Tag Archives: Rockefeller University

Worried your ‘priceless’ art could be ruined? Genomics could be the answer

First, there was the story about art masterpieces turning into soap (my June 22, 2017 posting) and now, it seems that microbes may also constitute a problem. Before getting to the latest research, here’s are some images the researchers are using to illustrate their work,

Caption: Leonardo da Vinci noted that the fore and hind wings of a dragonfly are out of phase — verified centuries later by slow motion photography. Thaler suggests further study to compare individuals and species with high “flicker fusion frequency” ability. Credit: PXFuel

I’m not sure what that has to do with anything but I do love dragonflies. This next image seems more relevant to the research,

Caption: Photo summary of the various artworks sampled for the study “”Characterizing microbial signatures on sculptures and paintings of similar provenance.” Circles indicate swabbed areas on each sample artwork Credit: JCVI

It turns out, the researchers are releasing two pieces of research in the same press release, neither having much to do with the other. They (art conservation rresearch, first and, then, research into vision [hence the dragonfly] and da Vinci’s eyes) are both described in a June 18, 2020 J. Craig Venter Institute (JCVI)-Leonardo Da Vinci DNA Project press release (also on EurekAlert),

A new study of the microbial settlers on old paintings, sculptures, and other forms of art charts a potential path for preserving, restoring, and confirming the geographic origin of some of humanity’s greatest treasures.

Genetics scientists with the J. Craig Venter Institute (JCVI), collaborating with the Leonardo da Vinci DNA Project and supported by the Richard Lounsbery Foundation, say identifying and managing communities of microbes on art may offer museums and collectors a new way to stem the deterioration of priceless possessions, and to unmask counterfeits in the $60 billion a year art market.

Manolito G. Torralba, Claire Kuelbs, Kelvin Jens Moncera, and Karen E. Nelson of the JCVI, La Jolla, California, and Rhonda Roby of the Alameda California County Sheriff’s Office Crime Laboratory, used small, dry polyester swabs to gently collect microbes from centuries-old, Renaissance-style art in a private collector’s home in Florence, Italy. Their findings are published in the journal Microbial Ecology .

The genetic detectives caution that additional time and research are needed to formally convict microbes as a culprit in artwork decay but consider their most interesting find to be “oxidase positive” microbes primarily on painted wood and canvas surfaces.

These species can dine on organic and inorganic compounds often found in paints, in glue, and in the cellulose in paper, canvas, and wood. Using oxygen for energy production, they can produce water or hydrogen peroxide, a chemical used in disinfectants and bleaches.

“Such byproducts are likely to influence the presence of mold and the overall rate of deterioration,” the paper says.

“Though prior studies have attempted to characterize the microbial composition associated with artwork decay, our results summarize the first large scale genomics-based study to understand the microbial communities associated with aging artwork.”

The study builds on an earlier one in which the authors compared hairs collected from people in the Washington D.C., and San Diego, CA. areas, finding that microbial signatures and patterns are geographically distinguishable.

In the art world context, studying microbes clinging to the surface of a work of art may help confirm its geographic origin and authenticity or identify counterfeits.

Lead author Manolito G. Torralba notes that, as art’s value continues to climb, preservation is increasingly important to museums and collectors alike, and typically involves mostly the monitoring and adjusting of lighting, heat, and moisture.

Adding genomics science to these efforts offers advantages of “immense potential.”

The study says microbial populations “were easily discernible between the different types of substrates sampled,” with those on stone and marble art more diverse than wood and canvas. This is “likely due to the porous nature of stone and marble harboring additional organisms and potentially moisture and nutrients, along with the likelihood of biofilm formation.”

As well, microbial diversity on paintings is likely lower because few organisms can metabolize the meagre nutrients offered by oil-based paint.

“Though our sample size is low, the novelty of our study has provided the art and scientific communities with evidence that microbial signatures are capable of differentiating artwork according to their substrate,” the paper says.

“Future studies would benefit from working with samples whose authorship, ownership, and care are well-documented, although documentation about care of works of art (e.g., whether and how they were cleaned) seems rare before the mid-twentieth century.”

“Of particular interest would be the presence and activity of oil-degrading enzymes. Such approaches will lead to fully understanding which organism(s) are responsible for the rapid decay of artwork while potentially using this information to target these organisms to prevent degradation.”

“Focusing on reducing the abundance of such destructive organisms has great potential in preserving and restoring important pieces of human history.”

Biology in Art

The paper was supported by the US-based Richard Lounsbery Foundation as part of its “biology in art” research theme, which has also included seed funding efforts to obtain and sequence the genome of Leonardo da Vinci.

The Leonardo da Vinci DNA Project involves scientists in France (where Leonardo lived during his final years and was buried), Italy (where his father and other relatives were buried, and descendants of his half-brothers still live), Spain (whose National Library holds 700 pages of his notebooks), and the US (where forensic DNA skills flourish).

The Leonardo project has convened molecular biologists, population geneticists, microbiologists, forensic experts, and physicians working together with other natural scientists and with genealogists, historians, artists, and curators to discover and decode previously inaccessible knowledge and to preserve cultural heritage.  

Related news release: Leonardo da Vinci’s DNA: Experts unite to shine modern light on a Renaissance master http://bit.ly/2FG4jJu

Measuring Leonardo da Vinci’s “quick eye” 500 years later.

Could he have played major-league baseball?

Famous art historians and biographers such as Sir Kenneth Clark and Walter Isaacson have written about Leonardo da Vinci’s “quick eye” because of the way he accurately captured fleeting expressions, wings during bird flight, and patterns in swirling water. But until now no one had tried to put a number on this aspect of Leonardo’s extraordinary visual acuity.

David S. Thaler of the University of Basel, and a guest investigator in the Program for the Human Environment at The Rockefeller University, does, allowing comparison of Leonardo with modern measures. Leonardo fares quite well.

Thaler’s estimate hinges on Leonardo’s observation that the fore and hind wings of a dragonfly are out of phase — not verified until centuries later by slow motion photography (see e.g. https://youtu.be/Lw2dfjYENNE?t=44).

To quote Isaacson’s translation of Leonardo’s notebook: “The dragonfly flies with four wings, and when those in front are raised those behind are lowered.”

Thaler challenged himself and friends to try seeing if that’s true, but they all saw only blurs.

High-speed camera studies by others show the fore and hind wingbeats of dragonflies vary by 20 to 10 milliseconds — one fiftieth to one hundredth of a second — beyond average human perception.

Thaler notes that “flicker fusion frequency” (FFF) — akin to a motion picture’s frames per second — is used to quantify and measure “temporal acuity” in human vision.

When frames per second exceed the number of frames the viewer can perceive individually, the brain constructs the illusion of continuous movement. The average person’s FFF is between 20 to 40 frames per second; current motion pictures present 48 or 72 frames per second.

To accurately see the angle between dragonfly wings would require temporal acuity in the range of 50 to 100 frames per second.

Thaler believes genetics will account for variations in FFF among different species, which range from a low of 12 in some nocturnal insects to over 300 in Fire Beetles. We simply do not know what accounts for human variation. Training and genetics may both play important roles.

“Perhaps the clearest contemporary case for a fast flicker fusion frequency in humans is in American baseball, because it is said that elite batters can see the seams on a pitched baseball,” even when rotating 30 to 50 times per second with two or four seams facing the batter. A batter would need Leonardo-esque FFF to spot the seams on most inbound baseballs.  

Thaler suggests further study to compare the genome of individuals and species with unusually high FFF, including, if possible, Leonardo’s DNA.  

Flicker fusion for focus, attention, and affection   

In a companion paper, Thaler describes how Leonardo used psychophysics that would only be understood centuries later — and about which a lot remains to be learned today — to communicate deep beauty and emotion. 

Leonardo was master of a technique known as sfumato (the word derived from the Italian sfumare, “to tone down” or “to evaporate like smoke”), which describes a subtle blur of edges and blending of colors without sharp focus or distinct lines.

Leonardo expert Martin Kemp has noted that Leonardo’s sfumato sometimes involves a distance dependence which is akin to the focal plane of a camera. Yet, at other times, features at the same distance have selective sfumato so simple plane of focus is not the whole answer.

Thaler suggests that Leonardo achieved selective soft focus in portraits by painting in overcast or evening light, where the eyes’ pupils enlarge to let in more light but have a narrow plane of sharp focus. 

To quote Leonardo’s notebook, under the heading “Selecting the light which gives most grace to faces”: “In the evening and when the weather is dull, what softness and delicacy you may perceive in the faces of men and women.”  In dim light pupils enlarge to let in more light but their depth of field decreases.  

By measuring the size of the portrait’s pupils, Thaler inferred Leonardo’s depth of focus. He says Leonardo likely sensed this effect, perhaps unconsciously in the realm of his artistic sensibility. The pupil / aperture effect on depth of focus wasn’t explained until the mid-1800s, centuries after Leonardo’s birth in Vinci, Italy in 1452.

What about selective focus at equal distance? In this case Leonardo may have taken advantage of the fovea, the small area on the back of the eye where detail is sharpest.

Most of us move our eyes around and because of our slower flicker fusion frequency we construct a single 3D image of the world by jamming together many partially in-focus images. Leonardo realized and “froze” separate snapshots with which we construct ordinary perception.

Says Thaler: “We study Leonardo not only to learn about him but to learn about ourselves and further human potential.”

Thaler’s papers (at https://bit.ly/2WZ2cwo and https://bit.ly/2ZBj7Hi) evolved from talks at meetings of the Leonardo da Vinci DNA Project in Italy (2018), Spain and France (2019).

They form part of a collection of papers presented at a recent colloquium in Amboise, France, now being readied for publication in a book: Actes du Colloque International d’Amboise: Leonardo de Vinci, Anatomiste. Pionnier de l’Anatomie comparée, de la Biomécanique, de la Bionique et de la Physiognomonie. Edited by Henry de Lumley, President, Institute of Human Paleontology, Paris, and originally planned for release in late spring, 2020, publication was delayed by the global virus pandemic but should be available at CNRS Editions in the second half of the summer.

Other papers in the collection cover a range of topics, including how Leonardo used his knowledge of anatomy, gained by performing autopsies on dozens of cadavers, to achieve Mona Lisa’s enigmatic smile.

Leonardo also used it to exact revenge on academics and scientists who ridiculed him for lacking a classical education, sketching them with absurdly deformed faces to resemble birds, dogs, or goats. 

De Lumley earlier co-authored a 72-page monograph for the Leonardo DNA Project: “Leonardo da Vinci: Pioneer of comparative anatomy, biomechanics and physiognomy.”.

Here’s a link to and a citation for the paper featuring microbes and art masterpiece,

Characterizing Microbial Signatures on Sculptures and Paintings of Similar Provenance by Manolito G. Torralba, Claire Kuelbs, Kelvin Jens Moncera, Rhonda Roby & Karen E. Nelson. Microbial Ecology (2020) DOI: https://doi.org/10.1007/s00248-020-01504-x Published: 21 May 2020

This paper is open access.

The Leonardo Project and the master’s DNA (deoxyribonucleic acid)

I’ve never really understood the mania for digging up bodies of famous people in history and trying to ascertain how the person really died or what kind of diseases they may have had but the practice fascinates me. The latest famous person to be subjected to a forensic inquiry centuries after death is Leonardo da Vinci. A May 5, 2016 Human Evolution (journal) news release on EurekAlert provides details,

A team of eminent specialists from a variety of academic disciplines has coalesced around a goal of creating new insight into the life and genius of Leonardo da Vinci by means of authoritative new research and modern detective technologies, including DNA science.

The Leonardo Project is in pursuit of several possible physical connections to Leonardo, beaming radar, for example, at an ancient Italian church floor to help corroborate extensive research to pinpoint the likely location of the tomb of his father and other relatives. A collaborating scholar also recently announced the successful tracing of several likely DNA relatives of Leonardo living today in Italy (see endnotes).

If granted the necessary approvals, the Project will compare DNA from Leonardo’s relatives past and present with physical remnants — hair, bones, fingerprints and skin cells — associated with the Renaissance figure whose life marked the rebirth of Western civilization.

The Project’s objectives, motives, methods, and work to date are detailed in a special issue of the journal Human Evolution, published coincident with a meeting of the group hosted in Florence this week under the patronage of Eugenio Giani, President of the Tuscan Regional Council (Consiglio Regionale della Toscana).

The news release goes on to provide some context for the work,

Born in Vinci, Italy, Leonardo died in 1519, age 67, and was buried in Amboise, southwest of Paris. His creative imagination foresaw and described innovations hundreds of years before their invention, such as the helicopter and armored tank. His artistic legacy includes the iconic Mona Lisa and The Last Supper.

The idea behind the Project, founded in 2014, has inspired and united anthropologists, art historians, genealogists, microbiologists, and other experts from leading universities and institutes in France, Italy, Spain, Canada and the USA, including specialists from the J. Craig Venter Institute of California, which pioneered the sequencing of the human genome.

The work underway resembles in complexity recent projects such as the successful search for the tomb of historic author Miguel de Cervantes and, in March 2015, the identification of England’s King Richard III from remains exhumed from beneath a UK parking lot, fittingly re-interred 500 years after his death.

Like Richard, Leonardo was born in 1452, and was buried in a setting that underwent changes in subsequent years such that the exact location of the grave was lost.

If DNA and other analyses yield a definitive identification, conventional and computerized techniques might reconstruct the face of Leonardo from models of the skull.”

In addition to Leonardo’s physical appearance, information potentially revealed from the work includes his ancestry and additional insight into his diet, state of health, personal habits, and places of residence.

According to the news release, the researchers have an agenda that goes beyond facial reconstruction and clues about  ancestry and diet,

Beyond those questions, and the verification of Leonardo’s “presumed remains” in the chapel of Saint-Hubert at the Château d’Amboise, the Project aims to develop a genetic profile extensive enough to understand better his abilities and visual acuity, which could provide insights into other individuals with remarkable qualities.

It may also make a lasting contribution to the art world, within which forgery is a multi-billion dollar industry, by advancing a technique for extracting and sequencing DNA from other centuries-old works of art, and associated methods of attribution.

Says Jesse Ausubel, Vice Chairman of the Richard Lounsbery Foundation, sponsor of the Project’s meetings in 2015 and 2016: “I think everyone in the group believes that Leonardo, who devoted himself to advancing art and science, who delighted in puzzles, and whose diverse talents and insights continue to enrich society five centuries after his passing, would welcome the initiative of this team — indeed would likely wish to lead it were he alive today.”

The researchers aim to have the work complete by 2019,

In the journal, group members underline the highly conservative, precautionary approach required at every phase of the Project, which they aim to conclude in 2019 to mark the 500th anniversary of Leonardo’s death.

For example, one objective is to verify whether fingerprints on Leonardo’s paintings, drawings, and notebooks can yield DNA consistent with that extracted from identified remains.

Early last year, Project collaborators from the International Institute for Humankind Studies in Florence opened discussions with the laboratory in that city where Leonardo’s Adoration of the Magi has been undergoing restoration for nearly two years, to explore the possibility of analyzing dust from the painting for possible DNA traces. A crucial question is whether traces of DNA remain or whether restoration measures and the passage of time have obliterated all evidence of Leonardo’s touch.

In preparation for such analysis, a team from the J. Craig Venter Institute and the University of Florence is examining privately owned paintings believed to be of comparable age to develop and calibrate techniques for DNA extraction and analysis. At this year’s meeting in Florence, the researchers also described a pioneering effort to analyze the microbiome of a painting thought to be about five centuries old.

If human DNA can one day be obtained from Leonardo’s work and sequenced, the genetic material could then be compared with genetic information from skeletal or other remains that may be exhumed in the future.

Here’s a list of the participating organizations (from the news release),

  • The Institut de Paléontologie Humaine, Paris
  • The International Institute for Humankind Studies, Florence
  • The Laboratory of Molecular Anthropology and Paleogenetics, Biology Department, University of Florence
  • Museo Ideale Leonardo da Vinci, in Vinci, Italy
  • J. Craig Venter Institute, La Jolla, California
  • Laboratory of Genetic Identification, University of Granada, Spain
  • The Rockefeller University, New York City

You can find the special issue of Human Evolution (HE Vol. 31, 2016 no. 3) here. The introductory essay is open access but the other articles are behind a paywall.

Nanoparticle-based radiogenetics to control brain cells

While the title for this post sounds like an opening for a zombie-themed story, this Oct. 8, 2014 news item on Nanowerk actually concerns brain research at Rockefeller University (US), Note: A link has been removed,

A proposal to develop a new way to remotely control brain cells from Sarah Stanley, a Research Associate in Rockefeller University’s Laboratory of Molecular Genetics, headed by Jeffrey M. Friedman, is among the first to receive funding from the BRAIN initiative. The project will make use of a technique called radiogenetics that combines the use of radio waves or magnetic fields with nanoparticles to turn neurons on or off.

An Oct. 7, 2014 Rockefeller University news release, which originated the news item, further describes the BRAIN initiative and the research (Note: Links have been removed),

The NIH [National Institutes of Health]  is one of four federal agencies involved in the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative. Following in the ambitious footsteps of the Human Genome Project, the BRAIN initiative seeks to create a dynamic map of the brain in action, a goal that requires the development of new technologies. The BRAIN initiative working group, which outlined the broad scope of the ambitious project, was co-chaired by Rockefeller’s Cori Bargmann, head of the Laboratory of Neural Circuits and Behavior.

Stanley’s grant, for $1.26 million over three years, is one of 58 projects to get BRAIN grants, the NIH announced. The NIH’s plan for its part of this national project, which has been pitched as “America’s next moonshot,” calls for $4.5 billion in federal funds over 12 years.

The technology Stanley is developing would enable researchers to manipulate the activity of neurons, as well as other cell types, in freely moving animals in order to better understand what these cells do. Other techniques for controlling selected groups of neurons exist, but her new nanoparticle-based technique has a unique combination of features that may enable new types of experimentation. For instance, it would allow researchers to rapidly activate or silence neurons within a small area of the brain or dispersed across a larger region, including those in difficult-to-access locations. Stanley also plans to explore the potential this method has for use treating patients.

“Francis Collins, director of the NIH, has discussed the need for studying the circuitry of the brain, which is formed by interconnected neurons. Our remote-control technology may provide a tool with which researchers can ask new questions about the roles of complex circuits in regulating behavior,” Stanley says.

Here’s an image that Rockefeller University has used to illustrate the concept of radio-controlled brain cells,

 

BRAIN control: The new technology uses radio waves to activate or silence cells remotely. The bright spots above represent cells with increased calcium after treatment with radio waves, a change that would allow neurons to fire. [downloaded from: http://newswire.rockefeller.edu/2014/10/07/rockefeller-neurobiology-lab-is-awarded-first-round-brain-initiative-grant/]

BRAIN control: The new technology uses radio waves to activate or silence cells remotely. The bright spots above represent cells with increased calcium after treatment with radio waves, a change that would allow neurons to fire. [downloaded from: http://newswire.rockefeller.edu/2014/10/07/rockefeller-neurobiology-lab-is-awarded-first-round-brain-initiative-grant/]

You can find out more about the US BRAIN initiative here.

Baba Brinkman’s ‘off the top’ neuroscience improv and other raps

Provided you live in New York City or are visiting at the right time, there’s a free Baba Brinkman and others performance (from the Off The Top: The Neuroscience of Improv Eventbrite registration page),

Off The Top: The Neuroscience of Improv
The Rockefeller University Science Outreach Program
Wednesday, July 23, 2014 from 7:00 PM to 9:00 PM (EDT)
New York, NY [emphasis mine]

Here’s a description of the performance and performers (Note: Berlin and Brinkman are a married to each other),

Neuroscientist Dr. Heather Berlin teams up with science rapper and freestyle fanatic Baba Brinkman to explore the brain basis of spontaneous creativity. Brought to you by the prefrontal cortex, and featuring special guest performers, this is a celebration of the science and stagecraft behind life’s unforgettable moments of unscripted gold.

Held in The Rockefeller University’s iconic Caspary Auditorium, this event will expertly mash up pop culture, hip hop, and neuroscience. Guests will experience an accessible conversation while being entertained by some of NYC’s own hip hop performers.

About the Performers:

Heather Berlin, PhD is an American neuroscientist focusing on brain-behavior relationships affecting the prevention and treatment of psychiatric disorders. She is also interested in the neural basis of consciousness and dynamic unconscious processes.

Baba Brinkman is a Canadian rapper, poet and playwright best known for recordings and performances that combine hip hop music with literature, theatre, and science.

More special guests to be named!

For anyone unfamiliar with Rockefeller University (this list includes me) there’s this from their About The Rockefeller University webpage (Note: A link has been removed),

The Rockefeller University is a world-renowned center for research and graduate education in the biomedical sciences, chemistry, bioinformatics and physics. The university’s 75 laboratories conduct both clinical and basic research and study a diverse range of biological and biomedical problems with the mission of improving the understanding of life for the benefit of humanity.

Founded in 1901 by John D. Rockefeller, the Rockefeller Institute for Medical Research was the country’s first institution devoted exclusively to biomedical research. The Rockefeller University Hospital was founded in 1910 as the first hospital devoted exclusively to clinical research. In the 1950s, the institute expanded its mission to include graduate education and began training new generations of scientists to become research leaders around the world. In 1965, it was renamed The Rockefeller University.

The university does have a ‘science’ Outreach webpage which features a number of initiatives for summer 2014,

Getting back to Baba Brinkman, he’s quite busy preparing a new show and getting ready to present it and two others* at the 2014 Edinburgh Fringe Festival as per his July 11, 2014 announcement,

Theatre making is quite the trial-by-fire! I’ve spent the past ten 18-hour days writing and rehearsing and recording and rewriting the script for The Rap Guide to Religion, which is set to premiere at the Edinburgh Fringe Festival starting July 30th, and I need your help to spread the word! Below you will find links to the three different shows I’m performing in at the Fringe, and I encourage (aka beg) you to click on each one and hit the link to “like” them on facebook. Or, if you know anyone coming to the Fringe, please send them a recommendation.

The Rap Guide to Religion explores the evolutionary origins of religiosity.

The Canterbury Tales Remixed, adapts Chaucer’s Tales for the modern ear and era. 

Off The Top adventures in the neuroscience of creativity and improvisation.

Also, calling all New Yorkers! There will be two preview performances of Rap Guide to Religion next week, July 15/16 [2014], at the East to Edinburgh festival, details here. This will be the first-ever staging of a brand new production, which is still very much a work in progress, so come if you want to catch a glimpse of the process rather than the product.

So to sum this up, there’s one free neuroscience rap show at Rockfeller University and  previews (cheaper tickets) of the new ‘religious rap’.  Then, Brinkman will be taking three shows (Rap Guide to Religion, The Canterbury Tales Remixed, and Off The Top) to Scotland’s  Edinburgh Fringe Festival.

* ‘shows’ removed from sentence to ensure better grammar on July 14, 2014 at 12:25 pm PDT.