost always represented in the computer using intrinsic features, such as the colour or shape of an object. The computer then forms general rules that relate the features to the labels.

“It’s sort of like teaching a child to identify different animals: this is a rabbit, this is a donkey and so on,” said Professor Ross King from Cambridge’s Department of Chemical Engineering and Biotechnology, who led the research. “If you teach a machine learning algorithm what a rabbit looks like, it will be able to tell whether an animal is or isn’t a rabbit. This is the way that most machine learning works – it deals with problems one at a time.”

However, this is not the way that human learning works: instead of dealing with a single issue at a time, we get better at learning because we have learned things in the past.

“To develop TML, we applied this approach to machine learning, and developed a system that learns information from previous problems it has encountered in order to better learn new problems,” said King, who is also a Fellow at The Alan Turing Institute. “Where a typical ML system has to start from scratch when learning to identify a new type of animal – say a kitten – TML can use the similarity to existing animals: kittens are cute like rabbits, but don’t have long ears like rabbits and donkeys. This makes TML a much more powerful approach to machine learning.”

The researchers demonstrated the effectiveness of their idea on thousands of problems from across science and engineering. They say it shows particular promise in the area of drug discovery, where this approach speeds up the process by checking what other ML models say about a particular molecule. A typical ML approach will search for drug molecules of a particular shape, for example. TML instead uses the connection of the drugs to other drug discovery problems.

“I was surprised how well it works – better than anything else we know for drug design,” said King. “It’s better at choosing drugs than humans are – and without the best science, we won’t get the best results.”

Here’s a link to and a citation for the paper,

Transformational machine learning: Learning how to learn from many related scientific problems by Ivan Olier, Oghenejokpeme I. Orhobor, Tirtharaj Dash, Andy M. Davis, Larisa N. Soldatova, Joaquin Vanschoren, and Ross D. King. PNAS December 7, 2021 118 (49) e2108013118; DOI: https://doi.org/10.1073/pnas.2108013118

This paper appears to be open access.

Brain surgery with no scalpel or incisions

A December 3, 2021 news item on ScienceDaily announces some very exciting work from the University of Virginia UVA) and Stanford University,

University of Virginia School of Medicine researchers have developed a noninvasive way to remove faulty brain circuits that could allow doctors to treat debilitating neurological diseases without the need for conventional brain surgery.

The UVA team, together with colleagues at Stanford University, indicate that the approach, if successfully translated to the operating room, could revolutionize the treatment of some of the most challenging and complex neurological diseases, including epilepsy, movement disorders and more. The approach uses low-intensity focused ultrasound waves combined with microbubbles to briefly penetrate the brain’s natural defenses and allow the targeted delivery of a neurotoxin. This neurotoxin kills the culprit brain cells while sparing other healthy cells and preserving the surrounding brain architecture.

A November 22, 2021 University of Virginia news release (also on EurekAlert but published on December 3, 2021), which originated the news item, offers technical details (Note: Links have been removed),

“This novel surgical strategy has the potential to supplant existing neurosurgical procedures used for the treatment of neurological disorders that don’t respond to medication,” said researcher Kevin S. Lee of UVA’s Departments of Neuroscience and Neurosurgery and the Center for Brain Immunology and Glia, or BIG. “This unique approach eliminates the diseased brain cells, spares adjacent healthy cells and achieves these outcomes without even having to cut into the scalp.”

The Power of PING

The new approach, called “PING,” has already demonstrated exciting potential in laboratory studies. For instance, one of the promising applications for PING could be for the surgical treatment of epilepsies that do not respond to medication. Approximately a third of patients with epilepsy do not respond to anti-seizure drugs, and surgery can reduce or eliminate seizures for some of them. Lee and his team, along with their collaborators at Stanford, have shown that PING can reduce or eliminate seizures in two research models of epilepsy. The findings raise the possibility of treating epilepsy in a carefully targeted and noninvasive manner without the need for traditional brain surgery. 

Another important potential advantage of PING is that it could encourage the surgical treatment of appropriate patients with epilepsy who are reluctant to undergo conventional invasive or ablative surgery.

In a scientific paper newly published in the Journal of Neurosurgery, Lee and his collaborators detail the ability of PING to focally eliminate neurons in a brain region, while sparing non-target cells in the same area. In contrast, currently available surgical approaches damage all cells in a treated brain region. 

A key advantage of the approach is its incredible precision. PING harnesses the power of magnetic-resonance imaging to let scientists peer inside the skull so that they can precisely guide sound waves to open the body’s natural blood-brain barrier exactly where needed. This barrier is designed to keep harmful cells and molecules out of the brain, but it also prevents the delivery of potentially beneficial treatments.

The UVA group’s new paper concludes that PING allows the delivery of a highly targeted neurotoxin, cleanly wiping out problematic neurons, a type of brain cell, without causing collateral damage. 

Another key advantage of the precision of this approach is that it can be used on irregularly shaped targets in areas that would be extremely difficult or impossible to reach through regular brain surgery. “If this strategy translates to the clinic,” the researchers write in their new paper, “the noninvasive nature and specificity of the procedure could positively influence both physician referrals for, and patient confidence in, surgery for medically intractable neurological disorders.”

“Our hope is that the PING strategy will become a key element in the next generation of very precise, noninvasive, neurosurgical approaches to treat major neurological disorders,” said Lee, who is part of the UVA Brain Institute.

About the Research

Lee’s groundbreaking research has been supported by the National Institutes of Health, the Chester Fund and the Charlottesville-based Focused Ultrasound Foundation. The work is part of an expansive effort at UVA Health to explore the potential of scalpel-free focused ultrasound to treat complex diseases throughout the body.

UVA’s pioneering research has already paved the way for the federal Food and Drug Administration to approve focused ultrasound for the treatment of essential tremor, a common movement disorder, and Parkinson’s disease symptoms. Research is underway on its potential applications for many more conditions, including breast cancer and glioblastoma, a deadly form of brain tumor. Learn more about UVA’s focused ultrasound research.

The research team included Yi Wang, Matthew J. Anzivino, Yanrong Zhang, Edward H. Bertram, James Woznak, Alexander L. Klibanov, Erik Dumont and Max Wintermark. 

An application to patent the PING procedure has been submitted by members of the research group. 

The research was funded by the National Institutes of Health, grants R01 NS102194 and R01 CA217953-01; the Chester Fund; and the Focused Ultrasound Foundation.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

Here’s a link to and a citation for the paper,

Noninvasive disconnection of targeted neuronal circuitry sparing axons of passage and nonneuronal cells by Yi Wang, Matthew J. Anzivino, Yanrong Zhang, Edward H. Bertram, James Woznak, Alexander L. Klibanov, Erik Dumont, Max Wintermark, and Kevin S. Lee. Journal of Neurosurgery DOI: https://doi.org/10.3171/2021.7.JNS21123 Online Publication Date: 19 Nov 2021

This paper is behind a paywall.

Sci-fi opera: R.U.R. A Torrent of Light opens May 28, 2022 in Toronto, Canada

Even though it’s a little late, I guess you could call the opera opening in Toronto on May 28, 2022 a 100th anniversary celebration of the word ‘robot’. Introduced in 1920 by Czech playwright Karel Čapek in his play, R.U.R., which stands for ‘Rossumovi Univerzální Roboti’ or, in English, ‘Rossum’s Universal Robots’, the word was first coined by Čapek’s brother, Josef (see more about the play and the word in the R.U.R. Wikipedia entry).

The opera, R.U.R. A Torrent of Light, is scheduled to open at 8 pm ET on Saturday, May 28, 2022 (after being rescheduled due to a COVID case in the cast) at OCAD University’s (formerly the Ontario College of Art and Design) The Great Hall.

I have more about tickets prices, dates, and location later in this post but first, here’s more about the opera and the people who’ve created it from the Tapestry Opera’s ‘R.U.R. A Torrent of Light’ performance webpage,

This stunning new opera combines dance, beautiful multimedia design, a chamber orchestra including 100 instruments creating a unique electronica-classical sound, and wearable technology [emphasis mine] created with OCAD University’s Social Body Lab, to create an immersive and unforgettable science-fiction experience.

As for the opera’s story,

The fictional tech company R.U.R., founded by couple Helena and Dom, dominates the A.I. software market and powers the now-ubiquitous androids that serve their human owners. 

As Dom becomes more focused on growing R.U.R’s profits, Helena’s creative research leads to an unexpected technological breakthrough that pits the couples’ visions squarely against each other. They’ve reached a turning point for humanity, but is humanity ready? 

Inspired by Karel Čapek’s 1920’s science-fiction play Rossum’s Universal Robots (which introduced the word “robot” to the English language), composer Nicole Lizée’s and writer Nicolas Billon’s R.U.R. A Torrent of Light grapples with one of our generation’s most fascinating questions. [emphasis mine]

So, what is the fascinating question? The answer is here in a March 7, 2022 OCAD news release,

Last Wednesday [March 2, 2022], OCAD U’s Great Hall at 100 McCaul St. was filled with all manner of sound making objects. Drum kits, gongs, chimes, typewriters and most exceptionally, a cello bow that produces bird sounds when glided across any surface were being played while musicians, dancers and opera singers moved among them.  

All were abuzz preparing for Tapestry Opera’s new production, R.U.R. A Torrent of Light, which will be presented this spring in collaboration with OCAD University. 

An immersive, site-specific experience, the new chamber opera explores humanity’s relationship to technology. [emphasis mine] Inspired by Karel Čapek’s 1920s science-fiction play Rossum’s Universal Robots, this latest version is set 20 years in the future when artificial intelligence (AI) has become fully sewn into our everyday lives and is set in the offices of a fictional tech company.

Čapek’s original script brought the word robot into the English language and begins in a factory that manufactures artificial people. Eventually these entities revolt and render humanity extinct.  

The innovative adaptation will be a unique addition to Tapestry Opera’s more than 40-year history of producing operatic stage performances. It is the only company in the country dedicated solely to the creation and performance of original Canadian opera. 

The March 7, 2022 OCAD news release goes on to describe the Social Body Lab’s involvement,

OCAD U’s Social Body Lab, whose mandate is to question the relationship between humans and technology, is helping to bring Tapestry’s vision of the not-so-distant future to the stage. Director of the Lab and Associate Professor in the Faculty of Arts & Science, Kate Hartman, along with Digital Futures Associate Professors Nick Puckett and Dr. Adam Tindale have developed wearable technology prototypes that will be integrated into the performers’ costumes. They have collaborated closely with the opera’s creative team to embrace the possibilities innovative technologies can bring to live performance. 

“This collaboration with Tapestry Opera has been incredibly unique and productive. Working in dialogue with their designers has enabled us to translate their ideas into cutting edge technological objects that we would have never arrived at individually,” notes Professor Puckett. 

The uncanny bow that was being tested last week is one of the futuristic devices that will be featured in the performance and is the invention of Dr. Tindale, who is himself a classically trained musician. He has also developed a set of wearable speakers for R.U.R. A Torrent of Light that when donned by the dancers will allow sound to travel across the stage in step with their choreography. 

Hartman and Puckett, along with the production’s costume, light and sound designers, have developed an LED-based prototype that will be worn around the necks of the actors who play robots and will be activated using WIFI. These collar pieces will function as visual indicators to the audience of various plot points, including the moments when the robots receive software updates.  

“Despite current stereotypes, opera was historically a launchpad for all kinds of applied design technologies. [emphasis mine] Having the opportunity to collaborate with OCAD U faculty is an invigorating way to reconnect to that tradition and foster connections between art, music and design,” comments the production’s Director Michael Hidetoshi Mori, who is also Tapestry Opera’s Artistic Director. 

“New music and theatre are perfect canvases for iterative experimentation. We look forward to the unique fruits of this collaboration and future ones,” he continues. 

Unfortunately, I cannot find a preview but there is this video highlighting the technology being used in the opera (there are three other videos highlighting the choreography, the music, and the story, respectively, if you scroll about 40% down this page),


As I promised, here are the logistics,

University address:

OCAD University
100 McCaul Street,
Toronto, Ontario, Canada, M5T 1W1

Performance venue:

The Great Hall at OCAD University
Level 2, beside the Anniversary Gallery

Ticket prices:

The following seating sections are available for this performance. Tickets are from $10 to $100. All tickets are subject to a $5 transaction fee.

Orchestra Centre
Orchestra Sides
Orchestra Rear
Balcony (standing room)

Performances:

May 28 at 8:00 pm

May 29 at 4:00 pm

June 01 at 8:00 pm

June 02 at 8:00 pm

June 03 at 8:00 pm

June 04 at 8:00 pm

June 05 at 4:00 pm

Tapestry Opera’s ‘R.U.R. A Torrent of Light’ performance webpage offers a link to buy tickets but it lands on a page that doesn’t seem to be functioning properly. I have contacted (as of Tuesday, May 24, 2022 at about 10:30 am PT) the Tapestry Opera folks to let them know about the problem. Hopefully soon, I will be able to update this page when they’ve handled the issue.

ETA May 30, 2022: You can buy tickets here. There are tickets available for only two of the performances left, Thursday, June 2, 2022 at 8 pm and Sunday, June 5, 2022 at 4 pm.

Public relations practitioners and artificial intelligence (AI)

A December 2, 2021 news item on phys.org sheds light on an AI topic new to me,

A new research report from the Chartered Institute of Public Relations’ AIinPR Panel, which has been co-authored by the University’s [of Huddersfield] Emeritus Professor of Corporate Communication Anne Gregory, has found that practitioners see the huge potential that artificial intelligence (AI) and Big Data offers the profession but possess limited knowledge on technical aspects of both.

A December ?, 2021 University of Huddersfield press release (also on the Chartered Institute of Public Relations [CIPR] website but dated November 23, 2021), which originated the news item, offers a summary of the report’s results,

The ‘AI and Big Data Readiness Report – Assessing the Public Relations Profession’s Preparedness for an AI Future’ research provides an overview of current AI understanding and preparedness within public relations and outlines how the profession should equip itself to exploit the potential and guard against the possible dangers of AI. 

“We need to get a strategic grip and determine for ourselves what our enhanced role and contribution can be in the organisations we serve. Otherwise, others will make the decision for us and it won’t be in our favour. This Report serves as the wake-up call.” [said] Professor Anne Gregory

It finds a significant number of PR practitioners have limited knowledge of AI and lack confidence in using it (43.2%), compared with only a small number who feel “very comfortable” (13.9%). However, practitioners are optimistic and have an eagerness to learn. Their challenge is they do not know what they need to know and they don’t know where to start. 

The report finds: 

41.5% of respondents claim to understand what AI as a technology means but do not consider themselves technical

Over one in three (38.9%) PR practitioners feel ‘excited’ about AI compared to just 3.9% who feel ‘overwhelmed’

30% of practitioners are familiar with AI technology but don’t feel confident to apply their knowledge to their role

One in five practitioners (20.7%) feel very comfortable using data and analytics in their role compared to just 8.2% of those who feel the same about AI

Around one in five practitioners are familiar with the relevance of both AI and Big Data on the communication profession

It would have been nice if the authors had included a little more detail about the previous research so as to better understand this report’s results.

As for the ‘AI and Big Data Readiness Report – Assessing the Public Relations Profession’s Preparedness for an AI Future’ report itself, I wish the authors had delved further into what the “41.5% of respondents claim to understand …” actually do understand about AI technology.

One last note, I was glad to see that the topic of ethics was also included in the survey.

Beer and wine reviews, the American Chemical Society’s (ACS) AI editors, and the Turing Test

The Turing test first known as the ‘Imitation Game’, was designed by scientist Alan Turing in 1950 to see if a machine’s behaviour (in this case, a ‘conversation’) could fool someone into believing it was human. It’s a basic test to help determine true artificial intelligence.

These days ‘artificial intelligence’ seems to be everywhere, although I’m not sure that all these algorithms would pass the Turing test. Some of the latest material I’ve seen suggests that writers and editors may have to rethink their roles in future. Let’s start with the beer and wine reviews.

Writing

An April 25, 2022 Dartmouth College news release by David Hirsch announces the AI reviewer, Note: Links have been removed,

In mid-2020, the computer science team of Keith Carlson, Allen Riddell and Dan Rockmore was stuck on a problem. It wasn’t a technical challenge. The computer code they had developed to write product reviews was working beautifully. But they were struggling with a practical question.

“Getting the code to write reviews was only the first part of the challenge,” says Carlson, Guarini ’21, a doctoral research fellow at the Tuck School of Business, “The remaining challenge was figuring out how and where it could be used.”

The original study took on two challenges: to design code that could write original, human-quality product reviews using a small set of product features and to see if the algorithm could be adapted to write “synthesis reviews” for products from a large number of existing reviews.

Review writing can be challenging because of the overwhelming number of products available. The team wanted to see if artificial intelligence was up to the task of writing opinionated text about vast product classes.

They focused on wine and beer reviews because of the extensive availability of material to train the algorithm. The relatively narrow vocabularies used to describe the products also makes it open to the techniques of AI systems and natural language processing tools.

The project was kickstarted by Riddell, a former fellow at the Neukom Institute for Computational Science, and developed with Carlson under the guidance of Rockmore, the William H. Neukom 1964 Distinguished Professor of Computational Science.

The code couldn’t taste the products, but it did ingest reams of written material. After training the algorithm on hundreds of thousands of published wine and beer reviews, the team found that the code could complete both tasks.

One result read: “This is a sound Cabernet. It’s very dry and a little thin in blackberry fruit, which accentuates the acidity and tannins. Drink up.”

Another read: “Pretty dark for a rosé, and full-bodied, with cherry, raspberry, vanilla and spice flavors. It’s dry with good acidity.”

“But now what?” Carlson explains as a question that often gnaws at scientists. The team wondered, “Who else would care?”

“I didn’t want to quit there,” says Rockmore. “I was sure that this work could be interesting to a wider audience.”

Sensing that the paper could have relevance in marketing, the team walked the study to Tuck Drive to see what others would think.

“Brilliant,” Praveen Kopalle, the Signal Companies’ Professor of Management at Tuck School of Business, recalls thinking when first reviewing the technical study.

Kopalle knew that the research was important. It could even “disrupt” the online review industry, a huge marketplace of goods and services.

“The paper has a lot of marketing applications, particularly in the context of online reviews where we can create reviews or descriptions of products when they may not already exist,” adds Kopalle. “In fact, we can even think about summarizing reviews for products and services as well.”

With the addition of Prasad Vana, assistant professor of business administration at Tuck, the team was complete. Vana reframed the technical feat of creating review-writing code into that of a market-friendly tool that can assist consumers, marketers, and professional reviewers.

“This is a sound Cabernet. It’s very dry and a little thin in blackberry fruit, which accentuates the acidity and tannins. Drink up.” Attribution: Artificial Intelligence review from Dartmouth project

The resulting research, published in International Journal of Research in Marketing, surveyed independent participants to confirm that the AI system wrote human-like reviews in both challenges.

“Using artificial intelligence to write and synthesize reviews can create efficiencies on both sides of the marketplace,” said Vana. “The hope is that AI can benefit reviewers facing larger writing workloads and consumers who have to sort through so much content about products.”

The paper also dwells on the ethical concerns raised by computer-generated content. It notes that marketers could get better acceptance by falsely attributing the reviews to humans. To address this, the team advocates for transparency when computer-generated text is used.

They also address the issue of computers taking human jobs. Code should not replace professional product reviewers, the team insists in the paper. The technology is meant to make the tasks of producing and reading the material more efficient. [emphasis mine]

“It’s interesting to imagine how this could benefit restaurants that cannot afford sommeliers or independent sellers on online platforms who may sell hundreds of products,” says Vana.

According to Carlson, the paper’s first author, the project demonstrates the potential of AI, the power of innovative thinking, and the promise of cross-campus collaboration.

“It was wonderful to work with colleagues with different expertise to take a theoretical idea and bring it closer to the marketplace,” says Carlson. “Together we showed how our work could change marketing and how people could use it. That could only happen with collaboration.”

A revised April 29, 2022 version was published on EurekAlert and some of the differences are interesting (to me, if no one else). As you see, there’s a less ‘friendly’ style and the ‘jobs’ issue has been approached differently. Note: Links have been removed,

Artificial intelligence systems can be trained to write human-like product reviews that assist consumers, marketers and professional reviewers, according to a study from Dartmouth College, Dartmouth’s Tuck School of Business, and Indiana University.

The research, published in the International Journal of Research in Marketing, also identifies ethical challenges raised by the use of the computer-generated content.

“Review writing is challenging for humans and computers, in part, because of the overwhelming number of distinct products,” said Keith Carlson, a doctoral research fellow at the Tuck School of Business. “We wanted to see how artificial intelligence can be used to help people that produce and use these reviews.”

For the research, the Dartmouth team set two challenges. The first was to determine whether a machine can be taught to write original, human-quality reviews using only a small number of product features after being trained on a set of existing content. Secondly, the team set out to see if machine learning algorithms can be used to write syntheses of reviews of products for which many reviews already exist.

“Using artificial intelligence to write and synthesize reviews can create efficiencies on both sides of the marketplace,” said Prasad Vana, assistant professor of business administration at Tuck School of Business. “The hope is that AI can benefit reviewers facing larger writing workloads and consumers that have to sort through so much content about products.”

The researchers focused on wine and beer reviews because of the extensive availability of material to train the computer algorithms. Write-ups of these products also feature relatively focused vocabularies, an advantage when working with AI systems.

To determine whether a machine could write useful reviews from scratch, the researchers trained an algorithm on about 180,000 existing wine reviews. Metadata tags for factors such as product origin, grape variety, rating, and price were also used to train the machine-learning system.

When comparing the machine-generated reviews against human reviews for the same wines, the research team found agreement between the two versions. The results remained consistent even as the team challenged the algorithms by changing the amount of input data that was available for reference.

The machine-written material was then assessed by non-expert study participants to test if they could determine whether the reviews were written by humans or a machine. According to the research paper, the participants were unable to distinguish between the human and AI-generated reviews with any statistical significance. Furthermore, their intent to purchase a wine was similar across human versus machine generated reviews of the wine. 

Having found that artificial intelligence can write credible wine reviews, the research team turned to beer reviews to determine the effectiveness of using AI to write “review syntheses.” Rather than being trained to write new reviews, the algorithm was tasked with aggregating elements from existing reviews of the same product. This tested AI’s ability to identify and provide limited but relevant information about products based on a large volume of varying opinions.

“Writing an original review tests the computer’s expressive ability based on a relatively narrow set of data. Writing a synthesis review is a related but distinct task where the system is expected to produce a review that captures some of the key ideas present in an existing set of reviews for a product,” said Carlson, who conducted the research while a PhD candidate in computer science at Dartmouth.

To test the algorithm’s ability to write review syntheses, researchers trained it on 143,000 existing reviews of over 14,000 beers. As with the wine dataset, the text of each review was paired with metadata including the product name, alcohol content, style, and scores given by the original reviewers.

As with the wine reviews, the research used independent study participants to judge whether the machine-written summaries captured and summarized the opinions of numerous reviews in a useful, human-like manner.

According to the paper, the model was successful at taking the reviews of a product as input and generating a synthesis review for that product as output.

“Our modeling framework could be useful in any situation where detailed attributes of a product are available and a written summary of the product is required,” said Vana. “It’s interesting to imagine how this could benefit restaurants that cannot afford sommeliers or independent sellers on online platforms who may sell hundreds of products.”

Both challenges used a deep learning neural net based on transformer architecture to ingest, process and output review language.

According to the research team, the computer systems are not intended to replace professional writers and marketers, but rather to assist them in their work. A machine-written review, for instance, could serve as a time-saving first draft of a review that a human reviewer could then revise. [emphasis mine]

The research can also help consumers. Syntheses reviews—like those on beer in the study—can be expanded to the constellation of products and services in online marketplaces to assist people who have limited time to read through many product reviews.

In addition to the benefits of machine-written reviews, the research team highlights some of the ethical challenges presented by using computer algorithms to influence human consumer behavior.

Noting that marketers could get better acceptance of machine-generated reviews by falsely attributing them to humans, the team advocates for transparency when computer-generated reviews are offered.

“As with other technology, we have to be cautious about how this advancement is used,” said Carlson. “If used responsibly, AI-generated reviews can be both a productivity tool and can support the availability of useful consumer information.”

Researchers contributing to the study include Praveen Kopalle, Dartmouth’s Tuck School of Business; Allen Riddell, Indiana University, and Daniel Rockmore, Dartmouth College.

I wonder if the second news release was written by an AI agent.

Here’s a link to and a citation for the paper,

Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis by Keith Carlson, Praveen K.Kopal, Allen Ridd, Daniel Rockmore, Prasad Vana. International Journal of Research in Marketing DOI: https://doi.org/10.1016/j.ijresmar.2022.02.004 Available online 12 February 2022 In Press, Corrected Proof

This paper is behind a paywall.

Daniel (Dan) Rockmore was mentioned here in a May 6, 2016 posting about a competition he’d set up through Dartmouth College,’s Neukom Institute. The competition, which doesn’t seem to have been run since 2018, was called Turing Tests in Creative Arts.

Editing

It seems the American Chemical Society (ACS) has decided to further automate some of its editing. From an April 28, 2022 Digital Science business announcement (also on EurekAlert) by David Ellis,

Writefull’s world-leading AI-based language services have been integrated into the American Chemical Society’s (ACS) Publications workflow.

In a partnership that began almost two years ago, ACS has now progressed to a full integration of Writefull’s application programming interfaces (APIs) for three key uses.

One of the world’s largest scientific societies, ACS publishes more than 300,000 research manuscripts in more than 60 scholarly journals per year.

Writefull’s proprietary AI technology is trained on millions of scientific papers using Deep Learning. It identifies potential language issues with written texts, offers solutions to those issues, and automatically assesses texts’ language quality. Thanks to Writefull’s APIs, its tech can be applied at all key points in the editorial workflows.

Writefull’s Manuscript Categorization API is now used by ACS before copyediting to automatically classify all accepted manuscripts by their language quality. Using ACS’s own classification criteria, the API assigns a level-of-edit grade to manuscripts at scale without editors having to open documents and review the text. After thorough benchmarking alongside human editors, Writefull reached more than 95% alignment in grading texts, significantly reducing the time ACS spends on manuscript evaluation.

The same Manuscript Categorization API is now part of ACS’s quality control program, to evaluate the language in manuscripts after copyediting.

Writefull’s Metadata API is also being used to automate aspects of manuscript review, ensuring that all elements of an article are complete prior to publication. The same API is used by Open Access publisher Hindawi as a pre-submission structural checks tool for authors.

Juan Castro, co-founder and CEO of Writefull, says: “Our partnership with the American Chemical Society over the past two years has been aimed at thoroughly vetting and shaping our services to meet ACS’s needs. Writefull’s AI-based language services empower publishers to increase their workflow efficiency and positively impact production costs, while also maintaining the quality and integrity of the manuscript.”

Digital Science is a technology company working to make research more efficient. We invest in, nurture and support innovative businesses and technologies that make all parts of the research process more open and effective. Our portfolio includes admired brands including Altmetric, Dimensions, Figshare, ReadCube, Symplectic, IFI CLAIMS, GRID, Overleaf, Ripeta and Writefull. We believe that together, we can help researchers make a difference. Visit www.digital-science.com and follow @digitalsci on Twitter.

Writefull is a technology startup that creates tools to help researchers improve their writing in English. The first version of the Writefull product allowed researchers to discover patterns in academic language, such as frequent word combinations and synonyms in context. The new version utilises Natural Language Processing and Deep Learning algorithms that will give researchers feedback on their full texts. Visit writefull.com and follow @writefullapp on Twitter.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio. Visit www.acs.org and follow @AmerChemSociety on Twitter.

So what?

An artificial intelligence (AI) agent being used for writing assignments is not new (see my July 16, 2014 posting titled, “Writing and AI or is a robot writing this blog?“). The argument that these agents will assist rather than replace (pick an occupation: e.g., writers, doctors, programmers, scientists, etc) is almost always used as scientists explain that AI agents will take over the boring work giving you (the human) more opportunities to do interesting work. The AI-written beer and wine reviews described here support at least part of the argument—for the time being.

It’s true that an AI agent can’t taste beer or wine but that can change as this August 8, 2019 article by Alice Johnston for CNN hints (Note: Links have been removed),

An artificial “tongue” that can taste minute differences between varieties of Scotch whisky could be the key to identifying counterfeit alcohol, scientists say.

Engineers from the universities of Glasgow and Strathclyde in Scotland created a device made of gold and aluminum and measured how it absorbed light when submerged in different kinds of whisky.

Analysis of the results allowed the scientists to identify the samples from Glenfiddich, Glen Marnoch and Laphroaig with more than 99% accuracy

BTW, my earliest piece on artificial tongues is a July 28, 2011 posting, “Bio-inspired electronic tongue replaces sommelier?,” about research in Spain.

For a contrast, this is the first time I can recall seeing anything about an artificial intelligence agent that edits and Writefall’s use at the ACS falls into the ‘doing all the boring work’ category and narrative quite neatly.

Having looked at a definition of the various forms of editing and core skills, I”m guessing that AI will take over every aspect (from the Editors’ Association of Canada, Definitions of Editorial Skills webpage),

CORE SKILLS

Structural Editing

Assessing and shaping draft material to improve its organization and content. Changes may be suggested to or drafted for the writer. Structural editing may include:

revising, reordering, cutting, or expanding material

writing original material

determining whether permissions are necessary for third-party material

recasting material that would be better presented in another form, or revising material for a different medium (such as revising print copy for web copy)

clarifying plot, characterization, or thematic elements

Also known as substantive editing, manuscript editing, content editing, or developmental editing.

Stylistic Editing

Editing to clarify meaning, ensure coherence and flow, and refine the language. It includes:

eliminating jargon, clichés, and euphemisms

establishing or maintaining the language level appropriate for the intended audience, medium, and purpose

adjusting the length and structure of sentences and paragraphs

establishing or maintaining tone, mood, style, and authorial voice or level of formality

Also known as line editing (which may also include copy editing).

Copy Editing

Editing to ensure correctness, accuracy, consistency, and completeness. It includes:

editing for grammar, spelling, punctuation, and usage

checking for consistency and continuity of mechanics and facts, including anachronisms, character names, and relationships

editing tables, figures, and lists

notifying designers of any unusual production requirements

developing a style sheet or following one that is provided

correcting or querying general information that should be checked for accuracy 

It may also include:

marking levels of headings and the approximate placement of art

Canadianizing or other localizing

converting measurements

providing or changing the system of citations

editing indexes

obtaining or listing permissions needed

checking front matter, back matter, and cover copy

checking web links

Note that “copy editing” is often loosely used to include stylistic editing, structural editing, fact checking, or proofreading. Editors Canada uses it only as defined above.

Proofreading

Examining material after layout or in its final format to correct errors in textual and visual elements. The material may be read in isolation or against a previous version. It includes checking for:

adherence to design

minor mechanical errors (such as spelling mistakes or deviations from style sheet)

consistency and accuracy of elements in the material (such as cross-references, running heads, captions, web page heading tags, hyperlinks, and metadata)

It may also include:

distinguishing between printer’s, designer’s, or programmer’s errors and writer’s or editor’s alterations

copyfitting

flagging or checking locations of art

inserting page numbers or checking them against content and page references

Note that proofreading is checking a work after editing; it is not a substitute for editing.

I’m just as happy to get rid of ‘boring’ parts of my work as anyone else but that’s how I learned in the first place and I haven’t seen any discussion about the importance of boring, repetitive tasks for learning.

Organic neuromorphic electronics

A December 13, 2021 news item on ScienceDaily describes some research from Germany’s Max Planck Institute for Polymer Research,

The human brain works differently from a computer – while the brain works with biological cells and electrical impulses, a computer uses silicon-based transistors. Scientists have equipped a toy robot with a smart and adaptive electrical circuit made of soft organic materials, similarly to the biological matter. With this bio-inspired approach, they were able to teach the robot to navigate independently through a maze using visual signs for guidance.

A December 13, 2021 Max Planck Institute for Polymer Research press release (also on EurekAlert), which originated the news item, fills in a few details,

The processor is the brain of a computer – an often-quoted phrase. But processors work fundamentally differently than the human brain. Transistors perform logic operations by means of electronic signals. In contrast, the brain works with nerve cells, so-called neurons, which are connected via biological conductive paths, so-called synapses. At a higher level, this signaling is used by the brain to control the body and perceive the surrounding environment. The reaction of the body/brain system when certain stimuli are perceived – for example, via the eyes, ears or sense of touch – is triggered through a learning process. For example, children learn not to reach twice for a hot stove: one input stimulus leads to a learning process with a clear behavioral outcome.

Scientists working with Paschalis Gkoupidenis, group leader in Paul Blom’s department at the Max Planck Institute for Polymer Research, have now applied this basic principle of learning through experience in a simplified form and steered a robot through a maze using a so-called organic neuromorphic circuit. The work was an extensive collaboration between the Universities of Eindhoven [Eindhoven University of Technology; Netherlands], Stanford [University; California, US], Brescia [University; Italy], Oxford [UK] and KAUST [King Abdullah University of Science and Technology, Saudi Arabia].

“We wanted to use this simple setup to show how powerful such ‘organic neuromorphic devices’ can be in real-world conditions,” says Imke Krauhausen, a doctoral student in Gkoupidenis’ group and at TU Eindhoven (van de Burgt group), and first author of the scientific paper.

To achieve the navigation of the robot inside the maze, the researchers fed the smart adaptive circuit with sensory signals coming from the environment. The path of maze towards the exit is indicated visually at each maze intersects. Initially, the robot often misinterprets the visual signs, thus it makes the wrong “turning” decisions at the maze intersects and loses the way out. When the robot takes these decisions and follows wrong dead-end paths, it is being discouraged to take these wrong decisions by receiving corrective stimuli. The corrective stimuli, for example when the robot hits a wall, are directly applied at the organic circuit via electrical signals induced by a touch sensor attached to the robot. With each subsequent execution of the experiment, the robot gradually learns to make the right “turning” decisions at the intersects, i. e. to avoid receiving corrective stimuli, and after a few trials it finds the way out of the maze. This learning process happens exclusively on the organic adaptive circuit. 

“We were really glad to see that the robot can pass through the maze after some runs by learning on a simple organic circuit. We have shown here a first, very simple setup. In the distant future, however, we hope that organic neuromorphic devices could also be used for local and distributed computing/learning. This will open up entirely new possibilities for applications in real-world robotics, human-machine interfaces and point-of-care diagnostics. Novel platforms for rapid prototyping and education, at the intersection of materials science and robotics, are also expected to emerge.” Gkoupidenis says.

Here’s a link to and a citation for the paper,

Organic neuromorphic electronics for sensorimotor integration and learning in robotics by Imke Krauhausen, Dimitrios A. Koutsouras, Armantas Melianas, Scott T. Keene, Katharina Lieberth, Hadrien Ledanseur, Rajendar Sheelamanthula, Alexander Giovannitti, Fabrizio Torricelli, Iain Mcculloch, Paul W. M. Blom, Alberto Salleo, Yoeri van de Burgt and Paschalis Gkoupidenis. Science Advances • 10 Dec 2021 • Vol 7, Issue 50 • DOI: 10.1126/sciadv.abl5068

This paper is open access.

Neuromorphic (brainlike) computing inspired by sea slugs

The sea slug has taught neuroscientists the intelligence features that any creature in the animal kingdom needs to survive. Now, the sea slug is teaching artificial intelligence how to use those strategies. Pictured: Aplysia californica. (Image by NOAA Monterey Bay National Marine Sanctuary/Chad King.)

I don’t think I’ve ever seen a picture of a sea slug before. Its appearance reminds me of its terrestrial cousin.

As for some of the latest news on brainlike computing, a December 7, 2021 news item on Nanowerk makes an announcement from the Argonne National Laboratory (a US Department of Energy laboratory; Note: Links have been removed),

A team of scientists has discovered a new material that points the way toward more efficient artificial intelligence hardware for everything from self-driving cars to surgical robots.

For artificial intelligence (AI) to get any smarter, it needs first to be as intelligent as one of the simplest creatures in the animal kingdom: the sea slug.

A new study has found that a material can mimic the sea slug’s most essential intelligence features. The discovery is a step toward building hardware that could help make AI more efficient and reliable for technology ranging from self-driving cars and surgical robots to social media algorithms.

The study, published in the Proceedings of the National Academy of Sciences [PNAS] (“Neuromorphic learning with Mott insulator NiO”), was conducted by a team of researchers from Purdue University, Rutgers University, the University of Georgia and the U.S. Department of Energy’s (DOE) Argonne National Laboratory. The team used the resources of the Advanced Photon Source (APS), a DOE Office of Science user facility at Argonne.

A December 6, 2021 Argonne National Laboratory news release (also on EurekAlert) by Kayla Wiles and Andre Salles, which originated the news item, provides more detail,

“Through studying sea slugs, neuroscientists discovered the hallmarks of intelligence that are fundamental to any organism’s survival,” said Shriram Ramanathan, a Purdue professor of Materials Engineering. ​“We want to take advantage of that mature intelligence in animals to accelerate the development of AI.”

Two main signs of intelligence that neuroscientists have learned from sea slugs are habituation and sensitization. Habituation is getting used to a stimulus over time, such as tuning out noises when driving the same route to work every day. Sensitization is the opposite — it’s reacting strongly to a new stimulus, like avoiding bad food from a restaurant.

AI has a really hard time learning and storing new information without overwriting information it has already learned and stored, a problem that researchers studying brain-inspired computing call the ​“stability-plasticity dilemma.” Habituation would allow AI to ​“forget” unneeded information (achieving more stability) while sensitization could help with retaining new and important information (enabling plasticity).

In this study, the researchers found a way to demonstrate both habituation and sensitization in nickel oxide, a quantum material. Quantum materials are engineered to take advantage of features available only at nature’s smallest scales, and useful for information processing. If a quantum material could reliably mimic these forms of learning, then it may be possible to build AI directly into hardware. And if AI could operate both through hardware and software, it might be able to perform more complex tasks using less energy.

“We basically emulated experiments done on sea slugs in quantum materials toward understanding how these materials can be of interest for AI,” Ramanathan said.

Neuroscience studies have shown that the sea slug demonstrates habituation when it stops withdrawing its gill as much in response to tapping. But an electric shock to its tail causes its gill to withdraw much more dramatically, showing sensitization.

For nickel oxide, the equivalent of a ​“gill withdrawal” is an increased change in electrical resistance. The researchers found that repeatedly exposing the material to hydrogen gas causes nickel oxide’s change in electrical resistance to decrease over time, but introducing a new stimulus like ozone greatly increases the change in electrical resistance.

Ramanathan and his colleagues used two experimental stations at the APS to test this theory, using X-ray absorption spectroscopy. A sample of nickel oxide was exposed to hydrogen and oxygen, and the ultrabright X-rays of the APS were used to see changes in the material at the atomic level over time.

“Nickel oxide is a relatively simple material,” said Argonne physicist Hua Zhou, a co-author on the paper who worked with the team at beamline 33-ID. ​“The goal was to use something easy to manufacture, and see if it would mimic this behavior. We looked at whether the material gained or lost a single electron after exposure to the gas.”

The research team also conducted scans at beamline 29-ID, which uses softer X-rays to probe different energy ranges. While the harder X-rays of 33-ID are more sensitive to the ​“core” electrons, those closer to the nucleus of the nickel oxide’s atoms, the softer X-rays can more readily observe the electrons on the outer shell. These are the electrons that define whether a material is conductive or resistive to electricity.

“We’re very sensitive to the change of resistivity in these samples,” said Argonne physicist Fanny Rodolakis, a co-author on the paper who led the work at beamline 29-ID. ​“We can directly probe how the electronic states of oxygen and nickel evolve under different treatments.”

Physicist Zhan Zhang and postdoctoral researcher Hui Cao, both of Argonne, contributed to the work, and are listed as co-authors on the paper. Zhang said the APS is well suited for research like this, due to its bright beam that can be tuned over different energy ranges.

For practical use of quantum materials as AI hardware, researchers will need to figure out how to apply habituation and sensitization in large-scale systems. They also would have to determine how a material could respond to stimuli while integrated into a computer chip.

This study is a starting place for guiding those next steps, the researchers said. Meanwhile, the APS is undergoing a massive upgrade that will not only increase the brightness of its beams by up to 500 times, but will allow for those beams to be focused much smaller than they are today. And this, Zhou said, will prove useful once this technology does find its way into electronic devices.

“If we want to test the properties of microelectronics,” he said, ​“the smaller beam that the upgraded APS will give us will be essential.”

In addition to the experiments performed at Purdue and Argonne, a team at Rutgers University performed detailed theory calculations to understand what was happening within nickel oxide at a microscopic level to mimic the sea slug’s intelligence features. The University of Georgia measured conductivity to further analyze the material’s behavior.

A version of this story was originally published by Purdue University

About the Advanced Photon Source

The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.

You can find the September 24, 2021 Purdue University story, Taking lessons from a sea slug, study points to better hardware for artificial intelligence here.

Here’s a link to and a citation for the paper,

Neuromorphic learning with Mott insulator NiO by Zhen Zhang, Sandip Mondal, Subhasish Mandal, Jason M. Allred, Neda Alsadat Aghamiri, Alireza Fali, Zhan Zhang, Hua Zhou, Hui Cao, Fanny Rodolakis, Jessica L. McChesney, Qi Wang, Yifei Sun, Yohannes Abate, Kaushik Roy, Karin M. Rabe, and Shriram Ramanathan. PNAS September 28, 2021 118 (39) e2017239118 DOI: https://doi.org/10.1073/pnas.2017239118

This paper is behind a paywall.