Tag Archives: Rockefeller University

A fish baying at the moon?

It seems to be GLUBS time again (GLUBS being the Global Library of Underwater Biological Sounds). In fact it’s an altogether acoustical time for the ocean. First, a mystery fish,

That sounds a bit like a trumpet to me. (I last wrote about GLUBS in a March 4, 2022 posting where it was included under the ‘Marine sound libraries’ subhead.)

The latest about GLUBS and aquatic sounds can be found in an April 26, 2023 Rockefeller University news release on EurekAlert, Note 1: I don’t usually include the heads but I quite like this one and even stole part of it for this posting; Note 2: There probably should have been more than one news release; Note 3: For anyone who doesn’t have time to read the entire news release, I have a link immediately following the news release to an informative and brief article about the work,

Do fish bay at the moon? Can their odd songs identify Hawaiian mystery fish? Eavesdropping scientists progress in recording, understanding ocean soundscapes

Using hydrophones to eavesdrop on a reef off the coast of Goa, India, researchers have helped advance a new low-cost way to monitor changes in the world’s murky marine environments.

Reporting their results in the Journal of the Acoustical Society of America (JASA), the scientists recorded the duration and timing of mating and feeding sounds – songs, croaks, trumpets and drums – of 21 of the world’s noise-making ocean species.

With artificial intelligence and other pioneering techniques to discern the calls of marine life, they recorded and identified

Some species within the underwater community work the early shift and ruckus from 3 am to 1.45 pm, others work the late shift and ruckus from 2 pm to 2.45 am, while the plankton predators were “strongly influenced by the moon.”

Also registered: the degree of difference in the abundance of marine life before and after a monsoon.

The paper concludes that hydrophones are a powerful tool and “overall classification performance (89%) is helpful in the real-time monitoring of the fish stocks in the ecosystem.”

The team, including Bishwajit Chakraborty, a leader of the International Quiet Ocean Experiment (IQOE), benefitted from archived recordings of marine species against which they could match what they heard, including:

Also captured was a “buzz” call of unknown origin (https://bit.ly/3GZdRSI), one of the oceans’ countless marine life mysteries.

With a contribution to the International Quiet Ocean Experiment, the research will be discussed at an IQOE meeting in Woods Hole, MA, USA, 26-27 April [2023].

Advancing the Global Library of Underwater Biological Sounds (GLUBS)

That event will be followed April 28-29 by a meeting of partners in the new Global Library of Underwater Biological Sounds (GLUBS), a major legacy of the decade-long IQOE, ending in 2025.

GLUBS, conceived in late 2021 and currently under development, is designed as an open-access online platform to help collate global information and to broaden and standardize scientific and community knowledge of underwater soundscapes and their contributing sources.

It will help build short snippets and snapshots (minutes, hours, days long recordings) of biological, anthropogenic, and geophysical marine sounds into full-scale, tell-tale underwater baseline soundscapes.

Especially notable among many applications of insights from GLUBS information: the ability to detect in hard-to-see underwater environments and habitats how the distribution and behavior of marine life responds to increasing pressure from climate change, fishing, resource development, plastic, anthropogenic noise and other pollutants.

“Passive acoustic monitoring (PAM) is an effective technique for sampling aquatic systems that is particularly useful in deep, dark, turbid, and rapidly changing or remote locations,” says Miles Parsons of the Australian Institute of Marine Science and a leader of GLUBS.

He and colleagues outline two primary targets:

  • Produce and maintain a list of all aquatic species confirmed or anticipated to produce sound underwater;
  • Promote the reporting of sounds from unknown sources

Odd songs of Hawaii’s mystery fish

In this latter pursuit, GLUBS will also help reveal species unknown to science as yet and contribute to their eventual identification.

For example, newly added to the growing global collection of marine sounds are recent recordings from Hawaii, featuring the baffling

now part of an entire YouTube channel (https://bit.ly/3H5Ly54) dedicated to marine life sounds in Hawaii and elsewhere (e.g. this “complete and total mystery from the Florida Keys”: https://bit.ly/41w1Xbc (Annie Innes-Gold, Hawai’i Institute of Marine Biology; processed by Jill Munger, Conservation Metrics, Inc.)

Says Dr. Parsons: “Unidentified sounds can provide valuable information on the richness of the soundscape, the acoustic communities that contribute to it and behavioral interactions among acoustic groups. However, unknown, cryptic and rare sounds are rarely target signals for research and monitoring projects and are, therefore, largely unreported.”

The many uses of underwater sound

Of the roughly 250,000 known marine species, scientists think all fully-aquatic marine mammals (~146, including sub-species) emit sounds, along with at least 100 invertebrates, 1,000 of the world’s ~35,000 known fish species, and likely many thousands more.

GLUBS aims to help delineate essential fish habitat and estimate biomass of a spawning aggregation of a commercially or recreationally important soniferous species.

In one scenario of its many uses, a one-year, calibrated recording can provide a proxy for the timing, location and, under certain circumstances, numbers of ‘calling’ fishes, and how these change throughout a spawning season.

It will also help evaluate the degradation and recovery of a coral reef.

GLUBS researchers envision, for example, collecting recordings from a coral reef that experienced a cyclone or other extreme weather event, followed by widespread bleaching. Throughout its restoration, GLUBS audio data would be matched with and augment a visual census of the fish assemblage at multiple timepoints.

Oil and gas, wind power and other offshore industries will also benefit from GLUBS’ timely information on the possible harms or benefits of their activities.

Other IQOE legacies include

  • Manta (bitbucket.org/CLO-BRP/manta-wiki/wiki/Home), a mechanism created by world experts from academia, industry, and government to help standardize ocean sound recording data, facilitating its comparability, pooling and visualization.
  • OPUS, an Open Portal to Underwater Sound being tested at Alfred Wegener Institute in Bremerhaven, Germany to promote the use of acoustic data collected worldwide, providing easy access to MANTA-processed data, and
  • The first comprehensive database and map of the world’s 200+ known hydrophones recording for ecological purposes 

Marine sounds and COVID-19

The IQOE’s early ambition of humanity’s maritime noise being minimized for a day or week was unexpectedly met in spades when the COVID-19 pandemic began.     

New IQOE research to be considered at the April meeting includes a paper, Impact of the COVID‑19 pandemic on levels of deep‑ocean acoustic noise (https://bit.ly/3KZTaIt) documenting a pandemic-related drop of 1 to 3 dB even in the depths of the abyss. With a 3 dB decrease, sound energy is halved.

Virus control measures led to “sudden and sometimes dramatic reductions in human activity in sectors such as transport, industry, energy, tourism, and construction,” with some of the greatest reductions from March to June 2020 – a drop of up to 13% in container ship traffic and up to 42% in passenger ships.

Other IQOE accomplishments include achieving recognition of ocean sound as an Essential Ocean Variable (EOV) within the Global Ocean Observing System, underlining its helpfulness in monitoring 

  • climate change (the extent and breakup of sea ice; the frequency and intensity of wind, waves and rain)
  • ocean health (biodiversity assessments: monitoring the distribution and abundance of sound-producing species)
  • impacts of human activities on wildlife, and
  • nuclear explosions, foreign/illegal/threatening vessels, human activities in protected areas, and underwater earthquakes that can generate tsunamis

The Partnership for Observation of the Global Ocean (POGO) funded an IQOE Working Group in 2016, which quickly identified the lack of ocean sound as a variable measured by ocean observing systems. This group developed specifications for an Ocean Sound Essential Ocean Variable (EOV) by 2018, which was approved by the Global Ocean Observing System in 2021. IQOE has since developed the Ocean Sound EOV Implementation Plan, reviewed in 2022 and ready for public debut at IQOE’s meeting April 26.

One of IQOE’s originators, Jesse Ausubel of The Rockefeller University’s Programme for the Human Environment, says the programme has drawn attention to the absence of publicly available time series of sound on ecologically important frequencies throughout the global ocean.

“We need to listen more in the blue symphony halls. Animal sounds are behavior, and we need to record and understand the sounds, if we want to know the status of ocean life,” he says.

The program “has provided a platform for the international passive acoustics community to grow stronger and advocate for inclusion of acoustic measurements in national, regional, and global ocean observing systems,” says Prof. Peter Tyack of the University of St. Andrew’s, who, with Steven Simpson, guide the IQOE International Scientific Steering Committee.

“The ocean acoustics and bioacoustics communities had no experience in working together globally, and coverage is certainly not global; there are many gaps. IQOE has begun to help these communities work together globally, and there is still progress to be made in networking and in expanding the deployment of hydrophones, adds Prof. Ausubel.

A description of the project’s history and evaluation to date is available at https://bit.ly/3H7FCbN.

Encouraging greater worldwide use of hydrophones

According to Dr. Parsons, “hydrophones are now being deployed in more locations, more often, by more people, than ever before,” 

To celebrate that, and to mark World Oceans Day, June 8 [2023], GLUBS recently put out a call to hydrophone operators to share marine life recordings made from 7 to 9 June, so far receiving interest from 124 hydrophone operators in 62 organizations from 29 countries and counting. The hydrophones will be retrieved over the following months with the full dataset expected sometime in 2024.

They also plan to make World Oceans Passive Acoustic Monitoring (WOPAM) Day an annual event – a global collaborative study of aquatic soundscapes, salt, brackish or freshwater – the marine world’s answer to the U.S. Audubon Society’s 123-year-old Christmas Bird Count.

Interested researchers with hydrophones [emphasis mine] already planned [sic] to be in the water on June 8 [2023] are invited to contact Miles Parsons (m.parsons@aims.gov.au) or Steve Simpson (s.simpson@bristol.ac.uk).

Becky Ferreira has written April 26, 2023 article for Motherboard that provides more insight into the work being done offshore in Goa and elsewhere,

To better understand the rich reef ecosystems of Goa, a team of researchers at the Indian Council of Scientific and Industrial Research’s National Institute of Oceanography (CSIR-NIO) placed a hydrophone near Grande Island at a depth of about 65 feet. Over the course of several days, the instrument captured hundreds of recordings of the choruses of “soniferous” (sound-making)fish, the high-frequency noises of shrimp, and the rumblings of boats passing near the area.

“Our research, for the longest time, predominantly involved active acoustics systems in understanding habitats (bottom roughness, etc., using multibeam sonar),” said Bishwajit Chakraborty, a marine scientist at CSIR-NIO who co-authored the study, in an email to Motherboard. “By using active sonar systems, we add sound signals to water media which severely affects marine life.” 

Here’s a link to and a citation for the paper mentioned at the beginning of the news release,

Biodiversity assessment using passive acoustic recordings from off-reef location—Unsupervised learning to classify fish vocalization by Vasudev P. Mahale, Kranthikumar Chanda, Bishwajit Chakraborty; Tejas Salkar, G. B. Sreekanth. Journal of the Acoustical Society of America, Volume 153, Issue 3 March 2023 [alternate: J Acoust Soc Am 153, 1534–1553 (2023)] DOI: https://doi.org/10.1121/10.0017248

This paper appears to be open access.

And, one more time,

Interested researchers with hydrophones [emphasis mine] already planned [sic] to be in the water on June 8 [2023] are invited to contact Miles Parsons (m.parsons@aims.gov.au) or Steve Simpson (s.simpson@bristol.ac.uk).

Need to improve oversight on chimeric human-animal research

It seems chimeras are of more interest these days. In all likelihood that has something to do with the fellow who received a transplant of a pig’s heart in January 2022 (he died in March 2022).

For those who aren’t familiar with the term, a chimera is an entity with two different DNA (deoxyribonucleic acid) identities. In short, if you get a DNA sample from the heart, it’s different from a DNA sample obtained from a cheek swab. This contrasts with a hybrid such as a mule (donkey/horse) whose DNA samples show a consisted identity throughout its body.

A December 12, 2022 The Hastings Center news release (also on EurekAlert) announces a special report,

A new report on the ethics of crossing species boundaries by inserting human cells into nonhuman animals – research surrounded by debate – makes recommendations clarifying the ethical issues and calling for improved oversight of this work.

The report, “Creating Chimeric Animals — Seeking Clarity On Ethics and Oversight,” was developed by an interdisciplinary team, with funding from the National Institutes of Health. Principal investigators are Josephine Johnston and Karen Maschke, research scholars at The Hastings Center, and Insoo Hyun, director of the Center for Life Sciences and Public Learning at the Museum of Life Sciences in Boston, formerly of Case Western Reserve University.

Advances in human stem cell science and gene editing enable scientists to insert human cells more extensively and precisely into nonhuman animals, creating “chimeric” animals, embryos, and other organisms that contain a mix of human and nonhuman cells.

Many people hope that this research will yield enormous benefits, including better models of human disease, inexpensive sources of human eggs and embryos for research, and sources of tissues and organs suitable for transplantation into humans. 

But there are ethical concerns about this type of research, which raise questions such as whether the moral status of nonhuman animals is altered by the insertion of human stem cells, whether these studies should be subject to additional prohibitions or oversight, and whether this kind of research should be done at all.

The report found that:

Animal welfare is a primary ethical issue and should be a focus of ethical and policy analysis as well as the governance and oversight of chimeric research.

Chimeric studies raise the possibility of unique or novel harms resulting from the insertion and development of human stem cells in nonhuman animals, particularly when those cells develop in the brain or central nervous system.

Oversight and governance of chimeric research are siloed, and public communication is minimal. Public communication should be improved, communication between the different committees involved in oversight at each institution should be enhanced, and a national mechanism created for those involved in oversight of these studies. 

Scientists, journalists, bioethicists, and others writing about chimeric research should use precise and accessible language that clarifies rather than obscures the ethical issues at stake. The terms “chimera,” which in Greek mythology refers to a fire-breathing monster, and “humanization” are examples of ethically laden, or overly broad language to be avoided.

The Research Team

The Hastings Center

• Josephine Johnston
• Karen J. Maschke
• Carolyn P. Neuhaus
• Margaret M. Matthews
• Isabel Bolo

Case Western Reserve University
• Insoo Hyun (now at Museum of Science, Boston)
• Patricia Marshall
• Kaitlynn P. Craig

The Work Group

• Kara Drolet, Oregon Health & Science University
• Henry T. Greely, Stanford University
• Lori R. Hill, MD Anderson Cancer Center
• Amy Hinterberger, King’s College London
• Elisa A. Hurley, Public Responsibility in Medicine and Research
• Robert Kesterson, University of Alabama at Birmingham
• Jonathan Kimmelman, McGill University
• Nancy M. P. King, Wake Forest University School of Medicine
• Geoffrey Lomax, California Institute for Regenerative Medicine
• Melissa J. Lopes, Harvard University Embryonic Stem Cell Research Oversight Committee
• P. Pearl O’Rourke, Harvard Medical School
• Brendan Parent, NYU Grossman School of Medicine
• Steven Peckman, University of California, Los Angeles
• Monika Piotrowska, State University of New York at Albany
• May Schwarz, The Salk Institute for Biological Studies
• Jeff Sebo, New York University
• Chris Stodgell, University of Rochester
• Robert Streiffer, University of Wisconsin-Madison
• Lorenz Studer, Memorial Sloan Kettering Cancer Center
• Amy Wilkerson, The Rockefeller University

Here’s a link to and a citation for the report,

Creating Chimeric Animals: Seeking Clarity on Ethics and Oversight edited by Karen J. Maschke, Margaret M. Matthews, Kaitlynn P. Craig, Carolyn P. Neuhaus, Insoo Hyun, Josephine Johnston, The Hastings Center Report Volume 52, Issue S2 (Special Report), November‐December 2022 First Published: 09 December 2022

This report is open access.

Classical music makes protein songs easier listening

Caption: This audio is oxytocin receptor protein music using the Fantasy Impromptu guided algorithm. Credit: Chen et al. / Heliyon

A September 29, 2021 news item on ScienceDaily describes new research into music as a means of communicating science,

In recent years, scientists have created music based on the structure of proteins as a creative way to better popularize science to the general public, but the resulting songs haven’t always been pleasant to the ear. In a study appearing September 29 [2021] in the journal Heliyon, researchers use the style of existing music genres to guide the structure of protein song to make it more musical. Using the style of Frédéric Chopin’s Fantaisie-Impromptu and other classical pieces as a guide, the researchers succeeded in converting proteins into song with greater musicality.

Scientists (Peng Zhang, Postdoctoral Researcher in Computational Biology at The Rockefeller University, and Yuzong Chen, Professor of Pharmacy at National University of Singapore [NUS]) wrote a September 29, 2021 essay for The Conversation about their protein songs (Note: Links have been removed),

There are many surprising analogies between proteins, the basic building blocks of life, and musical notation. These analogies can be used not only to help advance research, but also to make the complexity of proteins accessible to the public.

We’re computational biologists who believe that hearing the sound of life at the molecular level could help inspire people to learn more about biology and the computational sciences. While creating music based on proteins isn’t new, different musical styles and composition algorithms had yet to be explored. So we led a team of high school students and other scholars to figure out how to create classical music from proteins.

The musical analogies of proteins

Proteins are structured like folded chains. These chains are composed of small units of 20 possible amino acids, each labeled by a letter of the alphabet.

A protein chain can be represented as a string of these alphabetic letters, very much like a string of music notes in alphabetical notation.

Protein chains can also fold into wavy and curved patterns with ups, downs, turns and loops. Likewise, music consists of sound waves of higher and lower pitches, with changing tempos and repeating motifs.

Protein-to-music algorithms can thus map the structural and physiochemical features of a string of amino acids onto the musical features of a string of notes.

Enhancing the musicality of protein mapping

Protein-to-music mapping can be fine-tuned by basing it on the features of a specific music style. This enhances musicality, or the melodiousness of the song, when converting amino acid properties, such as sequence patterns and variations, into analogous musical properties, like pitch, note lengths and chords.

For our study, we specifically selected 19th-century Romantic period classical piano music, which includes composers like Chopin and Schubert, as a guide because it typically spans a wide range of notes with more complex features such as chromaticism, like playing both white and black keys on a piano in order of pitch, and chords. Music from this period also tends to have lighter and more graceful and emotive melodies. Songs are usually homophonic, meaning they follow a central melody with accompaniment. These features allowed us to test out a greater range of notes in our protein-to-music mapping algorithm. In this case, we chose to analyze features of Chopin’s “Fantaisie-Impromptu” to guide our development of the program.

If you have the time, I recommend reading the essay in its entirety and listening to the embedded audio files.

The September 29, 2021 Cell Press news release on EurekAlert repeats some of the same material but is worth reading on its own merits,

In recent years, scientists have created music based on the structure of proteins as a creative way to better popularize science to the general public, but the resulting songs haven’t always been pleasant to the ear. In a study appearing September 29 [2021] in the journal Heliyon, researchers use the style of existing music genres to guide the structure of protein song to make it more musical. Using the style of Frédéric Chopin’s Fantaisie-Impromptu and other classical pieces as a guide, the researchers succeeded in converting proteins into song with greater musicality.

Creating unique melodies from proteins is achieved by using a protein-to-music algorithm. This algorithm incorporates specific elements of proteins—like the size and position of amino acids—and maps them to various musical elements to create an auditory “blueprint” of the proteins’ structure.

“Existing protein music has mostly been designed by simple mapping of certain amino acid patterns to fundamental musical features such as pitches and note lengths, but they do not map well to more complex musical features such as rhythm and harmony,” says senior author Yu Zong Chen, a professor in the Department of Pharmacy at National University of Singapore. “By focusing on a music style, we can guide more complex mappings of combinations of amino acid patterns with various musical features.”

For their experiment, researchers analyzed the pitch, length, octaves, chords, dynamics, and main theme of four pieces from the mid-1800s Romantic era of classical music. These pieces, including Fantasie-Impromptu from Chopin and Wanderer Fantasy from Franz Schubert, were selected to represent the notable Fantasy-Impromptu genre that emerged during that time.

“We chose the specific music style of a Fantasy-Impromptu as it is characterized by freedom of expression, which we felt would complement how proteins regulate much of our bodily functions, including our moods,” says co-author Peng Zhang (@zhangpeng1202), a post-doctoral fellow at the Rockefeller University

Likewise, several of the proteins in the study were chosen for their similarities to the key attributes of the Fantasy-Impromptu style. Most of the 18 proteins tested regulate functions including human emotion, cognition, sensation, or performance which the authors say connect to the emotional and expressive of the genre.

Then, they mapped 104 structural, physicochemical, and binding amino acid properties of those proteins to the six musical features. “We screened the quantitative profile of each amino acid property against the quantized values of the different musical features to find the optimal mapped pairings. For example, we mapped the size of amino acid to note length, so that having a larger amino acid size corresponds to a shorter note length,” says Chen.

Across all the proteins tested, the researchers found that the musicality of the proteins was significantly improved. In particular, the protein receptor for oxytocin (OXTR) was judged to have one of the greatest increases in musicality when using the genre-guided algorithm, compared to an earlier version of the protein-to-music algorithm.

“The oxytocin receptor protein generated our favorite song,” says Zhang. “This protein sequence produced an identifiable main theme that repeats in rhythm throughout the piece, as well as some interesting motifs and patterns that recur independent of our algorithm. There were also some pleasant harmonic progressions; for example, many of the seventh chords naturally resolve.”

The authors do note, however, that while the guided algorithm increased the overall musicality of the protein songs, there is still much progress to be made before it resembles true human music.

“We believe a next step is to explore more music styles and more complex combinations of amino acid properties for enhanced musicality and novel music pieces. Another next step, a very important step, is to apply artificial intelligence to jointly learn complex amino acid properties and their combinations with respect to the features of various music styles for creating protein music of enhanced musicality,” says Chen.

###

Research supported by the National Key R&D Program of China, the National Natural Science Foundation of China, and Singapore Academic Funds.

Here’s a link to and a citation for the paper,

Protein Music of Enhanced Musicality by Music Style Guided Exploration of Diverse Amino Acid Properties by Nicole WanNi Tay, Fanxi Liu, Chaoxin Wang, Hui Zhang, Peng Zhang, Yu Zong Chen. Heliyon, 2021 DOI: https:// doi.org/10.1016/j.heliyon.2021.e07933 Published; September 29, 2021

This paper appears to be open access.

Virgin birth in a Sardinian aquarium and whistled languages could help us understand dolphins

A virgin birth story seems particularly apt at this time of the year (as I was taught the story, Jesus was born of a virgin birth on Christmas Day). As for the whistled language story, that’s pure self-indulgence.

Virgin shark birth

From an August 26, 2021 article by Harry Baker for Live Science (Note: Links have been removed),

A shark’s rare “virgin birth” in an Italian aquarium may be the first of its kind, scientists say.

The female baby smoothhound shark (Mustelus mustelus) — known as Ispera, or “hope” in *Sardinian* — was recently born at the Cala Gonone Aquarium in Sardinia to a mother that has spent the past decade sharing a tank with one other female and no males, Newsweek reported.

This rare phenomenon, known as parthenogenesis, is the result of females’ ability to self-fertilize their own eggs in extreme scenarios. Parthenogenesis has been observed in more than 80 vertebrate species — including sharks, fish and reptiles — but this may be the first documented occurrence in a smoothhound shark, according to Newsweek.

“It has been documented in quite a few species of sharks and rays now,” Demian Chapman, director of the sharks and rays conservation program at Mote Marine Laboratory & Aquarium in Florida, told Live Science. “But it is difficult to detect in the wild, so we really only know about it from captive animals,” said Chapman, who has led several studies on shark parthenogenesis.

A September 2, 2021 article by Louisa Wright for DW.com provides additional details (Note: Links have been removed),

To procreate, most species require an egg to be fertilized by a sperm. That’s the case with sharks, too. But some animals can produce offspring all by themselves. This is called parthenogenesis.

The term comes from the Greek words parthenos, meaning “virgin,” and genesis, meaning “origin.”

The case in Italy could be the first time this “immaculate conception” has occurred in smooth-hound sharks, at least in captivity.

… scientists still don’t know how often it happens, says Kevin Feldheim, a researcher at the Field Museum in Chicago, who researches the mating habits of sharks.”We don’t know how common it is and the handful of cases we have seen have mostly taken place in an aquarium setting,” Feldheim told DW.

One study from the Field Museum discovered parthenogenesis in a wild population of smalltooth sawfish, a type of ray. This was the first time a vertebrate (animals with backbones inside their body), which usually reproduces the conventional way with a mate, was found to reproduce asexually in the wild, Feldheim said.

Whistling could give insight into dolphin communication

A September 21, 2021 news item on phys.org announces research into how whistled languages might help us understand dolphins better,

Whistling while you work isn’t just a distraction for some people. More than 80 cultures employ a whistled form of their native language to communicate over long distances. A multidisciplinary team of scientists believe that some of these whistled languages can serve as a model for elucidating how information may be encoded in dolphin whistle communication. They made their case in a new paper published in the journal Frontiers in Psychology.

A September 21, 2021 Frontiers [open access publishers] news release on EurekAlert explains how whistled languages might provide a key to understanding dolphin communication,

Whistled human speech mostly evolved in places where people live in rugged terrain, such as mountains or dense forest, because the sounds carry much farther than ordinary speech or even shouting. While these whistled languages vary by region and culture, the basic principle is the same: People simplify words, syllable by syllable, into whistled melodies.

Trained whistlers can understand an amazing amount of information. In whistled Turkish, for example, common whistled sentences are understood up to 90 percent of the time. This ability to extract meaning from whistled speech has attracted linguists and other researchers interested in investigating the intricacies of how the human brain processes and even creates language.

The idea that human whistled speech could also be a model for how mammals like bottlenose dolphins communicate first emerged in the 1960s with work by René-Guy Busnel, a French researcher who pioneered the study of whistled languages. More recently, some of Busnel’s former colleagues have teamed up to explore the potential synergy between bottlenose dolphins and humans, which have largest brain relative to body size on the planet.

While humans and dolphins produce sounds and convey information differently, the structure and attributes found across human whistle languages may provide insights as to how bottlenose dolphins encode complex information, according to coauthor Dr Diana Reiss, a professor of psychology at Hunter College in the United States whose research focuses on understanding cognition and communication in dolphins and other cetaceans.

Lead author Dr Julien Meyer, a linguist in the Gipsa Lab at the French national research center (CNRS), offered this example: The ability of a listener to decode human language or whistled speech relies on the listener’s language competency, such as understanding phonemes, a unit of sound that can distinguish one word from another. However, images of sounds called sonograms are not always segmented by silences between these units in human whistled speech.

“By contrast, scientists trying to decode the whistled communication of dolphins and other whistling species often categorize whistles based on the silent intervals between whistles,” Reiss noted. In other words, researchers may need to rethink how they categorize whistled animal communication based on what the sonograms reveal about how information is conveyed structurally in human whistled speech.

Meyer, Reiss and coauthor Dr Marcelo Magnasco, a biophysicist and professor at Rockefeller University, plan to apply this and other insights discussed in their paper to develop new techniques to analyze dolphin whistles. They will leverage dolphin whistle data compiled by Reiss and Magnasco with a database on whistled speech that Meyer has been collecting since 2003 with the CNRS, the Collegium of Lyon, the Museu Paraense Emílio Goeldi in Brazil and several nonprofit research associations focused on whistled and instrumental speech (The World Whistles, Yo Silbo, Silbo herreño). 

“On these data, for example, we will develop new algorithms and test some hypotheses about combinatorial structure,” Meyer said, referring to the building blocks of language like phonemes that can be combined to impart meaning. 

Magnasco noted that scientists already use machine learning and AI to help track dolphins in videos and even to identify dolphin calls. However, Reiss said, to have an AI algorithm capable of “deciphering” dolphin whistle communication, “we would need to know what the minimum unit of meaningful sound is, how they are organized, and how they function.”

Here’s a link to and a citation for the paper,

The Relevance of Human Whistled Languages for the Analysis and Decoding of Dolphin Communication by Julien Meyer, Marcelo O. Magnasco, and Diana Reiss. Front. Psychol., 21 September 2021 DOI: https://doi.org/10.3389/fpsyg.2021.689501

This paper is open access.

*December 30, 2021: “The female baby smoothhound shark (Mustelus mustelus) — known as Ispera, or “hope” in Maltese …” was corrected to “hope” in Sardinian … .” When you think about it, it makes a lot more sense than naming a special baby shark in a language not native to where it was born. Thank you to Carla and her partner who is from Sardinia!*

Bruno Latour, science, and the 2021 Kyoto Prize in Arts and Philosophy: Commemorative Lecture

The Kyoto Prize (Wikipedia entry) was first given out in 1985. These days (I checked out a currency converter today, November 15, 2021), the Inamori Foundation, which administers the prize, gives out $100M yen per prize, worth about $1,098,000 CAD or $876,800 USD.

Here’s more about the prize from the November 9, 2021 Inamori Foundation press release on EurekAlert,

The Kyoto Prize is an international award of Japanese origin, presented to individuals who have made significant contributions to the progress of science, the advancement of civilization, and the enrichment and elevation of the human spirit. The Prize is granted in the three categories of Advanced Technology, Basic Sciences; Arts and Philosophy, each of which comprises four fields, making a total of 12 fields. Every year, one Prize is awarded in each of the three categories with prize money of 100 million yen per category.

One of the distinctive features of the Kyoto Prize is that it recognizes both “science” and “arts and philosophy” fields. This is because of its founder Kazuo Inamori’s conviction that the future of humanity can be assured only when there is a balance between scientific development and the enrichment of the human spirit.

The recipient for arts and philosophy, Bruno Latour has been mentioned here before (from a July 15, 2020 posting titled, ‘Architecture, the practice of science, and meaning’),

The 1979 book, Laboratory Life: the Social Construction of Scientific Facts by Bruno Latour and Steve Woolgar immediately came to mind on reading about a new book (The New Architecture of Science: Learning from Graphene) linking architecture to the practice of science (research on graphene). It turns out that one of the authors studied with Latour. (For more about Laboratory Life see: Bruno Latour’s Wikipedia entry; scroll down to Main Works)

Back to Latour and his prize from the November 9, 2021 Inamori Foundation press release,

Bruno Latour, Professor Emeritus at Paris Institute of Political Studies (Sciences Po), received the 2021 Kyoto Prize in Arts and Philosophy for his radically re-examining “modernity” by developing a philosophy that focuses on interactions between technoscience and social structure. Latour’s Commemorative Lecture “How to React to a Change in Cosmology” will be released on November 10, 2021, 10:00 AM JST at the 2021 Kyoto Prize Special Website.

“Viruses–we don’t even know if viruses are our enemies or our friends!” says Latour in his lecture. By using the ongoing Covid epidemic as a sort of lead, Latour discusses the shift in cosmology, a structure that distributes agencies around. He then suggests a “new project” we have to work on now, which he assumes is very different from the modernist project.

Bruno Latour has revolutionized the conventional view of science by treating nature, humans, laboratory equipment, and other entities as equal actors, and describing technoscience as the hybrid network of these actors. His philosophy re-examines “modernity” based on the dualism of nature and society. He has a large influence across disciplines, with his multifaceted activities that include proposals regarding global environmental issues.

Latour and the other two 2021 Kyoto Prize laureates are introduced on the 2021 Kyoto Prize Special Website with information about their work, profiles, and three-minute introduction videos. The Kyoto Prize in Advanced Technology for this year went to Andrew Chi-Chih Yao, Professor of Institute for Interdisciplinary Information Sciences at Tsinghua University, and Basic Sciences to Robert G. Roeder, Arnold and Mabel Beckman Professor of Biochemistry and Molecular Biology at The Rockefeller University. 

The folks at the Kyoto Prize have made a three-minute video introduction to Bruno Latour available,

For more information you can check out the Inamori Foundation website. There are two Kyoto Prize websites, the 2021 Kyoto Prize Special Website and the Kyoto Prize website. These are all English language websites and, if you have the language skills and the interest, it is possible to toggle (upper right hand side) and get the Japanese language version.

Finally, there’s a dedicated Bruno Latour webpage on the 2021 Kyoto Prize Special Website and Bruno Latour has his own website where French and English are items are mixed together but it seems the majority of the content is in English.

Worried your ‘priceless’ art could be ruined? Genomics could be the answer

First, there was the story about art masterpieces turning into soap (my June 22, 2017 posting) and now, it seems that microbes may also constitute a problem. Before getting to the latest research, here’s are some images the researchers are using to illustrate their work,

Caption: Leonardo da Vinci noted that the fore and hind wings of a dragonfly are out of phase — verified centuries later by slow motion photography. Thaler suggests further study to compare individuals and species with high “flicker fusion frequency” ability. Credit: PXFuel

I’m not sure what that has to do with anything but I do love dragonflies. This next image seems more relevant to the research,

Caption: Photo summary of the various artworks sampled for the study “”Characterizing microbial signatures on sculptures and paintings of similar provenance.” Circles indicate swabbed areas on each sample artwork Credit: JCVI

It turns out, the researchers are releasing two pieces of research in the same press release, neither having much to do with the other. They (art conservation rresearch, first and, then, research into vision [hence the dragonfly] and da Vinci’s eyes) are both described in a June 18, 2020 J. Craig Venter Institute (JCVI)-Leonardo Da Vinci DNA Project press release (also on EurekAlert),

A new study of the microbial settlers on old paintings, sculptures, and other forms of art charts a potential path for preserving, restoring, and confirming the geographic origin of some of humanity’s greatest treasures.

Genetics scientists with the J. Craig Venter Institute (JCVI), collaborating with the Leonardo da Vinci DNA Project and supported by the Richard Lounsbery Foundation, say identifying and managing communities of microbes on art may offer museums and collectors a new way to stem the deterioration of priceless possessions, and to unmask counterfeits in the $60 billion a year art market.

Manolito G. Torralba, Claire Kuelbs, Kelvin Jens Moncera, and Karen E. Nelson of the JCVI, La Jolla, California, and Rhonda Roby of the Alameda California County Sheriff’s Office Crime Laboratory, used small, dry polyester swabs to gently collect microbes from centuries-old, Renaissance-style art in a private collector’s home in Florence, Italy. Their findings are published in the journal Microbial Ecology .

The genetic detectives caution that additional time and research are needed to formally convict microbes as a culprit in artwork decay but consider their most interesting find to be “oxidase positive” microbes primarily on painted wood and canvas surfaces.

These species can dine on organic and inorganic compounds often found in paints, in glue, and in the cellulose in paper, canvas, and wood. Using oxygen for energy production, they can produce water or hydrogen peroxide, a chemical used in disinfectants and bleaches.

“Such byproducts are likely to influence the presence of mold and the overall rate of deterioration,” the paper says.

“Though prior studies have attempted to characterize the microbial composition associated with artwork decay, our results summarize the first large scale genomics-based study to understand the microbial communities associated with aging artwork.”

The study builds on an earlier one in which the authors compared hairs collected from people in the Washington D.C., and San Diego, CA. areas, finding that microbial signatures and patterns are geographically distinguishable.

In the art world context, studying microbes clinging to the surface of a work of art may help confirm its geographic origin and authenticity or identify counterfeits.

Lead author Manolito G. Torralba notes that, as art’s value continues to climb, preservation is increasingly important to museums and collectors alike, and typically involves mostly the monitoring and adjusting of lighting, heat, and moisture.

Adding genomics science to these efforts offers advantages of “immense potential.”

The study says microbial populations “were easily discernible between the different types of substrates sampled,” with those on stone and marble art more diverse than wood and canvas. This is “likely due to the porous nature of stone and marble harboring additional organisms and potentially moisture and nutrients, along with the likelihood of biofilm formation.”

As well, microbial diversity on paintings is likely lower because few organisms can metabolize the meagre nutrients offered by oil-based paint.

“Though our sample size is low, the novelty of our study has provided the art and scientific communities with evidence that microbial signatures are capable of differentiating artwork according to their substrate,” the paper says.

“Future studies would benefit from working with samples whose authorship, ownership, and care are well-documented, although documentation about care of works of art (e.g., whether and how they were cleaned) seems rare before the mid-twentieth century.”

“Of particular interest would be the presence and activity of oil-degrading enzymes. Such approaches will lead to fully understanding which organism(s) are responsible for the rapid decay of artwork while potentially using this information to target these organisms to prevent degradation.”

“Focusing on reducing the abundance of such destructive organisms has great potential in preserving and restoring important pieces of human history.”

Biology in Art

The paper was supported by the US-based Richard Lounsbery Foundation as part of its “biology in art” research theme, which has also included seed funding efforts to obtain and sequence the genome of Leonardo da Vinci.

The Leonardo da Vinci DNA Project involves scientists in France (where Leonardo lived during his final years and was buried), Italy (where his father and other relatives were buried, and descendants of his half-brothers still live), Spain (whose National Library holds 700 pages of his notebooks), and the US (where forensic DNA skills flourish).

The Leonardo project has convened molecular biologists, population geneticists, microbiologists, forensic experts, and physicians working together with other natural scientists and with genealogists, historians, artists, and curators to discover and decode previously inaccessible knowledge and to preserve cultural heritage.  

Related news release: Leonardo da Vinci’s DNA: Experts unite to shine modern light on a Renaissance master http://bit.ly/2FG4jJu

Measuring Leonardo da Vinci’s “quick eye” 500 years later.

Could he have played major-league baseball?

Famous art historians and biographers such as Sir Kenneth Clark and Walter Isaacson have written about Leonardo da Vinci’s “quick eye” because of the way he accurately captured fleeting expressions, wings during bird flight, and patterns in swirling water. But until now no one had tried to put a number on this aspect of Leonardo’s extraordinary visual acuity.

David S. Thaler of the University of Basel, and a guest investigator in the Program for the Human Environment at The Rockefeller University, does, allowing comparison of Leonardo with modern measures. Leonardo fares quite well.

Thaler’s estimate hinges on Leonardo’s observation that the fore and hind wings of a dragonfly are out of phase — not verified until centuries later by slow motion photography (see e.g. https://youtu.be/Lw2dfjYENNE?t=44).

To quote Isaacson’s translation of Leonardo’s notebook: “The dragonfly flies with four wings, and when those in front are raised those behind are lowered.”

Thaler challenged himself and friends to try seeing if that’s true, but they all saw only blurs.

High-speed camera studies by others show the fore and hind wingbeats of dragonflies vary by 20 to 10 milliseconds — one fiftieth to one hundredth of a second — beyond average human perception.

Thaler notes that “flicker fusion frequency” (FFF) — akin to a motion picture’s frames per second — is used to quantify and measure “temporal acuity” in human vision.

When frames per second exceed the number of frames the viewer can perceive individually, the brain constructs the illusion of continuous movement. The average person’s FFF is between 20 to 40 frames per second; current motion pictures present 48 or 72 frames per second.

To accurately see the angle between dragonfly wings would require temporal acuity in the range of 50 to 100 frames per second.

Thaler believes genetics will account for variations in FFF among different species, which range from a low of 12 in some nocturnal insects to over 300 in Fire Beetles. We simply do not know what accounts for human variation. Training and genetics may both play important roles.

“Perhaps the clearest contemporary case for a fast flicker fusion frequency in humans is in American baseball, because it is said that elite batters can see the seams on a pitched baseball,” even when rotating 30 to 50 times per second with two or four seams facing the batter. A batter would need Leonardo-esque FFF to spot the seams on most inbound baseballs.  

Thaler suggests further study to compare the genome of individuals and species with unusually high FFF, including, if possible, Leonardo’s DNA.  

Flicker fusion for focus, attention, and affection   

In a companion paper, Thaler describes how Leonardo used psychophysics that would only be understood centuries later — and about which a lot remains to be learned today — to communicate deep beauty and emotion. 

Leonardo was master of a technique known as sfumato (the word derived from the Italian sfumare, “to tone down” or “to evaporate like smoke”), which describes a subtle blur of edges and blending of colors without sharp focus or distinct lines.

Leonardo expert Martin Kemp has noted that Leonardo’s sfumato sometimes involves a distance dependence which is akin to the focal plane of a camera. Yet, at other times, features at the same distance have selective sfumato so simple plane of focus is not the whole answer.

Thaler suggests that Leonardo achieved selective soft focus in portraits by painting in overcast or evening light, where the eyes’ pupils enlarge to let in more light but have a narrow plane of sharp focus. 

To quote Leonardo’s notebook, under the heading “Selecting the light which gives most grace to faces”: “In the evening and when the weather is dull, what softness and delicacy you may perceive in the faces of men and women.”  In dim light pupils enlarge to let in more light but their depth of field decreases.  

By measuring the size of the portrait’s pupils, Thaler inferred Leonardo’s depth of focus. He says Leonardo likely sensed this effect, perhaps unconsciously in the realm of his artistic sensibility. The pupil / aperture effect on depth of focus wasn’t explained until the mid-1800s, centuries after Leonardo’s birth in Vinci, Italy in 1452.

What about selective focus at equal distance? In this case Leonardo may have taken advantage of the fovea, the small area on the back of the eye where detail is sharpest.

Most of us move our eyes around and because of our slower flicker fusion frequency we construct a single 3D image of the world by jamming together many partially in-focus images. Leonardo realized and “froze” separate snapshots with which we construct ordinary perception.

Says Thaler: “We study Leonardo not only to learn about him but to learn about ourselves and further human potential.”

Thaler’s papers (at https://bit.ly/2WZ2cwo and https://bit.ly/2ZBj7Hi) evolved from talks at meetings of the Leonardo da Vinci DNA Project in Italy (2018), Spain and France (2019).

They form part of a collection of papers presented at a recent colloquium in Amboise, France, now being readied for publication in a book: Actes du Colloque International d’Amboise: Leonardo de Vinci, Anatomiste. Pionnier de l’Anatomie comparée, de la Biomécanique, de la Bionique et de la Physiognomonie. Edited by Henry de Lumley, President, Institute of Human Paleontology, Paris, and originally planned for release in late spring, 2020, publication was delayed by the global virus pandemic but should be available at CNRS Editions in the second half of the summer.

Other papers in the collection cover a range of topics, including how Leonardo used his knowledge of anatomy, gained by performing autopsies on dozens of cadavers, to achieve Mona Lisa’s enigmatic smile.

Leonardo also used it to exact revenge on academics and scientists who ridiculed him for lacking a classical education, sketching them with absurdly deformed faces to resemble birds, dogs, or goats. 

De Lumley earlier co-authored a 72-page monograph for the Leonardo DNA Project: “Leonardo da Vinci: Pioneer of comparative anatomy, biomechanics and physiognomy.”.

Here’s a link to and a citation for the paper featuring microbes and art masterpiece,

Characterizing Microbial Signatures on Sculptures and Paintings of Similar Provenance by Manolito G. Torralba, Claire Kuelbs, Kelvin Jens Moncera, Rhonda Roby & Karen E. Nelson. Microbial Ecology (2020) DOI: https://doi.org/10.1007/s00248-020-01504-x Published: 21 May 2020

This paper is open access.

The Leonardo Project and the master’s DNA (deoxyribonucleic acid)

I’ve never really understood the mania for digging up bodies of famous people in history and trying to ascertain how the person really died or what kind of diseases they may have had but the practice fascinates me. The latest famous person to be subjected to a forensic inquiry centuries after death is Leonardo da Vinci. A May 5, 2016 Human Evolution (journal) news release on EurekAlert provides details,

A team of eminent specialists from a variety of academic disciplines has coalesced around a goal of creating new insight into the life and genius of Leonardo da Vinci by means of authoritative new research and modern detective technologies, including DNA science.

The Leonardo Project is in pursuit of several possible physical connections to Leonardo, beaming radar, for example, at an ancient Italian church floor to help corroborate extensive research to pinpoint the likely location of the tomb of his father and other relatives. A collaborating scholar also recently announced the successful tracing of several likely DNA relatives of Leonardo living today in Italy (see endnotes).

If granted the necessary approvals, the Project will compare DNA from Leonardo’s relatives past and present with physical remnants — hair, bones, fingerprints and skin cells — associated with the Renaissance figure whose life marked the rebirth of Western civilization.

The Project’s objectives, motives, methods, and work to date are detailed in a special issue of the journal Human Evolution, published coincident with a meeting of the group hosted in Florence this week under the patronage of Eugenio Giani, President of the Tuscan Regional Council (Consiglio Regionale della Toscana).

The news release goes on to provide some context for the work,

Born in Vinci, Italy, Leonardo died in 1519, age 67, and was buried in Amboise, southwest of Paris. His creative imagination foresaw and described innovations hundreds of years before their invention, such as the helicopter and armored tank. His artistic legacy includes the iconic Mona Lisa and The Last Supper.

The idea behind the Project, founded in 2014, has inspired and united anthropologists, art historians, genealogists, microbiologists, and other experts from leading universities and institutes in France, Italy, Spain, Canada and the USA, including specialists from the J. Craig Venter Institute of California, which pioneered the sequencing of the human genome.

The work underway resembles in complexity recent projects such as the successful search for the tomb of historic author Miguel de Cervantes and, in March 2015, the identification of England’s King Richard III from remains exhumed from beneath a UK parking lot, fittingly re-interred 500 years after his death.

Like Richard, Leonardo was born in 1452, and was buried in a setting that underwent changes in subsequent years such that the exact location of the grave was lost.

If DNA and other analyses yield a definitive identification, conventional and computerized techniques might reconstruct the face of Leonardo from models of the skull.”

In addition to Leonardo’s physical appearance, information potentially revealed from the work includes his ancestry and additional insight into his diet, state of health, personal habits, and places of residence.

According to the news release, the researchers have an agenda that goes beyond facial reconstruction and clues about  ancestry and diet,

Beyond those questions, and the verification of Leonardo’s “presumed remains” in the chapel of Saint-Hubert at the Château d’Amboise, the Project aims to develop a genetic profile extensive enough to understand better his abilities and visual acuity, which could provide insights into other individuals with remarkable qualities.

It may also make a lasting contribution to the art world, within which forgery is a multi-billion dollar industry, by advancing a technique for extracting and sequencing DNA from other centuries-old works of art, and associated methods of attribution.

Says Jesse Ausubel, Vice Chairman of the Richard Lounsbery Foundation, sponsor of the Project’s meetings in 2015 and 2016: “I think everyone in the group believes that Leonardo, who devoted himself to advancing art and science, who delighted in puzzles, and whose diverse talents and insights continue to enrich society five centuries after his passing, would welcome the initiative of this team — indeed would likely wish to lead it were he alive today.”

The researchers aim to have the work complete by 2019,

In the journal, group members underline the highly conservative, precautionary approach required at every phase of the Project, which they aim to conclude in 2019 to mark the 500th anniversary of Leonardo’s death.

For example, one objective is to verify whether fingerprints on Leonardo’s paintings, drawings, and notebooks can yield DNA consistent with that extracted from identified remains.

Early last year, Project collaborators from the International Institute for Humankind Studies in Florence opened discussions with the laboratory in that city where Leonardo’s Adoration of the Magi has been undergoing restoration for nearly two years, to explore the possibility of analyzing dust from the painting for possible DNA traces. A crucial question is whether traces of DNA remain or whether restoration measures and the passage of time have obliterated all evidence of Leonardo’s touch.

In preparation for such analysis, a team from the J. Craig Venter Institute and the University of Florence is examining privately owned paintings believed to be of comparable age to develop and calibrate techniques for DNA extraction and analysis. At this year’s meeting in Florence, the researchers also described a pioneering effort to analyze the microbiome of a painting thought to be about five centuries old.

If human DNA can one day be obtained from Leonardo’s work and sequenced, the genetic material could then be compared with genetic information from skeletal or other remains that may be exhumed in the future.

Here’s a list of the participating organizations (from the news release),

  • The Institut de Paléontologie Humaine, Paris
  • The International Institute for Humankind Studies, Florence
  • The Laboratory of Molecular Anthropology and Paleogenetics, Biology Department, University of Florence
  • Museo Ideale Leonardo da Vinci, in Vinci, Italy
  • J. Craig Venter Institute, La Jolla, California
  • Laboratory of Genetic Identification, University of Granada, Spain
  • The Rockefeller University, New York City

You can find the special issue of Human Evolution (HE Vol. 31, 2016 no. 3) here. The introductory essay is open access but the other articles are behind a paywall.

Nanoparticle-based radiogenetics to control brain cells

While the title for this post sounds like an opening for a zombie-themed story, this Oct. 8, 2014 news item on Nanowerk actually concerns brain research at Rockefeller University (US), Note: A link has been removed,

A proposal to develop a new way to remotely control brain cells from Sarah Stanley, a Research Associate in Rockefeller University’s Laboratory of Molecular Genetics, headed by Jeffrey M. Friedman, is among the first to receive funding from the BRAIN initiative. The project will make use of a technique called radiogenetics that combines the use of radio waves or magnetic fields with nanoparticles to turn neurons on or off.

An Oct. 7, 2014 Rockefeller University news release, which originated the news item, further describes the BRAIN initiative and the research (Note: Links have been removed),

The NIH [National Institutes of Health]  is one of four federal agencies involved in the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative. Following in the ambitious footsteps of the Human Genome Project, the BRAIN initiative seeks to create a dynamic map of the brain in action, a goal that requires the development of new technologies. The BRAIN initiative working group, which outlined the broad scope of the ambitious project, was co-chaired by Rockefeller’s Cori Bargmann, head of the Laboratory of Neural Circuits and Behavior.

Stanley’s grant, for $1.26 million over three years, is one of 58 projects to get BRAIN grants, the NIH announced. The NIH’s plan for its part of this national project, which has been pitched as “America’s next moonshot,” calls for $4.5 billion in federal funds over 12 years.

The technology Stanley is developing would enable researchers to manipulate the activity of neurons, as well as other cell types, in freely moving animals in order to better understand what these cells do. Other techniques for controlling selected groups of neurons exist, but her new nanoparticle-based technique has a unique combination of features that may enable new types of experimentation. For instance, it would allow researchers to rapidly activate or silence neurons within a small area of the brain or dispersed across a larger region, including those in difficult-to-access locations. Stanley also plans to explore the potential this method has for use treating patients.

“Francis Collins, director of the NIH, has discussed the need for studying the circuitry of the brain, which is formed by interconnected neurons. Our remote-control technology may provide a tool with which researchers can ask new questions about the roles of complex circuits in regulating behavior,” Stanley says.

Here’s an image that Rockefeller University has used to illustrate the concept of radio-controlled brain cells,

 

BRAIN control: The new technology uses radio waves to activate or silence cells remotely. The bright spots above represent cells with increased calcium after treatment with radio waves, a change that would allow neurons to fire. [downloaded from: http://newswire.rockefeller.edu/2014/10/07/rockefeller-neurobiology-lab-is-awarded-first-round-brain-initiative-grant/]

BRAIN control: The new technology uses radio waves to activate or silence cells remotely. The bright spots above represent cells with increased calcium after treatment with radio waves, a change that would allow neurons to fire. [downloaded from: http://newswire.rockefeller.edu/2014/10/07/rockefeller-neurobiology-lab-is-awarded-first-round-brain-initiative-grant/]

You can find out more about the US BRAIN initiative here.

Baba Brinkman’s ‘off the top’ neuroscience improv and other raps

Provided you live in New York City or are visiting at the right time, there’s a free Baba Brinkman and others performance (from the Off The Top: The Neuroscience of Improv Eventbrite registration page),

Off The Top: The Neuroscience of Improv
The Rockefeller University Science Outreach Program
Wednesday, July 23, 2014 from 7:00 PM to 9:00 PM (EDT)
New York, NY [emphasis mine]

Here’s a description of the performance and performers (Note: Berlin and Brinkman are a married to each other),

Neuroscientist Dr. Heather Berlin teams up with science rapper and freestyle fanatic Baba Brinkman to explore the brain basis of spontaneous creativity. Brought to you by the prefrontal cortex, and featuring special guest performers, this is a celebration of the science and stagecraft behind life’s unforgettable moments of unscripted gold.

Held in The Rockefeller University’s iconic Caspary Auditorium, this event will expertly mash up pop culture, hip hop, and neuroscience. Guests will experience an accessible conversation while being entertained by some of NYC’s own hip hop performers.

About the Performers:

Heather Berlin, PhD is an American neuroscientist focusing on brain-behavior relationships affecting the prevention and treatment of psychiatric disorders. She is also interested in the neural basis of consciousness and dynamic unconscious processes.

Baba Brinkman is a Canadian rapper, poet and playwright best known for recordings and performances that combine hip hop music with literature, theatre, and science.

More special guests to be named!

For anyone unfamiliar with Rockefeller University (this list includes me) there’s this from their About The Rockefeller University webpage (Note: A link has been removed),

The Rockefeller University is a world-renowned center for research and graduate education in the biomedical sciences, chemistry, bioinformatics and physics. The university’s 75 laboratories conduct both clinical and basic research and study a diverse range of biological and biomedical problems with the mission of improving the understanding of life for the benefit of humanity.

Founded in 1901 by John D. Rockefeller, the Rockefeller Institute for Medical Research was the country’s first institution devoted exclusively to biomedical research. The Rockefeller University Hospital was founded in 1910 as the first hospital devoted exclusively to clinical research. In the 1950s, the institute expanded its mission to include graduate education and began training new generations of scientists to become research leaders around the world. In 1965, it was renamed The Rockefeller University.

The university does have a ‘science’ Outreach webpage which features a number of initiatives for summer 2014,

Getting back to Baba Brinkman, he’s quite busy preparing a new show and getting ready to present it and two others* at the 2014 Edinburgh Fringe Festival as per his July 11, 2014 announcement,

Theatre making is quite the trial-by-fire! I’ve spent the past ten 18-hour days writing and rehearsing and recording and rewriting the script for The Rap Guide to Religion, which is set to premiere at the Edinburgh Fringe Festival starting July 30th, and I need your help to spread the word! Below you will find links to the three different shows I’m performing in at the Fringe, and I encourage (aka beg) you to click on each one and hit the link to “like” them on facebook. Or, if you know anyone coming to the Fringe, please send them a recommendation.

The Rap Guide to Religion explores the evolutionary origins of religiosity.

The Canterbury Tales Remixed, adapts Chaucer’s Tales for the modern ear and era. 

Off The Top adventures in the neuroscience of creativity and improvisation.

Also, calling all New Yorkers! There will be two preview performances of Rap Guide to Religion next week, July 15/16 [2014], at the East to Edinburgh festival, details here. This will be the first-ever staging of a brand new production, which is still very much a work in progress, so come if you want to catch a glimpse of the process rather than the product.

So to sum this up, there’s one free neuroscience rap show at Rockfeller University and  previews (cheaper tickets) of the new ‘religious rap’.  Then, Brinkman will be taking three shows (Rap Guide to Religion, The Canterbury Tales Remixed, and Off The Top) to Scotland’s  Edinburgh Fringe Festival.

* ‘shows’ removed from sentence to ensure better grammar on July 14, 2014 at 12:25 pm PDT.