Researchers have fitted tiny trackable radio-pants to three species of South American frogs to test their ability to navigate through the rainforest. (Submitted by Andrius Pašukonis)
You can see how tiny they are when you compare one of the frogs to a leaf visible in one of the images (top left or top right).
The answer to the question, as you may have guessed, are frog pants (or G-strings).
Sheena Goodyear’s June 13, 2023 article for the CBC’s (Canadian Broadcasting Corporation) As It Happens radio show explores the question and the research and includes an embedded 6:20 radio interview with researcher, Andrius Pašukonis,
How do you track a bunch of teeny-weeny frogs across the vast rainforests of South America? By putting teeny-weeny trackers on their teeny-weeny underwear, of course.
Biologist Andrius Pašukonis and his colleagues wanted to study the navigational capabilities of poisonous frogs that are too small for most animal tracking devices.
So he designed a Speedo-like harness that wraps around their back legs and props a tiny radio tracker on their backsides. The research team dubbed the invention “frog pants” — though Pašukonis says that’s “a bit of a misnomer.”
“My French colleagues like to call it a telemetric G-string,” Pašukonis, a senior scientist at Lithuania’s Vilnius University, told As It Happens host Nil Köksal.
“It’s a lot of fine motor skills and a lot of practice in handling tiny frogs and sewing little frog harnesses. But we go find them in the rainforest, and we catch them, and we put the tags on.”
My favourite part is “… sewing little frog harnesses.” Note: The following video features a commercial and then, moves onto a 2:22 interview,
Pašukonis was a PhD student at the University of Vienna when he first started experimenting with the frog pants design, and later put it to use while working as a postdoctoral fellow at Stanford University in California.
He and is colleagues used the tracker pants to study the spatial skills of three frog species that range from three to five centimetres in length — diablito poison frogs in Ecuador, and brilliant-thighed poison frogs and dyeing poison frogs in French Guiana. The findings were published late last year in the journal e-Life [sic].
“The only way to study movements of animals is to be able to track them and follow them around, which nobody has managed to do or even tried to do with these tiny, tiny frogs in the rainforest,” he said.
“So that became my goal and challenge, where I spent a good part of my PhD trying different versions of different tags and different attachment methods, trial and error, to finally get to be able to put tags on and track them and study their behaviour.”
The frogs, he admits, didn’t particularly like the pants. But they didn’t seem to mind too much, and the team removed the trackers after four to six days.
“Like any animal, they might scratch a little bit afterwards … like a dog with a new collar,” he said. “And then they just go on with their business.”
…
Other scientists have tried to track tiny frogs, from Goodyear’s June 13, 2023 article, Note: Links have been removed,
The design caught the eye of Richard Essner, a biologist at Southern Illinois University Edwardsville who studies animal locomotion, and has a particular interest in little frogs.
“Tracking small frogs with radio telemetry is not an easy thing to do,” Essner, who wasn’t involved in the Stanford research, told CBC in an email.
About a decade ago, he says his lab attempted to use radio telemetry to track the movement of the threatened Illinois chorus frog using a transmitter attached via an elastic belt around the waist.
“Unfortunately, we had to abandon the study because we found that the transmitter apparatus was interfering with locomotion. If the belt was too tight, it caused abrasion. If it was too loose it slid down around the legs and left the frog immobilized and vulnerable to predation,” he said.
The frog pants, he says, seem to offer a solution to this conundrum.
…
Lea Randall, a Calgary Zoo and Wilder Institute ecologist who specializes in amphibians and reptiles, ran into similar obstacles while trying to track northern leopard frogs at a reintroduction site in B.C.
Like the Stanford researchers, her team experimented with several different designs before landing on one that worked — a belt-like attachment with some “very stylish” smooth glass beads to prevent abrasion.
“Unfortunately, due to the weight of the radio transmitters at the time we couldn’t study smaller individuals,” she said.
“We didn’t use leg straps, but I can see the advantages of that to help keep the transmitters in place. The creative thinking and problem solving that goes into developing these kinds of studies always amazes me.”
When it comes to animal cognition and behaviour, Pašukonis says frogs are understudied — and he believes, underestimated — compared to birds and mammals.
The poisonous rainforest frogs, he says, may be only a few centimetres in size, but when they breed, they carry their tadpoles between 200 to 300 metres across the rainforest to find them the perfect puddle to grow in.
Then they turn right around, and make their way home again.
“How could a little frog — frogs typically are not thought to be very smart — learn to navigate on such a big scale? And how do they find their way around more on a fundamental scientific level?” Pašukonis said.
“We’re uncovering that overall amphibians, for example, might be smarter or have more complicated cognitive abilities than we thought.”
Here’s a link to and a citation for the paper published by Pašukonis and his colleagues,
Contrasting parental roles shape sex differences in poison frog space use but not navigational performance by Andrius Pašukonis, Shirley Jennifer Serrano-Rojas, Marie-Therese Fischer, Matthias-Claudio Loretto, Daniel A Shaykevich, Bibiana Rojas, Max Ringler, Alexandre B Roland, Alejandro Marcillo-Lara, Eva Ringler, Camilo Rodríguez, Luis A Coloma, Lauren A O’Connell. eLife DOI: https://doi.org/10.7554/eLife.80483 Version of Record Published: Nov 15, 2022
Now in its twelfth year, the international conference “Living Machines”, organised by Istituto Italiano di Tecnologia (Italian Institute of Technology, IIT), returns to Italy and comes to Genoa for the first time, from 10 to 13 July. Around one hundred experts from all over the world are expected, and they will present their achievements in the field of bio-inspired science and technology. The conference will take place in an exceptional venue, the Acquario di Genova (Genoa Aquarium), which, having reached its 30th birthday, is the ideal location at which to bring together various subject areas, from biology to artificial intelligence and robotics, with a focus on sustainability and environmental protection.
The scientific organiser of the event is Barbara Mazzolai, Associate Director for Robotics and head of the Bioinspired Soft Robotics Lab at IIT, along with Fabian Meder, researcher in the Bioinspired Soft Robotics Lab group and co-chair of the conference programme.
The conference will include two events open to the public: an exhibition area, which will be accessible from 11 to 13 July in the afternoon (from 2 to 4.30 pm); and a scientific café, which will take place on the 12 July at 5 pm. The conference will be an opportunity for international guests to appreciate the region’s beauty and talents, and it will also include the participation of students from the Niccolò Paganini Conservatory of Music. In addition, a satellite event of the conference will be the ISPA – Italian Sustainability Photo Award – exhibition, which will open at Palazzo Ducale on 10 July at 6 p.m.
The “Living Machines” conference is the landmark event for the international scientific community which bases its research on living organisms, such as human beings and other animal species – terrestrial, marine, and airborne – in addition to plants, fungi, and bacteria, in order to create so-called “living machines”, in other words, forms of technology capable of replicating their structure and mechanisms of operation.
“The conference is rooted in the union between robotics and neuroscience, using man and other animal species as a model for the study of intelligence and control systems,” said Barbara Mazzolai, Associate Director for Robotics at IIT. “This year the conference will focus on the role of biomimicry in the creation of robots that are more sustainable, with applications for the challenges of environmental protection and human health. Discussions will revolve around the development of robots with a lower energy impact, made using recyclable and biodegradable materials, and that can be used in emergency situations or extreme environments, such as deep sea, soil, space, or environmental disasters, but also for precision agriculture, environmental surveillance, infrastructure monitoring, human care and medical-surgical assistance.”
In the conference programme, experts will take part in a first day of parallel workshop and tutorial sessions (on 10 July), during which the topics of bioinspiration and biohybrid technology in the fields of medicine and the marine environment will be addressed. This first day will be followed by three days of plenary sessions, featuring talks by internationally-renowned scientists. More specifically: Oussama Khatib, one of the pioneers of robotics and director of the Robotics Laboratory at Stanford University; Marco Dorigo, professor at the Université Libre de Bruxelles and one of the pioneers of collective intelligence; Peter Fratzl, director of the Max Planck Institute of Colloids and Interfaces, working on research into osteoporosis and tissue regeneration; Eleni Stavrinidou, coordinator of the “Electronic Plants” group at Linköping University and an expert in bioelectronic and biohybrid systems; Olga Speck, Principal Researcher at the University of Freiburg, specialising in biomimetic materials and the regenerative capabilities of plants; and Kyu-Jin Cho, director of the Research Centre for Soft Robotics and the Biorobotics Laboratory at Seoul National University, one of the world’s leading experts on soft robotics.
For conference participants only, the programme includes: a visit to the Acquario, guided by the facility’s scientific staff, who will illustrate the work and practices needed for the protection and conservation of marine species and the undergoing research projects; an exhibition area for prototypes and products by research groups and companies operating in this field; and a dinner at Villa Lo Zerbino, with a musical contribution by students from the Niccolò Paganini Conservatory.
Open to the general public, on 12 July from 5 p.m. to 6 p.m. there will be a round table entitled “Living Machines: The Origin and the Future” chaired by science journalist Nicola Nosengo, Chief Editor of Nature Italy. Speakers will include Cecilia Laschi from the National University of Singapore, Vickie Webster-Wood from Carnegie Mellon University, Thomas Speck from the University of Freiburg and Paul Verschure from Radboud University Nijmegen.
A satellite initiative of the conference will be the exhibition for ISPA, the Italian Sustainability Photo Award, which will open at Palazzo Ducale on 10 July at 6.00 p.m. ISPA is the photographic award created by the Parallelozero agency in cooperation with the main sponsor PIMCO, to raise public awareness of environmental, social, and governance sustainability issues, encapsulated in the acronym ESG. The works of the winning photographers and finalists in the last three editions will be on display in Genoa: a selection of images that depict the emblematic stories of Italy, a nation moving towards a more sustainable future, a visual narrative that makes it easier to understand the country’s progress in research and innovation.
The organisations supporting the event include, in addition to the principal organiser Istituto Italiano di Tecnologia (Italian Institute of Technology), the international Convergent Science Network [emphasis mine], the Office of Naval Research, Radboud University Nijmegen, and the Living, Adaptive and Energy-autonomous Materials Systems Cluster of Excellence in Freiburg.
I was particularly struck by this quote, “The conference is rooted in the union between robotics and neuroscience [emphasis mine], using man and other animal species as a model for the study of intelligence and control systems,” from Barbara Mazzolai as I have an as yet unpublished post for a UNESCO neurotechnology event coming up on July 13, 2023. These events come on the heels of a May 16, 2023 Canadian Science Policy Centre panel discussion on responsible neurotechnology (see my May 12, 2023 posting).
It seems chimeras are of more interest these days. In all likelihood that has something to do with the fellow who received a transplant of a pig’s heart in January 2022 (he died in March 2022).
For those who aren’t familiar with the term, a chimera is an entity with two different DNA (deoxyribonucleic acid) identities. In short, if you get a DNA sample from the heart, it’s different from a DNA sample obtained from a cheek swab. This contrasts with a hybrid such as a mule (donkey/horse) whose DNA samples show a consisted identity throughout its body.
A new report on the ethics of crossing species boundaries by inserting human cells into nonhuman animals – research surrounded by debate – makes recommendations clarifying the ethical issues and calling for improved oversight of this work.
The report, “Creating Chimeric Animals — Seeking Clarity On Ethics and Oversight,” was developed by an interdisciplinary team, with funding from the National Institutes of Health. Principal investigators are Josephine Johnston and Karen Maschke, research scholars at The Hastings Center, and Insoo Hyun, director of the Center for Life Sciences and Public Learning at the Museum of Life Sciences in Boston, formerly of Case Western Reserve University.
Advances in human stem cell science and gene editing enable scientists to insert human cells more extensively and precisely into nonhuman animals, creating “chimeric” animals, embryos, and other organisms that contain a mix of human and nonhuman cells.
Many people hope that this research will yield enormous benefits, including better models of human disease, inexpensive sources of human eggs and embryos for research, and sources of tissues and organs suitable for transplantation into humans.
But there are ethical concerns about this type of research, which raise questions such as whether the moral status of nonhuman animals is altered by the insertion of human stem cells, whether these studies should be subject to additional prohibitions or oversight, and whether this kind of research should be done at all.
The report found that:
Animal welfare is a primary ethical issue and should be a focus of ethical and policy analysis as well as the governance and oversight of chimeric research.
Chimeric studies raise the possibility of unique or novel harms resulting from the insertion and development of human stem cells in nonhuman animals, particularly when those cells develop in the brain or central nervous system.
Oversight and governance of chimeric research are siloed, and public communication is minimal. Public communication should be improved, communication between the different committees involved in oversight at each institution should be enhanced, and a national mechanism created for those involved in oversight of these studies.
Scientists, journalists, bioethicists, and others writing about chimeric research should use precise and accessible language that clarifies rather than obscures the ethical issues at stake. The terms “chimera,” which in Greek mythology refers to a fire-breathing monster, and “humanization” are examples of ethically laden, or overly broad language to be avoided.
The Research Team
The Hastings Center
• Josephine Johnston • Karen J. Maschke • Carolyn P. Neuhaus • Margaret M. Matthews • Isabel Bolo
Case Western Reserve University • Insoo Hyun (now at Museum of Science, Boston) • Patricia Marshall • Kaitlynn P. Craig
The Work Group
• Kara Drolet, Oregon Health & Science University • Henry T. Greely, Stanford University • Lori R. Hill, MD Anderson Cancer Center • Amy Hinterberger, King’s College London • Elisa A. Hurley, Public Responsibility in Medicine and Research • Robert Kesterson, University of Alabama at Birmingham • Jonathan Kimmelman, McGill University • Nancy M. P. King, Wake Forest University School of Medicine • Geoffrey Lomax, California Institute for Regenerative Medicine • Melissa J. Lopes, Harvard University Embryonic Stem Cell Research Oversight Committee • P. Pearl O’Rourke, Harvard Medical School • Brendan Parent, NYU Grossman School of Medicine • Steven Peckman, University of California, Los Angeles • Monika Piotrowska, State University of New York at Albany • May Schwarz, The Salk Institute for Biological Studies • Jeff Sebo, New York University • Chris Stodgell, University of Rochester • Robert Streiffer, University of Wisconsin-Madison • Lorenz Studer, Memorial Sloan Kettering Cancer Center • Amy Wilkerson, The Rockefeller University
Here’s a link to and a citation for the report,
Creating Chimeric Animals: Seeking Clarity on Ethics and Oversight edited by Karen J. Maschke, Margaret M. Matthews, Kaitlynn P. Craig, Carolyn P. Neuhaus, Insoo Hyun, Josephine Johnston, The Hastings Center Report Volume 52, Issue S2 (Special Report), November‐December 2022 First Published: 09 December 2022
I’m sorry to be late. Thankfully this show extends into July 2023, so, there’s still plenty of time to get to Chicago’s The Block Museum of Art (at Northwestern University) art/science exhibition. I found this on the museum’s exhibition page for “The Heart’s Knowledge: Science and Empathy in the Art of Dario Robleto” show,
What do we owe to the memories of one another’s hearts?
For American artist Dario Robleto (b. 1972), artists and scientists share a common aspiration: to increase the sensitivity of their observations. Throughout the history of scientific invention, instruments like the cardiograph and the telescope have extended the reach of perception from the tiniest stirrings of the human body to the farthest reaches of space. In his prints, sculptures, and video and sound installations, Robleto contemplates the emotional significance of these technologies, bringing us closer to the latent traces of life buried in the scientific record.
The Heart’s Knowledge concentrates on the most recent decade of Robleto’s creative practice, a period of deepening engagement with histories of medicine, biomedical engineering, sound recording, and space exploration. The exhibition organizes the artist’s conceptually ambitious, elegantly wrought artworks as a series of multisensory encounters between art and science. Each work seeks to attune viewers to the material traces of life at scales ranging from the intimate to the universal, returning always to the question: Does empathy extend beyond the boundaries of time and space?
…
Banner image for “The Heart’s Knowledge: Science and Empathy in the Art of Dario Robleto” exhibition page. Courtesy of The Block Museum of Art (Northwestern University) and artist, Dario Robleto
Here’s more from a January 27, 2023 Northwestern University news release (received via email),
Exhibition searches for meaning at the limits of science and perception
“The Heart’s Knowledge: Science and Empathy in the Art of Dario Robleto” is on view Jan. 27 to July 9 [2023] at The Block Museum of Art
Works are informed by dialogue with Northwestern Engineering researchers during five-year residency
Exhibition a tribute to NASA Golden Record creator, ‘whose heart has left the solar system’
Opening conversation with the artist will take place at 2 p.m. on [Saturday] Feb. 4 [2023]
American artist Dario Robleto (b. 1972) believes artists and scientists share a common aspiration: to increase the sensitivity of their observations.
From understanding the human body’s pulses and brainwaves to viewing the faintest glimmers of light from the edge of the observable universe, groundbreaking science pushes the limits of perception. Similarly, the perceptive work of artists can extend the boundaries of empathy and understanding.
Since 2018, Robleto served as an artist-at-large at the McCormick School of Engineering. This unique partnership between The Block Museum and McCormick gave the artist an open “hall pass” to learn from, collaborate with and question scientists, engineers and experts from across the University.
Robleto’s five-year residency concludes with the exhibition “The Heart’s Knowledge: Science and Empathy in the Art of Dario Robleto.” Co-presented by The Block Museum and McCormick, the exhibition is on view from Jan. 27 to July 9 [2023] at The Block Museum, 40 Arts Circle Drive on Northwestern’s Evanston campus. [emphasis mine]
A free opening conversation with the artist will take place at 2 p.m. on Saturday, Feb. 4 [2023], in Norris University Center’s McCormick Auditorium, 1999 Campus Drive in Evanston.
About the Exhibition: “The Heart’s Knowledge”
Throughout the history of scientific invention, instruments like the cardiograph and the telescope have extended the reach of perception from the tiniest stirrings of the human body to the farthest reaches of space.
Robleto’s prints, sculptures and video and sound installations contemplate the emotional significance of these technologies, bringing viewers closer to the latent traces of life buried in the scientific record.
“The Heart’s Knowledge” represents a decade of Robleto’s creative practice, from 2012 to 2022, a period marked by a deepening engagement with science, including astronomy, synthetic biology and exobiology, and a widening embrace of new materials and creative forms, from 3D-printed objects to film.
Robleto dedicates the exhibition to Ann Druyan, the creative director of NASA’s Golden Record for the Voyager 1 and 2 projects. The record includes Druyan’s brainwaves and heartbeats, recorded as she reflected on her secret love for famed astronomer and future husband Carl Sagan. The act of sneaking “love on board the Voyager” inspired Robleto to compose a love letter to the only human whose “heart has left the solar system.”
Robleto sees Druyan’s act to include her emotions on the record as the central inspiration of his work. “I consider it the greatest work of subversive, avant-garde art not yet given its due,” Robleto said. “The Golden Record and Ann’s radical act brought us all together to think about what it means to be human — to one another and to unknown beings on other worlds.”
The exhibition organizes the artist’s conceptually ambitious, elegantly wrought artworks as a series of multisensory encounters between art and science. Each asks viewers to seek out the material traces of life in scales ranging from the intimate to the universal, and to question: Does empathy extend beyond the boundaries of time and space?
“Whether he’s addressing the most minute phenomena of the body or the horizons of the known universe, Robleto binds the rigor of scientific inquiry with artistic expression,” said exhibition curator Michael Metzger, The Block’s Pick-Laudati Curator of Media Arts.
“Straining at the bounds of observation, Robleto discovers unity at the limits; the common endeavor of art and science to achieve a form of knowledge that language alone cannot speak,” Metzger said.
The exhibition includes three sections:
“Heartbeats“ Rooted in the artist’s longstanding fascination with the clinical and cultural history of the human heart, “Heartbeats” draws inspiration from 19th-century pioneers of cardiography, whose instruments graphically measured heart activity for the first time, leaving behind poignant records of human subjectivity. In “The First Time, the Heart (A Portrait of Life 1854-1913)” (2017), Robleto transforms early measurements of heartbeats into photolithographs executed on paper hand-sooted with candle flames. For the installation “The Pulse Armed with a Pen (An Unknown History of the Human Heartbeat)” (2014), Robleto collaborated with sound historian Patrick Feaster to digitally resurrect these heartbeats in audio form, giving visitors access to intimate pulses of life recorded before the invention of sound playback.
“Wavelengths“ Robleto has recently embraced digital video to create works that narrate transformational episodes in the recording and study of wave phenomena. “Wavelengths” comprises two hour-long immersive video installations. “The Boundary of Life is Quietly Crossed” (2019) is inspired by NASA’s Voyager Golden Record, a gold-plated phonographic disc launched into space onboard the Voyager I and II space probes in 1977. In “The Aorta of an Archivist” (2020-2021), Robleto investigates three breakthroughs in the history of recording: the first recording of a choral performance made with an Edison wax cylinder, the first heartbeat captured while listening to music and the first effort to transcribe the brain wave activity of a dreaming subject.
“Horizons“ In the final section, “Horizons,” Robleto evokes the spirit of the Hubble telescope and the search for extraterrestrial life, gazing out at the boundaries of the observable universe. Inspired by his time as an artist-in-residence at the SETI Institute (Search for Extraterrestrial Intelligence) and as artistic consultant to the Breakthrough Initiatives, his intricate sculptures, such as “Small Crafts on Sisyphean Seas” (2018), give shape to the speculative search for intelligent life in the universe. Other works like “The Computer of Jupiter” (2019) are framed as “gifts for extraterrestrials” offering an alternative view of the best way to begin a dialogue with alien intelligences.
The Artist-at-Large Program at Northwestern
Lisa Corrin, the Ellen Philips Katz Executive Director of The Block Museum of Art, and Julio M. Ottino, dean of McCormick School of Engineering, envisioned the possibilities of this unconventional partnership between scientist and artist when they launched the artist-at-large initiative together. The work is part of an ongoing Art + Engineering initiative and a part of the whole-brain engineering philosophy at Northwestern Engineering.
“Here, a university’s school of engineering and its art museum come together in the shared belief that transformative innovation can happen at the intersections of usually distinct academic disciplines and modes of creativity and inquiry,” Corrin said. “We had faith that something meaningful would emerge organically if we merely provided structures in which informal interactions might take place.”
“We wanted to model for young engineers the value of embracing uncertainty as part of the journey that leads to innovation and opens pathways within the imagination — as artists do,” Ottino said. “We are grateful to Dario Robleto for accepting our invitation to come to Northwestern and to enter the unknown with us. He has taught us that our shared future resides in our capacity for compassion and for empathy, the ethos at the heart of his work that holds the most promise for those at the forefront of science in the interest of humankind.”
“The Heart’s Knowledge” will include six months of events and dialogues that will illuminate the intersections in Robleto’s practice. All events are free and open to the public. For current program information, visit The Block Museum website.
Program highlights for February and March include:
The Block Museum hosts a discussion that reaches across boundaries to examine the shared pursuit that binds artists and scientists. The conversation features artist Dario Robleto; Jennifer Roberts, professor of the humanities at Harvard University; Lucianne Walkowicz, astronomer and co-founder of the JustSpace Alliance; and Michael Metzger, Pick-Laudati Curator of Media Arts and curator of “The Heart’s Knowledge.”
A Science on Screen program with Catherine Belling, associate professor of medical education at Northwestern University Feinberg School of Medicine.
“First Man” (2018) Saturday Feb. 18 [2023], 1 p.m. Block Cinema 40 Arts Circle Drive
A Science on Screen program featuring history researcher Jordan Bimm of the University of Chicago, who will discuss the military origins of “space medicine.”
Joining artist Dario Robleto in conversation are Elizabeth Kessler, exhibition publication contributor and a lecturer in American Studies at Stanford University, and Shane Larson, research professor of physics and astronomy and associate director of CIERA (Center for Interdisciplinary Exploration and Research in Astrophysics) at Northwestern.
Ann Druyan, creative director for NASA’s Voyager Interstellar Messaging Project and writer and producer of the PBS television series “Cosmos,” joins Robleto and art historian Jennifer Roberts for a conversation about the Golden Record and the heart’s memory.
The publication is edited by Michael Metzger with contributions by Metzger, Robert M. Brain, Daniel K. L. Chua, Patrick Feaster, Stefan Helmreich, Elizabeth A. Kessler ,Julius B. Lucks, Elizabeth Kathleen Mitchell, Alexander Rehding, Jennifer L. Roberts, Claire Isabel Webb and Dario Robleto.
About Dario Robleto
Dario Robleto was born in San Antonio, Texas, in 1972 and received his BFA from the University of Texas at San Antonio in 1997. He lives and works in Houston, Texas. The artist has had numerous solo exhibitions since 1997, most recently at the Spencer Museum of Art, Lawrence, Kansas (2021); the Radcliffe Institute for Advanced Study at Harvard University (2019); the McNay Museum, San Antonio, Texas (2018); Menil Collection, Houston, Texas (2014); the Baltimore Museum of Art (2014); the New Orleans Museum of Art (2012); and the Museum of Contemporary Art, Denver (2011).
He is currently working on his first book, “Life Signs: The Tender Science of the Pulsewave,” co-authored with art historian Jennifer Roberts, the Elizabeth Cary Agassiz Professor of the Humanities at Harvard (University of Chicago Press).
Exhibition Credits
“The Heart’s Knowledge: Science and Empathy in the Art of Dario Robleto” exhibition is made possible through a partnership with the Robert R. McCormick School of Engineering and Applied Science at Northwestern University. Major support also was provided by the National Endowment for the Arts. Additional support is contributed by the Dorothy J. Speidel Fund; the Bernstein Family Contemporary Art Fund; the Barry and Mary Ann MacLean Fund for Art and Engineering; the Illinois Arts Council Agency; and the Alumnae of Northwestern University. The exhibition publication is made possible in part by the Sandra L. Riggs Publications Fund.
Should you be in the Chicago area and interested in the exhibit, you can find all the information for your visit here.
An August 17, 2022 news item on Nanowerk announces big (so to speak) claims from a team researching neuromorphic (brainlike) computer chips,
An international team of researchers has designed and built a chip that runs computations directly in memory and can run a wide variety of artificial intelligence (AI) applications–all at a fraction of the energy consumed by computing platforms for general-purpose AI computing.
The NeuRRAM neuromorphic chip brings AI a step closer to running on a broad range of edge devices, disconnected from the cloud, where they can perform sophisticated cognitive tasks anywhere and anytime without relying on a network connection to a centralized server. Applications abound in every corner of the world and every facet of our lives, and range from smart watches, to VR headsets, smart earbuds, smart sensors in factories and rovers for space exploration.
The NeuRRAM chip is not only twice as energy efficient as the state-of-the-art “compute-in-memory” chips, an innovative class of hybrid chips that runs computations in memory, it also delivers results that are just as accurate as conventional digital chips. Conventional AI platforms are a lot bulkier and typically are constrained to using large data servers operating in the cloud.
In addition, the NeuRRAM chip is highly versatile and supports many different neural network models and architectures. As a result, the chip can be used for many different applications, including image recognition and reconstruction as well as voice recognition.
“The conventional wisdom is that the higher efficiency of compute-in-memory is at the cost of versatility, but our NeuRRAM chip obtains efficiency while not sacrificing versatility,” said Weier Wan, the paper’s first corresponding author and a recent Ph.D. graduate of Stanford University who worked on the chip while at UC San Diego, where he was co-advised by Gert Cauwenberghs in the Department of Bioengineering.
The research team, co-led by bioengineers at the University of California San Diego, presents their results in the Aug. 17 [2022] issue of Nature.
Currently, AI computing is both power hungry and computationally expensive. Most AI applications on edge devices involve moving data from the devices to the cloud, where the AI processes and analyzes it. Then the results are moved back to the device. That’s because most edge devices are battery-powered and as a result only have a limited amount of power that can be dedicated to computing.
By reducing power consumption needed for AI inference at the edge, this NeuRRAM chip could lead to more robust, smarter and accessible edge devices and smarter manufacturing. It could also lead to better data privacy as the transfer of data from devices to the cloud comes with increased security risks.
On AI chips, moving data from memory to computing units is one major bottleneck.
“It’s the equivalent of doing an eight-hour commute for a two-hour work day,” Wan said.
To solve this data transfer issue, researchers used what is known as resistive random-access memory, a type of non-volatile memory that allows for computation directly within memory rather than in separate computing units. RRAM and other emerging memory technologies used as synapse arrays for neuromorphic computing were pioneered in the lab of Philip Wong, Wan’s advisor at Stanford and a main contributor to this work. Computation with RRAM chips is not necessarily new, but generally it leads to a decrease in the accuracy of the computations performed on the chip and a lack of flexibility in the chip’s architecture.
“Compute-in-memory has been common practice in neuromorphic engineering since it was introduced more than 30 years ago,” Cauwenberghs said. “What is new with NeuRRAM is that the extreme efficiency now goes together with great flexibility for diverse AI applications with almost no loss in accuracy over standard digital general-purpose compute platforms.”
A carefully crafted methodology was key to the work with multiple levels of “co-optimization” across the abstraction layers of hardware and software, from the design of the chip to its configuration to run various AI tasks. In addition, the team made sure to account for various constraints that span from memory device physics to circuits and network architecture.
“This chip now provides us with a platform to address these problems across the stack from devices and circuits to algorithms,” said Siddharth Joshi, an assistant professor of computer science and engineering at the University of Notre Dame , who started working on the project as a Ph.D. student and postdoctoral researcher in Cauwenberghs lab at UC San Diego.
Chip performance
Researchers measured the chip’s energy efficiency by a measure known as energy-delay product, or EDP. EDP combines both the amount of energy consumed for every operation and the amount of times it takes to complete the operation. By this measure, the NeuRRAM chip achieves 1.6 to 2.3 times lower EDP (lower is better) and 7 to 13 times higher computational density than state-of-the-art chips.
Researchers ran various AI tasks on the chip. It achieved 99% accuracy on a handwritten digit recognition task; 85.7% on an image classification task; and 84.7% on a Google speech command recognition task. In addition, the chip also achieved a 70% reduction in image-reconstruction error on an image-recovery task. These results are comparable to existing digital chips that perform computation under the same bit-precision, but with drastic savings in energy.
Researchers point out that one key contribution of the paper is that all the results featured are obtained directly on the hardware. In many previous works of compute-in-memory chips, AI benchmark results were often obtained partially by software simulation.
Next steps include improving architectures and circuits and scaling the design to more advanced technology nodes. Researchers also plan to tackle other applications, such as spiking neural networks.
“We can do better at the device level, improve circuit design to implement additional features and address diverse applications with our dynamic NeuRRAM platform,” said Rajkumar Kubendran, an assistant professor for the University of Pittsburgh, who started work on the project while a Ph.D. student in Cauwenberghs’ research group at UC San Diego.
In addition, Wan is a founding member of a startup that works on productizing the compute-in-memory technology. “As a researcher and an engineer, my ambition is to bring research innovations from labs into practical use,” Wan said.
New architecture
The key to NeuRRAM’s energy efficiency is an innovative method to sense output in memory. Conventional approaches use voltage as input and measure current as the result. But this leads to the need for more complex and more power hungry circuits. In NeuRRAM, the team engineered a neuron circuit that senses voltage and performs analog-to-digital conversion in an energy efficient manner. This voltage-mode sensing can activate all the rows and all the columns of an RRAM array in a single computing cycle, allowing higher parallelism.
In the NeuRRAM architecture, CMOS neuron circuits are physically interleaved with RRAM weights. It differs from conventional designs where CMOS circuits are typically on the peripheral of RRAM weights.The neuron’s connections with the RRAM array can be configured to serve as either input or output of the neuron. This allows neural network inference in various data flow directions without incurring overheads in area or power consumption. This in turn makes the architecture easier to reconfigure.
To make sure that accuracy of the AI computations can be preserved across various neural network architectures, researchers developed a set of hardware algorithm co-optimization techniques. The techniques were verified on various neural networks including convolutional neural networks, long short-term memory, and restricted Boltzmann machines.
As a neuromorphic AI chip, NeuroRRAM performs parallel distributed processing across 48 neurosynaptic cores. To simultaneously achieve high versatility and high efficiency, NeuRRAM supports data-parallelism by mapping a layer in the neural network model onto multiple cores for parallel inference on multiple data. Also, NeuRRAM offers model-parallelism by mapping different layers of a model onto different cores and performing inference in a pipelined fashion.
An international research team
The work is the result of an international team of researchers.
The UC San Diego team designed the CMOS circuits that implement the neural functions interfacing with the RRAM arrays to support the synaptic functions in the chip’s architecture, for high efficiency and versatility. Wan, working closely with the entire team, implemented the design; characterized the chip; trained the AI models; and executed the experiments. Wan also developed a software toolchain that maps AI applications onto the chip.
The RRAM synapse array and its operating conditions were extensively characterized and optimized at Stanford University.
The RRAM array was fabricated and integrated onto CMOS at Tsinghua University.
The Team at Notre Dame contributed to both the design and architecture of the chip and the subsequent machine learning model design and training.
The research started as part of the National Science Foundation funded Expeditions in Computing project on Visual Cortex on Silicon at Penn State University, with continued funding support from the Office of Naval Research Science of AI program, the Semiconductor Research Corporation and DARPA [{US} Defense Advanced Research Projects Agency] JUMP program, and Western Digital Corporation.
Here’s a link to and a citation for the paper,
A compute-in-memory chip based on resistive random-access memory by Weier Wan, Rajkumar Kubendran, Clemens Schaefer, Sukru Burc Eryilmaz, Wenqiang Zhang, Dabin Wu, Stephen Deiss, Priyanka Raina, He Qian, Bin Gao, Siddharth Joshi, Huaqiang Wu, H.-S. Philip Wong & Gert Cauwenberghs. Nature volume 608, pages 504–512 (2022) DOI: https://doi.org/10.1038/s41586-022-04992-8 Published: 17 August 2022 Issue Date: 18 August 2022
I received (via email) a July 21, 2022 news release about the launch of a quantum science initiative in Vancouver (BTW, I have more about the Canadian quantum scene later in this post),
World’s top physicists unite to tackle one of Science’s greatest mysteries
Vancouver-based Quantum Gravity Society leads international quest to discover Theory of Quantum Gravity
Vancouver, B.C. (July 21, 2022): More than two dozen of the world’s top physicists, including three Nobel Prize winners, will gather in Vancouver this August for a Quantum Gravity Conference that will host the launch a Vancouver-based Quantum Gravity Institute (QGI) and a new global research collaboration that could significantly advance our understanding of physics and gravity and profoundly change the world as we know it.
For roughly 100 years, the world’s understanding of physics has been based on Albert Einstein’s General Theory of Relativity (GR), which explored the theory of space, time and gravity, and quantum mechanics (QM), which focuses on the behaviour of matter and light on the atomic and subatomic scale. GR has given us a deep understanding of the cosmos, leading to space travel and technology like atomic clocks, which govern global GPS systems. QM is responsible for most of the equipment that runs our world today, including the electronics, lasers, computers, cell phones, plastics, and other technologies that support modern transportation, communications, medicine, agriculture, energy systems and more.
While each theory has led to countless scientific breakthroughs, in many cases, they are incompatible and seemingly contradictory. Discovering a unifying connection between these two fundamental theories, the elusive Theory of Quantum Gravity, could provide the world with a deeper understanding of time, gravity and matter and how to potentially control them. It could also lead to new technologies that would affect most aspects of daily life, including how we communicate, grow food, deliver health care, transport people and goods, and produce energy.
“Discovering the Theory of Quantum Gravity could lead to the possibility of time travel, new quantum devices, or even massive new energy resources that produce clean energy and help us address climate change,” said Philip Stamp, Professor, Department of Physics and Astronomy, University of British Columbia, and Visiting Associate in Theoretical Astrophysics at Caltech [California Institute of Technology]. “The potential long-term ramifications of this discovery are so incredible that life on earth 100 years from now could look as miraculous to us now as today’s technology would have seemed to people living 100 years ago.”
The new Quantum Gravity Institute and the conference were founded by the Quantum Gravity Society, which was created in 2022 by a group of Canadian technology, business and community leaders, and leading physicists. Among its goals are to advance the science of physics and facilitate research on the Theory of Quantum Gravity through initiatives such as the conference and assembling the world’s leading archive of scientific papers and lectures associated with the attempts to reconcile these two theories over the past century.
Attending the Quantum Gravity Conference in Vancouver (August 15-19 [2022]) will be two dozen of the world’s top physicists, including Nobel Laureates Kip Thorne, Jim Peebles and Sir Roger Penrose, as well as physicists Baron Martin Rees, Markus Aspelmeyer, Viatcheslav Mukhanov and Paul Steinhardt. On Wednesday, August 17, the conference will be open to the public, providing them with a once-in-a-lifetime opportunity to attend keynote addresses from the world’s pre-eminent physicists. … A noon-hour discussion on the importance of the research will be delivered by Kip Thorne, the former Feynman Professor of physics at Caltech. Thorne is well known for his popular books, and for developing the original idea for the 2014 film “Interstellar.” He was also crucial to the development of the book “Contact” by Carl Sagan, which was also made into a motion picture.
“We look forward to welcoming many of the world’s brightest minds to Vancouver for our first Quantum Gravity Conference,” said Frank Giustra, CEO Fiore Group and Co-Founder, Quantum Gravity Society. “One of the goals of our Society will be to establish Vancouver as a supportive home base for research and facilitate the scientific collaboration that will be required to unlock this mystery that has eluded some of the world’s most brilliant physicists for so long.”
“The format is key,” explains Terry Hui, UC Berkley Physics alumnus and Co-Founder, Quantum Gravity Society [and CEO of Concord Pacific]. “Like the Solvay Conference nearly 100 years ago, the Quantum Gravity Conference will bring top scientists together in salon-style gatherings. The relaxed evening format following the conference will reduce barriers and allow these great minds to freely exchange ideas. I hope this will help accelerate the solution of this hundred-year bottleneck between theories relatively soon.”
“As amazing as our journey of scientific discovery has been over the past century, we still have so much to learn about how the universe works on a macro, atomic and subatomic level,” added Paul Lee, Managing Partner, Vanedge Capital, and Co-Founder, Quantum Gravity Society. “New experiments and observations capable of advancing work on this scientific challenge are becoming increasingly possible in today’s physics labs and using new astronomical tools. The Quantum Gravity Society looks forward to leveraging that growing technical capacity with joint theory and experimental work that harnesses the collective expertise of the world’s great physicists.”
About Quantum Gravity Society
Quantum Gravity Society was founded in Vancouver, Canada in 2020 by a group of Canadian business, technology and community leaders, and leading international physicists. The Society’s founding members include Frank Giustra (Fiore Group), Terry Hui (Concord Pacific), Paul Lee and Moe Kermani (Vanedge Capital) and Markus Frind (Frind Estate Winery), along with renowned physicists Abhay Ashtekar, Sir Roger Penrose, Philip Stamp, Bill Unruh and Birgitta Whaley. For more information, visit Quantum Gravity Society. About the Quantum Gravity Conference (Vancouver 2022)
The inaugural Quantum Gravity Conference (August 15-19 [2022]) is presented by Quantum Gravity Society, Fiore Group, Vanedge Capital, Concord Pacific, The Westin Bayshore, Vancouver and Frind Estate Winery. For conference information, visit conference.quantumgravityinstitute.ca. To register to attend the conference, visit Eventbrite.com.
Viatcheslav Mukhanov – Theoretical Physicist and Cosmologist, University of Munich
Paul Steinhardt – Theoretical Physicist, Princeton University
Session 2: History of the Universe
Jim Peebles, 2019 Nobel Laureate, Princeton University
Baron Martin Rees – Cosmologist and Astrophysicist, University of Cambridge
Sir Roger Penrose, 2020 Nobel Laureate, University of Oxford (via zoom)
12:30 p.m. VIP Lunch Session: Quantum Gravity — Why Should We Care?
Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”
2:30 p.m. Session 3: What do Experiments Say?
Markus Aspelmeyer – Experimental Physicist, Quantum Optics and Optomechanics Leader, University of Vienna
Sir Roger Penrose – 2020 Nobel Laureate (via zoom)
Session 4: Time Travel
Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”
Event Partners
Quantum Gravity Society
Westin Bayshore
Fiore Group
Concord Pacific
VanEdge Capital
Frind Estate Winery
Marketing Partners
BC Business Council
Greater Vancouver Board of Trade
Please note that Sir Roger Penrose will be present via Zoom but all the others will be there in the room with you.
Given that Kip Thorne won his 2017 Nobel Prize in Physics (with Rainer Weiss and Barry Barish) for work on gravitational waves, it’s surprising there’s no mention of this in the publicity for a conference on quantum gravity. Finding gravitational waves in 2016 was a very big deal (see Josh Fischman’s and Steve Mirsky’s February 11, 2016 interview with Kip Thorne for Scientific American).
Some thoughts on this conference and the Canadian quantum scene
This conference has a fascinating collection of players. Even I recognized some of the names, e.g., Penrose, Rees, Thorne.
The academics were to be expected and every presenter is an academic, often with their own Wikipedia page. Weirdly, there’s no one from the Perimeter Institute Institute for Theoretical Physics or TRIUMF (a national physics laboratory and centre for particle acceleration) or from anywhere else in Canada, which may be due to their academic specialty rather than an attempt to freeze out Canadian physicists. In any event, the conference academics are largely from the US (a lot of them from CalTech and Stanford) and from the UK.
The business people are a bit of a surprise. The BC Business Council and the Greater Vancouver Board of Trade? Frank Giustra who first made his money with gold mines, then with Lionsgate Entertainment, and who continues to make a great deal of money with his equity investment company, Fiore Group? Terry Hui, Chief Executive Office of Concord Pacific, a real estate development company? VanEdge Capital, an early stage venture capital fund? A winery? Missing from this list is D-Wave Systems, Canada’s quantum calling card and local company. While their area of expertise is quantum computing, I’d still expect to see them present as sponsors. *ETA December 6, 2022: I just looked at the conference page again and D-Wave is now listed as a sponsor.*
The academics? These people are not cheap dates (flights, speaker’s fees, a room at the Bayshore, meals). This is a very expensive conference and $129 for lunch and a daypass is likely a heavily subsidized ticket.
Another surprise? No government money/sponsorship. I don’t recall seeing another academic conference held in Canada without any government participation.
As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,
Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.
Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.
…
Quick facts
Budget 2021 committed $360 million to build the foundation for a National Quantum Strategy, enabling the Government of Canada to build on previous investments in the sector to advance the emerging field of quantum technologies. The quantum sector is key to fuelling Canada’s economy, long-term resilience and growth, especially as technologies mature and more sectors harness quantum capabilities.
Development of quantum technologies offers job opportunities in research and science, software and hardware engineering and development, manufacturing, technical support, sales and marketing, business operations and other fields.
The Government of Canada also invested more than $1 billion in quantum research and science from 2009 to 2020—mainly through competitive granting agency programs, including Natural Sciences and Engineering Research Council of Canada programs and the Canada First Research Excellence Fund—to help establish Canada as a global leader in quantum science.
In addition, the government has invested in bringing new quantum technologies to market, including investments through Canada’s regional development agencies, the Strategic Innovation Fund and the National Research Council of Canada’s Industrial Research Assistance Program.
Bank of Canada, cryptocurrency, and quantum computing
Multiverse Computing, a global leader in quantum computing solutions for the financial industry and beyond with offices in Toronto and Spain, today announced it has completed a proof-of-concept project with the Bank of Canada through which the parties used quantum computing to simulate the adoption of cryptocurrency as a method of payment by non-financial firms.
“We are proud to be a trusted partner of the first G7 central bank to explore modelling of complex networks and cryptocurrencies through the use of quantum computing,” said Sam Mugel, CTO [Chief Technical Officer] at Multiverse Computing. “The results of the simulation are very intriguing and insightful as stakeholders consider further research in the domain. Thanks to the algorithm we developed together with our partners at the Bank of Canada, we have been able to model a complex system reliably and accurately given the current state of quantum computing capabilities.”
…
Multiverse Computing conducted its innovative work related to applying quantum computing for modelling complex economic interactions in a research project with the Bank of Canada. The project explored quantum computing technology as a way to simulate complex economic behaviour that is otherwise very difficult to simulate using traditional computational techniques.
By implementing this solution using D-Wave’s annealing quantum computer, the simulation was able to tackle financial networks as large as 8-10 players, with up to 2^90 possible network configurations. Note that classical computing approaches cannot solve large networks of practical relevance as a 15-player network requires as many resources as there are atoms in the universe.
…
Quantum Technologies and the Council of Canadian Academies (CCA)
In a May 26, 2022 blog posting the CCA announced its Expert Panel on Quantum Technologies (they will be issuing a Quantum Technologies report),
The emergence of quantum technologies will impact all sectors of the Canadian economy, presenting significant opportunities but also risks. At the request of the National Research Council of Canada (NRC) and Innovation, Science and Economic Development Canada (ISED), the Council of Canadian Academies (CCA) has formed an Expert Panel to examine the impacts, opportunities, and challenges quantum technologies present for Canadian industry, governments, and Canadians. Raymond Laflamme, O.C., FRSC, Canada Research Chair in Quantum Information and Professor in the Department of Physics and Astronomy at the University of Waterloo, will serve as Chair of the Expert Panel.
“Quantum technologies have the potential to transform computing, sensing, communications, healthcare, navigation and many other areas,” said Dr. Laflamme. “But a close examination of the risks and vulnerabilities of these technologies is critical, and I look forward to undertaking this crucial work with the panel.”
As Chair, Dr. Laflamme will lead a multidisciplinary group with expertise in quantum technologies, economics, innovation, ethics, and legal and regulatory frameworks. The Panel will answer the following question:
In light of current trends affecting the evolution of quantum technologies, what impacts, opportunities and challenges do these present for Canadian industry, governments and Canadians more broadly?
…
The Expert Panel on Quantum Technologies:
Raymond Laflamme, O.C., FRSC (Chair), Canada Research Chair in Quantum Information; the Mike and Ophelia Lazaridis John von Neumann Chair in Quantum Information; Professor, Department of Physics and Astronomy, University of Waterloo
Sally Daub, Founder and Managing Partner, Pool Global Partners
Shohini Ghose, Professor, Physics and Computer Science, Wilfrid Laurier University; NSERC Chair for Women in Science and Engineering
Paul Gulyas, Senior Innovation Executive, IBM Canada
Mark W. Johnson, Senior Vice-President, Quantum Technologies and Systems Products, D-Wave Systems
Elham Kashefi, Professor of Quantum Computing, School of Informatics, University of Edinburgh; Directeur de recherche au CNRS, LIP6 Sorbonne Université
Mauritz Kop, Fellow and Visiting Scholar, Stanford Law School, Stanford University
Dominic Martin, Professor, Département d’organisation et de ressources humaines, École des sciences de la gestion, Université du Québec à Montréal
Darius Ornston, Associate Professor, Munk School of Global Affairs and Public Policy, University of Toronto
Barry Sanders, FRSC, Director, Institute for Quantum Science and Technology, University of Calgary
Eric Santor, Advisor to the Governor, Bank of Canada
Christian Sarra-Bournet, Quantum Strategy Director and Executive Director, Institut quantique, Université de Sherbrooke
Stephanie Simmons, Associate Professor, Canada Research Chair in Quantum Nanoelectronics, and CIFAR Quantum Information Science Fellow, Department of Physics, Simon Fraser University
Jacqueline Walsh, Instructor; Director, initio Technology & Innovation Law Clinic, Dalhousie University
You’ll note that both the Bank of Canada and D-Wave Systems are represented on this expert panel.
The CCA Quantum Technologies report (in progress) page can be found here.
Does it mean anything?
Since I only skim the top layer of information (disparagingly described as ‘high level’ by the technology types I used to work with), all I can say is there’s a remarkable level of interest from various groups who are self-organizing. (The interest is international as well. I found the International Society for Quantum Gravity [ISQG], which had its first meeting in 2021.)
I don’t know what the purpose is other than it seems the Canadian focus seems to be on money. The board of trade and business council have no interest in primary research and the federal government’s national quantum strategy is part of Innovation, Science and Economic Development (ISED) Canada’s mandate. You’ll notice ‘science’ is sandwiched between ‘innovation’, which is often code for business, and economic development.
The Bank of Canada’s monetary interests are quite obvious.
The Perimeter Institute mentioned earlier was founded by Mike Lazaridis (from his Wikipedia entry) Note: Links have been removed,
… a Canadian businessman [emphasis mine], investor in quantum computing technologies, and founder of BlackBerry, which created and manufactured the BlackBerry wireless handheld device. With an estimated net worth of US$800 million (as of June 2011), Lazaridis was ranked by Forbes as the 17th wealthiest Canadian and 651st in the world.[4]
…
In 2000, Lazaridis founded and donated more than $170 million to the Perimeter Institute for Theoretical Physics.[11][12] He and his wife Ophelia founded and donated more than $100 million to the Institute for Quantum Computing at the University of Waterloo in 2002.[8]
That Institute for Quantum Computing? There’s an interesting connection. Raymond Laflamme, the chair for the CCA expert panel, was its director for a number of years and he’s closely affiliated with the Perimeter Institute. (I’m not suggesting anything nefarious or dodgy. It’s a small community in Canada and relationships tend to be tightly interlaced.) I’m surprised he’s not part of the quantum mechanics and gravity conference but that could have something to do with scheduling.
One last interesting bit about Laflamme, from his Wikipedia entry, Note: Links have been removed)
…
As Stephen Hawking’s PhD student, he first became famous for convincing Hawking that time does not reverse in a contracting universe, along with Don Page. Hawking told the story of how this happened in his famous book A Brief History of Time in the chapter The Arrow of Time.[3] Later on Laflamme made a name for himself in quantum computing and quantum information theory, which is what he is famous for today.
A January 28, 2022 news item on Nanowerk describes for some of the latest work on hardware that could enable neuromorphic (brainlike) computing. Note: A link has been removed,
Researchers from KTH Royal Institute of Technology [Sweden] and Stanford University [US] have fabricated a material for computer components that enable the commercial viability of computers that mimic the human brain (Advanced Functional Materials, “High-Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene”).
Electrochemical random access (ECRAM) memory components made with 2D titanium carbide showed outstanding potential for complementing classical transistor technology, and contributing toward commercialization of powerful computers that are modeled after the brain’s neural network. Such neuromorphic computers can be thousands times more energy efficient than today’s computers.
These advances in computing are possible because of some fundamental differences from the classic computing architecture in use today, and the ECRAM, a component that acts as a sort of synaptic cell in an artificial neural network, says KTH Associate Professor Max Hamedi.
“Instead of transistors that are either on or off, and the need for information to be carried back and forth between the processor and memory—these new computers rely on components that can have multiple states, and perform in-memory computation,” Hamedi says.
The scientists at KTH and Stanford have focused on testing better materials for building an ECRAM, a component in which switching occurs by inserting ions into an oxidation channel, in a sense similar to our brain which also works with ions. What has been needed to make these chips commercially viable are materials that overcome the slow kinetics of metal oxides and the poor temperature stability of plastics.
The key material in the ECRAM units that the researchers fabricated is referred to as MXene—a two-dimensional (2D) compound, barely a few atoms thick, consisting of titanium carbide (Ti3C2Tx). The MXene combines the high speed of organic chemistry with the integration compatibility of inorganic materials in a single device operating at the nexus of electrochemistry and electronics, Hamedi says.
Co-author Professor Alberto Salleo at Stanford University, says that MXene ECRAMs combine the speed, linearity, write noise, switching energy, and endurance metrics essential for parallel acceleration of artificial neural networks.
“MXenes are an exciting materials family for this particular application as they combine the temperature stability needed for integration with conventional electronics with the availability of a vast composition space to optimize performance, Salleo says”
While there are many other barriers to overcome before consumers can buy their own neuromorphic computers, Hamedi says the 2D ECRAMs represent a breakthrough at least in the area of neuromorphic materials, potentially leading to artificial intelligence that can adapt to confusing input and nuance, the way the brain does with thousands time smaller energy consumption. This can also enable portable devices capable of much heavier computing tasks without having to rely on the cloud.
Here’s a link to and a citation for the paper,
High-Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene by Armantas Melianas, Min-A Kang, Armin VahidMohammadi, Tyler James Quill, Weiqian Tian, Yury Gogotsi, Alberto Salleo, Mahiar Max Hamedi. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202109970 First published: 21 November 2021
A December 3, 2021 news item on ScienceDaily announces some very exciting work from the University of Virginia UVA) and Stanford University,
University of Virginia School of Medicine researchers have developed a noninvasive way to remove faulty brain circuits that could allow doctors to treat debilitating neurological diseases without the need for conventional brain surgery.
The UVA team, together with colleagues at Stanford University, indicate that the approach, if successfully translated to the operating room, could revolutionize the treatment of some of the most challenging and complex neurological diseases, including epilepsy, movement disorders and more. The approach uses low-intensity focused ultrasound waves combined with microbubbles to briefly penetrate the brain’s natural defenses and allow the targeted delivery of a neurotoxin. This neurotoxin kills the culprit brain cells while sparing other healthy cells and preserving the surrounding brain architecture.
“This novel surgical strategy has the potential to supplant existing neurosurgical procedures used for the treatment of neurological disorders that don’t respond to medication,” said researcher Kevin S. Lee of UVA’s Departments of Neuroscience and Neurosurgery and the Center for Brain Immunology and Glia, or BIG. “This unique approach eliminates the diseased brain cells, spares adjacent healthy cells and achieves these outcomes without even having to cut into the scalp.”
The Power of PING
The new approach, called “PING,” has already demonstrated exciting potential in laboratory studies. For instance, one of the promising applications for PING could be for the surgical treatment of epilepsies that do not respond to medication. Approximately a third of patients with epilepsy do not respond to anti-seizure drugs, and surgery can reduce or eliminate seizures for some of them. Lee and his team, along with their collaborators at Stanford, have shown that PING can reduce or eliminate seizures in two research models of epilepsy. The findings raise the possibility of treating epilepsy in a carefully targeted and noninvasive manner without the need for traditional brain surgery.
Another important potential advantage of PING is that it could encourage the surgical treatment of appropriate patients with epilepsy who are reluctant to undergo conventional invasive or ablative surgery.
In a scientific paper newly published in the Journal of Neurosurgery, Lee and his collaborators detail the ability of PING to focally eliminate neurons in a brain region, while sparing non-target cells in the same area. In contrast, currently available surgical approaches damage all cells in a treated brain region.
A key advantage of the approach is its incredible precision. PING harnesses the power of magnetic-resonance imaging to let scientists peer inside the skull so that they can precisely guide sound waves to open the body’s natural blood-brain barrier exactly where needed. This barrier is designed to keep harmful cells and molecules out of the brain, but it also prevents the delivery of potentially beneficial treatments.
The UVA group’s new paper concludes that PING allows the delivery of a highly targeted neurotoxin, cleanly wiping out problematic neurons, a type of brain cell, without causing collateral damage.
Another key advantage of the precision of this approach is that it can be used on irregularly shaped targets in areas that would be extremely difficult or impossible to reach through regular brain surgery. “If this strategy translates to the clinic,” the researchers write in their new paper, “the noninvasive nature and specificity of the procedure could positively influence both physician referrals for, and patient confidence in, surgery for medically intractable neurological disorders.”
“Our hope is that the PING strategy will become a key element in the next generation of very precise, noninvasive, neurosurgical approaches to treat major neurological disorders,” said Lee, who is part of the UVA Brain Institute.
About the Research
Lee’s groundbreaking research has been supported by the National Institutes of Health, the Chester Fund and the Charlottesville-based Focused Ultrasound Foundation. The work is part of an expansive effort at UVA Health to explore the potential of scalpel-free focused ultrasound to treat complex diseases throughout the body.
UVA’s pioneering research has already paved the way for the federal Food and Drug Administration to approve focused ultrasound for the treatment of essential tremor, a common movement disorder, and Parkinson’s disease symptoms. Research is underway on its potential applications for many more conditions, including breast cancer and glioblastoma, a deadly form of brain tumor. Learn more about UVA’s focused ultrasound research.
The research team included Yi Wang, Matthew J. Anzivino, Yanrong Zhang, Edward H. Bertram, James Woznak, Alexander L. Klibanov, Erik Dumont and Max Wintermark.
An application to patent the PING procedure has been submitted by members of the research group.
The research was funded by the National Institutes of Health, grants R01 NS102194 and R01 CA217953-01; the Chester Fund; and the Focused Ultrasound Foundation.
To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.
A December 13, 2021 news item on ScienceDaily describes some research from Germany’s Max Planck Institute for Polymer Research,
The human brain works differently from a computer – while the brain works with biological cells and electrical impulses, a computer uses silicon-based transistors. Scientists have equipped a toy robot with a smart and adaptive electrical circuit made of soft organic materials, similarly to the biological matter. With this bio-inspired approach, they were able to teach the robot to navigate independently through a maze using visual signs for guidance.
The processor is the brain of a computer – an often-quoted phrase. But processors work fundamentally differently than the human brain. Transistors perform logic operations by means of electronic signals. In contrast, the brain works with nerve cells, so-called neurons, which are connected via biological conductive paths, so-called synapses. At a higher level, this signaling is used by the brain to control the body and perceive the surrounding environment. The reaction of the body/brain system when certain stimuli are perceived – for example, via the eyes, ears or sense of touch – is triggered through a learning process. For example, children learn not to reach twice for a hot stove: one input stimulus leads to a learning process with a clear behavioral outcome.
Scientists working with Paschalis Gkoupidenis, group leader in Paul Blom’s department at the Max Planck Institute for Polymer Research, have now applied this basic principle of learning through experience in a simplified form and steered a robot through a maze using a so-called organic neuromorphic circuit. The work was an extensive collaboration between the Universities of Eindhoven [Eindhoven University of Technology; Netherlands], Stanford [University; California, US], Brescia [University; Italy], Oxford [UK] and KAUST [King Abdullah University of Science and Technology, Saudi Arabia].
“We wanted to use this simple setup to show how powerful such ‘organic neuromorphic devices’ can be in real-world conditions,” says Imke Krauhausen, a doctoral student in Gkoupidenis’ group and at TU Eindhoven (van de Burgt group), and first author of the scientific paper.
To achieve the navigation of the robot inside the maze, the researchers fed the smart adaptive circuit with sensory signals coming from the environment. The path of maze towards the exit is indicated visually at each maze intersects. Initially, the robot often misinterprets the visual signs, thus it makes the wrong “turning” decisions at the maze intersects and loses the way out. When the robot takes these decisions and follows wrong dead-end paths, it is being discouraged to take these wrong decisions by receiving corrective stimuli. The corrective stimuli, for example when the robot hits a wall, are directly applied at the organic circuit via electrical signals induced by a touch sensor attached to the robot. With each subsequent execution of the experiment, the robot gradually learns to make the right “turning” decisions at the intersects, i. e. to avoid receiving corrective stimuli, and after a few trials it finds the way out of the maze. This learning process happens exclusively on the organic adaptive circuit.
“We were really glad to see that the robot can pass through the maze after some runs by learning on a simple organic circuit. We have shown here a first, very simple setup. In the distant future, however, we hope that organic neuromorphic devices could also be used for local and distributed computing/learning. This will open up entirely new possibilities for applications in real-world robotics, human-machine interfaces and point-of-care diagnostics. Novel platforms for rapid prototyping and education, at the intersection of materials science and robotics, are also expected to emerge.” Gkoupidenis says.
Here’s a link to and a citation for the paper,
Organic neuromorphic electronics for sensorimotor integration and learning in robotics by Imke Krauhausen, Dimitrios A. Koutsouras, Armantas Melianas, Scott T. Keene, Katharina Lieberth, Hadrien Ledanseur, Rajendar Sheelamanthula, Alexander Giovannitti, Fabrizio Torricelli, Iain Mcculloch, Paul W. M. Blom, Alberto Salleo, Yoeri van de Burgt and Paschalis Gkoupidenis. Science Advances • 10 Dec 2021 • Vol 7, Issue 50 • DOI: 10.1126/sciadv.abl5068
This story got me to thinking about what happens when any kind of implant company (pacemaker, deep brain stimulator, etc.) goes bankrupt or is acquired by another company with a different business model.
As I worked on this piece, more issues were raised and the scope expanded to include prosthetics along with implants while the focus narrowed to neuro as in, neural implants and neuroprosthetics. At the same time, I found salient examples for this posting in other medical advances such as gene editing.
In sum, all references to implants and prosthetics are to neural devices and some issues are illustrated with salient examples from other medical advances (specifically, gene editing).
Medical implants are devices or tissues that are placed inside or on the surface of the body. Many implants are prosthetics, intended to replace missing body parts. Other implants deliver medication, monitor body functions, or provide support to organs and tissues.
As for what constitutes a neural implant/neuroprosthetic, there’s this from Emily Waltz’s January 20, 2020 article (How Do Neural Implants Work? Neural implants are used for deep brain stimulation, vagus nerve stimulation, and mind-controlled prostheses) for the Institute of Electrical and Electronics Engineers (IEEE) Spectrum magazine,
A neural implant, then, is a device—typically an electrode of some kind—that’s inserted into the body, comes into contact with tissues that contain neurons, and interacts with those neurons in some way.
…
Now, let’s start with the recent near bankruptcy of a retinal implant company.
Barbara Campbell was walking through a New York City subway station during rush hour when her world abruptly went dark. For four years, Campbell had been using a high-tech implant in her left eye that gave her a crude kind of bionic vision, partially compensating for the genetic disease that had rendered her completely blind in her 30s. “I remember exactly where I was: I was switching from the 6 train to the F train,” Campbell tells IEEE Spectrum. “I was about to go down the stairs, and all of a sudden I heard a little ‘beep, beep, beep’ sound.’”
It wasn’t her phone battery running out. It was her Argus II retinal implant system powering down. The patches of light and dark that she’d been able to see with the implant’s help vanished.
Terry Byland is the only person to have received this kind of implant in both eyes. He got the first-generation Argus I implant, made by the company Second Sight Medical Products, in his right eye in 2004, and the subsequent Argus II implant in his left 11 years later. He helped the company test the technology, spoke to the press movingly about his experiences, and even met Stevie Wonder at a conference. “[I] went from being just a person that was doing the testing to being a spokesman,” he remembers.
Yet in 2020, Byland had to find out secondhand that the company had abandoned the technology and was on the verge of going bankrupt. While his two-implant system is still working, he doesn’t know how long that will be the case. “As long as nothing goes wrong, I’m fine,” he says. “But if something does go wrong with it, well, I’m screwed. Because there’s no way of getting it fixed.”
…
Science Friday and the IEEE [Institute of Electrical and Electronics Engineers] Spectrum magazine collaborated to produce this story. You’ll find the audio files and the transcript of interviews with the authors and one of the implant patients in this February 25, 2022 Science Friday (a National Public Radio program) posting.
Ross Doerr, another Second Sight patient, doesn’t mince words: “It is fantastic technology and a lousy company,” he says. He received an implant in one eye in 2019 and remembers seeing the shining lights of Christmas trees that holiday season. He was thrilled to learn in early 2020 that he was eligible for software upgrades that could further improve his vision. Yet in the early months of the COVID-19 pandemic, he heard troubling rumors about the company and called his Second Sight vision-rehab therapist. “She said, ‘Well, funny you should call. We all just got laid off,’ ” he remembers. “She said, ‘By the way, you’re not getting your upgrades.’ ”
These three patients, and more than 350 other blind people around the world with Second Sight’s implants in their eyes, find themselves in a world in which the technology that transformed their lives is just another obsolete gadget. One technical hiccup, one broken wire, and they lose their artificial vision, possibly forever. To add injury to insult: A defunct Argus system in the eye could cause medical complications or interfere with procedures such as MRI scans, and it could be painful or expensive to remove.
After Second Sight discontinued its retinal implant in 2019 and nearly went out of business in 2020, a public offering in June 2021 raised US $57.5 million at $5 per share. The company promised to focus on its ongoing clinical trial of a brain implant, called Orion, that also provides artificial vision. But its stock price plunged to around $1.50, and in February 2022, just before this article was published, the company announced a proposed merger with an early-stage biopharmaceutical company called Nano Precision Medical (NPM). None of Second Sight’s executives will be on the leadership team of the new company, which will focus on developing NPM’s novel implant for drug delivery.The company’s current leadership declined to be interviewed for this article but did provide an emailed statement prior to the merger announcement. It said, in part: “We are a recognized global leader in neuromodulation devices for blindness and are committed to developing new technologies to treat the broadest population of sight-impaired individuals.”
…
It’s unclear what Second Sight’s proposed merger means for Argus patients. The day after the merger was announced, Adam Mendelsohn, CEO of Nano Precision Medical, told Spectrum that he doesn’t yet know what contractual obligations the combined company will have to Argus and Orion patients. But, he says, NPM will try to do what’s “right from an ethical perspective.” The past, he added in an email, is “simply not relevant to the new future.”
Second Sight may have given up on its retinal implant, but other companies still see a need—and a market—for bionic vision without brain surgery. Paris-based Pixium Vision is conducting European and U.S. feasibility trials to see if its Prima system can help patients with age-related macular degeneration, a much more common condition than retinitis pigmentosa.
Daniel Palanker, a professor of ophthalmology at Stanford University who licensed his technology to Pixium, says the Prima implant is smaller, simpler, and cheaper than the Argus II. But he argues that Prima’s superior image resolution has the potential to make Pixium Vision a success. “If you provide excellent vision, there will be lots of patients,” he tells Spectrum. “If you provide crappy vision, there will be very few.”
Some clinicians involved in the Argus II work are trying to salvage what they can from the technology. Gislin Dagnelie, an associate professor of ophthalmology at Johns Hopkins University School of Medicine, has set up a network of clinicians who are still working with Argus II patients. The researchers are experimenting with a thermal camera to help users see faces, a stereo camera to filter out the background, and AI-powered object recognition. These upgrades are unlikely to result in commercial hardware today but could help future vision prostheses.
…
The writers have carefully balanced this piece so it is not an outright condemnation of the companies (Second Sight and Nano Precision), from the February 15, 2022 IEEE Spectrum article,
Failure is an inevitable part of innovation. The Argus II was an innovative technology, and progress made by Second Sight may pave the way for other companies that are developing bionic vision systems. But for people considering such an implant in the future, the cautionary tale of Argus patients left in the lurch may make a tough decision even tougher. Should they take a chance on a novel technology? If they do get an implant and find that it helps them navigate the world, should they allow themselves to depend upon it?
Abandoning the Argus II technology—and the people who use it—might have made short-term financial sense for Second Sight, but it’s a decision that could come back to bite the merged company if it does decide to commercialize a brain implant, believes Doerr.
…
For anyone curious about retinal implant technology (specifically the Argus II), I have a description in a June 30, 2015 posting.
Speculations and hopes for neuroprosthetics
The field of neuroprosthetics is very active. Dr Arthur Saniotis and Prof Maciej Henneberg have written an article where they speculate about the possibilities of a neuroprosthetic that may one day merge with neurons in a February 21, 2022 Nanowerk Spotlight article,
For over a generation several types of medical neuroprosthetics have been developed, which have improved the lives of thousands of individuals. For instance, cochlear implants have restored functional hearing in individuals with severe hearing impairment.
Further advances in motor neuroprosthetics are attempting to restore motor functions in tetraplegic, limb loss and brain stem stroke paralysis subjects.
Currently, scientists are working on various kinds of brain/machine interfaces [BMI] in order to restore movement and partial sensory function. One such device is the ‘Ipsihand’ that enables movement of a paralyzed hand. The device works by detecting the recipient’s intention in the form of electrical signals, thereby triggering hand movement.
Another recent development is the 12 month BMI gait neurohabilitation program that uses a visual-tactile feedback system in combination with a physical exoskeleton and EEG operated AI actuators while walking. This program has been tried on eight patients with reported improvements in lower limb movement and somatic sensation.
Surgically placed electrode implants have also reduced tremor symptoms in individuals with Parkinson’s disease.
Although neuroprosthetics have provided various benefits they do have their problems. Firstly, electrode implants to the brain are prone to degradation, necessitating new implants after a few years. Secondly, as in any kind of surgery, implanted electrodes can cause post-operative infection and glial scarring. Furthermore, one study showed that the neurobiological efficacy of an implant is dependent on the rate of speed of its insertion.
But what if humans designed a neuroprosthetic, which could bypass the medical glitches of invasive neuroprosthetics? However, instead of connecting devices to neural networks, this neuroprosthetic would directly merge with neurons – a novel step. Such a neuroprosthetic could radically optimize treatments for neurodegenerative disorders and brain injuries, and possibly cognitive enhancement [emphasis mine].
An interesting feature of their nanobot neuroprosthetic is that it has been inspired from nature by way of endomyccorhizae – a type of plant/fungus symbiosis, which is over four hundred million years old. During endomyccorhizae, fungi use numerous threadlike projections called mycelium that penetrate plant roots, forming colossal underground networks with nearby root systems. During this process fungi take up vital nutrients while protecting plant roots from infections – a win-win relationship. Consequently, the nano-neuroprosthetic has been named ‘endomyccorhizae ligand interface’, or ‘ELI’ for short.
…
The Spotlight article goes on to describe how these nanobots might function. As for the possibility of cognitive enhancement, I wonder if that might come to be described as a form of ‘artificial intelligence’.
(Dr Arthur Saniotis and Prof Maciej Henneberg are both from the Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences; and Biological Anthropology and Comparative Anatomy Research Unit, Adelaide Medical School, University of Adelaide. Abdul-Rahman Sawalma who’s listed as an author on the 2018 paper is from the Palestinian Neuroscience Initiative, Al-Quds University, Beit Hanina, Palestine.)
Saniotis and Henneberg’s Spotlight article presents an optimistic view of neuroprosthetics. It seems telling that they cite cochlear implants as a success story when it is viewed by many as ethically fraught (see the Cochlear implant Wikipedia entry; scroll down to ‘Criticism and controversy’).
Technologist: What are the potential consequences of accepting the “augmented human” in society?
Gregor Wolbring: There are many that we might not even envision now. But let me focus on failure and obsolescence [emphasis mine], two issues that are rarely discussed. What happens when the mechanisms fails in the middle of an action? Failure has hazardous consequences, but obsolescence has psychological ones. …. The constant surgical intervention needed to update the hardware may not be feasible. A person might feel obsolete if she cohabits with others using a newer version.
T. Are researchers working on prosthetics sometimes disconnected from reality?
G. W. Students engaged in the development of prosthetics have to learn how to think in societal terms and develop a broader perspective. Our education system provides them with a fascination for clever solutions to technological challenges but not with tools aiming at understanding the consequences, such as whether their product might increase or decrease social justice.
…
Wolbring is a professor at the University of Calgary’s Cumming School of Medicine (profile page) who writes on social issues to do with human enhancement/ augmentation. As well,
Some of his areas of engagement are: ability studies including governance of ability expectations, disability studies, governance of emerging and existing sciences and technologies (e.g. nanoscale science and technology, molecular manufacturing, aging, longevity and immortality, cognitive sciences, neuromorphic engineering, genetics, synthetic biology, robotics, artificial intelligence, automatization, brain machine interfaces, sensors), impact of science and technology on marginalized populations, especially people with disabilities he governance of bodily enhancement, sustainability issues, EcoHealth, resilience, ethics issues, health policy issues, human rights and sport.
I’d classify Second Sight as a tech startup company and they have a high rate of failure, which may not have been clear to the patients who had the implants. Clinical trials can present problems too as this excerpt from my September 17, 2020 posting notes,
“In 2003, neurologist Helen Mayberg of Emory University in Atlanta began to test a bold, experimental treatment for people with severe depression, which involved implanting metal electrodes deep in the brain in a region called area 25 [emphases mine]. The initial data were promising; eventually, they convinced a device company, St. Jude Medical in Saint Paul, to sponsor a 200-person clinical trial dubbed BROADEN.
This month [October 2017], however, Lancet Psychiatry reported the first published data on the trial’s failure. The study stopped recruiting participants in 2012, after a 6-month study in 90 people failed to show statistically significant improvements between those receiving active stimulation and a control group, in which the device was implanted but switched off.
…
… a tricky dilemma for companies and research teams involved in deep brain stimulation (DBS) research: If trial participants want to keep their implants [emphases mine], who will take responsibility—and pay—for their ongoing care? And participants in last week’s meeting said it underscores the need for the growing corps of DBS researchers to think long-term about their planned studies.”
“It becomes part of you,” Patient 6 said, describing the technology that enabled her, after 45 years of severe epilepsy, to halt her disabling seizures. Electrodes had been implanted on the surface of her brain that would send a signal to a hand-held device when they detected signs of impending epileptic activity. On hearing a warning from the device, Patient 6 knew to take a dose of medication to halt the coming seizure.
“You grow gradually into it and get used to it, so it then becomes a part of every day,” she told Frederic Gilbert, an ethicist who studies brain–computer interfaces (BCIs) at the University of Tasmania in Hobart, Australia. “It became me,” she said. [emphasis mine]
…
Symbiosis is a term, borrowed from ecology, that means an intimate co-existence of two species for mutual advantage. As technologists work towards directly connecting the human brain to computers, it is increasingly being used to describe humans’ potential relationship with artificial intelligence. [emphasis mine]
…
It’s complicated
For a lot of people these devices are or could be life-changing. At the same time, there are a number of different issues related to implants/prosthetics; the following is not an exhaustive list. As Wolbring notes, issues that we can’t begin to imagine now are likely to emerge as these medical advances become more ubiquitous.
Ability/disability?
Assistive technologies are almost always portrayed as helpful. For example, a cochlear implant gives people without hearing the ability to hear. The assumption is that this is always a good thing—unless you’re a deaf person who wants to define the problem a little differently. Who gets to decide what is good and ‘normal’ and what is desirable?
While the cochlear implant is the most extreme example I can think of, there are variations of these questions throughout the ‘disability’ communities.
Also, as Wolbring notes in his interview with the Technologist.eu, the education system tends to favour technological solutions which don’t take social issues into account. Wolbring cites social justice issues when he mentions failure and obsolescence.
Technical failures and obsolescence
The story, excerpted earlier in this posting, opened with a striking example of a technical failure at an awkward moment; a blind woman depending on her retinal implant loses all sight as she maneuvers through a subway station in New York City.
Aside from being an awful way to find out the company supplying and supporting your implant is in serious financial trouble and can’t offer assistance or repair, the failure offers a preview of what could happen as implants and prosthetics become more commonly used.
Keeping up/fomo (fear of missing out)/obsolescence
It used to be called ‘keeping up with the Joneses, it’s the practice of comparing yourself and your worldly goods to someone else(‘s) and then trying to equal what they have or do better. Usually, people want to have more and better than the mythical Joneses.
These days, the phenomenon (which has been expanded to include social networking) is better known as ‘fomo’ or fear of missing out (see the Fear of missing out Wikipedia entry).
Whatever you want to call it, humanity’s competitive nature can be seen where technology is concerned. When I worked in technology companies, I noticed that hardware and software were sometimes purchased for features that were effectively useless to us. But, not upgrading to a newer version was unthinkable.
Call it fomo or ‘keeping up with the Joneses’, it’s a powerful force and when people (and even companies) miss out or can’t keep up, it can lead to a sense of inferiority in the same way that having an obsolete implant or prosthetic could.
Social consequences
Could there be a neural implant/neuroprosthetic divide? There is already a digital divide (from its Wikipedia entry),
The digital divide is a gap between those who have access to new technology and those who do not … people without access to the Internet and other ICTs [information and communication technologies] are at a socio-economic disadvantage because they are unable or less able to find and apply for jobs, shop and sell online, participate democratically, or research and learn.
…
After reading Wolbring’s comments, it’s not hard to imagine a neural implant/neuroprosthetic divide with its attendant psychological and social consequences.
What kind of human am I?
There are other issues as noted in my September 17, 2020 posting. I’ve already mentioned ‘patient 6’, the woman who developed a symbiotic relationship with her brain/computer interface. This is how the relationship ended,
… He [Frederic Gilbert, ethicist] is now preparing a follow-up report on Patient 6. The company that implanted the device in her brain to help free her from seizures went bankrupt. The device had to be removed.
… Patient 6 cried as she told Gilbert about losing the device. … “I lost myself,” she said.
“It was more than a device,” Gilbert says. “The company owned the existence of this new person.”
…
Above human
The possibility that implants will not merely restore or endow someone with ‘standard’ sight or hearing or motion or … but will augment or improve on nature was broached in this May 2, 2013 posting, More than human—a bionic ear that extends hearing beyond the usual frequencies and is one of many in the ‘Human Enhancement’ category on this blog.
More recently, Hugh Herr, an Associate Professor at the Massachusetts Institute of Technology (MIT), leader of the Biomechatronics research group at MIT’s Media Lab, a double amputee, and prosthetic enthusiast, starred in the recent (February 23, 2022) broadcast of ‘Augmented‘ on the Public Broadcasting Service (PBS) science programme, Nova.
I found ‘Augmented’ a little offputting as it gave every indication of being an advertisement for Herr’s work in the form of a hero’s journey. I was not able to watch more than 10 mins. This preview gives you a pretty good idea of what it was like although the part in ‘Augmented, where he says he’d like to be a cyborg hasn’t been included,
At a guess, there were a few talking heads (taking up from 10%-20% of the running time) who provided some cautionary words to counterbalance the enthusiasm in the rest of the programme. It’s a standard approach designed to give the impression that both sides of a question are being recognized. The cautionary material is usually inserted past the 1/2 way mark while leaving several minutes at the end for returning to the more optimistic material.
In a February 2, 2010 posting I have excerpts from an article featuring quotes from Herr that I still find startling,
Written by Paul Hochman for Fast Company, Bionic Legs, iLimbs, and Other Super-Human Prostheses [ETA March 23, 2022: an updated version of the article is now on Genius.com] delves further into the world where people may be willing to trade a healthy limb for a prosthetic. From the article,
There are many advantages to having your leg amputated.
Pedicure costs drop 50% overnight. A pair of socks lasts twice as long. But Hugh Herr, the director of the Biomechatronics Group at the MIT Media Lab, goes a step further. “It’s actually unfair,” Herr says about amputees’ advantages over the able-bodied. “As tech advancements in prosthetics come along, amputees can exploit those improvements. They can get upgrades. A person with a natural body can’t.”
…
Herr is not the only one who favours prosthetics (also from the Hochman article),
This influx of R&D cash, combined with breakthroughs in materials science and processor speed, has had a striking visual and social result: an emblem of hurt and loss has become a paradigm of the sleek, modern, and powerful. Which is why Michael Bailey, a 24-year-old student in Duluth, Georgia, is looking forward to the day when he can amputate the last two fingers on his left hand.
“I don’t think I would have said this if it had never happened,” says Bailey, referring to the accident that tore off his pinkie, ring, and middle fingers. “But I told Touch Bionics I’d cut the rest of my hand off if I could make all five of my fingers robotic.”
…
But Bailey is most surprised by his own reaction. “When I’m wearing it, I do feel different: I feel stronger. As weird as that sounds, having a piece of machinery incorporated into your body, as a part of you, well, it makes you feel above human.[emphasis mine] It’s a very powerful thing.”
…
My September 17, 2020 posting touches on more ethical and social issues including some of those surrounding consumer neurotechnologies or brain-computer interfaces (BCI). Unfortunately, I don’t have space for these issues here.
In the IEEE Spectrum article, a tech start-up company, Second Sight, ran into financial trouble and is acquired by a company that has no plans to develop Second Sight’s core technology. The people implanted with the Argus II technology have been stranded as were ‘patient 6’ and others participating in the clinical trial described in the July 24, 2019 article by Liam Drew for Nature Outlook: The brain mentioned earlier in this posting.
I don’t know anything about the business bankruptcy mentioned in the Drew article but one of the business problems described in the IEEE Spectrum article suggests that Second Sight was founded before answering a basic question, “What is the market size for this product?”
On 18 July 2019, Second Sight sent Argus patients a letter saying it would be phasing out the retinal implant technology to clear the way for the development of its next-generation brain implant for blindness, Orion, which had begun a clinical trial with six patients the previous year. …
“The leadership at the time didn’t believe they could make [the Argus retinal implant] part of the business profitable,” Greenberg [Robert Greenberg, Second Sight co-founder] says. “I understood the decision, because I think the size of the market turned out to be smaller than we had thought.”
….
The question of whether a medical procedure or medicine can be profitable (or should the question be sufficiently profitable?) was referenced in my April 26, 2019 posting in the context of gene editing and personalized medicine
Edward Abrahams, president of the Personalized Medicine Coalition (US-based), advocates for personalized medicine while noting in passing, market forces as represented by Goldman Sachs in his May 23, 2018 piece for statnews.com (Note: A link has been removed),
…
Goldman Sachs, for example, issued a report titled “The Genome Revolution.” It argues that while “genome medicine” offers “tremendous value for patients and society,” curing patients may not be “a sustainable business model.” [emphasis mine] The analysis underlines that the health system is not set up to reap the benefits of new scientific discoveries and technologies. Just as we are on the precipice of an era in which gene therapies, gene-editing, and immunotherapies promise to address the root causes of disease, Goldman Sachs says that these therapies have a “very different outlook with regard to recurring revenue versus chronic therapies.”
…
The ‘Glybera’ story in my July 4, 2019 posting (scroll down about 40% of the way) highlights the issue with “recurring revenue versus chronic therapies,”
Kelly Crowe in a November 17, 2018 article for the CBC (Canadian Broadcasting Corporation) news writes about Glybera,
It is one of this country’s great scientific achievements.
“The first drug ever approved that can fix a faulty gene.
It’s called Glybera, and it can treat a painful and potentially deadly genetic disorder with a single dose — a genuine made-in-Canada medical breakthrough.
It cost $1M for a single treatment and that single treatment is good for at least 10 years.
Pharmaceutical companies make their money from repeated use of their medicaments and Glybera required only one treatment so the company priced it according to how much they would have gotten for repeated use, $100,000 per year over a 10 year period. The company was not able to persuade governments and/or individuals to pay the cost
In the end, 31 people got the treatment, most of them received it for free through clinical trials.
…
For rich people only?
Megan Devlin’s March 8, 2022 article for the Daily Hive announces a major research investment into medical research (Note: A link has been removed),
Vancouver [Canada] billionaire Chip Wilson revealed Tuesday [March 8, 2022] that he has a rare genetic condition that causes his muscles to waste away, and announced he’s spending $100 million on research to find a cure.
His condition is called facio-scapulo-humeral muscular dystrophy, or FSHD for short. It progresses rapidly in some people and more slowly in others, but is characterized by progressive muscle weakness starting the the face, the neck, shoulders, and later the lower body.
“I’m out for survival of my own life,” Wilson said.
“I also have the resources to do something about this which affects so many people in the world.”
…
Wilson hopes the $100 million will produce a cure or muscle-regenerating treatment by 2027.
“This could be one of the biggest discoveries of all time, for humankind,” Wilson said. “Most people lose muscle, they fall, and they die. If we can keep muscle as we age this can be a longevity drug like we’ve never seen before.”
…
According to rarediseases.org, FSHD affects between four and 10 people out of every 100,000 [emphasis mine], Right now, therapies are limited to exercise and pain management. There is no way to stall or reverse the disease’s course.
…
Wilson is best known for founding athleisure clothing company Lululemon. He also owns the most expensive home in British Columbia, a $73 million mansion in Vancouver’s Kitsilano neighbourhood.
Let’s see what the numbers add up to,
4 – 10 people out of 100,000
40 – 100 people out of 1M
1200 – 3,000 people out of 30M (let’s say this is Canada’s population)\
12,000 – 30,000 people out of 300M (let’s say this is the US’s population)
42,000 – 105,000 out of 1.115B (let’s say this is China’s population)
The rough total comes to 55,200 to 138,000 people between three countries with a combined population total of 1.445B. Given how business currently operates, it seems unlikely that any company will want to offer Wilson’s hoped for medical therapy although he and possibly others may benefit from a clinical trial.
Should profit or wealth be considerations?
The stories about the patients with the implants and the patients who need Glybera are heartbreaking and point to a question not often asked when medical therapies and medications are developed. Is the profit model the best choice and, if so, how much profit?
I have no answer to that question but I wish it was asked by medical researchers and policy makers.
As for wealthy people dictating the direction for medical research, I don’t have answers there either. I hope the research will yield applications and/or valuable information for more than Wilson’s disease.
It’s his money after all
Wilson calls his new venture, SolveFSHD. It doesn’t seem to be affiliated with any university or biomedical science organization and it’s not clear how the money will be awarded (no programmes, no application procedure, no panel of experts). There are three people on the team, Eva R. Chin, scientist and executive director, Chip Wilson, SolveFSHD founder/funder, and FSHD patient, and Neil Camarta, engineer, executive (fossil fuels and clean energy), and FSHD patient. There’s also a Twitter feed (presumably for the latest updates): https://twitter.com/SOLVEFSHD.
Low Tide Properties, the real estate arm of Lululemon founder Chip Wilson [emphasis mine], has submitted a new development permit application to build a 148-ft-tall, eight-storey, mixed-use commercial building in the False Creek Flats of Vancouver.
…
The proposal, designed by local architectural firm Musson Cattell Mackey Partnership, calls for 236,000 sq ft of total floor area, including 105,000 sq ft of general office space, 102,000 sq ft of laboratory space [emphasis mine], and 5,000 sq ft of ground-level retail space. An outdoor amenity space for building workers will be provided on the rooftop.
…
[next door] The 2001-built, five-storey building at 1618 Station Street immediately to the west of the development site is also owned by Low Tide Properties [emphasis mine]. The Ferguson, the name of the existing building, contains about 79,000 sq ft of total floor area, including 47,000 sq ft of laboratory space and 32,000 sq ft of general office space. Biotechnology company Stemcell technologies [STEMCELL] Technologies] is the anchor tenant [emphasis mine].
…
I wonder if this proposed new building will house SolveFSHD and perhaps other FSHD-focused enterprises. The proximity of STEMCELL Technologies could be quite convenient. In any event, $100M will buy a lot (pun intended).
The end
Issues I’ve described here in the context of neural implants/neuroprosthetics and cutting edge medical advances are standard problems not specific to these technologies/treatments:
What happens when the technology fails (hopefully not at a critical moment)?
What happens when your supplier goes out of business or discontinues the products you purchase from them?
How much does it cost?
Who can afford the treatment/product? Will it only be for rich people?
Will this technology/procedure/etc. exacerbate or create new social tensions between social classes, cultural groups, religious groups, races, etc.?
Of course, having your neural implant fail suddenly in the middle of a New York City subway station seems a substantively different experience than having your car break down on the road.
There are, of course, there are the issues we can’t yet envision (as Wolbring notes) and there are issues such as symbiotic relationships with our implants and/or feeling that you are “above human.” Whether symbiosis and ‘implant/prosthetic superiority’ will affect more than a small number of people or become major issues is still to be determined.
There’s a lot to be optimistic about where new medical research and advances are concerned but I would like to see more thoughtful coverage in the media (e.g., news programmes and documentaries like ‘Augmented’) and more thoughtful comments from medical researchers.
Of course, the biggest issue I’ve raised here is about the current business models for health care products where profit is valued over people’s health and well-being. it’s a big question and I don’t see any definitive answers but the question put me in mind of this quote (from a September 22, 2020 obituary for US Supreme Court Justice Ruth Bader Ginsburg by Irene Monroe for Curve),
Ginsburg’s advocacy for justice was unwavering and showed it, especially with each oral dissent. In another oral dissent, Ginsburg quoted a familiar Martin Luther King Jr. line, adding her coda:” ‘The arc of the universe is long, but it bends toward justice,’” but only “if there is a steadfast commitment to see the task through to completion.” …
Martin Luther King Jr. popularized and paraphrased the quote (from a January 18, 2018 article by Mychal Denzel Smith for Huffington Post),
…
His use of the quote is best understood by considering his source material. “The arc of the moral universe is long, but it bends toward justice” is King’s clever paraphrasing of a portion of a sermon delivered in 1853 by the abolitionist minister Theodore Parker. Born in Lexington, Massachusetts, in 1810, Parker studied at Harvard Divinity School and eventually became an influential transcendentalist and minister in the Unitarian church. In that sermon, Parker said: “I do not pretend to understand the moral universe. The arc is a long one. My eye reaches but little ways. I cannot calculate the curve and complete the figure by experience of sight. I can divine it by conscience. And from what I see I am sure it bends toward justice.”
…
I choose to keep faith that people will get the healthcare products they need and that all of us need to keep working at making access more fair.