Tag Archives: Ukraine

FrogHeart’s 2022 comes to an end as 2023 comes into view

I look forward to 2023 and hope it will be as stimulating as 2022 proved to be. Here’s an overview of the year that was on this blog:

Sounds of science

It seems 2022 was the year that science discovered the importance of sound and the possibilities of data sonification. Neither is new but this year seemed to signal a surge of interest or maybe I just happened to stumble onto more of the stories than usual.

This is not an exhaustive list, you can check out my ‘Music’ category for more here. I have tried to include audio files with the postings but it all depends on how accessible the researchers have made them.

Aliens on earth: machinic biology and/or biological machinery?

When I first started following stories in 2008 (?) about technology or machinery being integrated with the human body, it was mostly about assistive technologies such as neuroprosthetics. You’ll find most of this year’s material in the ‘Human Enhancement’ category or you can search the tag ‘machine/flesh’.

However, the line between biology and machine became a bit more blurry for me this year. You can see what’s happening in the titles listed below (you may recognize the zenobot story; there was an earlier version of xenobots featured here in 2021):

This was the story that shook me,

Are the aliens going to come from outer space or are we becoming the aliens?

Brains (biological and otherwise), AI, & our latest age of anxiety

As we integrate machines into our bodies, including our brains, there are new issues to consider:

  • Going blind when your neural implant company flirts with bankruptcy (long read) April 5, 2022 posting
  • US National Academies Sept. 22-23, 2022 workshop on techno, legal & ethical issues of brain-machine interfaces (BMIs) September 21, 2022 posting

I hope the US National Academies issues a report on their “Brain-Machine and Related Neural Interface Technologies: Scientific, Technical, Ethical, and Regulatory Issues – A Workshop” for 2023.

Meanwhile the race to create brainlike computers continues and I have a number of posts which can be found under the category of ‘neuromorphic engineering’ or you can use these search terms ‘brainlike computing’ and ‘memristors’.

On the artificial intelligence (AI) side of things, I finally broke down and added an ‘artificial intelligence (AI) category to this blog sometime between May and August 2021. Previously, I had used the ‘robots’ category as a catchall. There are other stories but these ones feature public engagement and policy (btw, it’s a Canadian Science Policy Centre event), respectively,

  • “The “We are AI” series gives citizens a primer on AI” March 23, 2022 posting
  • “Age of AI and Big Data – Impact on Justice, Human Rights and Privacy Zoom event on September 28, 2022 at 12 – 1:30 pm EDT” September 16, 2022 posting

These stories feature problems, which aren’t new but seem to be getting more attention,

While there have been issues over AI, the arts, and creativity previously, this year they sprang into high relief. The list starts with my two-part review of the Vancouver Art Gallery’s AI show; I share most of my concerns in part two. The third post covers intellectual property issues (mostly visual arts but literary arts get a nod too). The fourth post upends the discussion,

  • “Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (1 of 2): The Objects” July 28, 2022 posting
  • “Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations” July 28, 2022 posting
  • “AI (artificial intelligence) and art ethics: a debate + a Botto (AI artist) October 2022 exhibition in the Uk” October 24, 2022 posting
  • Should AI algorithms get patents for their inventions and is anyone talking about copyright for texts written by AI algorithms? August 30, 2022 posting

Interestingly, most of the concerns seem to be coming from the visual and literary arts communities; I haven’t come across major concerns from the music community. (The curious can check out Vancouver’s Metacreation Lab for Artificial Intelligence [located on a Simon Fraser University campus]. I haven’t seen any cautionary or warning essays there; it’s run by an AI and creativity enthusiast [professor Philippe Pasquier]. The dominant but not sole focus is art, i.e., music and AI.)

There is a ‘new kid on the block’ which has been attracting a lot of attention this month. If you’re curious about the latest and greatest AI anxiety,

  • Peter Csathy’s December 21, 2022 Yahoo News article (originally published in The WRAP) makes this proclamation in the headline “Chat GPT Proves That AI Could Be a Major Threat to Hollywood Creatives – and Not Just Below the Line | PRO Insight”
  • Mouhamad Rachini’s December 15, 2022 article for the Canadian Broadcasting Corporation’s (CBC) online news overs a more generalized overview of the ‘new kid’ along with an embedded CBC Radio file which runs approximately 19 mins. 30 secs. It’s titled “ChatGPT a ‘landmark event’ for AI, but what does it mean for the future of human labour and disinformation?” The chat bot’s developer, OpenAI, has been mentioned here many times including the previously listed July 28, 2022 posting (part two of the VAG review) and the October 24, 2022 posting.

Opposite world (quantum physics in Canada)

Quantum computing made more of an impact here (my blog) than usual. it started in 2021 with the announcement of a National Quantum Strategy in the Canadian federal government budget for that year and gained some momentum in 2022:

  • “Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more” July 26, 2022 posting Note: This turned into one of my ‘in depth’ pieces where I comment on the ‘Canadian quantum scene’ and highlight the appointment of an expert panel for the Council of Canada Academies’ report on Quantum Technologies.
  • “Bank of Canada and Multiverse Computing model complex networks & cryptocurrencies with quantum computing” July 25, 2022 posting
  • “Canada, quantum technology, and a public relations campaign?” December 29, 2022 posting

This one was a bit of a puzzle with regard to placement in this end-of-year review, it’s quantum but it’s also about brainlike computing

It’s getting hot in here

Fusion energy made some news this year.

There’s a Vancouver area company, General Fusion, highlighted in both postings and the October posting includes an embedded video of Canadian-born rapper Baba Brinkman’s “You Must LENR” [L ow E nergy N uclear R eactions or sometimes L attice E nabled N anoscale R eactions or Cold Fusion or CANR (C hemically A ssisted N uclear R eactions)].

BTW, fusion energy can generate temperatures up to 150 million degrees Celsius.

Ukraine, science, war, and unintended consequences

Here’s what you might expect,

These are the unintended consequences (from Rachel Kyte’s, Dean of the Fletcher School, Tufts University, December 26, 2022 essay on The Conversation [h/t December 27, 2022 news item on phys.org]), Note: Links have been removed,

Russian President Vladimir Putin’s war on Ukraine has reverberated through Europe and spread to other countries that have long been dependent on the region for natural gas. But while oil-producing countries and gas lobbyists are arguing for more drilling, global energy investments reflect a quickening transition to cleaner energy. [emphasis mine]

Call it the Putin effect – Russia’s war is speeding up the global shift away from fossil fuels.

In December [2022?], the International Energy Agency [IEA] published two important reports that point to the future of renewable energy.

First, the IEA revised its projection of renewable energy growth upward by 30%. It now expects the world to install as much solar and wind power in the next five years as it installed in the past 50 years.

The second report showed that energy use is becoming more efficient globally, with efficiency increasing by about 2% per year. As energy analyst Kingsmill Bond at the energy research group RMI noted, the two reports together suggest that fossil fuel demand may have peaked. While some low-income countries have been eager for deals to tap their fossil fuel resources, the IEA warns that new fossil fuel production risks becoming stranded, or uneconomic, in the next 20 years.

Kyte’s essay is not all ‘sweetness and light’ but it does provide a little optimism.

Kudos, nanotechnology, culture (pop & otherwise), fun, and a farewell in 2022

This one was a surprise for me,

Sometimes I like to know where the money comes from and I was delighted to learn of the Ărramăt Project funded through the federal government’s New Frontiers in Research Fund (NFRF). Here’s more about the Ărramăt Project from the February 14, 2022 posting,

“The Ărramăt Project is about respecting the inherent dignity and interconnectedness of peoples and Mother Earth, life and livelihood, identity and expression, biodiversity and sustainability, and stewardship and well-being. Arramăt is a word from the Tamasheq language spoken by the Tuareg people of the Sahel and Sahara regions which reflects this holistic worldview.” (Mariam Wallet Aboubakrine)

Over 150 Indigenous organizations, universities, and other partners will work together to highlight the complex problems of biodiversity loss and its implications for health and well-being. The project Team will take a broad approach and be inclusive of many different worldviews and methods for research (i.e., intersectionality, interdisciplinary, transdisciplinary). Activities will occur in 70 different kinds of ecosystems that are also spiritually, culturally, and economically important to Indigenous Peoples.

The project is led by Indigenous scholars and activists …

Kudos to the federal government and all those involved in the Salmon science camps, the Ărramăt Project, and other NFRF projects.

There are many other nanotechnology posts here but this appeals to my need for something lighter at this point,

  • “Say goodbye to crunchy (ice crystal-laden) in ice cream thanks to cellulose nanocrystals (CNC)” August 22, 2022 posting

The following posts tend to be culture-related, high and/or low but always with a science/nanotechnology edge,

Sadly, it looks like 2022 is the last year that Ada Lovelace Day is to be celebrated.

… this year’s Ada Lovelace Day is the final such event due to lack of financial backing. Suw Charman-Anderson told the BBC [British Broadcasting Corporation] the reason it was now coming to an end was:

You can read more about it here:

In the rearview mirror

A few things that didn’t fit under the previous heads but stood out for me this year. Science podcasts, which were a big feature in 2021, also proliferated in 2022. I think they might have peaked and now (in 2023) we’ll see what survives.

Nanotechnology, the main subject on this blog, continues to be investigated and increasingly integrated into products. You can search the ‘nanotechnology’ category here for posts of interest something I just tried. It surprises even me (I should know better) how broadly nanotechnology is researched and applied.

If you want a nice tidy list, Hamish Johnston in a December 29, 2022 posting on the Physics World Materials blog has this “Materials and nanotechnology: our favourite research in 2022,” Note: Links have been removed,

“Inherited nanobionics” makes its debut

The integration of nanomaterials with living organisms is a hot topic, which is why this research on “inherited nanobionics” is on our list. Ardemis Boghossian at EPFL [École polytechnique fédérale de Lausanne] in Switzerland and colleagues have shown that certain bacteria will take up single-walled carbon nanotubes (SWCNTs). What is more, when the bacteria cells split, the SWCNTs are distributed amongst the daughter cells. The team also found that bacteria containing SWCNTs produce a significantly more electricity when illuminated with light than do bacteria without nanotubes. As a result, the technique could be used to grow living solar cells, which as well as generating clean energy, also have a negative carbon footprint when it comes to manufacturing.

Getting to back to Canada, I’m finding Saskatchewan featured more prominently here. They do a good job of promoting their science, especially the folks at the Canadian Light Source (CLS), Canada’s synchrotron, in Saskatoon. Canadian live science outreach events seeming to be coming back (slowly). Cautious organizers (who have a few dollars to spare) are also enthusiastic about hybrid events which combine online and live outreach.

After what seems like a long pause, I’m stumbling across more international news, e.g. “Nigeria and its nanotechnology research” published December 19, 2022 and “China and nanotechnology” published September 6, 2022. I think there’s also an Iran piece here somewhere.

With that …

Making resolutions in the dark

Hopefully this year I will catch up with the Council of Canadian Academies (CCA) output and finally review a few of their 2021 reports such as Leaps and Boundaries; a report on artificial intelligence applied to science inquiry and, perhaps, Powering Discovery; a report on research funding and Natural Sciences and Engineering Research Council of Canada.

Given what appears to a renewed campaign to have germline editing (gene editing which affects all of your descendants) approved in Canada, I might even reach back to a late 2020 CCA report, Research to Reality; somatic gene and engineered cell therapies. it’s not the same as germline editing but gene editing exists on a continuum.

For anyone who wants to see the CCA reports for themselves they can be found here (both in progress and completed).

I’m also going to be paying more attention to how public relations and special interests influence what science is covered and how it’s covered. In doing this 2022 roundup, I noticed that I featured an overview of fusion energy not long before the breakthrough. Indirect influence on this blog?

My post was precipitated by an article by Alex Pasternak in Fast Company. I’m wondering what precipitated Alex Pasternack’s interest in fusion energy since his self-description on the Huffington Post website states this “… focus on the intersections of science, technology, media, politics, and culture. My writing about those and other topics—transportation, design, media, architecture, environment, psychology, art, music … .”

He might simply have received a press release that stimulated his imagination and/or been approached by a communications specialist or publicists with an idea. There’s a reason for why there are so many public relations/media relations jobs and agencies.

Que sera, sera (Whatever will be, will be)

I can confidently predict that 2023 has some surprises in store. I can also confidently predict that the European Union’s big research projects (1B Euros each in funding for the Graphene Flagship and Human Brain Project over a ten year period) will sunset in 2023, ten years after they were first announced in 2013. Unless, the powers that be extend the funding past 2023.

I expect the Canadian quantum community to provide more fodder for me in the form of a 2023 report on Quantum Technologies from the Council of Canadian academies, if nothing else otherwise.

I’ve already featured these 2023 science events but just in case you missed them,

  • 2023 Preview: Bill Nye the Science Guy’s live show and Marvel Avengers S.T.A.T.I.O.N. (Scientific Training And Tactical Intelligence Operative Network) coming to Vancouver (Canada) November 24, 2022 posting
  • September 2023: Auckland, Aotearoa New Zealand set to welcome women in STEM (science, technology, engineering, and mathematics) November 15, 2022 posting

Getting back to this blog, it may not seem like a new year during the first few weeks of 2023 as I have quite the stockpile of draft posts. At this point I have drafts that are dated from June 2022 and expect to be burning through them so as not to fall further behind but will be interspersing them, occasionally, with more current posts.

Most importantly: a big thank you to everyone who drops by and reads (and sometimes even comments) on my posts!!! it’s very much appreciated and on that note: I wish you all the best for 2023.

Science during a time of war in Ukraine

The situation in Kharkiv, Ukraine’s second largest city, has worsened since Stefan Weichert’s article “Professors at Bombed Kharkiv University Struggle to Continue Their Work” was published on June 2, 2022 in The Scientist.,

In professor Nikolay Mchedlov-Petrossyan’s office at V.N. Karazin Kharkiv National University in eastern Ukraine, several windows are covered with wood, letting only a little sunlight in. It’s been this way since March 1 [2022], when a missile hit the nearby administrative center, blowing out the windows on several surrounding buildings. Another attack, this one on March 2, destroyed the university’s economic department. 

Kharkiv has been gravely damaged by Russian shelling, but while many professors were forced to flee the university, some have stayed behind. Mchedlov-Petrossyan, the head of the department of physical chemistry, is one of them. He recently returned to his office, where he teaches online and works on his research as best he can. 

In May [2022], Russian forces withdrew from the edge of Kharkiv, but they remain close by, carrying out daily shellings [sic] of the suburbs. Mchedlov-Petrossyan acknowledges that the risk of death persists, but says he doesn’t want to be controlled by fear. Like other faculty and administrators at the university, he is striving to continue his work and plan for the future amidst the war. 

“I had a PhD student from Iraq several years ago, and he showed me a photo of his native city, Mosul. It was completely destroyed. I hope that we will avoid this fate,” he says. 

V.N. Karazin Kharkiv National University was founded in 1804 and is the second-oldest university in Ukraine. Three Nobel prize winners have attended the university over the years, including Élie Metchnikoff, who won the prize in physiology or medicine in 1908 for his discovery of immune cells that engulf pathogens. 

Now, rector Tetyana Kaganovska fears that the war will deal a massive blow to the university. Not all research can continue on campus, she says, noting that “there are fields of science like physics, chemistry, and biology where . . . scientists cannot do their research online. And now the main task is how to help them to prolong their work,” she says. 

…, in the astronomy department, professors conduct research at home, probing databases to analyze information gleaned from “astronomical satellites, NASA satellites, European satellites, Japanese satellites,” and the Indian Space Research Organisation, says Vadim Kaydash, who heads the department. The department’s large telescope is located outside Kharkiv in an area now controlled by the Russian troops, limiting their ability to collect their own data.

Kaydash adds that the department’s computer equipment has been moved to a basement for protection, similar to what was done during the Second World War. “Astronomers of that generation, our scientific—how to say—fathers and grandfathers, they did the same as I do now. They put all valuable equipment in the same shelter [as] when Germans were here,” he says, pointing out that this department is more than 200 years old and has survived a lot.

Shabanov [Dmytro Shabanov, the deputy dean for science and a biologist] says he’s especially worried that fleeing students and staff will not return. While men aged 18 to 60 are prohibited from leaving the country, “right now, a lot of workers, especially women scientists, are just getting stolen from here to other universities abroad [emphases mine],” he says. “Personally, for them, it is nice because it gives them new perspectives. But if it is prolonged for us, it will be a total breakdown.”

There are 24 universities in Kharkiv, she [Kaganovska] notes, and she expects that some of them will need to close or merge because of the lack of students. Even if the war were to end tomorrow, she says she isn’t sure there would be any money to rebuild the university. So far, Kaganovska has written more than 200 letters to universities in the US asking for financial help and trying to attract attention to the struggle in Kharkiv. In addition to sending financial support, she hopes that American universities will consider the possibility of issuing double diplomas to students from her university who finish their educations [sic] elsewhere

If you have the time, Stefan Weichert’s June 2, 2022 article is well worth reading in its entirety.

Shabanov’s worries about a ‘brain drain’ aren’t unfounded as this May 29, 2022 article by Julia Wong for the Canadian Broadcasting Corporation’s (CBC) online news site hints,

When Iryna Ilienko escaped Ukraine with her daughters, she left behind her research and the 20-year career she had built as a cell biologist in Kyiv before the Russian invasion.

As the war rages on, there is growing concern about the long-lasting effect the conflict will have on the global scientific community — and of the lost opportunities for discovery in the fields of academia, medicine and science in Ukraine.

There are, however, scientists in Canada trying to help researchers displaced by the war establish themselves in a new country, at least for the time being. 

In Edmonton, the co-founder and CEO [Matt Anderson-Baron] of Future Fields, a biotechnology company, had posted online that the lab was interested in hiring Ukrainian researchers who fled due to the conflict.

And several weeks ago, Anderson-Baron hired Ilienko.

“I [was] afraid my science career could be stopped,” she told CBC News.

If you were in Ilienko’s position, what would you do? Try to continue your work or do nothing while you wait to go home? Is Anderson-Baron helping or taking advantage of the situation?

As to whether or not Canadian startups and universities are ‘stealing’ scientists from Ukraine that seems debatable. I don’t think there’s a simple answer and I’m not even sure I’ve asked the right questions.

Upcoming PoetryFilm appearances and events

It’s been a while since I last (in a March 17, 2015 post) featured PoetryFilm. Here’s the latest from the organization’s Oct. 2015 newsletter,

Forthcoming
  • I have been invited to join the International Jury for the CYCLOP International Videopoetry Festival, 20-22 November 2015 (Kiev, Ukraine)
  • PoetryFilm Paradox events, featuring poetry films about love, as part of the BFI LOVE season, 6 and 22 December 2015 (London, UK)
  • PoetryFilm screening + Zata Banks in conversation with filmmaker Roxana Vilk at The Scottish Poetry Library, 3 December 2015 (Scotland, UK)
  • I have been invited to judge the Carbon Culture Review poetry film competition (USA)
  • poetryfilmkanal in Germany recently invited me to write an article about the poetry film artform – it can be read here

FYI, the “I” in the announcement’s text is for Zata Banks, the founder and director of PoetryFilm since 2002.

There’s more about the CYCLOP International Videopoetry Festival in a Sept. 13, 2015 posting on the PoetryFilm website,

*The 5th CYCLOP International Videopoetry Festival will take place on 20 – 22 November 2015 in Ukraine (Kyiv). The festival programme features video poetry-related lectures, workshops, round tables, discussions, presentations of international contests and festivals, as well as a demonstration of the best examples of Ukrainian and world videopoetry, a competitive programme, an awards ceremony and other related projects.

One of the projects is a new Contest for International poetry films within the framework of the CYCLOP festival. The International Jury: Alastair Cook (Filmpoem Festival, Edinburgh, Scotland), Zata Banks (PoetryFilm, London, United Kingdom), Javier Robledo (VideoBardo, Buenos Aires, Argentina), John Bennet (videopoet, USA),  Alice Lyons (Videopoet, Sligo, Ireland), Sigrun Hoellrigl (Art Visuals & Poetry, Vienna, Austria), Lucy English (Liberated Words, Bristol, United Kingdom), Tom Konyves (poet, video producer, educator and a pioneer in the field of videopoetry, British Columbia, Canada), Polina Horodyska (CYCLOP Videopoetry Festival, Kyiv, Ukraine) and Thomas Zandegiacomo (ZEBRA Poetry Film Festival, Berlin, Germany).

*Copy taken from the CYCLOP website

You can find the CYCLOP website here but you will need Ukrainian language reading skills.

I can’t find a website for the Carbon Culture Review poetry film competition or a webpage for it on the Carbon Culture Review website but  here’s what they have to say about themselves on the journal’s About page,

Carbon Culture Review is a journal at the intersection of new literature, art, technology and contemporary culture. We define culture broadly as the values, attitudes, actions and inventions of our global society and its subcultures in our modern age. Carbon Culture Review is distributed in the United States and countries throughout the world by Publisher’s Distribution Group, Inc. and Annas International as well as digitally through 0s&1s, Magzter and Amazon. CCR is a member of Councils of Literary Magazines and Presses and also publishes monthly online issues.

The last item from the announcement that I’m highlighting is Zata’s essay for poetryfilmkanal ,

Poetry films offer creative opportunities for exploring new semiotic modes and for communicating messages and meanings in innovative ways. Poetry films open up new methods of engagement, new audiences, and new means of self-expression, and also provide rich potential for the creation, perception and experience of emotion and meaning.

We are surrounded by communicative signs in literature, art, culture and in the world at large. Whilst words represent one system of communicating, there are many other ways of making meanings, for instance, colour semiotics, typographic design, and haptic, olfactive, gustatory and durational experiences – indeed, a comprehensive list could be infinite. The uses of spoken and written words to communicate represent just two approaches among many. Through using meaning-making systems other than words, by communicating without words, or by not using words alone, we can bypass these direct signifiers and tap directly into pools of meaning, or the signifieds, associated with those words. Different combinations of systems, or modes, can reinforce each other, render meanings more complex and subtle, or contrast with each other to illuminate different perspectives. Powerful juxtapositions, associations and new meanings can therefore emerge.

The essay is a good introduction for beginners and a good refresher for those in need. Btw, I understand Zata got married in March 2015. Congratulations to Zata and Joe!

Russians and Chinese get cozy and talk nano

The Moscow Times has a couple of interesting stories about China and Russia. The first one to catch my eye was this one about Rusnano (Russian Nanotechnologies Corporation) and its invitation to create a joint China-Russian nanotechnology investment fund. From a Sept. 9, 2014 Moscow Times news item,

Rusnano has invited Chinese partners to create a joint fund for investment in nanotechnology, Anatoly Chubais, head of the state technology enterprise, was quoted as saying Tuesday [Sept. 9, 2014] by Prime news agency.

Russia is interested in working with China on nanotechnology as Beijing already invests “gigantic” sums in that sphere, Chubais said.

Perhaps the most interesting piece of news was in the last paragraph of that news item,

Moscow is pivoting toward the east to soften the impact of Western sanctions imposed on Russia over its role in Ukraine. …

Another Sept. 9, 2014 Moscow Times news item expands on the theme of Moscow pivoting east,

Russia and China pledged on Tuesday [Sept. 9, 2014] to settle more bilateral trade in ruble and yuan and to enhance cooperation between banks, First Deputy Prime Minister Igor Shuvalov said, as Moscow seeks to cushion the effects of Western economic sanctions [as a consequence of the situation in the Ukraine].

Russia and China pledged on Tuesday to settle more bilateral trade in ruble and yuan and to enhance cooperation between banks, First Deputy Prime Minister Igor Shuvalov said, as Moscow seeks to cushion the effects of Western economic sanctions.

For China, curtailing [the] dollar’s influence fits well with its ambitions to increase the clout of the yuan and turn it into a global reserve currency one day. With 32 percent of its $4 trillion foreign exchange reserves invested in U.S. government debt, Beijing wants to curb investment risks in dollars.

….

China and Russia signed a $400 billion gas supply deal in May [2014], securing the world’s top energy user a major source of cleaner fuel and opening a new market for Moscow as it risks losing European clients over the Ukraine crisis.

This is an interesting turn of events given that China and Russia (specifically the entity known as Soviet Union) have not always had the friendliest of relations almost going to war in 1969 over territorial disputes (Wikipedia entries: Sino-Soviet border conflict and China-Russian Border).

In any event, China may have its own reasons for turning to Russia at this time. According to Jack Chang of Associated Press (Sept. 11, 2014 article on the American Broadcasting News website), there is a major military buildup taking place in Asia as the biggest defence budget in Japan’s history has been requested, Vietnam doubles military spending, and the Philippines assembles a larger naval presence. In addition, India and South Korea are also investing in their military forces. (I was at a breakfast meeting [scroll down for the speaker’s video] in Jan. 2014 about Canada’s trade relations with Asia when a table companion [who’d worked for the Canadian International Development Agency, knew the Asian region very well, and had visited recently] commented that many countries such as Laos and Cambodia were very tense about China’s resurgence and its plans for the region.)

One final tidbit, this comes at an interesting juncture in the US science enterprise. After many years of seeing funding rise, the US National Nanotechnology Initiative (NNI) saw its 2015 budget request shrink by $200M US from its 2014 budget allotment (first mentioned here in a March 31, 2014 posting).

Sometimes an invitation to create a joint investment fund isn’t just an invitation.

Buckydiamondoids steer electron flow

One doesn’t usually think about buckyballs (Buckminsterfullerenes) and diamondoids as being together in one molecule but that has not stopped scientists from trying to join them and, in this case, successfully. From a Sept. 9, 2014 news item on ScienceDaily,

Scientists have married two unconventional forms of carbon — one shaped like a soccer ball, the other a tiny diamond — to make a molecule that conducts electricity in only one direction. This tiny electronic component, known as a rectifier, could play a key role in shrinking chip components down to the size of molecules to enable faster, more powerful devices.

Here’s an illustration the scientists have provided,

Illustration of a buckydiamondoid molecule under a scanning tunneling microscope (STM). In this study the STM made images of the buckydiamondoids and probed their electronic properties.

Illustration of a buckydiamondoid molecule under a scanning tunneling microscope (STM). In this study the STM made images of the buckydiamondoids and probed their electronic properties.

A Sept. 9, 2014 Stanford University news release by Glenda Chui (also on EurekAlert), which originated the news item, provides some information about this piece of international research along with background information on buckyballs and diamondoids (Note: Links have been removed),

“We wanted to see what new, emergent properties might come out when you put these two ingredients together to create a ‘buckydiamondoid,'” said Hari Manoharan of the Stanford Institute for Materials and Energy Sciences (SIMES) at the U.S. Department of Energy’s SLAC National Accelerator Laboratory. “What we got was basically a one-way valve for conducting electricity – clearly more than the sum of its parts.”

The research team, which included scientists from Stanford University, Belgium, Germany and Ukraine, reported its results Sept. 9 in Nature Communications.

Many electronic circuits have three basic components: a material that conducts electrons; rectifiers, which commonly take the form of diodes, to steer that flow in a single direction; and transistors to switch the flow on and off. Scientists combined two offbeat ingredients – buckyballs and diamondoids – to create the new diode-like component.

Buckyballs – short for buckminsterfullerenes – are hollow carbon spheres whose 1985 discovery earned three scientists a Nobel Prize in chemistry. Diamondoids are tiny linked cages of carbon joined, or bonded, as they are in diamonds, with hydrogen atoms linked to the surface, but weighing less than a billionth of a billionth of a carat. Both are subjects of a lot of research aimed at understanding their properties and finding ways to use them.

In 2007, a team led by researchers from SLAC and Stanford discovered that a single layer of diamondoids on a metal surface can emit and focus electrons into a tiny beam. Manoharan and his colleagues wondered: What would happen if they paired an electron-emitting diamondoid with another molecule that likes to grab electrons? Buckyballs are just that sort of electron-grabbing molecule.

Details are then provided about this specific piece of research (from the Stanford news release),

For this study, diamondoids were produced in the SLAC laboratory of SIMES researchers Jeremy Dahl and Robert Carlson, who are world experts in extracting the tiny diamonds from petroleum. The diamondoids were then shipped to Germany, where chemists at Justus-Liebig University figured out how to attach them to buckyballs.

The resulting buckydiamondoids, which are just a few nanometers long, were tested in SIMES laboratories at Stanford. A team led by graduate student Jason Randel and postdoctoral researcher Francis Niestemski used a scanning tunneling microscope to make images of the hybrid molecules and measure their electronic behavior. They discovered that the hybrid is an excellent rectifier: The electrical current flowing through the molecule was up to 50 times stronger in one direction, from electron-spitting diamondoid to electron-catching buckyball, than in the opposite direction. This is something neither component can do on its own.

While this is not the first molecular rectifier ever invented, it’s the first one made from just carbon and hydrogen, a simplicity researchers find appealing, said Manoharan, who is an associate professor of physics at Stanford. The next step, he said, is to see if transistors can be constructed from the same basic ingredients.

“Buckyballs are easy to make – they can be isolated from soot – and the type of diamondoid we used here, which consists of two tiny cages, can be purchased commercially,” he said. “And now that our colleagues in Germany have figured out how to bind them together, others can follow the recipe. So while our research was aimed at gaining fundamental insights about a novel hybrid molecule, it could lead to advances that help make molecular electronics a reality.”

Other research collaborators came from the Catholic University of Louvain in Belgium and Kiev Polytechnic Institute in Ukraine. The primary funding for the work came from U.S. the Department of Energy Office of Science (Basic Energy Sciences, Materials Sciences and Engineering Divisions).

Here’s a link to and a citation for the paper,

Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids by Jason C. Randel, Francis C. Niestemski,    Andrés R. Botello-Mendez, Warren Mar, Georges Ndabashimiye, Sorin Melinte, Jeremy E. P. Dahl, Robert M. K. Carlson, Ekaterina D. Butova, Andrey A. Fokin, Peter R. Schreiner, Jean-Christophe Charlier & Hari C. Manoharan. Nature Communications 5, Article number: 4877 doi:10.1038/ncomms5877 Published 09 September 2014

This paper is open access. The scientists provided not only a standard illustration but a pretty picture of the buckydiamondoid,

Caption: An international team led by researchers at SLAC National Accelerator Laboratory and Stanford University joined two offbeat carbon molecules -- diamondoids, the square cages at left, and buckyballs, the soccer-ball shapes at right -- to create "buckydiamondoids," center. These hybrid molecules function as rectifiers, conducting electrons in only one direction, and could help pave the way to molecular electronic devices. Credit: Manoharan Lab/Stanford University

Caption: An international team led by researchers at SLAC National Accelerator Laboratory and Stanford University joined two offbeat carbon molecules — diamondoids, the square cages at left, and buckyballs, the soccer-ball shapes at right — to create “buckydiamondoids,” center. These hybrid molecules function as rectifiers, conducting electrons in only one direction, and could help pave the way to molecular electronic devices.
Credit: Manoharan Lab/Stanford University

Nanotechnology in the Security Systems; NATO Science for Peace and Security workshops

An Aug. 19, 2014 news item on Nanowerk features a new publication from NATO (North Atlantic Treaty Organization) which seems to be the outcome of a 2013 workshop, Note: A link has been removed,

The topics discussed at the NATO Advanced Research Workshop “Nanotechnology in the Security Systems” included nanophysics, nanotechnology, nanomaterials, sensors, biosensors security systems, explosive detection.

A new book in the NATO Science for Peace and Security Series C: Environmental Security covers the findings from this workshop: Nanotechnology in the Security Systems.

The 2013 workshop (information about the upcoming 2014 workshop after this) took place in the Ukraine, which seems strangely ironic given the current situation where Russia has ‘intervened’ in the Crimea and where one group or another shot down an Air Malaysia flight over Ukraine airspace,

NATO ADVANCED RESEARCH WORKSHOP
29 September – 3 October 2013 ,
YALTA , UKRAINE

NANOTECHNOLOGY IN THE SECURITY SYSTEMS (NSS-2013)

(http://www.natonano.com)

CO-DIRECTORS:
Bonca Janez (J.Stefan Institute, Ljublyana, Slovenia)
Kruchinin Sergei (Bogolyubov Institute for Theoretical Physics, Ukraine)

INTERNATIONAL COMMITTEE :
Balatsky Alexandr (Los Alamos National laboratory,USA )
Logan David (Oxford University,UK)

ARW is supported by NATO.

Co-sponsor is Ministry of Ukraine for Education and Science.

The main objective of this Advanced Research Workshop is to bring together leading experts on key current topics in nanotechnology ,security systems and sensor and biosensor in order to review recent developments and to outline new directions for nanotechnology research. Topids will include physics of graphene, nanomaterials, CRBN agents.

Time and Location

The ARW will be held from 29 September – 3 October 2013 at the “Yalta” Hotel (three star) in Yalta (Crimea, Ukraine). Yalta is a world-famous health resort and the centre of a large resort area stretchening for more than 70 km along the southern coast of the Crimea. [emphasis mine]

All partipants of the ARW will be accommodated in the hotel. There is auditorium seating 100, which is fitted with modern acoustic equipment. Breakfast, lunch and dinner will be served for all participants. At the hotel there is an indoor swimming pool with heated sea water.

Participants may travel to the ARW from Kiev international airport. You can use the regular flight (Boeing) Kiev – Simferopol(Yalta) – Kiev, leaving Kiev on September 29 at 18:45 and leaving Simferopol on October 3 at 21:10. The price of tickets Kiev-Simferopol-Kiev is 160 EURO. There are direct flights from many Cities to Simferopol.

This year’s workshop will be held in Turkey, From the Worcester Polytechnic Institute (US) website’s NATO Advanced Research Workshop in Nanotechnology (2014) webpage,

NATO Advanced Research Workshop in Nanotechnology to Aid Chemical and Biological Defence

September 22-26, 2014

Rixos Downtown Hotel

Antalya, Turkey

The NATO Science for Peace and Security Program has identified Defense against CBRN Agents and Environmental Security as key priority areas.  Nanomaterials and nanotechnology can play a vital role in the detection and decontamination of chemical and biological threat agents. They also can be used in protective technologies. The ability to control matter on an atomic and/or molecular scale provides new opportunities to use materials. The area of sensing is a particularly relevant example in which nanotechnology can be useful, by exploiting the unique properties and phenomena exerted by matter at the nano-scale. Rather than just thinking in terms of miniaturization of sensors and devices, it is possible to imagine entirely new technologies that are developed to exploit novel nano-scale phenomena. Combining nanotechnology with biomolecular systems, we have the power of nanobiotechnology to achieve improved detection, decontamination and protection against chemical and bio-agents.

The purpose of this ARW will be to bring together a diverse group of international civilian researchers focused on nanoscience and nanotechnology problems that are relevant to chemical and biological defence needs, in order to share the state-of-the-art in the field, identify accomplishments, and to discuss the challenges and opportunities present in the field. The work discussed here will form a blueprint for researchers in the area of nanotechnology for chemical and biological defense, especially for future research in detection, decontamination and protection.

Confirmed Invited Speakers:
Professor Terri Camesano     Worcester Polytechnic Institute     USA
Dr. N. Chanisvili     IBMV Tbilisi     Georgia [Country]
Dr. Ario DeMarco     University of Nova Gorica     Slovenia
Dr. Mario Boehme     TU Darmstadt     Germany
Dr. Audrey Beaussart     Université Catholique de Louvain     Belgium
Dr. Jêrôme Duval     Ecole Nationales Supérieure de Géologie     France
Dr. Mladen Franko     University of Nova Gorica     Slovenia
Professor Perena Gouma     SUNY Stony Brook     USA
Dr. Roland Grunow     Robert Koch Institut     Germany
Professor Giorgi Kvesitadze   Tbilisi State University and Georgia Technical University    Georgia
Professor Raj Mutharasan     Drexel University     USA
Dr. Michele Penza     ENEA, Brindisi     Italy
Dr. Irena Ciglenecki-Jusic     Institut Ruđer Bošković     Croatia
Professor Sadunishvili Tinatin     Durmishidze Institute of Biochemistry and Biotechnology, Agrarian University of Georgia     Georgia
Dr. Polonca Trebse     University of Nova Gorica     Slovenia
Professor Monique van Hoek     George Mason University     USA
Professor David Wright     Vanderbilt University     USA
Dr Ahmet Ozgur Yazaydin     University College London     UK

*******This workshop is supported by the NATO Science for Peace and Security Programme

*******Please note that all scholarships for financial support for the conference are full.

Contact Professor Terri A. Camesano, terric@wpi.edu. for information* about the scholarships.

As for the book produced from the 2013 (?) workshop, here’s a link for purchasing,

Nanotechnology in the Security Systems (NATO Science for Peace and Security Series C: Environmental Security) Paperback – September 14, 2014 by Janez Bonca (Editor), Sergei Kruchinin (Editor)

ISBN-13: 978-9401790529 ISBN-10: 9401790523 Edition: 2015th

If you are applying for a scholarship to the 2014 workshop, good luck!

* ‘informatio’ corrected to ‘information’ on Nov. 21,2014.

Ukrainians ease communication with $50 gloves that convert sign language to speech

Strictly speaking or otherwise, this is not a ‘nano’ story but it does speak (wordplay intended) to some longstanding interests of mine. Christina Chaey in her July 10, 2012 article for Fast Company notes,

More than 275 million hearing-impaired people are unable to use speech to communicate. Sign language is one solution, but it’s only as helpful as the number of people who know the language. That problem is what drove three Ukrainian students to develop EnableTalk, a pair of sensory gloves that help bridge that communication gap by turning sign language into speech.

The three-programmer team behind EnableTalk, who were inspired by interactions with hearing-impaired athletes at their school, took the $25,000 top prize in software design at Microsoft’s 10th annual Imagine Cup. The decade-old tech competition challenges students to design innovative technology across various categories including game design, Kinect, the Windows Phone, and Windows 8.

Bob Yirka in his July 11, 2012 article about Enable Talk for physorg.com provides some insight on why the team chose their project,

The team said the idea for their system came from the frustration they experienced when trying to communicate with hearing impaired athletes at their school. … The problem with sign language they point out, is that most people who can hear never learn it, thus those with hearing impairments are only able to communicate with a small part of the general population which generally includes those who cannot hear and those in their immediate circle.

The quadsquad receiving their $25,000US price,

downloaded from http://www.microsoft.com/en-us/news/events/imaginecup/

Yirka offers the best description of the technology that I was able to find (Note: I have removed links),

The gloves work through the use of five hardware components: flex sensors in the gloves record finger movements and a main controller coordinates information from an accelerometer/compass, an accelerometer/gyroscope, a microcontroller and a Bluetooth module. Windows mobile software was used to convert the gesture commands to sound signals for broadcast by the Bluetooth module. The sound waves are converted to voice using Microsoft Speech and Bing APIs running on a Smartphone, which ultimately serves as the voice for the person using the system.

For even more technical details, you can go to the Documentation page on the Enable Talk website.

The quad squad’s Imagine Cup presentation video is pretty glitzy, from the Enable Talk Gallery page,


I was surprised that everyone in those ‘street scenes’ seems to be about the same age and social class, that the streets are so clean, and, coming from the West Coast of Canada, that everyone is the same colour.

ETA July 12, 2012: The article by Christina Chaey indicated the gloves would cost $50 but I notice the video indicates a $200 price tag.  Perhaps the $50 price is what they’re hoping to charge after widespread commercialization?

Bot bot here and bot bot there and a bot bot everywhere but not Old Macdonald’s Farm

The Materials Research Society (MRS) has a Fall 2011 meeting in Boston, Massachusetts scheduled for Nov. 28, 2011 to Dec. 2, 2011, which will feature amongst other exhibits,  ‘mibots’. From the Nov. 9, 2011 news item on Azonano,

…  new “miBots” from Imina Technologies (Ecublens, Switzerland).

.. are more than nanomanipulators. Unlike conventional systems, they are virtually untethered and move independently. Working individually or in groups, they can be fitted with a variety of tools such as grippers, probes, and optical fibers so that, in addition to manipulating the sample, they can illuminate a nano workspace and conduct force or electrical measurements. Vacuum ready, miBots’ proprietary monolithic structure makes them robust, mechanically and thermally stable, and less sensitive to vibration.

Imina Technologies has engineered a variety of stage options for these novel mini robots. For conventional installation on inverted light microscopes (LM), SEMs, or focused-ion beam systems (FIBs), the “miBase” provides control and maneuvering room for up to four miBots. Special apertures accommodate illumination for the LM and stubs for SEMs, and multiple coaxial I/O connections enable electrical characterization and testing.

You can find out more about Imina Technologies and their ‘mibots’ here.

For a completely different kind of bot, a company named Nanobotmodels, situated in the Ukraine, offers illustration, animations, and presentation materials. From the company’s About page,

Our company Nanobotmodels was founded in 2007 and its goal is todevelop modern art-science-technology intersections. Nanotechnology boosts medicine, engineering, biotechnology, electronics soon, so artwork and vision of the nanofuture will be very useful.

We are making hi-end nanotechnology and nanomedicine illustration and animation. You can imagine any interesting-to-you animation, illustration or presentation materials, and we can make them real.

The level of detail in each medical illustration can be used to simplify complex structures and make them visually attractive.

Our clients include the largest medicine photobanks, nanotechnology magazines and publications, educational organization, and private companies.

Company was founded by CEO Svidinenko Yuriy, futurist and nanotechnology artist.

Our team consists of modern artists, modelers and nanotechnology scientists.

Here’s a bit more about the company’s work in medical illustration from a Nov. 11, 2011 news item at Nanotechnology Now,

One heat therapy to destroy cancer tumors using nanoparticles is called AuroShell™. The AuroShell™ nanoparticles circulate through a patient’s bloodstream, exiting where the blood vessels are leaking at the site of cancer tumors. Once the nanoparticles accumulate at the tumor the AuroShell™ nanoparticles are used to concentrate the heat from infrared light to destroy cancer cells with minimal damage to surrounding healthy cells. Nanobotmodels company provides good visual illustration of this process. Nanospectra Biosciences has developed such a treatment using AuroShell™ that has been approved for a pilot trial with human patients.

Gold nanoparticles can absorb different frequencies of light, depending on their shape. Rod-shaped particles absorb light at near-infrared frequency; this light heats the rods but passes harmlessly through human tissue. Sphere-shaped nanoparticles absorb laser radiation and passes harmlessly through human tissue too.

Nanobotmodels Company provides visual illustration of nanoparticle cancer treatment. Our goal – make realistic vision of modern drug delivery technology.

I found this sample on the company’s website gallery,

Illustration from Nanobotmodels website: Nanomechanical robots attacking cancer cell

You can find more artwork here.

Those are all the bots for today.