Category Archives: pop culture

Chen Qiufan, garbage, and Chinese science fiction stories

Garbage has been dominating Canadian news headlines for a few weeks now. First, it was Canadian garbage in the Philippines and now it’s Canadian garbage in Malaysia. Interestingly, we’re also having problems with China, since December 2018, when we detained a top executive from Huawe, a China-based international telecommunicatons company, in accordance with an official request from the US government and, in accordance, with what Prime Minister Justin Trudeau calls the ‘rule of law’. All of this provides an interesting backdrop (for Canadians anyway) on the topic of China, garbage, and science fiction.

A May 16, 2019 article by Anjie Zheng for Fast Company explores some of the latest and greatest from China’s science fiction writing community,

Like any good millennial, I think about my smartphone, to the extent that I do at all, in terms of what it does for me. It lets me message friends, buy stuff quickly, and amass likes. I hardly ever think about what it actually is—a mass of copper wires, aluminum alloys, and lithium battery encased in glass—or where it goes when I upgrade.

Chen Qiufan wants us to think about that. His debut novel, Waste Tide, is set in a lightly fictionalized version of Guiyu, the world’s largest electronic waste disposal. First published in Chinese in 2013, the book was recently released in the U.S. with a very readable translation into English by Ken Liu.

Chen, who has been called “China’s William Gibson,” is part of a younger generation of sci-fi writers who have achieved international acclaim in recent years. Liu Cixin became the first Chinese to win the prestigious Hugo Award for his Three Body Problem in 2015. The Wandering Earth, based on a short story by Liu, became China’s first science-fiction blockbuster when it was released in 2018. It was the highest-grossing film in the fastest-growing film market in the world last year and was recently scooped up by Netflix.

Aynne Kokas in a March 13, 2019 article for the Washington Post describes how the hit film, The Wandering Earth, fits into an overall Chinese-led movie industry focused on the future and Hollywood-like, i. e. like US movie industry, domination,

“The Wandering Earth,” directed by Frant Gwo, takes place in a future where the people of Earth must flee their sun as it swells into a red giant. Thousands of engines — the first of them constructed in Hangzhou, one of China’s tech hubs — propel the entire planet toward a new solar system, while everyone takes refuge from the cold in massive underground cities. On the surface, the only visible reminders of the past are markers of China’s might. The Shanghai Tower, the Oriental Pearl Tower and a stadium for the Shanghai 2044 Olympics all thrust out of the ice, having apparently survived the journey’s tsunamis, deep freeze and cliff-collapsing earthquakes.

The movie is China’s first big-budget sci-fi epic, and its production was ambitious, involving some 7,000 workers and 10,000 specially-built props. Audience excitement was correspondingly huge: Nearly half a million people wrote reviews of the film on Chinese social network site Douban. Having earned over $600 million in domestic sales, “The Wandering Earth” marks a major achievement for the country’s film industry.

It is also a major achievement for the Chinese government.

Since opening up the country’s film market in 2001, the Chinese government has aspired to learn from Hollywood how to make commercially appealing films, as I detail in my book “Hollywood Made in China.” From initial private offerings for state media companies, to foreign investment in films, studios and theme parks, the government allowed outside capital and expertise to grow the domestic commercial film industry — but not at the expense of government oversight. This policy’s underlying aim was to expand China’s cultural clout and political influence.

Until recently, Hollywood films dominated the country’s growing box office. That finally changed in 2015, with the release of major local blockbusters “Monster Hunt” and “Lost in Hong Kong.” The proliferation of homegrown hits signaled that the Chinese box office profits no longer depend on Hollywood studio films — sending an important message to foreign trade negotiators and studios.

Kokas provides some insight into how the Chinese movie industry is designed to further the Chinese government’s vision of the future. As a Canadian, I don’t see that much difference between the US and China industry’s vision. Both tout themselves as the answer to everything, both target various geographic regions for the ‘bad guys’, and both tout their national moral superiority in their films. I suppose the same can be said for most countries’ film industries but both China and the US can back themselves with economic might.

Zheng’s article delves deeper into garbage, and Chen Qiufan’s science fiction while illuminating the process of changing a ‘good guy’ into a ‘bad guy’,

Chen, 37, grew up a few miles from the real Guiyu. Mountains of scrap electronics are shipped there every year from around the world. Thousands of human workers sort through the junk for whatever can be reduced to reusable precious metals. They strip wires and disassemble circuit boards, soaking them in acid baths for bits of copper, tin, platinum, and gold. Whatever can’t be processed is burned. The water in Guiyu has been so contaminated it is undrinkable; the air is toxic. The workers, migrants from poor rural areas in China, have an abnormally high rate of respiratory diseases and cancer.

For the decades China was revving its economic engine, authorities were content to turn a blind eye to the human costs of the recycling business. It was an economic win-win. For developed countries like the U.S., it’s cheaper to ship waste to places like China than trying to recycle it themselves. And these shipments create jobs and profits for the Chinese.

In recent years, however, steps have been taken to protect workers and the environment in China. …

Waste Tide highlights the danger of “throw-away culture,” says Chen, also known in English as Stanley Chan. When our personal electronics stop serving us, whether because they break or our lust for the newest specs get the better of us, we toss them. Hopefully we’re conscientious enough to bring them to local recyclers that claim they’ll dispose of them properly. But that’s likely the end of our engagement with the trash. Out of sight, out of mind.

Fiction, and science fiction in particular, is an apt medium for Chen to probe the consequences of this arrangement. “It’s not journalism,” he says. Instead, the story is an imaginative, action-packed tale of power imbalances, and the individual characters that think they’re doing good. Waste Tide culminates, expectedly, in an insurgency of the workers against their exploitative overlords.

Guiyu has been fictionalized in Waste Tide as “Silicon Isle.” (A homophone of the Chinese character “gui” translates to “Silicon,” and “yu” is an island). The waste hell is ruled by three ruthless family clans, dominated by the Luo clan. They treat workers as slaves and derisively call them “waste people.”

Technology in the near-future has literally become extensions of selves and only exacerbates class inequality. Prosthetic inner ears improve balance; prosthetic limbs respond to mental directives; helmets heighten natural senses. The rich “switch body parts as easily as people used to switch phones.” Those with fewer means hack discarded prosthetics to get the same kick. When they’re no longer needed, synthetic body parts contaminated with blood and bodily fluids are added to the detritus.

At the center of the story is Mimi, a migrant worker who dreams of earning enough money to return home and live a quiet life. She strikes up a relationship with Kaizong, a Chinese-American college graduate trying to rediscover his roots. But the good times are short-lived. The boss of the Luo clan becomes convinced that Mimi holds the key to rousing his son from his coma and soon kidnaps the hapless girl.

For all the advanced science, there is a backwards superstition that animates Silicon Isle. [emphasis mine] The clan bosses subscribe to “a simple form of animism.” They pray to the wind and sea for ample supplies of waste. They sacrifice animals (and some humans) to bring them luck, and use local witches to exorcise evil spirits. Boss Luo has Mimi kidnapped and tortured in an effort to appease the gods in the hopes of waking up his comatose son. The torture of Mimi infects her with a mysterious disease that splits her consciousness. The waste people are enraged by her violation, which eventually sparks a war against the ruling clans. [emphasis mine]

A parallel narrative involves an American, Scott Brandle, who works for an environmental company. While in town trying to set up a recycling facility, he stumbles onto the truth about the virus that may have infected Mimi: a chemical weapon developed and used by the U.S. [emphasis mine] years earlier. Invented by a Japanese researcher [emphasis mine] working in the U.S., the drug is capable of causing mass hallucinations and terror. When Brandle learns that Mimi may have been infected with this virus, he wants a piece of her [emphasis mine] too, so that scientists back home can study its effects.

Despite portraying the future of China in a less-than-positive light, [emphasis mine] Waste Tide has not been banned–a common result for works that displease Beijing; instead, the book won China’s prestigious Nebula award for science fiction, and is about to be reprinted on the mainland. …

An interview with Chen (it’s worthwhile to read his take on what he’s doing) follows the plot description in this intriguing and what seems to be a sometimes disingenuous article.

The animism and the war against the ruling class? It reminds me a little of the tales told about old Chine and Mao’s campaign to overthrow the ruling classes who had kept control of the proletariat, in part, by encouraging ‘superstitious religious belief’.

As far as I’m concerned the interpretation can go either or both ways: a critique of the current government’s policies and where they might lead in the future and/or a reference back to the glorious rising of China’s communist government. Good fiction always contains ambiguity; it’s what fuels courses in literature.

Also, the bad guys are from the US and Japan, countries which have long been allied with each other and with which China has some serious conflicts.

Interesting, non? And, it’s not that different from what you’ll see in US (or any other country’s for that matter) science fiction wiring and movies, except that the heroes are Chinese.

Getting back to the garbage in the Philippines, there are 69 containers on their way back to Canada as of May 30, 2019. As for why all this furor about Canadian garbage in the Philippines and Malaysia, it’s hard to believe that Canada is the only sinner. Of course, we are in China’s bad books due to the Huawei executive’s detention here (she is living in her home in Vancouver and goes out and about as she wishes, albeit under surveillance).

Anyway, I can’t help but wonder if indirect pressure is being exerted by China or if the Philippines and Malaysia have been incentivized in some way by China. The timing has certainly been interesting.

Political speculation aside, it’s probably a good thing that countries are refusing to take our garbage. As I’m sure more than one environmentalist would be happy to point out, it’s about time we took care of our own mess.

Stephen Hawking comic updates ‘Stephen Hawking: Riddles of Time & Space’ and adds life story for a tribute issue

Artist: Robert Aragon. Courtesy: TidalWave Productions

It would seem I wasn’t having one of my brighter days today (Feb. 7, 2019) and it took me a while to to decode the messaging about this Stephen Hawking comic book. Briefly, they’ve (TidalWave Productions; Note: The company seems to have more than one name) repackaged an old title (Stephen Hawking: Riddles of Time & Space) and included new material in the form of his life story. After some searching, as best as I can tell, the ‘Tribute’ was originally released sometime in 2018 in a digital version. This latest push for publicity was likely occasioned by the release of a print version.

Here’s more from a February 7, 2019 TidalWave Entertainment/Bluewater Productions news release (received via email),

TidalWave Comics, applauded for illustrated biographies featuring the
famous and infamous who influence our politics, entertainment, and
social justice, is proud to present its newest comic book release this
week. Telling the life story of a world-renowned physicist, cosmologist,
and author Stephen Hawking, “Tribute: Stephen Hawking,” is written
by Michael Lent, Brian McCarthy and Michael Frizell with art by Zach
Bassett. The comic book features a cover by famed artist Robert Aragon.

“Tribute: Stephen Hawking” is out this week in print and digital.
With the passing of English cosmologist, theoretical physicist, and
author, the world has lost one of the greatest scientific minds of the
20th and 21st Centuries. Hawking united the general theory of relativity
with quantum mechanics but may be more known for his rare, early-onset
and slow-progressing battle with Lou Gehrig’s disease. Hawking believed
in the concept of an infinite multiverse. Perhaps he’s watching us
mourn his loss.

Stephen Hawking is one of the most brilliant minds of this century. The
comic explores his brilliance while revealing some surprises.

Hawking’s life has been the subject of several movies, including the
2014 hit, “The Theory of Everything” starring Eddy Redmayne, who
received an Oscar and a Golden Globe for his performance as the
scientist dealing with an early-onset slow-progressing form of Lou
Gehrig’s disease. The comic seeks to add to Hawking’s story.

“I learned a lot from reading the script and doing the research for the
issue.  The very concept of making an engaging comic book where the
protagonist is essentially immobile is a pretty tall order, but I think
the key to us keeping it exciting was being able to get inside his mind
(one of the greatest of our time) and show some of his most abstract
concepts in a visual and dynamic way,” said artist Bassett.

Darren G. Davis, publisher and creative force behind TidalWave, believes
as Bassett does that the visual storytelling model is a good way to tell
the stories of real people. “I was a reluctant reader when I was a
kid. The colorful pages and interesting narrative I found in comic books
drew me in and made me want to read.” In a market crowded with
superheroes, the publisher’s work is embraced by major media outlets,
libraries, and schools.

Michael Frizell, one of TidalWave’s writers and the author of the
Bettie Page comic, enjoys writing for TidalWave’s biography lines
Political Power, Orbit, Female Force, Tribute, and Fame because of the
publisher’s approach to the books. “Darren asks us to focus on the
positive and to dig deep to explore the things that make the subject
tick – the things that drive them,” Frizell said.

In print on Amazon and are available on your e-reader from iTunes,
Kindle, Nook, ComiXology, DriveThru Comics, Google Play, Overdrive,
IVerse, Biblioboard, Madefire, Axis360, Blio, Entitle, EPIC!,
Trajectory, SpinWhiz, Smash Words, Kobo and wherever eBooks are sold.

TidalWave’s recent partnership with Ingram allows them to produce
high-quality books on demand – a boon for the independent publisher. The
comic book will feature a heavy-stock cover and bright, clean colors in
the interior. Ingram works across the full publishing spectrum, aiding
some of the largest names in the business to local indie authors.

Comic book and book stores can order these titles in print at INGRAM.

TidalWave’s biography comic book series has been embraced by the media
and featured on television news outlets including The Today Show and on
CNN. The series has also been featured in many publications such as The
Los Angeles Times, MTV, Time Magazine, and People Magazine.


For more information about the company, visit www.tidalwavecomics.com
 
About TidalWave Comics
TidalWave delivers a multimedia experience unparalleled in the burgeoning graphic fiction and nonfiction marketplace. Dynamic storytelling coupled with groundbreaking art delivers an experience like no other. Stories are told through multiple platforms and genres, gracing the pages of graphic novels, novelizations, engaging audio dramas, cutting-edge film projects, and more. Diversity defines Storm’s offerings in the burgeoning pop culture marketplace, offering fresh voices and innovative storytellers.

As one of the top independent publishers of comic book and graphic novels, TidalWave unites cutting-edge art and engaging stories produced by the publishing industry’s most exciting artists and writers. Its extensive catalog of comic book titles includes the bestsellers “10th Muse” and “The Legend of Isis,” complemented by a line of young adult books and audiobooks. TidalWave’s publishing partnerships include legendary filmmaker Ray Harryhausen (“Wrath of the Titans,” “Sinbad: Rogue of Mars,” “Jason and the Argonauts,” and more), novelists S.E. Hinton (“The Puppy Sister”) and William F. Nolan (“Logan’s Run”), and celebrated actors Vincent Price (“Vincent Price Presents”), and Adam West of 1966’s “Batman” fame (“The Mis-Adventures of Adam West”). TidalWave also publishes a highly-successful line of biographical comics under the titles “Orbit,” “Fame,” “Beyond,” “Tribute,” “Female Force,” and “Political Power.”

Should you happen to operate a comic and/or book store, I have found the Ingram (Content Group) website. Happy ordering!

The Backstreet Boys sing genetics (not really) but their latest album is called “DNA”

Other that the promotional artwork, cover art and the title, the Backstreet Boys pop band does not seem to have taken science or DNA (deoxyribonucleic acid)/genetics to heart in their latest oeuvre. As for what chickens have to do with it, I I gather this is some sort of humorous nod to a past hit song. Still, I am weirdly fascinated by this January 25, 2019 video news item on Billboard,

Having looked at the list of songs on the DNA album (they’re listed in the Billboard news item where they’ve embedded audio samples), I can’t find anything that suggests an interest in genetics but perhaps you can: Don’t Go Breaking My Heart? Nobody Else? Breathe? New Love? Passionate? Is It Just Me? Chances? No Place? Chateau? The Way It Was? Just Like You Like it? OK? Anyone who can figure out how the songs relate to DNA, please let me know in the Comments.

Frankly, that’s as much analysis as I can offer on the topic. Thankfully, Karen James (an independent educator, researcher, and consultant in molecular biology) has written a February 5, 2019 article (I Want DNA That Way; The Backstreet Boys’ new album and tour features a very old-school depiction of DNA) for slate.com where she unpacks the imagery in the promotional material and on the cover (Note: Links have been removed),

The Backstreet Boys are back. Credit: Dennis Leupold [downloaded from https://slate.com/technology/2019/02/backstreet-boys-dna-album-cover-gene-sequencing.html]

The Backstreet Boys released a new album. I never thought I’d start a science article—or any article—with that sentence, but here we are.

We are here because the promotional artwork for the album (above) is a photograph of the boy band (man band?) lit by a projection of DNA bands. The image, and the album’s title, DNA, jumped out of my Twitter timeline because I’m a geneticist, I work with DNA, and I’ve seen countless images just like it in textbooks and research articles. I’ve even made them myself in the lab.

What struck me as funny (both funny-ha-ha and funny-odd) is that the lab methods that could have produced this image are old—older even than the Backstreet Boys’ first album. One of the methods—called Sanger sequencing—was published in 1977, making it even older than two of the Backstreet Boys themselves, scientist Kristy Lamb pointed out. Genetics is a particularly fast-moving science. New technologies are constantly emerging and eclipsing prior ones. Yet this 40-year-old imagery persists, and not just in the promotional artwork for DNA. Just do a Google image search for “DNA sequencing” and you’ll see plenty of images like this mixed in with the double helices and long GATTACA readouts.

After her description of Sanger sequencing James offers another ‘sequencing’ possibility, almost as old as the Sanger technique,

Careful readers might have noticed that I suggested there was more than one method that produces images like this. At first glance, I thought the projection in the Backstreet Boys’ publicity photo was modified from an image made with Sanger sequencing. But when I looked again in preparation for writing this article, I had second thoughts. Why aren’t the lanes clustered in groups of four? Why are some of the bands in adjacent lanes the same size? (They shouldn’t be if you’re doing Sanger sequencing.) It could be that the photo was heavily modified with individual lanes copied and pasted. Indeed, some of the lanes are even identical to each other (*suppresses fake ivory tower scoff*).

Or it could be that this image was made with another old method: DNA fingerprinting. Made famous in so many crime TV shows, DNA fingerprinting was invented in 1984 by Alec Jeffreys, who, though he did not win a Nobel Prize, was made a knight of the British Empire for his contribution to science, among many other prestigious awards, which is nice.

I suspect the Backstreet Boys weren’t going for a tongue-in-cheek reference to their own advancing age. While today’s DNA sequencing methods produce images that scarcely resemble those produced by Sanger sequencing and DNA fingerprinting, the old-school imagery is still everywhere. The Backstreet Boys’ promotional team probably just went with a stock image that looked compelling and worked well as a projection.

James returns to her theme, why use imagery associated with outdated techniques? (Note: Links have been removed),

But that doesn’t answer the real question: Why is 40-year-old imagery still so ubiquitous? As science writer and editor Stephanie Keep tweeted, one reason may be that, despite its age, the Sanger method is still taught in high school classrooms: “It’s so visual and intuitive.” It’s true. When I teach students about DNA sequencing, I always start with Sanger sequencing and use that as the basis for explaining newer technologies, adding more complexity as I go, following the historical timeline.

Another reason the old imagery is still in use may be that the images produced by newer, so-called next-generation sequencing methods aren’t visually scored by a scientist sitting at a lab bench, but by computers. As such, the images themselves often go unseen by human eyes [emphasis mine], despite their colorful beauty.

Interesting, eh? The latest imagery is not seen by human eyes. So the newest imagery is intended for machines. James presents an example of the ‘new’ imagery,

An image generated using a next-generation DNA sequencing method.. Credit: Illumina [downloaded from https://slate.com/technology/2019/02/backstreet-boys-dna-album-cover-gene-sequencing.html]

According to James, this image was not easily obtained according to one of her tweets. [https://twitter.com/kejames/status/1092888034322845696] So, big thanks to Illumina (there’s also a Wikipedia entry about the company). Getting back to James’ and her article, she asks why the band titled their latest album, DNA,

But why did the Backstreet Boys call their album DNA in the first place? The official RCA Records press release announcing the album says, “BSB analyzed their individual DNA profiles to see what crucial element each member represents in the groups DNA.” It links to a YouTube video that supposedly explains “how their individual strains, when brought together, create the unstoppable and legendary Backstreet Boys.”

The video is a futuristic, spy movie–esque montage, complete with a computerized female voice describing the various characteristics of each Backstreet Boy. Reader, I confess: I cringed. There were so many tropes and misconceptions about DNA packed into the 83-second video, I would have to write a follow-up to this just to explore them. The cringeworthiness doesn’t end there, though. The cover of DNA has each Backstreet Boy on his own spiral staircase.

The staircases are surely meant to evoke the structure of DNA: the famous double helix. But there’s a problem, as the social media account for the journal Genome Biology tweeted: The staircases are spiraling in the wrong direction. DNA is usually right-handed. If you stick out your right thumb, your fingers will naturally curl in a right-handed spiral as you move your hand in the direction your thumb is pointing. The Backstreet Boys’ staircases are left-handed.

Here’s the promotional trailer for DNA,

It’s everything James says it is. As for those wrongly spiraling DNA staircases,

RCA Records [downloaded from https://slate.com/technology/2019/02/backstreet-boys-dna-album-cover-gene-sequencing.html]

Thank you to Karen James for this illuminating article. If you have time, I encourage you to read her piece in its entirety:
I Want DNA That Way; The Backstreet Boys’ new album and tour features a very old-school depiction of DNA.

As for why the Backstreet Boys called their album DNA and you likely guessed. it would seem to be a promotional gimmick meant to leverage the perceived interest in commercial DNA testing by companies such as 23andMe and Ancestry, amongst others.

3-D underwater acoustic carpet cloak

Who can resist a ‘Black Panther’ reference (Wikipedia Black Panther film entry)? Certainly not me. Scientists from the Chinese Academy of Sciences made this June 4, 2018 announcement (also on EurekAlert),

Cloaking is one of the most eye-catching technologies in sci-fi movies. In two 2018 Marvel films, Black Panther and Avengers: Infinity War, Black Panther conceals his country Wakanda, a technologically advanced African nation, from the outside world using the metal vibranium.

However, in the real world, if you want to hide something, you need to deceive not only the eyes, but also the ears, especially in the underwater environment.

Recently, a research team led by Prof. YANG Jun from the Institute of Acoustics (IOA) of the Chinese Academy of Sciences designed and fabricated a 3D underwater acoustic carpet cloak (UACC) using transformation acoustics.

The research was published online in Applied Physics Letters on June 1 [2018].

Like a shield, the carpet cloak is a material shell that can reflect waves as if the waves were reflecting off a planar surface. Hence, the cloaked target becomes undetectable to underwater detection instruments like sonar.

Using transformation acoustics, the research team first finished the 2D underwater acoustic carpet cloak with metamaterial last year (Scientific Reports, April 6, 2017). However, this structure works only in two dimensions, and becomes immediately detectable when a third dimension is introduced.

To solve this problem, YANG Jun and his IOA team combined transformation acoustics with a reasonable scaling factor, worked out the parameters, and redesigned the unit cell of the 2D cloak. They designed the 3D underwater acoustic carpet cloak and then proposed a fabrication and assembly method to manufacture it. The 3D cloak can hide an object from top to bottom and deal with complex situations, such as acoustic detection in all directions.

The 3D underwater acoustic carpet cloak is a pyramid comprising eight triangular pyramids; each triangular pyramid is composed of 92 steel strips using a rectangle lattice, similar to a wafer biscuit. More vividly, if we remove the core from a big solid pyramid, we can hide something safely in the hollow space left.

“To make a 3D underwater acoustic carpet cloak, researchers needed to construct the structure with 2D period, survey the influence of the unit cell’s resonance, examine the camouflage effect at the ridge of the sample, and other problems. In addition, the fabrication and assembly of the 3D device required more elaborate design. The extension of the UACC from 2D to 3D represents important progress in applied physics,” said YANG.

In experimental tests, a short Gaussian pulse propagated towards the target covered with the carpet cloak, and the waves backscattered toward their origin. The cloaked object successfully mimicked the reflecting surface and was undetectable by sound detection. Meanwhile, the measured acoustic pressure fields from the vertical view demonstrated the effectiveness of the designed 3D structure in every direction.

“As the next step, we will try to make the 3D underwater acoustic carpet cloak smaller and lighter,” said YANG.

Funding for this research came from the National Natural Science Foundation of China (Grant No.11304351, 1177021304), the Youth Innovation Promotion Association of CAS (Grant No. 2017029), and the IACAS Young Elite Researcher Project (Grant No. QNYC201719).

Prof. YANG Jun and Dr. JIA Han led the research team from the Institute of Acoustics (IOA) of the Chinese Academy of Sciences. Prof. YANG Jun engages in research on sound, vibration and signal processing, and especially sound field control and array signal processing. They also work on other devices based on metamaterial in order to manipulate the propagation of sound waves.

A model of the device,

Caption: This is a model and photograph of the 3D underwater acoustic carpet cloak composed of over 700 steel strips. Credit: IOA

Here’s a link to and a citation for the paper,

Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak by Yafeng Bi, Han Jia, Zhaoyong Sun, Yuzhen Yang, Han Zhao, and Jun Yang.
Appl. Phys. Lett. 112, 223502 (2018); https://doi.org/10.1063/1.5026199 Published Online: June 2018

This paper is open access.

Xenotransplantation—organs for transplantation in human patients—it’s a business and a science

The last time (June 18, 2018 post) I mentioned xenotransplantation (transplanting organs from one species into another species; see more here), it was in the context of an art/sci (or sciart) event coming to Vancouver (Canada).,

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

(The show opens on Sept. 14, 2018.)

At the time, I had yet to stumble across Ingfei Chen’s thoughtful dive into the topic in her May 9, 2018 article for Slate.com,

In the United States, the clock is ticking for more than 114,700 adults and children waiting for a donated kidney or other lifesaving organ, and each day, nearly 20 of them die. Researchers are devising a new way to grow human organs inside other animals, but the method raises potentially thorny ethical issues. Other conceivable futuristic techniques sound like dystopian science fiction. As we envision an era of regenerative medicine decades from now, how far is society willing to go to solve the organ shortage crisis?

I found myself pondering this question after a discussion about the promises of stem cell technologies veered from the intriguing into the bizarre. I was interviewing bioengineer Zev Gartner, co-director and research coordinator of the Center for Cellular Construction at the University of California, San Francisco, about so-called organoids, tiny clumps of organlike tissue that can self-assemble from human stem cells in a Petri dish. These tissue bits are lending new insights into how our organs form and diseases take root. Some researchers even hope they can nurture organoids into full-size human kidneys, pancreases, and other organs for transplantation.

Certain organoid experiments have recently set off alarm bells, but when I asked Gartner about it, his radar for moral concerns was focused elsewhere. For him, the “really, really thought-provoking” scenarios involve other emerging stem cell–based techniques for engineering replacement organs for people, he told me. “Like blastocyst complementation,” he said.

Never heard of it? Neither had I. Turns out it’s a powerful new genetic engineering trick that researchers hope to use for growing human organs inside pigs or sheep—organs that could be genetically personalized for transplant patients, in theory avoiding immune-system rejection problems. The science still has many years to go, but if it pans out, it could be one solution to the organ shortage crisis. However, the prospect of creating hybrid animals with human parts and killing them to harvest organs has already raised a slew of ethical questions. In 2015, the National Institutes of Health placed a moratorium on federal funding of this nascent research area while it evaluated and discussed the issues.

As Gartner sees it, the debate over blastocyst complementation research—work that he finds promising—is just one of many conversations that society needs to have about the ethical and social costs and benefits of future technologies for making lifesaving transplant organs. “There’s all these weird ways that we could go about doing this,” he said, with a spectrum of imaginable approaches that includes organoids, interspecies organ farming, and building organs from scratch using 3D bioprinters. But even if it turns out we can produce human organs in these novel ways, the bigger issue, in each technological instance, may be whether we should.

Gartner crystallized things with a downright creepy example: “We know that the best bioreactor for tissues and organs for humans are human beings,” he said. Hypothetically, “the best way to get you a new heart would be to clone you, grow up a copy of yourself, and take the heart out.” [emphasis mine] Scientists could probably produce a cloned person with the technologies we already have, if money and ethics were of no concern. “But we don’t want to go there, right?” he added in the next breath. “The ethics involved in doing it are not compatible with who we want to be as a society.”

This sounds like Gartner may have been reading some science fiction, specifically, Lois McMaster Bujold and her Barrayar series where she often explored the ethics and possibilities of bioengineering. At this point, some of her work seems eerily prescient.

As for Chen’s article, I strongly encourage you to read it in its entirety if you have the time.

Medicine, healing, and big money

At about the same time, there was a May 31, 2018 news item on phys.org offering a perspective from some of the leaders in the science and the business (Note: Links have been removed),

Over the past few years, researchers led by George Church have made important strides toward engineering the genomes of pigs to make their cells compatible with the human body. So many think that it’s possible that, with the help of CRISPR technology, a healthy heart for a patient in desperate need might one day come from a pig.

“It’s relatively feasible to change one gene in a pig, but to change many dozens—which is quite clear is the minimum here—benefits from CRISPR,” an acronym for clustered regularly interspaced short palindromic repeats, said Church, the Robert Winthrop Professor of Genetics at Harvard Medical School (HMS) and a core faculty member of Harvard’s Wyss Institute for Biologically Inspired Engineering. Xenotransplantation is “one of few” big challenges (along with gene drives and de-extinction, he said) “that really requires the ‘oomph’ of CRISPR.”

To facilitate the development of safe and effective cells, tissues, and organs for future medical transplantation into human patients, Harvard’s Office of Technology Development has granted a technology license to the Cambridge biotech startup eGenesis.

Co-founded by Church and former HMS doctoral student Luhan Yang in 2015, eGenesis announced last year that it had raised $38 million to advance its research and development work. At least eight former members of the Church lab—interns, doctoral students, postdocs, and visiting researchers—have continued their scientific careers as employees there.

“The Church Lab is well known for its relentless pursuit of scientific achievements so ambitious they seem improbable—and, indeed, [for] its track record of success,” said Isaac Kohlberg, Harvard’s chief technology development officer and senior associate provost. “George deserves recognition too for his ability to inspire passion and cultivate a strong entrepreneurial drive among his talented research team.”

The license from Harvard OTD covers a powerful set of genome-engineering technologies developed at HMS and the Wyss Institute, including access to foundational intellectual property relating to the Church Lab’s 2012 breakthrough use of CRISPR, led by Yang and Prashant Mali, to edit the genome of human cells. Subsequent innovations that enabled efficient and accurate editing of numerous genes simultaneously are also included. The license is exclusive to eGenesis but limited to the field of xenotransplantation.

A May 30, 2018 Harvard University news release by Caroline Petty, which originated the news item, explores some of the issues associated with incubating humans organs in other species,

The prospect of using living, nonhuman organs, and concerns over the infectiousness of pathogens either present in the tissues or possibly formed in combination with human genetic material, have prompted the Food and Drug Administration to issue detailed guidance on xenotransplantation research and development since the mid-1990s. In pigs, a primary concern has been that porcine endogenous retroviruses (PERVs), strands of potentially pathogenic DNA in the animals’ genomes, might infect human patients and eventually cause disease. [emphases mine]

That’s where the Church lab’s CRISPR expertise has enabled significant advances. In 2015, the lab published important results in the journal Science, successfully demonstrating the use of genome engineering to eliminate all 62 PERVs in porcine cells. Science later called it “the most widespread CRISPR editing feat to date.”

In 2017, with collaborators at Harvard, other universities, and eGenesis, Church and Yang went further. Publishing again in Science, they first confirmed earlier researchers’ fears: Porcine cells can, in fact, transmit PERVs into human cells, and those human cells can pass them on to other, unexposed human cells. (It is still unknown under what circumstances those PERVs might cause disease.) In the same paper, they corrected the problem, announcing the embryogenesis and birth of 37 PERV-free pigs. [Note: My July 17, 2018 post features research which suggests CRISPR-Cas9 gene editing may cause greater genetic damage than had been thought.]

“Taken together, those innovations were stunning,” said Vivian Berlin, director of business development in OTD, who manages the commercialization strategy for much of Harvard’s intellectual property in the life sciences. “That was the foundation they needed, to convince both the scientific community and the investment community that xenotransplantation might become a reality.”

“After hundreds of tests, this was a critical milestone for eGenesis — and the entire field — and represented a key step toward safe organ transplantation from pigs,” said Julie Sunderland, interim CEO of eGenesis. “Building on this study, we hope to continue to advance the science and potential of making xenotransplantation a safe and routine medical procedure.”

Genetic engineering may undercut human diseases, but also could help restore extinct species, researcher says. [Shades of the Jurassic Park movies!]

It’s not, however, the end of the story: An immunological challenge remains, which eGenesis will need to address. The potential for a patient’s body to outright reject transplanted tissue has stymied many previous attempts at xenotransplantation. Church said numerous genetic changes must be achieved to make porcine organs fully compatible with human patients. Among these are edits to several immune functions, coagulation functions, complements, and sugars, as well as the PERVs.

“Trying the straight transplant failed almost immediately, within hours, because there’s a huge mismatch in the carbohydrates on the surface of the cells, in particular alpha-1-3-galactose, and so that was a showstopper,” Church explained. “When you delete that gene, which you can do with conventional methods, you still get pretty fast rejection, because there are a lot of other aspects that are incompatible. You have to take care of each of them, and not all of them are just about removing things — some of them you have to humanize. There’s a great deal of subtlety involved so that you get normal pig embryogenesis but not rejection.

“Putting it all together into one package is challenging,” he concluded.

In short, it’s the next big challenge for CRISPR.

Not unexpectedly, there is no mention of the CRISPR patent fight between Harvard/MIT’s (Massachusetts Institute of Technology) Broad Institute and the University of California at Berkeley (UC Berkeley). My March 15, 2017 posting featured an outcome where the Broad Institute won the first round of the fight. As I recall, it was a decision based on the principles associated with King Solomon, i.e., the US Patent Office, divided the baby and UCBerkeley got the less important part of the baby. As you might expect the decision has been appealed. In an April 30, 2018 piece, Scientific American reprinted an article about the latest round in the fight written by Sharon Begley for STAT (Note: Links have been removed),

All You Need to Know for Round 2 of the CRISPR Patent Fight

It’s baaaaack, that reputation-shredding, stock-moving fight to the death over key CRISPR patents. On Monday morning in Washington, D.C., the U.S. Court of Appeals for the Federal Circuit will hear oral arguments in University of California v. Broad Institute. Questions?

How did we get here? The patent office ruled in February 2017 that the Broad’s 2014 CRISPR patent on using CRISPR-Cas9 to edit genomes, based on discoveries by Feng Zhang, did not “interfere” with a patent application by UC based on the work of UC Berkeley’s Jennifer Doudna. In plain English, that meant the Broad’s patent, on using CRISPR-Cas9 to edit genomes in eukaryotic cells (all animals and plants, but not bacteria), was different from UC’s, which described Doudna’s experiments using CRISPR-Cas9 to edit DNA in a test tube—and it was therefore valid. The Patent Trial and Appeal Board concluded that when Zhang got CRISPR-Cas9 to work in human and mouse cells in 2012, it was not an obvious extension of Doudna’s earlier research, and that he had no “reasonable expectation of success.” UC appealed, and here we are.

For anyone who may not realize what the stakes are for these institutions, Linda Williams in a March 16, 1999 article for the LA Times had this to say about universities, patents, and money,

The University of Florida made about $2 million last year in royalties on a patent for Gatorade Thirst Quencher, a sports drink that generates some $500 million to $600 million a year in revenue for Quaker Oats Co.

The payments place the university among the top five in the nation in income from patent royalties.

Oh, but if some people on the Gainesville, Fla., campus could just turn back the clock. “If we had done Gatorade right, we would be getting $5 or $6 million (a year),” laments Donald Price, director of the university’s office of corporate programs. “It is a classic example of how not to handle a patent idea,” he added.

Gatorade was developed in 1965 when many universities were ill equipped to judge the commercial potential of ideas emerging from their research labs. Officials blew the university’s chance to control the Gatorade royalties when they declined to develop a professor’s idea.

The Gatorade story does not stop there and, even though it’s almost 20 years old, this article stands the test of time. I strongly encourage you to read it if the business end of patents and academia interest you or if you would like to develop more insight into the Broad Institute/UC Berkeley situation.

Getting back to the science, there is that pesky matter of diseases crossing over from one species to another. While, Harvard and eGenesis claim a victory in this area, it seems more work needs to be done.

Infections from pigs

An August 29, 2018 University of Alabama at Birmingham news release (also on EurekAlert) by Jeff Hansen, describes the latest chapter in the quest to provide more organs for transplantion,

A shortage of organs for transplantation — including kidneys and hearts — means that many patients die while still on waiting lists. So, research at the University of Alabama at Birmingham and other sites has turned to pig organs as an alternative. [emphasis mine]

Using gene-editing, researchers have modified such organs to prevent rejection, and research with primates shows the modified pig organs are well-tolerated.

An added step is needed to ensure the safety of these inter-species transplants — sensitive, quantitative assays for viruses and other infectious microorganisms in donor pigs that potentially could gain access to humans during transplantation.

The U.S. Food and Drug Administration requires such testing, prior to implantation, of tissues used for xenotransplantation from animals to humans. It is possible — though very unlikely — that an infectious agent in transplanted tissues could become an emerging infectious disease in humans.

In a paper published in Xenotransplantation, Mark Prichard, Ph.D., and colleagues at UAB have described the development and testing of 30 quantitative assays for pig infectious agents. These assays had sensitivities similar to clinical lab assays for viral loads in human patients. After validation, the UAB team also used the assays on nine sows and 22 piglets delivered from the sows through caesarian section.

“Going forward, ensuring the safety of these organs is of paramount importance,” Prichard said. “The use of highly sensitive techniques to detect potential pathogens will help to minimize adverse events in xenotransplantation.”

“The assays hold promise as part of the screening program to identify suitable donor animals, validate and release transplantable organs for research purposes, and monitor transplant recipients,” said Prichard, a professor in the UAB Department of Pediatrics and director of the Department of Pediatrics Molecular Diagnostics Laboratory.

The UAB researchers developed quantitative polymerase chain reaction, or qPCR, assays for 28 viruses sometimes found in pigs and two groups of mycoplasmas. They established reproducibility, sensitivity, specificity and lower limit of detection for each assay. All but three showed features of good quantitative assays, and the lower limit of detection values ranged between one and 16 copies of the viral or bacterial genetic material.

Also, the pig virus assays did not give false positives for some closely related human viruses.

As a start to understanding the infectious disease load in normal healthy animals and ensuring the safety of pig tissues used in xenotransplantation research, the researchers then screened blood, nasal swab and stool specimens from nine adult sows and 22 of their piglets delivered by caesarian section.

Mycoplasma species and two distinct herpesviruses were the most commonly detected microorganisms. Yet 14 piglets that were delivered from three sows infected with either or both herpesviruses were not infected with the herpesviruses, showing that transmission of these viruses from sow to the caesarian-delivery piglet was inefficient.

Prichard says the assays promise to enhance the safety of pig tissues for xenotransplantation, and they will also aid evaluation of human specimens after xenotransplantation.

The UAB researchers say they subsequently have evaluated more than 300 additional specimens, and that resulted in the detection of most of the targets. “The detection of these targets in pig specimens provides reassurance that the analytical methods are functioning as designed,” said Prichard, “and there is no a priori reason some targets might be more difficult to detect than others with the methods described here.”

As is my custom, here’s a link to and a citation for the paper,

Xenotransplantation panel for the detection of infectious agents in pigs by Caroll B. Hartline, Ra’Shun L. Conner, Scott H. James, Jennifer Potter, Edward Gray, Jose Estrada, Mathew Tector, A. Joseph Tector, Mark N. Prichard. Xenotransplantaion Volume 25, Issue 4 July/August 2018 e12427 DOI: https://doi.org/10.1111/xen.12427 First published: 18 August 2018

This paper is open access.

All this leads to questions about chimeras. If a pig is incubating organs with human cells it’s a chimera but then means the human receiving the organ becomes a chimera too. (For an example, see my Dec. 22, 2013 posting where there’s mention of a woman who received a trachea from a pig. Scroll down about 30% of the way.)

What is it to be human?

A question much beloved of philosophers and others, the question seems particularly timely with xenotransplantion and other developments such neuroprosthetics (cyborgs) and neuromorphic computing (brainlike computing).

As I’ve noted before, although not recently, popular culture offers a discourse on these issues. Take a look at the superhero movies and the way in which enhanced humans and aliens are presented. For example, X-Men comics and movies present mutants (humans with enhanced abilities) as despised and rejected. Video games (not really my thing but there is the Deus Ex series which has as its hero, a cyborg also offer insight into these issues.

Other than popular culture and in the ‘bleeding edge’ arts community, I can’t recall any public discussion on these matters arising from the extraordinary set of technologies which are being deployed or prepared for deployment in the foreseeable future.

(If you’re in Vancouver (Canada) from September 14 – December 15, 2018, you may want to check out Piccinini’s work. Also, there’s ” NCSU [North Carolina State University] Libraries, NC State’s Genetic Engineering and Society (GES) Center, and the Gregg Museum of Art & Design have issued a public call for art for the upcoming exhibition Art’s Work in the Age of Biotechnology: Shaping our Genetic Futures.” from my Sept. 6, 2018 posting. Deadline: Oct. 1, 2018.)

At a guess, there will be pushback from people who have no interest in debating what it is to be human as they already know, and will find these developments, when they learn about them, to be horrifying and unnatural.

Kerry James Marshall: a ‘song’ of racism in multiple media

Racism and social justice are two themes often found in the works featured at the Rennie Museum (formerly Rennie Collection). Local real estate marketer, Bob Rennie has been showing works there from his collection since at least 2009 when I wrote my first commentary about it (December 4, 2009).

Kerry James Marshall, the latest artist to have his work featured (June 2 – November 3, 2018), carries on the tradition while making those artistic ‘themes’ his own n a breathtaking (in both its positive and negative meanings) range of styles and media.

Here’s a brief description of some of the works, from an undated Rennie Museum press release,

Rennie Museum presents a survey of works by Kerry James Marshall spanning thirty-two years of the artist’s career. Kerry James Marshall: Collected Works features pieces from the artist’s complex body of work, which interrogates the sparse historical presence of African-Americans through painting, sculpture, drawing and other media. …

The sculptural installation Untitled (Black Power Stamps) (1998) [emphasis mine], Marshall’s very first work acquired by Bob Rennie, aptly sets the tone of the exhibition. Five colossal stamps and their corresponding ink pads are dispersed over the floor of the museum’s four-story high gallery space. Inscribed on each stamp, and reiterated on the walls, are phrases of power dating back to the Civil Rights Movement: ‘Black is Beautiful’, ‘Black Power’, ‘We Shall Overcome’, ‘By Any Means Necessary’, and ‘Burn Baby Burn’. The sentiment reverberates through the three 18 feet (5.5 metre) wide paintings installed in the same room, respectively titled Untitled (Red) (2011), Untitled (Black) and Untitled (Green) (2012). Exhibited together for the first time in North America, the imposing paintings with their colours saluting the Pan African flag echo the form of Barnett Newman’s Who’s Afraid of Red, Yellow and Blue III (1967).

Commanding attention in the center of another room is Wake (2003-2005) [emphasis mine], a sculptural work that focuses on the collective trauma of slavery. Draped atop a blackened model sailboat is a web of medallions featuring portraits of descendants of the approximately twenty African slaves who first landed in Jamestown, Virginia in 1607. Atop a polished black base evoking the deep seas, the medallions cascade over and behind the mourning vessel in a gilded procession, cast out in the boat’s wake. The work commemorates an entire lineage of people whose lives have been irrevocably affected by the traumatic history of slavery in the United States, while simultaneously celebrating the resilience and vivacity of the culture that flourished from it.

Garden Party (2004-2013) [emphasis mine] is a long-coveted painting that Marshall re-worked over the course of almost ten years. Created in a style that harkens 19th century impressionist paintings, the work depicts a scene of leisure – an array of multi-ethnic friends and neighbours casually gathered in a backyard of a social housing project. Painted on a flat canvas tarp and hung barely off the floor, the image highlights an often-overlooked perspective of the vibrant everyday life in the projects and invites its viewers to join in the gathering.

In a dimmed room is Invisible Man (1986) [emphasis mine] – a historic work and one of the first to feature Marshall’s now iconic black on black tonal painting. Referencing Ralph Ellison’s 1952 novel of the same title, Marshall’s work literalizes the premise of black invisibility. Only distinguishable by his bright-white eyes and teeth, and the subtle warmth that delineates black body from black background, Marshall’s figure, like Ellison’s protagonist, subverts his own invisibility, using colour as an emblem of power rather than of submission. The work’s presentation at Rennie Museum provides an opportunity for viewers to explore the full mastery with which Kerry James Marshall layers his various shades of black.

As always, you book a tour or claim a space on a tour (here) to see the latest exhibition and are guided through the gallery spaces. What follows is a series of pictures depicting the Marshall pieces in that first room (from the Rennie Museum’s photographic documentation for Marshall’s work), Note: There are five pages of documentation and I encourage you to look at all five,

Installation View. Courtesy:: Rennie Museum

Blot, 2014. acrylic on pvc panel 84 × 119 5/8 × 3 3/8 inches (213 × 304 × 9 cm). Courtesy: Rennie Museum

Sculpture (Ibeji), 2006. wood, fabric, beads 24 × 12 × 14 inches (61 × 30 × 36 cm) Courtesy: Rennie Museum

Heirlooms and Accessories, 2002. 3 inkjet prints on wove paper, rhinestone encrusted wooden artist’s frames each: 56 5/8 × 53 3/4 inches (144 × 137 cm) Courtesy: Rennie Museum

I’ve placed the pieces in the order in which I viewed them. Being at the opening event on June 2, 2018 meant that rather than having a tour, we were ‘invited’ to look at the pieces and ask questions of various ‘attendants’ standing nearby. The ‘Blot’, with all that colour, immediate drew my attention and not having read the title of the piece, I commented on its resemblance to a Rorschach Inkblot. It was my only successful guess of the visit and I continue to bask in it.

According to the attendant, in addition to resembling said inkblot, this piece also addresses abstract expressionism and the absence of African American visual artists from the movement. In this piece as with many others, Marshall finds a way to depict absence despite the paradox (a picture of absence) in terms.

‘Heirlooms and Accessories’ is an example of Marshall’s talent for depicting absence. At first glance the piece seems benign. There is a kind of double frame. The outermost frame is white and inside (abutting the artwork) a diamante braid has been added all around it to create a double frame. The braid is very pretty and accentuates the lockets depicted in the image. There are three white women pictured in their lockets and beneath those lockets and the white paint lay images of African Americans being lynched. The women, by the way, were complicit in the lynchings. It was deeply unsettling to learn this as my friend and I had just moments before been admiring the diamante braid.

Marshall’s work seems designed to force the viewer to look beneath the surface, which means stripping away layers, which with ‘Heirlooms’ means that you strip away the whitewashing.

As a white woman, the show is a profoundly disturbing  experience. Marshall’s range of materials and mastery are breathtaking (in the positive sense) and the way he seduces the (white) viewer into coming closer and experiencing the painting, metaphorically speaking, as a mirror rather than a picture. Marshall has flipped the viewer’s experience making it impossible (or very difficult) to blame racism on other people while failing to recognize your own sins.

The third piece in the room, the sculpture is a representation of a standard of beauty still not often seen in popular culture in North America. Weirdly, it reminded me of something from a December 21, 2017 posting on the LaineyGossip blog,

[downloaded from http://www.laineygossip.com/princess-michael-of-kent-racist-jewelry-greets-meghan/48728]

I don’t know well you can see this, but it’s an example of ‘Blackamoor jewellery’. The woman wearing it is Princess Michael of Kent and at the time the picture was taken she was on her to a Christmas 2017 lunch with the Queen of England. The lunch is where she was to meet Meghan Markle who describes herself as a woman of mixed race and is now the Duchess of Sussex and married to the Queen’s grandson, Harry. For anyone unfamiliar with ‘Blackmoor art’ here’s a July 31, 2015 essay by Anneke Rautenbach for New York University,

… Blackamoors—a trope in Italian decorative art especially common in pieces of furniture, but also appearing in paintings, jewelry, and textiles. The motif emerged as an artistic response to the European encounter with the Moors—dark-skinned Muslims from North Africa and the Middle East who came to occupy various parts of Europe during the Middle Ages. Commonly fixed in positions of servitude—as footmen or waiters, for example—the figures personify fantasies of racial conquest.

I trust Princess Michael was made to remove her brooch before entering the palace.

The contrast between Marshall’s sculpture emphasizing the dignity and beauty of the figure and the ‘jewellery’ is striking. The past, as Marshall reminds us, is always with us. From Rautenback’s July 31, 2015 essay (Note: A link has been removed),

Gaudy by nature, and uncomfortably dated—a bit like the American lawn jockey, or Aunt Jemima doll— … Blackamoors are still a thriving industry, with the United States as their no. 1 importer. (In fact, the figurines are especially popular in Texas and Connecticut—search “Blackamoor” online and you’ll find countless listings on eBay, Etsy, and elsewhere.) Unlike their American counterparts, which focus mostly on romanticizing scenes from the era of slavery, these European ornaments often depict black bodies as exotic noblemen. And not everyone considers them passé: As recently as September 2012, the Italian fashion house Dolce & Gabbana invited outrage when it included a caricatured black woman figurine on an earring as part of its spring/summer collection.

Encountering bias and (conscious or unconscious) racism in one’s self is both deeply  chastening and a priceless gift.  It’s one that comedienne Roseanne Barr seems determined to refuse (from a June 14, 2018 article by Marissa Martinelli for Slate.com (Note: Link have been removed),

Barr […] suggested on Thursday [June 14, 2018] that it is only “low IQ” people who would interpret describing a black woman as “Muslim Brotherhood & planet of the apes had a baby” as racist. The real explanation is apparently much deeper:

Roseanne BarrVerified account @therealroseanne

Rod Serling wrote Planet of The Apes. It was about anti-semitism. That is what my tweet referred to-the anti semitism of the Iran deal. Low IQ ppl can think whatever they want.

Low IQ people and Rod Serling’s screenwriting join Ambien and Memorial Day on the growing list of entities that Barr has used to justify the racist tweet over the past two weeks. The one person whose name you will not find on that list of people responsible for what Roseanne Barr said is Roseanne Barr herself.

Even with such an obvious tweet, Barr can’t (consistently) admit to and (consistently) apologize for her comment. It may not seem like a gift to her but it is. Facing up to one’s sins and making reparation can help heal the extraordinary wounds that Marshall is making visible.

You may have noticed that I called this show ‘a song of racism’. It’s a reference to poetry which in ancient times was sometimes referred to as a song (Song of Solomon, anyone?). It was also a narrative instrument, i. e., used for storytelling for an active, participatory audience.

Marshall tells a story in allusive language (like poetry) and tricks/seduces you into participating.

On that note, I have one last story to tell and it’s about the placement of Marshall’s artworks in the first floor room. It’s my story, yours and Marshall’s might be different but he has inspired me and so …

The ‘Blot’ or Rorschach Inkblot is a test, which tells a psychologist something about you and how you apprehend the world. It’s the first piece you see when you enter the Rennie Museum space and it sets the tone for all that is to come.  What you see says much about you.

The women, in the sculpture and the lockets, provide contrast and, depending on your race, hold a mirror to you. What is ‘other’ and what is ‘you’?

There was religious imagery in much of Marshall’s work elsewhere and I was particularly struck with the hearts that appeared in some of his paintings. I was reminded of the ‘sacred heart’, a key piece of religious iconography usually associated with Roman Catholicism although other religions also use the imagery.

It is a symbol of love and compassion although I’ve always associated it more with guilt. (My mother favoured the version featuring the heart pierced with a crown of thorns.)

Getting back to “What is ‘other’ and what is ‘you’?” Marshall seems to be hinting that after guilt and suffering, forgiveness is possible.

That’s my story and I’m sticking to it.

As for Marshall, he is a thoughtful artist asking some difficult questions. I hope you’ll get a chance to see his work at the Rennie Museum. As I write this, every tour through June is completely booked and first set of July tours is getting booked fast. You’d best keep an eagle eye on the Visit page.

ETA June18, 2018: Kerry James Marshall was in Vancouver and gave this talk about his work just prior to the show’s opening: https://vimeo.com/274179397 (It runs for roughly 1 hr. and 49 minutes.)

Putting science back into pop culture and selling books

Clifford V. Johnson is very good at promoting books. I tip my hat to him; that’s an excellent talent to have, especially when you’ve written a book, in his case, it’s a graphic novel titled ‘The Dialogues: Conversations about the Nature of the Universe‘.

I first stumbled across professor (University of Southern California) and physicist Johnson and his work in this January 18, 2018 news item on phys.org,

How often do you, outside the requirements of an assignment, ponder things like the workings of a distant star, the innards of your phone camera, or the number and layout of petals on a flower? Maybe a little bit, maybe never. Too often, people regard science as sitting outside the general culture: A specialized, difficult topic carried out by somewhat strange people with arcane talents. It’s somehow not for them.

But really science is part of the wonderful tapestry of human culture, intertwined with things like art, music, theater, film and even religion. These elements of our culture help us understand and celebrate our place in the universe, navigate it and be in dialogue with it and each other. Everyone should be able to engage freely in whichever parts of the general culture they choose, from going to a show or humming a tune to talking about a new movie over dinner.

Science, though, gets portrayed as opposite to art, intuition and mystery, as though knowing in detail how that flower works somehow undermines its beauty. As a practicing physicist, I disagree. Science can enhance our appreciation of the world around us. It should be part of our general culture, accessible to all. Those “special talents” required in order to engage with and even contribute to science are present in all of us.

Here’s more his January 18, 2018 essay on The Conversation (which was the origin for the news item), Note: Links have been removed,

… in addition to being a professor, I work as a science advisor for various forms of entertainment, from blockbuster movies like the recent “Thor: Ragnarok,” or last spring’s 10-hour TV dramatization of the life and work of Albert Einstein (“Genius,” on National Geographic), to the bestselling novel “Dark Matter,” by Blake Crouch. People spend a lot of time consuming entertainment simply because they love stories like these, so it makes sense to put some science in there.

Science can actually help make storytelling more entertaining, engaging and fun – as I explain to entertainment professionals every chance I get. From their perspective, they get potentially bigger audiences. But good stories, enhanced by science, also spark valuable conversations about the subject that continue beyond the movie theater.
Science can be one of the topics woven into the entertainment we consume – via stories, settings and characters. ABC Television

Nonprofit organizations have been working hard on this mission. The Alfred P. Sloan Foundation helps fund and develop films with science content – “The Man Who Knew Infinity” (2015) and “Robot & Frank” (2012) are two examples. (The Sloan Foundation is also a funding partner of The Conversation US.)

The National Academy of Sciences set up the Science & Entertainment Exchange to help connect people from the entertainment industry to scientists. The idea is that such experts can provide Hollywood with engaging details and help with more accurate portrayals of scientists that can enhance the narratives they tell. Many of the popular Marvel movies – including “Thor” (2011), “Ant-Man” (2015) and the upcoming “Avengers: Infinity War” – have had their content strengthened in this way.

Encouragingly, a recent Pew Research Center survey in the U.S. showed that entertainment with science or related content is watched by people across “all demographic, educational and political groups,” and that overall they report positive impressions of the science ideas and scenarios contained in them.

Many years ago I realized it is hard to find books on the nonfiction science shelf that let readers see themselves as part of the conversation about science. So I envisioned an entire book of conversations about science taking place between ordinary people. While “eavesdropping” on those conversations, readers learn some science ideas, and are implicitly invited to have conversations of their own. It’s a resurrection of the dialogue form, known to the ancient Greeks, and to Galileo, as a device for exchanging ideas, but with contemporary settings: cafes, restaurants, trains and so on.

Clifford Johnson at his drafting table. Clifford V. Johnson, CC BY-ND

So over six years I taught myself the requisite artistic and other production techniques, and studied the language and craft of graphic narratives. I wrote and drew “The Dialogues: Conversations About the Nature of the Universe” as proof of concept: A new kind of nonfiction science book that can inspire more people to engage in their own conversations about science, and celebrate a spirit of plurality in everyday science participation.

I so enjoyed Johnson’s writing and appreciated how he introduced his book into the piece that I searched for more and found a three-part interview with Henry Jenkins on his Confessions of an Aca-Fan (Academic-Fan) blog. Before moving onto the interview, here’s some information about the interviewer, Henry Jenkins, (Note: Links have been removed),

Henry Jenkins is the Provost Professor of Communication, Journalism, Cinematic Arts and Education at the University of Southern California. He arrived at USC in Fall 2009 after spending more than a decade as the Director of the MIT Comparative Media Studies Program and the Peter de Florez Professor of Humanities. He is the author and/or editor of seventeen books on various aspects of media and popular culture, including Textual Poachers: Television Fans and Participatory Culture, Hop on Pop: The Politics and Pleasures of Popular Culture,  From Barbie to Mortal Kombat: Gender and Computer Games, Convergence Culture: Where Old and New Media Collide, Spreadable Media: Creating Meaning and Value in a Networked Culture, and By Any Media Necessary: The New Youth Activism. He is currently editing a handbook on the civic imagination and writing a book on “comics and stuff”. He has written for Technology Review, Computer Games, Salon, and The Huffington Post.

Jenkins is the principal investigator for The Civic Imagination Project, funded by the MacArthur Foundation, to explore ways to inspire creative collaborations within communities as they work together to identify shared values and visions for the future. This project grew out of the Media, Activism, and Participatory Politics research group, also funded by MacArthur, which did case studies of innovative organizations that have been effective at getting young people involved in the political process. He is also the Chief Advisor to the Annenberg Innovation Lab. Jenkins also serves on the jury that selects the Peabody Awards, which recognizes “stories that matter” from radio, television, and the web.

He has previously worked as the principal investigator for  Project New Media Literacies (NML), a group which originated as part of the MacArthur Digital Media and Learning Initiative. Jenkins wrote a white paper on learning in a participatory culture that has become the springboard for the group’s efforts to develop and test educational materials focused on preparing students for engagement with the new media landscape. He also was the founder for the Convergence Culture Consortium, a faculty network which seeks to build bridges between academic researchers and the media industry in order to help inform the rethinking of consumer relations in an age of participatory culture.  The Consortium lives on today via the Transforming Hollywood conference, run jointly between USC and UCLA, which recently hosted its 8th event.  

While at MIT, he was one of the principal investigators for The Education Arcade, a consortium of educators and business leaders working to promote the educational use of computer and video games. Jenkins also plays a significant role as a public advocate for fans, gamers and bloggers: testifying before the U.S. Senate Commerce Committee investigation into “Marketing Violence to Youth” following the Columbine shootings; advocating for media literacy education before the Federal Communications Commission; calling for a more consumer-oriented approach to intellectual property at a closed door meeting of the governing body of the World Economic Forum; signing amicus briefs in opposition to games censorship;  regularly speaking to the press and other media about aspects of media change and popular culture; and most recently, serving as an expert witness in the legal struggle over the fan-made film, Prelude to Axanar.  He also has served as a consultant on the Amazon children’s series Lost in Oz, where he provided insights on world-building and transmedia strategies as well as new media literacy issues.

Jenkins has a B.A. in Political Science and Journalism from Georgia State University, a M.A. in Communication Studies from the University of Iowa and a PhD in Communication Arts from the University of Wisconsin-Madison.

Well, that didn’t seem so simple after all. For a somewhat more personal account of who I am, read on.

About Me

The first thing you are going to discover about me, oh reader of this blog, is that I am prolific as hell. The second is that I am also long-winded as all get out. As someone famous once said, “I would have written it shorter, but I didn’t have enough time.”

My earliest work centered on television fans – particularly science fiction fans. Part of what drew me into graduate school in media studies was a fascination with popular culture. I grew up reading Mad magazine and Famous Monsters of Filmland – and, much as my parents feared, it warped me for life. Early on, I discovered the joys of comic books and science fiction, spent time playing around with monster makeup, started writing scripts for my own Super 8 movies (The big problem was that I didn’t have access to a camera until much later), and collecting television-themed toys. By the time I went to college, I was regularly attending science fiction conventions. Through the woman who would become my wife, I discovered fan fiction. And we spent a great deal of time debating our very different ways of reading our favorite television series.

When I got to graduate school, I was struck by how impoverished the academic framework for thinking about media spectatorship was – basically, though everyone framed it differently, consumers were assumed to be passive, brainless, inarticulate, and brainwashed. None of this jelled well with my own robust experience of being a fan of popular culture. I was lucky enough to get to study under John Fiske, first at Iowa and then at the University of Wisconsin-Madison, who introduced me to the cultural studies perspective. Fiske was a key advocate of ethnographic audience research, arguing that media consumers had more tricks up their sleeves than most academic theory acknowledged.

Out of this tension between academic theory and fan experience emerged first an essay, “Star Trek Reread, Rerun, Rewritten” and then a book, Textual Poachers: Television Fans and Participatory Culture. Textual Poachers emerged at a moment when fans were still largely marginal to the way mass media was produced and consumed, and still hidden from the view of most “average consumers.” As such, the book represented a radically different way of thinking about how one might live in relation to media texts. In the book, I describe fans as “rogue readers.” What most people took from that book was my concept of “poaching,” the idea that fans construct their own culture – fan fiction, artwork, costumes, music and videos – from content appropriated from mass media, reshaping it to serve their own needs and interests. There are two other key concepts in this early work which takes on greater significance in my work today – the idea of participatory culture (which runs throughout Convergence Culture) and the idea of a moral economy (that is, the presumed ethical norms which govern the relations between media producers and consumers).

As for the interview, here’s Jenkins’ introduction to the series and a portion of part one (from Comics and Popular Science: An Interview with Clifford V. Johnson (Part One) posted on November 15, 2017),

unnamed.jpg

Clifford V. Johnson is the first theoretical physicist who I have ever interviewed for my blog. Given the sharp divide that our society constructs between the sciences and the humanities, he may well be the last, but he would be the first to see this gap as tragic, a consequence of the current configuration of disciplines. Johnson, as I have discovered, is deeply committed to helping us recognize the role that science plays in everyday life, a project he pursues actively through his involvement as one of the leaders of the Los Angeles Institute for the Humanities (of which I am also a member), as a consultant on various film and television projects, and now, as the author of a graphic novel, The Dialogues, which is being released this week. We were both on a panel about contemporary graphic storytelling Tara McPherson organized for the USC Sydney Harmon Institute for Polymathic Study and we’ve continued to bat around ideas about the pedagogical potential of comics ever since.

Here’s what I wrote when I was asked to provide a blurb for his new book:

“Two superheroes walk into a natural history museum — what happens after that will have you thinking and talking for a long time to come. Clifford V. Johnson’s The Dialogues joins a select few examples of recent texts, such as Scott McCloud’s Understanding Comics, Larry Gonick’s Cartoon History of the Universe, Nick Sousanis’s Unflattening, Bryan Talbot’s Alice in Sunderland, or Joe Sacco’s Palestine, which use the affordances of graphic storytelling as pedagogical tools for changing the ways we think about the world around us. Johnson displays a solid grasp of the craft of comics, demonstrating how this medium can be used to represent different understandings of the relationship between time and space, questions central to his native field of physics. He takes advantage of the observational qualities of contemporary graphic novels to explore the place of scientific thinking in our everyday lives.”

To my many readers who care about sequential art, this is a book which should be added to your collection — Johnson makes good comics, smart comics, beautiful comics, and comics which are doing important work, all at the same time. What more do you want!

In the interviews that follows, we explore more fully what motivated this particular comics and how approaching comics as a theoretical physicist has helped him to discover some interesting formal aspects of this medium.

What do you want your readers to learn about science over the course of these exchanges? I am struck by the ways you seek to demystify aspects of the scientific process, including the role of theory, equations, and experimentation.

unnamed-2.jpg

 

That participatory aspect is core, for sure. Conversations about science by random people out there in the world really do happen – I hear them a lot on the subway, or in cafes, and so I wanted to highlight those and celebrate them. So the book becomes a bit of an invitation to everyone to join in. But then I can show so many other things that typically just get left out of books about science: The ordinariness of the settings in which such conversations can take place, the variety of types of people involved, and indeed the main tools, like equations and technical diagrams, that editors usually tell you to leave out for fear of scaring away the audience. …

I looked for book reviews and found two. This first one is from Starburst Magazine, which strangely does not have the date or author listed (from the review),

The Dialogues is a series of nine conversations about science told in graphic novel format; the conversationalists are men, women, children, and amateur science buffs who all have something to say about the nature of the universe. Their discussions range from multiverse and string theory to immortality, black holes, and how it’s possible to put just a cup of rice in the pan but end up with a ton more after Mom cooks it. Johnson (who also illustrated the book) believes the graphic form is especially suited for physics because “one drawing can show what it would take many words to explain” and it’s hard to argue with his noble intentions, but despite some undoubtedly thoughtful content The Dialogues doesn’t really work. Why not? Because, even with its plethora of brightly-coloured pictures, it’s still 200+ pages of talking heads. The individual conversations might give us plenty to think about, but the absence of any genuine action (or even a sense of humour) still makes The Dialogues read like very pretty homework.

Adelmar Bultheel’s December 8, 2017 review for the European Mathematical Society acknowledges issues with the book while noting its strong points,

So what is the point of producing such a graphic novel if the reader is not properly instructed about anything? In my opinion, the true message can be found in the one or two pages of notes that follow each of the eleven conversations. If you are not into the subject that you were eavesdropping, you probably have heard words, concepts, theories, etc. that you did not understand, or you might just be curious about what exactly the two were discussing. Then you should look that up on the web, or if you want to do it properly, you should consult some literature. This is what these notes are providing: they are pointing to the proper books to consult. …

This is a most unusual book for this subject and the way this is approached is most surprising. Not only the contents is heavy stuff, it is also physically heavy to read. Some 250 pages on thick glossy paper makes it a quite heavy book to hold. You probably do not want to read this in bed or take it on a train, unless you have a table in front of you to put it on. Many subjects are mentioned, but not all are explained in detail. The reader should definitely be prepared to do some extra reading to understand things better. Since most references concern other popularising books on the subject, it may require quite a lot of extra reading. But all this hard science is happening in conversations by young enthusiastic people in casual locations and it is all wrapped up in beautiful graphics showing marvellous realistic decors.

I am fascinated by this book which I have yet to read but I did find a trailer for it (from thedialoguesbook.com),

Enjoy!

Quantum computing and more at SXSW (South by Southwest) 2018

It’s that time of year again. The entertainment conference such as South by South West (SXSW) is being held from March 9-18, 2018. The science portion of the conference can be found in the Intelligent Future sessions, from the description,

AI and new technologies embody the realm of possibilities where intelligence empowers and enables technology while sparking legitimate concerns about its uses. Highlighted Intelligent Future sessions include New Mobility and the Future of Our Cities, Mental Work: Moving Beyond Our Carbon Based Minds, Can We Create Consciousness in a Machine?, and more.

Intelligent Future Track sessions are held March 9-15 at the Fairmont.

Last year I focused on the conference sessions on robots, Hiroshi Ishiguro’s work, and artificial intelligence in a  March 27, 2017 posting. This year I’m featuring one of the conference’s quantum computing session, from a March 9, 2018 University of Texas at Austin news release  (also on EurekAlert),

Imagine a new kind of computer that can quickly solve problems that would stump even the world’s most powerful supercomputers. Quantum computers are fundamentally different. They can store information as not only just ones and zeros, but in all the shades of gray in-between. Several companies and government agencies are investing billions of dollars in the field of quantum information. But what will quantum computers be used for?

South by Southwest 2018 hosts a panel on March 10th [2018] called Quantum Computing: Science Fiction to Science Fact. Experts on quantum computing make up the panel, including Jerry Chow of IBM; Bo Ewald of D-Wave Systems; Andrew Fursman of 1QBit; and Antia Lamas-Linares of the Texas Advanced Computing Center at UT Austin.

Antia Lamas-Linares is a Research Associate in the High Performance Computing group at TACC. Her background is as an experimentalist with quantum computing systems, including work done with them at the Centre for Quantum Technologies in Singapore. She joins podcast host Jorge Salazar to talk about her South by Southwest panel and about some of her latest research on quantum information.

Lamas-Linares co-authored a study (doi: 10.1117/12.2290561) in the Proceedings of the SPIE, The International Society for Optical Engineering, that published in February of 2018. The study, “Secure Quantum Clock Synchronization,” proposed a protocol to verify and secure time synchronization of distant atomic clocks, such as those used for GPS signals in cell phone towers and other places. “It’s important work,” explained Lamas-Linares, “because people are worried about malicious parties messing with the channels of GPS. What James Troupe (Applied Research Laboratories, UT Austin) and I looked at was whether we can use techniques from quantum cryptography and quantum information to make something that is inherently unspoofable.”

Antia Lamas-Linares: The most important thing is that quantum technologies is a really exciting field. And it’s exciting in a fundamental sense. We don’t quite know what we’re going to get out of it. We know a few things, and that’s good enough to drive research. But the things we don’t know are much broader than the things we know, and it’s going to be really interesting. Keep your eyes open for this.

Quantum Computing: Science Fiction to Science Fact, March 10, 2018 | 11:00AM – 12:00PM, Fairmont Manchester EFG, SXSW 2018, Austin, TX.

If you look up the session, you will find,

Quantum Computing: Science Fiction to Science Fact

Quantum Computing: Science Fiction to Science Fact

Speakers

Bo Ewald

D-Wave Systems

Antia Lamas-Linares

Texas Advanced Computing Center at University of Texas

Startups and established players have sold 2000 Qubit systems, made freely available cloud access to quantum computer processors, and created large scale open source initiatives, all taking quantum computing from science fiction to science fact. Government labs and others like IBM, Microsoft, Google are developing software for quantum computers. What problems will be solved with this quantum leap in computing power that cannot be solved today with the world’s most powerful supercomputers?

[Programming descriptions are generated by participants and do not necessarily reflect the opinions of SXSW.]

Favorited by (1128)

View all

Primary Entry: Platinum Badge, Interactive Badge

Secondary Entry: Music Badge, Film Badge

Format: Panel

Event Type: Session

Track: Intelligent Future

Level: Intermediate

I wonder what ‘level’ means? I was not able to find an answer (quickly).

It’s was a bit surprising to find someone from D-Wave Systems (a Vancouver-based quantum computing based enterprise) at an entertainment conference. Still, it shouldn’t have been. Two other examples immediately come to mind, the TED (technology, entertainment, and design) conferences have been melding technology, if not science, with creative activities of all kinds for many years (TED 2018: The Age of Amazement, April 10 -14, 2018 in Vancouver [Canada]) and Beakerhead (2018 dates: Sept. 19 – 23) has been melding art, science, and engineering in a festival held in Calgary (Canada) since 2013. One comment about TED, it was held for several years in California (1984, 1990 – 2013) and moved to Vancouver in 2014.

For anyone wanting to browse the 2018 SxSW Intelligent Future sessions online, go here. or wanting to hear Antia Lamas-Linares talk about quantum computing, there’s the interview with Jorge Salazar (mentioned in the news release),

Art influences science

It’s not often you see research that combines biologically inspired engineering and a molecular biophysicist with a professional animator who worked at Peter Jackson’s (Lord of the Rings film trilogy, etc.) Park Road Post film studio. An Oct. 18, 2017 news item on ScienceDaily describes the project,

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions to many of the world’s greatest problems. “I feel that there’s a huge disconnect between science and the public because it’s depicted as rote memorization in schools, when by definition, if you can memorize it, it’s not science,” says Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at the Harvard Paulson School of Engineering and Applied Sciences (SEAS). “Science is the pursuit of the unknown. We have a responsibility to reach out to the public and convey that excitement of exploration and discovery, and fortunately, the film industry is already great at doing that.”

An October 18, 2017 Wyss Institute at Harvard University news release (also on EurekAlert) by Lindsay Brownell, which originated the news item, details the work,

To see if entertainment could offer a solution to this challenge, Ingber teamed up with Charles Reilly, Ph.D., a molecular biophysicist, professional animator, and Staff Scientist at the Wyss Institute who previously worked at movie director Peter Jackson’s Park Road Post film studio, to create a film that would capture viewers’ imaginations by telling the story of a biological process that was accurate down to the atomic level. “Don and I quickly found that we have a lot of things in common, especially that we’re both systems thinkers,” says Reilly. “Applying an artistic process to science frees you from the typically reductionist approach of analyzing one particular hypothesis and teaches you a different way of observing things. As a result, we not only created an entertaining tool for public outreach, we conducted robust theoretical biology research that led to new scientific insight into molecular-scale processes.” The research is now published in ACS Nano and the film can be found here.

Wyss researchers created a model of an axoneme that displays how different segments of the microtubules bend and flex relative to each other to create movement. Credit: Wyss Institute at Harvard University

Any good movie needs characters and drama, and a “hook” to get the audience invested in watching. The scientists decided to make a parody of a trailer for a Star Wars® movie, but instead of showing starship cruisers hurtling through space towards the Death Star, they chose a biological process with its own built-in narrative: the fertilization of an egg by a sperm, in which millions of sperm race to be the one that succeeds and creates the next generation of life. The patterns and mechanics of sperm swimming have been studied and described in scientific literature, but visually showing the accurate movement of a sperm tail required tackling one of the toughest challenges facing science today: how to create a multi-scale biological model that maintains accuracy at different sizes, from cells all the way down to atoms. That would be like starting with the Empire State Building and then zooming in close enough to see every individual screw, nut and bolt that holds it together, as well as how individual water molecules flow inside its pipes, while maintaining crystal-clear resolution – not an easy task.

“It turns out that creating an accurate biological model and creating a believable computer-generated depiction of life in film are very similar, in that you’re constantly troubleshooting and modifying your virtual object until it fits the way things actually look and move,” says Reilly. “However, for biology, the simulations also have to align with recorded scientific data and theoretical models that have previously been experimentally validated.” The scientists created a design-based animation pipeline that integrates physics-based film animation software with molecular dynamics simulation software to create a model of how a sperm tail moves based on scientific data, with the criterion that the model had to work across all size scales. “This is really a design thinking approach, where you have to be willing to throw out your model if it doesn’t work correctly when you integrate it with data from another scale,” Reilly says. “A lot of scientific investigations use a reductionist approach, focusing on one molecule or one biological system with higher and higher resolution without placing it in context, which makes it difficult to converge on a picture of the larger whole.”

This video shows dynein’s two different shapes as determined from scientific observations, and how the Wyss researchers’ molecular model of dynein’s movement fits those conformations. Credit: Wyss Institute at Harvard University

The core of a sperm’s whip-like tail is the axoneme, a long tube consisting of nine pairs of microtubules arranged in a column around a central pair, all of which extend the entire length of the tail. The axoneme’s rhythmic bending and stretching is the source of the tail’s movement, and the scientists knew they needed to realistically depict that process in order to show the film’s viewers how a sperm moves. Rather than construct a model in a linear fashion by “zooming in” or “zooming out” to add more information to a single starting structure, they built the model at different scales simultaneously, repeatedly checking it against scientific data to ensure it was accurate and modifying it until the pieces fit together.

The axoneme’s movement is accomplished via rows of motor proteins called dyneins that are attached along the microtubules and exert force on them so the microtubules “slide” past each other, which then causes the entire axoneme and sperm tail to bend and move. The dynein protein has a long “arm” portion that grabs onto the neighboring microtubule and, when the protein changes from one shape to another, pulls the microtubule along with it. Dynein switches between these different conformations as a result of the conversion of a molecule of ATP to ADP at a specific binding site on the protein, which releases energy as a chemical bond is broken. To model this molecular motor, the scientists created a molecular dynamics simulation of a dynein protein and applied energy at the ATP binding site to approximate the transfer of energy from ATP. They found that this caused atoms in the entire protein to move in random directions when they performed their simulation of dynein floating in solution, as most conventional scientific simulations do. However, when they then “fixed” a specific hinge region of the dynein molecule that is known to connect dynein to its microtubule, they discovered that the dynein spontaneously moved in its characteristic direction when force was applied at the ATP binding site, matching the way it moves in nature.

This video shows rows of dynein proteins along the microtubules of an axoneme moving in sync to cause the axoneme’s motion, like rowers pulling synchronously in a boat. Credit: Wyss Institute at Harvard University

“Not only is our physics-based simulation and animation system as good as other data-based modeling systems, it led to the new scientific insight that the limited motion of the dynein hinge focuses the energy released by ATP hydrolysis, which causes dynein’s shape change and drives microtubule sliding and axoneme motion,” says Ingber. “Additionally, while previous studies of dynein have revealed the molecule’s two different static conformations, our animation visually depicts one plausible way that the protein can transition between those shapes at atomic resolution, which is something that other simulations can’t do. The animation approach also allows us to visualize how rows of dyneins work in unison, like rowers pulling together in a boat, which is difficult using conventional scientific simulation approaches.”

Using this biologically accurate model of how dynein moves the microtubules within the axoneme, Ingber and Reilly created a short film called “The Beginning,” which draws parallels between sperm swimming toward an egg and spaceships flying toward a planet in space, giving an artistic bent to a scientific topic. The film depicts several sperm attempting to fertilize the egg, “zooms in” on one sperm’s tail to show how the dynein proteins move in sync to cause the tail to bend and flex, and ends with the sperm’s successful journey into the egg and the initiation of cell division that will ultimately create a new organism. The scientists submitted the film along with the paper to several academic journals, and it took a long time before they found an open-minded editor who recognized that the paper and film together were a powerful demonstration of how starting with an artistic goal can end up generating new scientific discoveries along with a tool for public outreach.

*Due to distortion images deleted March 9, 2018.*

“Both science and art are about observation, interpretation, and communication. Our goal is that presenting science to the public in an entertaining, system-based way, rather than bogging them down with a series of scattered facts, will help more people understand it and feel that they can contribute to the scientific conversation. The more people engage with science, the more likely humanity is to solve the world’s big problems,” says Reilly. “I also hope that this paper and video encourage more scientists to take an artistic approach when they start a new project, not necessarily to create a narrative-based story, but to explore their idea the way an artist explores a canvas, because that makes the mind open to a different form of serendipity that can lead to unexpected results.”

“The Wyss Institute is driven by biological design. In this project, we used design tools and approaches borrowed from the art world to solve problems related to motion, form, and complexity to create something entertaining, which ultimately led to new scientific insights and, hopefully, new ways to excite the public about science,” says Ingber. “We’ve demonstrated that art and science can benefit each other in a truly reciprocal way, and we hope that this project spurs future collaborations with the entertainment industry so that both art and science can get even closer to depicting reality in ways that anyone can appreciate and enjoy.”

*Due to distortion images deleted on March 9, 2018.*

The film,

Here’s a link to and a citation for the paper,

Art Advancing Science: Filmmaking Leads to Molecular Insights at the Nanoscale by Charles Reilly and Donald E. Ingber. ACS Nano, Article ASAP DOI: 10.1021/acsnano.7b05266 Publication Date (Web): October 18, 2017

Copyright © 2017 American Chemical Society

This paper appears to be open access.