Tag Archives: Council of Canadian Academies (CCA)

Global gathering in Rwanda for 5th International Conference on Governmental Science Advice (INGSA2024): “The Transformation Imperative”

The 4th gathering was in Montréal, Québec, Canada (as per my August 31, 2021 posting). Unfortunately,this is one of those times where I’m late to the party. The 5th International Conference on Governmental Science Advice (INGSA2024) ran from May 1 – 2, 2024 bu there are some satellite events taking place over the next few days.

I’m featuring this somewhat stale news because it offers a more global perspective on science policy and government advisors, from the May 1, 2024 International Network for Government Science Advice (INGSA) news release (PDF and on EurekAlert),

What? 5th International Conference on Governmental Science Advice, INGSA2024, marking the 10th Anniversary of the creation of the International Network for Governmental Science Advice (INGSA) & first meeting held in the global south.

Where?   Kigali Convention Center, Rwanda: https://ingsa2024.squarespace.com/

When?    1 – 2 May, 2024.

Context: One of the largest independent gatherings of thought- and practice-leaders in governmental science advice, research funding, multi-lateral institutions, academia, science communication and diplomacy is taking place in Kigali, Rwanda. Organised by Prof Rémi Quirion, Chief Scientist of Québec and President of the International Network for Governmental Science Advice (INGSA), speakers from 39 countries[1] from Brazil to Burkina Faso and from Ireland to Indonesia, plus over 300 delegates from 65 countries, will spotlight what is really at stake in the relationship between science, societies and policy-making, during times of crisis and routine.

From the air we breathe, the cars we drive, and the Artificial Intelligence we use, to the medical treatments or the vaccines we take, and the education we provide to children, this relationship, and the decisions it can influence, matter immensely. In our post-Covid, climate-shifted, and digitally-evolving world, the importance of robust knowledge in policy-making is more pronounced than ever. This imperative is accompanied by growing complexities that demand attention. INGSA’s two-day gathering strives to both examine and empower inclusion and diversity as keystones in how we approach all-things Science Advice and Science Diplomacy to meet these local-to-global challenges.

Held previously in Auckland 2014, Brussels 2016, Tokyo 2018 and Montréal 2021, Kigali 2024 organisers have made it a priority to involve more diverse speakers from developing countries and to broaden the thematic scope. Examining the complex interactions between scientists, public policy and diplomatic relations at local, national, regional and international levels, especially in times of crisis, the overarching theme is: “The Transformation Imperative”.

The main conference programme (see link below)will scrutinise everything from case-studies outlining STI funding tips, successes and failures in our advisory systems, plus regional to global initiatives to better connect them, to how digital technologies and A.I. are reshaping the profession itself.

INGSA2024 is also initiating and hosting a range of independent side-events that, in themselves, act as major meeting and rallying points that partners and attending delegates are encouraged to maximise. These include, amongst others, events organised by the Foreign Ministries Science & Technology Advice Network (FMSTAN); the International Public Policy Observatory Roundtable (IPPO); the High-Level Dialogue on the Future of Science Diplomacy (co-organised by the American Association for the Advancement of Science (AAAS), the European Commission, the Geneva Science & Diplomacy Anticipator (GESDA), and The Royal Society); the Organisation of Southern Cooperation (OSC)meeting on ‘Bridging Worlds of Knowledge – Promoting Endogenous Knowledge Development;the Science for Africa Foundation, University of Oxford Pandemic Sciences Institute’s meeting on ‘Translating Research Into Policy and Practice’; and the African Institute of Mathematical Sciences (AIMS) ‘World Build Simulation Training on Quantum Technology’ with INGSA and GESDA. INGSA will also host its own internal strategy Global Chapter & Division Meetings.   

Prof Rémi Quirion, Conference Co-Chair, Chief Scientist of Québec and President of INGSA, has said that:

“For those of us who believe wholeheartedly in evidence and the integrity of science, recent years have been challenging. Mis- and disinformation can spread like a virus. So positive developments like our gathering here in Rwanda are even more critical. The importance of open science and access to data to better inform scientific integration and the collective action we now need, has never been more pressing. Our shared UN sustainable development goals play out at national and local levels. Cities and municipalities bear the brunt of climate change, but also can drive the solutions. I am excited to see and hear first-hand how the global south is increasingly at the forefront of these efforts, and to help catalyse new ways to support this. I have no doubt that INGSA’s efforts and the Kigali conference, which is co-led with the Rwandan Ministry of Education and the University of Rwanda, will act as a carrier-wave for greater engagement. I hope we will see new global collaborations and actions that will be remembered as having first taken root at INGSA2024”.

Hon. Gaspard Twagirayezu, Minister of Education of Rwanda has lent his support to the INGSA conference, saying:

“We are proud to see the INSGA conference come to Rwanda, as we are at a turning point in our management of longer-term challenges that affect us all. Issues that were considered marginal even five or ten years ago are today rightly seen as central to our social, environmental, and economic wellbeing. We are aware of how rapid scientific advances are generating enormous public interest, but we also must build the capabilities to absorb, generate and critically consider new knowledge and technologies. Overcoming current crisis and future challenges requires global coordination in science advice, and INGSA is well positioned to carry out this important work. It makes me particularly proud that INGSA’s Africa Chapter has chosen our capital Kigali as it’s pan-African base. Rwanda and Africa can benefit greatly from this collaboration.”

Ass. Prof.  Didas Kayihura Muganga, Vice-Chancellor, University of Rwanda, stated:

“What this conference shows is that grass-roots citizens in Rwanda, across Africa and Worldwide can no longer be treated as simple statistics or passive bystanders. Citizens and communities are rightfully demanding greater transparency and accountability especially about science and technology. Ensuring, and demonstrating, that decisions are informed by robust evidence is an important step.  But we must also ensure that the evidence is meaningful to our context and our population. Complex problems arise from a multiplicity of factors, so we need greater diversity of perspectives to help address them.   This is what is changing before our very eyes. For some it is climate, biodiversity or energy supply that matters most, for others it remains access to basic education and public health. Regardless, all exemplify humanity’s interdependence.”

Daan du Toit, acting Director-General of the Department of Science & Innovation of the Government of South Africa and Programme Committee Member commented:

INGSA has long helped build and elevate open and ongoing public and policy dialogue about the role of robust evidence in sound policy making. But now, the conversation is deepening to critically consider the scope and breadth of evidence, what evidence, whose evidence and who has access to the evidence? Operating on all continents, INGSA demonstrates the value of a well-networked community of emerging and experienced practitioners and academics working at the interfaces between science, societies and public policy. We were involved in its creation in Auckland in 2014, and have stayed close and applaud the decision to bring this 5th International Biennial Meeting to Africa. Learning from each other, we can help bring a wider variety of robust knowledge more centrally into policy-making. That is why in 2022 we supported a start-up initiative based in Pretoria called the Science Diplomacy Capital for Africa (SDCfA). The energy shown in the set-up of this meeting demonstrates our potential as Africans to do so much more together”.

INGSA-Africa’s Regional Chapter

INGSA2024 is very much ‘coming home’ and represents the first time that this biennial event is being co-hosted by a Regional Chapter. In February 2016, INGSA announced the creation of the INGSA-Africa Regional Chapter, which held its first workshop in Hermanus, South Africa. The Chapter has since made great strides in engaging francophone Africa, organising INGSA’s first French-language workshop in Dakar, Senegal in 2017 and a bi-lingual meeting as a side-event of the World Science Forum 2022, Cape Town.  The Chapter’s decentralised virtual governance structure means that it embraces the continent, but new initiatives, like the Kigali Training Hub are set to become a pivotal player in the development of evidence-to-policy ecosystems across Africa.

Dr M. Oladoyin Odubanjo, Conference Co-Chair and Chair of INGSA-Africa, outlined that:

“As a public health physician and current Executive Secretary of the Nigerian Academy of Sciences (NAS), responsible for providing scientific advice to policy-makers, I have learnt that science and politics share common features. Both operate at the boundaries of knowledge and uncertainty, but they approach problems differently. Scientists question and challenge our assumptions, constantly searching for empiric evidence to determine the best options. In contrast, politicians are most often guided by the needs or demands of voters and constituencies, and by ideology. Our INGSA-Africa Chapter is working at the nexus of both communities and we encourage everybody to get involved. Hosting this conference in Kigali is like a shot in the arm that can only lead us on to even bigger and brighter things.”

Sir Peter Gluckman, President of the International Science Council, and founding chair of INGSA mentioned: “Good science advice is critical to decision making at any level from local to global. It helps decision makers understand the evidence for or against, and the implications of any choice they make. In that way science advice makes it more likely that decision makers will make better decisions. INGSA as the global capacity building platform has a critical role to play in ensuring the quality of science policy interface.”

Strength in numbers

What makes the 5th edition of this biennial event stand out is the perhaps the novel range of speakers from all continents working at the boundary between science, society and policy willing to make their voices heard. More information on Parallel Sessions organisers as well as speakers can be found on the website.

About INGSA

Founded in 2014 with regional chapters in Africa, Asia and Latin America and the Caribbean, and key partnerships in Europe and North America, INGSA has quicky established an important reputation as a collaborative platform for policy exchange, capacity building and operational research across diverse global science advisory organisations and national systems. INGSA is a free community of peer support and practice with over 6,000 members globally. Science communicators and members of the media are warmly welcomed to join for free.

Through workshops, conferences and a growing catalogue of tools and guidance, the network aims to enhance the global science-policy interface to improve the potential for evidence-informed policy formation at sub-national, national and transnational levels. INGSA operates as an affiliated body of the International Science Council. INGSA’s secretariat is based at the University of Auckland in New Zealand, while the office of the President is hosted at the Fonds de Recherche de Quebec in Montreal, which has also launched the Réseau francophone international en conseil scientifique (RFICS), which mandate is towards capacity reinforcement in science advice in the Francophonie.

INGSA2024 Sponsors

As always, INGSA organized a highly accessible and inclusive conference by not charging a registration fee. Philanthropic support from many sponsors made the conference possible. Special recognition is made to the Fonds de recherche du Québec, the Rwanda Ministry of Education as well as the University of Rwanda. The full list of donors is available on the INGSA2024 website (link below).

[1] Australia, Belgium, Brazil, Cameroon, Canada, Chile, China, Costa Rica, Cote d’Ivoire, Denmark, Egypt, Ethiopia, Finland, France, Germany, Ghana, India, Ireland, Italy, Jamaica, Japan, Kenya, Lebanon, Malawi, Malaysia, Mauritius, Mexico, New Zealand, Nigeria, Portugal, Rwanda, Saudi Arabia, South Africa, Spain, Sri Lanka, Uganda, UK, USA, Zimbabwe

Satellite session are taking place today (May 3, 2024),

  • High-Level Dialogue on the Future of Science
  • Bridging Worlds of Knowledge
  • Translating Research into Policy and Practice
  • Quantum Technology in Africa

The last session on the list, “Quantum Technology …,” is a science diplomacy role-playing workshop. (It’s of particular interest to me as the Council of Canadian Academies (CCA) released a report, Quantum Potential, in Fall 2023 and about which I’m still hoping to write a commentary.)

Even though the sessions have already taken place,it’s worth taking a look at the conference programme and the satellite events just to get a sense of the global breadth of interest in this work. Here’s the INGSA2024 website.

Last call for Science and Innovation in a Time of Transformation—the Canadian Science Policy Conference (November 13 – 15, 2023)

Unless something really exciting happens, this will be my last post about the upcoming 2023 (and 15th annual) Canadian Science Policy Conference. I will be highlighting a few of the sessions but, first, there’s this from an October 26, 2023 Canadian Science Policy Centre announcement (received via email),

Only Two Weeks Left to Register for CSPC [Canadian Science Policy Conference] 2023!

Only two weeks left to register for CSPC 2023! The deadline to register is Friday, November 10th! With the overarching theme of ‘Science and Innovation in a Time of Transformation’ CSPC 2023 expects more than 1000 participants, 300+ speakers in 50+ panel sessions, and will include a spectacular Gala Dinner featuring its award ceremony which has become a signature annual event to celebrate Canadian science and innovation policy achievements. 

CSPC 2023 will feature more than 300 amazing speakers. To view the list of speakers, click here, and here are some of the international speakers: 

Multiple ticket discounts are also available. CSPC offers a 5% discount on groups of 5-9 registrations and a 10% discount for 10 registrations or more. Please note GROUP REGISTRATION DISCOUNTS are available until Friday, November 10th. Please contact conference@sciencepolicy.ca for more information.

Register now by clicking the button below!
Register Now

View the CSPC 2023 Program and Speakers List!

The biggest and most comprehensive annual Science and Innovation Policy Conference, CSPC 2023, is fast approaching! Explore more than 60 concurrent and plenary panel sessions. Navigate the CSPC 2023 Program: the Interactive Agenda is available here, and the Agenda at a Glance can be viewed here.

There are four sessions that seem particularly interesting to me. First, from the session webpage,

804 – Discussion between Dr. Mona Nemer and Dr. Sethuraman Panchanathan, moderated by Dr. Alejandro Adem

Monday, November 13, 20231:00 PM – 2:00 PM

This year’s CSPC opening panel will bring together two of North America’s most recognized science leaders for a discussion about their experience in the Canadian and U.S research landscape. Panelists will discuss the importance of societally-relevant science, broadening participation in science, the increasing need for open science, and science & technology in green economic development, as well as their vision for the role of science in international relations.

Organized by: Canada Research Coordinating Committee

Speakers

Dr. Alejandro Adem
President of the Natural Sciences and Engineering Research Council of Canada (NSERC)

Dr. Mona Nemer
Canada’s Chief Science Advisor, Government of Canada

Dr. Sethuraman Panchanathan
Computer Scientist and Engineer
15th Director of the U.S. National Science Foundation (NSF)

Second, from the session webpage,

901 – The new challenges of information in parliaments

Monday, November 13, 20232:30 PM – 4:00 PM

In a democratic environment, members of parliament work with information gathered from parliamentary staff, media, lobbies and experts. With the aim of maintaining a strong democracy, parliaments around the world have developed mechanisms to facilitate access to high-quality information for elected representatives, with variations according to continent, language and culture. This panel proposes an overview of these mechanisms including a discussion on emerging issues impacting them, such as the integration of artificial intelligence and the risks of digital interference in democratic processes.

Organized by: Fonds de recherche du Quebec

Speakers

Interestingly, the Canadian Science Policy Centre recently published a research report titled “Survey of Parliamentarians; Impact of the COVID-19 Pandemic on the Use of Science in Policy Making,” you can my comments about it in my October 13, 2023 posting.

Third, from the session webpage,

277 – Science for Social Justice: Advancing the agenda set by the 2022 Cape Town World Science Forum

Tuesday, November 14, 202310:30 AM – 12:00 PM

South Africa had hosted the 10th World Science Forum (WSF), a platform for global science policy dialogue, in Cape Town in December 2022. The WSF is co-organised by a partnership involving global science organisations including UNESCO, the AAAS and the International Science Council, and Hungarian Academy of Science. The theme of the 2022 WSF was “Science for Social Justice.” During a week of intense debate more than 3000 participants from across the world debated the role of science in advancing social justice. This session will review the outcomes of the Forum, including the WSF Declaration on Science for Social Justice.

Organized by: South African Department of Science and Innovation

Speakers

The fourth and final session to be mentioned here, from the session webpage,

910 – Canada’s Quantum potential : critical partnerships and public policy to advance Canada’s leadership in Quantum science and technology.

Tuesday, November 14, 202310:30 AM – 12:00 PM

Canada’s early commitment to invest in Quantum research and technology has made our nation one of the global leaders in that field, and the $360 million earmarked over a seven-year period to foster the National Quantum Strategy (NQS) is a testament to Canada’s leadership ambition in the future. This panel discussion will address the ever-evolving field of quantum science and technology and offer a unique opportunity to explore its policy dimensions including the current state of the field, its advancements and potential applications, and the overall impact of quantum innovations across various sectors. It will explore the transformative impact of quantum science and technologies, and the quantum revolution 2.0 on society, from diverse expert perspectives, using examples such as the impact of quantum computing on drug discovery or financial modelling, as well as discussing the ethical considerations and potential for misuse in surveillance or disinformation campaigns. This panel will examine a variety of policy and social implications of Quantum technologies, including the impact of foundational research and training, approaches to support Quantum industries at their development stages, risks, obstacles to commercialization, and opportunities for better inclusion.

Organized by: University of Ottawa

Speakers

Dr. Khabat Heshami
Research Officer at the National Research Council Canada [NRC]

Jeff Kinder
Project Director
Council of Canadian Academies

Professor Ebrahim Karimi
Co-Director the Nexus for Quantum Technologies Research Institute
University of Ottawa

Professor Ghassan Jabbour
Canada Research Chair in Engineered Advanced Materials and Devices
University of Ottawa – Faculty of Engineering

Rafal Janik
Chief Operating Officer
Xanadu

Tina Dekker
Research Fellow of the University of Ottawa Research Chair in Technology and Society

A few comments

I have highlighted speakers from two of the sessions as I’m going to make a few comments. Dr. Mona Nemer who’s part of the opening panel discussion and Canada’s Chief Science Advisor and Dr. Mehrdad Hariri, the founder and current Chief Executive Officer (CEO) for Canadian Science Policy Centre, which organizes the conference, are both from a region that is experiencing war.

I imagine this is a particularly difficult time for many people in Canada whose family and friends are from the various communities in that region. Along with many others, I hope one day there is peace for everyone. For anyone who might want a little insight into the issues, there’s an October 15, 2023 CBC (Canadian Broadcasting Corporation) radio programme segement on ‘The Sunday Magazine with Piya Chattopadhyay’,

How to maintain solidarity in Canadian Jewish and Palestinian communities

The events in Israel and Gaza in the last week have sparked high levels of grief, pain and outrage, deepening long-simmering divides in the region and closer to home. For years, Raja Khouri and Jeffrey Wilkinson have embarked on a joint project to bring North American Palestinian and Jewish communities together. They join Piya Chattopadhyay to discuss how the events of the last week are challenging that ongoing mission in Canada… and how to strive for solidarity in a time of grief and trauma.

You can find the almost 22 mins. programme here. Khouri’s and Wilkinson’s book, “The Wall Between: What Jews and Palestinians Don’t Want to Know about Each Other” was published on October 3, 2023 just days before the initial Hamas attacks,

The Wall Between is a book about the wall that exists between Jewish and Palestinian communities in the Diaspora. Distrust, enmity, and hate are common currencies. They manifest at university campuses, schools and school boards, at political events, on social media, and in academic circles. For Jews, Israel must exist; for Palestinians, the historic injustice being committed since 1948 must be reversed. Neither wants to know why the Other cannot budge on these issues. The wall is up.

These responses emanate, primarily, from the two “metanarratives” of Jews and Palestinians: the Holocaust and the Nakba. Virtually every response to the struggle, from a member of either community, can be traced back to issues of identity, trauma, and victimhood as they relate to their respective metanarrative. This book examines the role that propaganda and disinformation play in cementing trauma-induced fears for the purpose of making the task of humanizing and acknowledging the Other not just difficult, but almost inconceivable. The authors utilize recent cognitive research on the psychological and social barriers that keep Jews and Palestinians in their camps, walled off from each other. They present a clear way through, one that is justice-centered, rather than trauma-and propaganda-driven.

The authors have lived these principles and traveled this journey, away from their tribal traumas, through embracing the principles of justice. They insist that commitment to the Other means grappling with seemingly incompatible narratives until shared values are decided and acted upon. This book is a call to justice that challenges the status quo of Zionism while at the same time dealing directly with the complex histories that have created the situation today. The book is both realistic and hopeful—a guide for anyone who is open to new possibilities within the Israel-Palestine discourse in the West.

From the publisher’s author descriptions, “Jeffrey J. Wilkinson, PhD, is an American Jew who lives in Canada.” From his Wikipedia entry, “Raja G. Khouri is a Lebanese born Arab-Canadian..”

Also, thank you to Dr. Nemer and Dr. Hariri for the science policy work they’ve done here in Canada and their efforts to expand our discussions.

On a much lighter note, the ‘quantum session’ panel is dominated by academics from the University of Ottawa, a policy wonk from Ottawa, and a representative from a company based in Toronto (approximately 450 km from Ottawa by road). Couldn’t the panel organizers have made some effort to widen geographical representation? This seems particularly odd since the policy wonk (Jeff Kinder) is currently working with the Canadian Council of Academies’ Expert Panel on the Responsible Adoption of Quantum Technologies, which does have wider geographical representation.

This CSPC 2023 panel also seems to be another example of what appears to be a kind of rivalry between D-Wave Systems (based in the Vancouver area) and Xanadu Quantum Technologies (Toronto-based) or perhaps another east-west Canada rivalry. See my May 4, 2021 posting (scroll down to the ‘National Quantum Strategy’ subhead) for an overview of sorts of the seeming rivalry; there’s my July 26, 2022 posting for speculation about Canada’s quantum scene and what appears to be an east/west divide; and for a very brief comment in my April 17, 2023 posting (scroll down to the ‘The quantum crew’ subhead.)

As for the conference itself, there’s been a significant increase in conference registration fees this year (see my July 28, 203 posting) and, for the insatiable, there’s my March 29, 2023 posting featuring the call for submissions and topic streams.

Canadian Science Policy Centre panel on Sept. 6, 2023 [date changed to October 4, 2023]: Science, technology and innovation (STI) between Brazil and Canada plus a quantum panel on Sept. 13, 2023

In an August 17, 2023 Canadian Science Policy Centre (CSPC) newsletter (received via email), they’ve announced a panel about science and technology opportunities with a country we don’t usually talk about much in that context (nice to see a broader, not the US and not a European or Commonwealth country, approach being taken),

Canada-Brazil Cooperation and Collaboration in STI [Science, Technology, and Innovation]

This virtual panel aims to discuss the ongoing Science, Technology, and Innovation (STI) cooperation between Brazil and Canada, along with the potential for furthering this relationship. The focus will encompass strategic areas of contact, ongoing projects, and scholarship opportunities. It is pertinent to reflect on the science diplomacy efforts of each country and their reciprocal influence. Additionally, the panel aims to explore how Canada engages with developing countries in terms of STI.

Click the button below to register for the upcoming virtual panel!

Register Here

Date: Sept. 6 [2023] October 4, 2023
Time: 1:00 pm EDT

Here are the speakers (from the CSPC’s Canada-Brazil Cooperation and Collaboration in STI event page),

Fernanda de Negri
Moderator
Director of Studies and Sectoral Policies of Innovation, Regulation and Infrastructure at the Institute for Applied Economic Research (IPEA), Brazil
See Bio

Alejandro Adem
President of Natural Sciences and Engineering Research Council of Canada – NSERC
See Bio

Ambassador Emmanuel Kamarianakis
Canadian Embassy in Canada
See Bio

Ambassador Ademar Seabra da Cruz Jr.
Ministry of Foreign Affairs, Brazil
See Bio

If you haven’t gotten your fill of virtual science policy panels yet, there’s this one on quantum technologies, from the August 17, 2023 Canadian Science Policy Centre (CSPC) newsletter,

Canada’s Quantum Strategy and International Collaboration

Countries are investing heavily in quantum computing and other quantum technologies. As Canada has recently released its Quantum Strategy [Note: There is also report on Quantum Technologies expected from the Canadian Council of Academies, no release date yet], this is an opportunity to foster further international collaborations. Panelists will discuss the opportunities and challenges Canada will be facing and what this could mean for Canada’s leadership in quantum research and the development of quantum technologies.

Click the button below to register for the upcoming virtual panel!

Register Here

Date: Sep 13 [2023]
Time: 1:00 pm EDT

Here’s some information about the panel participants, from the CSPC’s Canada’s Quantum Strategy and International Collaboration event page,

Dr. Sarah Burke
Associate Professor, University of British Columbia
See Bio

Dr. Aimee K. Gunther
Deputy Director, Quantum Sensors Challenge Program, National Research Council Canada
See Bio

Prof. Andrea Damascelli
Scientific Director, Stewart Blusson Quantum Matter Institute | Professor, Physics and Astronomy | Canada Research Chair in the Electronic Structure of Quantum Materials
See Bio

Nick Werstiuk
CEO, Quantum Valley Ideas Lab
See Bio

Eric Miller
Fellow, Canadian Global Affairs Institute
See Bio

Ms. Alexandra Daoud
Moderator
Vice President, Intellectual Property at Anyon Systems
See Bio

Interestingly, the moderator, Alexandra Daoud, is a patent agent.

As for the Council of Canadian Academies, you can find out about the proposed report on Quantum Technologies here.

Council of Canadian Academies (Eric Meslin) converses with with George Freeman, UK Minister of Science (hybrid event) on June 8, 2023

I think this is a first, for me anyway, a Council of Canadian Academies (CCA) event that’s not focused on a reports from one of their expert panels. Here’s more about the ‘conversation’, from a June 2, 2023 CCA announcement (received via email),

A conversation with George Freeman, UK Minister of Science (hybrid event)

Join us for a wide-ranging chat about the challenges and opportunities facing policymakers and researchers in Canada, the UK, and around the globe.
(anglais seulement)

Thursday, Jun 8, 2023 2:30 PM – 3:30 PM EDT
Bayview Yards
7 Bayview Station Road
Ottawa, ON
(and online)
 
The CCA is pleased to invite you to a conversation with George Freeman, MP, UK Minister of Science, Research and Innovation. Minister Freeman will join Eric M. Meslin, PhD, FRSC, FCAHS, President and CEO of the CCA, at Bayview Yards for a wide-ranging chat about the challenges and opportunities facing policymakers and researchers in Canada, the UK, and around the world.
 
Minister Freeman and Dr. Meslin will address a host of topics:

  • The state of science, technology and innovation policy and performance on both sides of the Atlantic;
  • Opportunities to create effective international collaborations;
  • National strategies to harness the power of quantum technologies;
  • Antimicrobial resistance and availability;
  • Arctic and Northern research priorities and approaches; and
  • Biomanufacturing and engineering biology.

Advanced registration is required.

Register for the in-person event: https://www.eventbrite.ca/e/a-conversation-with-george-freeman-uk-minister-of-science-in-person-tickets-646220832907

Register to attend virtually: https://www.eventbrite.ca/e/a-conversation-with-george-freeman-uk-minister-of-science-virtual-tickets-646795341277

Why listen to George Freeman?

Ordinarily being a Minister of Science would be enough to say ‘Of course, let’s hear what he has to say’ but Mr. Freeman’s ‘ministerial’ history is a little confusing. According to a September 24, 2021 article for Nature by Jonathan O’Callahan,

The United Kingdom has a new science minister [emphasis mine] — its ninth since 2010, following a reshuffle of Prime Minister Boris Johnson’s cabinet. George Freeman, a former investor in life-sciences companies, takes the role at a time when the coronavirus pandemic has renewed focus on research. But there are concerns that the Conservative government’s ambitious target for research spending will not be met. …

Chris Havergal’s Sept. 17, 2021 article for the Times Higher Education is titled, “George Freeman replaces Amanda Solloway as UK science minister; Former life sciences minister founded series of Cambridge biomedical start-ups before entering politics.”

For further proof of Freeman’s position, there’s this November 21, 2022 “Royal Society response to statement made by George Freeman, Minister of State (Minister for Science, Research and Innovation)”

Responding to today’s [November 21, 2022] announcement from George Freeman, Minister of State (Minister for Science, Research and Innovation), Professor Linda Partridge, Vice President of the Royal Society, said: “Last week the Government committed to protecting the science budget. Today’s announcement shows the Government’s commitment to putting science at the heart of plans for increasing productivity and driving economic growth.

“The ongoing failure to associate to Horizon Europe [the massive, cornerstone science funding programme for the European Union] remains damaging to UK science and the best solution remains securing rapid association. In the meantime, the funding announced today is a welcome intervention to help protect and stabilise the science sector.”

Oddly, Mr. Freeman’s UK government profile page does not reflect this history,

George Freeman was appointed Minister of State in the Department for Science, Innovation and Technology on 7 February 2023 [emphasis mine].

George was previously Minister of State in the Department for Business, Energy and Industrial Strategy from 26 October 2022 to 7 February 2023, Parliamentary Under Secretary of State in the Department for Business, Energy and Industrial Strategy from 17 September 2021 to 7 July 2022 [emphases mine], a Minister of State at the Department for Transport from 26 July 2019 to 13 February 2020, Parliamentary Under Secretary of State for Life Sciences at the Department for Business, Innovation and Skills and the Department of Health from July 2014 until July 2016. He also served as Parliamentary Private Secretary to the Minister of State for Climate Change from 2010 to 2011.

He was appointed government adviser on Life Sciences in July 2011, co-ordinating the government’s Life Science and Innovation, Health and Wealth Strategies (2011), and the Agri-Tech Industrial Strategy (2013). He was appointed the Prime Minister’s UK Trade Envoy in 2013.

How did Nature, Times Higher Education, and the Royal Society get the dates so wrong? Even granting that the UK had a very chaotic time with three Prime Minister within one year, Freeman’s biographical details seem peculiar.

Here’s a description of the job from Mr. Freeman’s UK government profile page,

Minister of State (Minister for Science, Research and Innovation)

The minister is responsible for:

More about this role

Department for Science, Innovation and Technology

Doesn’t ‘Minister of State’ signify a junior Ministry as it does in Canada? In any event, all this casts an interesting light on a January 17, 2023 posting on the Campaign for Science and Engineering (CASE) website,

Last week George Freeman, the Minister of State for Science, Research and Innovation, gave a speech to the Onward think tank setting out the UK Government’s ‘global science strategy’. Here our policy officer, Camilla d’Angelo, takes a look at his speech and what it all might mean.  

In his speech, the Minister outlined what it means for the UK to be a ‘Science Superpower’ [emphasis mine] and how this should go alongside being an ‘Innovation Nation’, highlighting a series of opportunities and policy reforms needed to achieve this. In the event the UK’s association to the EU Horizon Europe programme continues to be blocked, the Minister outlined an alternative to the scheme, setting out the UK Government’s vision for a UK science strategy. Freeman reiterated the UK Government’s commitment to increasing R&D funding to £20bn per year by 2024/25 and a plan to use this to drive private investment. It is now widely accepted that the UK is likely spending just under 3% of GDP on R&D, and the UK Government is keen to push ahead and extend the target to remain competitive with other research-intensive countries. It is positive to hear a coherent vision from the UK Government on what it wants increased R&D investment to achieve.  

Becoming a Science Superpower is required to solve societal challenges  

The Science Minister highlighted the central role of science and technology in solving some of the world’s most pressing challenges, from water security through to food production and climate change. In particular, he stressed that UK research and innovation can and should have a bigger global role and impact in helping to solving some of these challenges. The view that the UK needs to be a science and technology superpower was also echoed by a panel of R&I experts. 

George Freeman outlined some of the important dimensions of what it means for the UK to become a ‘Science Superpower’ and ‘Innovation Nation’. The UK is widely held to be an academic powerhouse, with its academic science system one of its greatest national strengths. A greater focus on mission-driven research, alongside investment in general purpose technologies, could be a way to encourage the diffusion and adoption of innovations. In addition to this, other important factors include talent, industrial output, culture, soft power and geopolitical influence, many of which the UK performs less well in. 

Are the Brits going to encourage us be a science superpower too? If everyone is a science superpower, doesn’t that mean no one is a science superpower? Will the CCA one day invite someone from South Korea to talk about how their science policies have turned that country into a science powerhouse?

What advice can we expect from George Freeman? I guess we’ll find out on June 8, 2023. For those of us on Pacific Time, that means 11:30 am to 12:30 pm.

Don’t forget, there are two different registration pages,

Register for the in-person event: https://www.eventbrite.ca/e/a-conversation-with-george-freeman-uk-minister-of-science-in-person-tickets-646220832907

Register to attend virtually: https://www.eventbrite.ca/e/a-conversation-with-george-freeman-uk-minister-of-science-virtual-tickets-646795341277

FrogHeart’s 2022 comes to an end as 2023 comes into view

I look forward to 2023 and hope it will be as stimulating as 2022 proved to be. Here’s an overview of the year that was on this blog:

Sounds of science

It seems 2022 was the year that science discovered the importance of sound and the possibilities of data sonification. Neither is new but this year seemed to signal a surge of interest or maybe I just happened to stumble onto more of the stories than usual.

This is not an exhaustive list, you can check out my ‘Music’ category for more here. I have tried to include audio files with the postings but it all depends on how accessible the researchers have made them.

Aliens on earth: machinic biology and/or biological machinery?

When I first started following stories in 2008 (?) about technology or machinery being integrated with the human body, it was mostly about assistive technologies such as neuroprosthetics. You’ll find most of this year’s material in the ‘Human Enhancement’ category or you can search the tag ‘machine/flesh’.

However, the line between biology and machine became a bit more blurry for me this year. You can see what’s happening in the titles listed below (you may recognize the zenobot story; there was an earlier version of xenobots featured here in 2021):

This was the story that shook me,

Are the aliens going to come from outer space or are we becoming the aliens?

Brains (biological and otherwise), AI, & our latest age of anxiety

As we integrate machines into our bodies, including our brains, there are new issues to consider:

  • Going blind when your neural implant company flirts with bankruptcy (long read) April 5, 2022 posting
  • US National Academies Sept. 22-23, 2022 workshop on techno, legal & ethical issues of brain-machine interfaces (BMIs) September 21, 2022 posting

I hope the US National Academies issues a report on their “Brain-Machine and Related Neural Interface Technologies: Scientific, Technical, Ethical, and Regulatory Issues – A Workshop” for 2023.

Meanwhile the race to create brainlike computers continues and I have a number of posts which can be found under the category of ‘neuromorphic engineering’ or you can use these search terms ‘brainlike computing’ and ‘memristors’.

On the artificial intelligence (AI) side of things, I finally broke down and added an ‘artificial intelligence (AI) category to this blog sometime between May and August 2021. Previously, I had used the ‘robots’ category as a catchall. There are other stories but these ones feature public engagement and policy (btw, it’s a Canadian Science Policy Centre event), respectively,

  • “The “We are AI” series gives citizens a primer on AI” March 23, 2022 posting
  • “Age of AI and Big Data – Impact on Justice, Human Rights and Privacy Zoom event on September 28, 2022 at 12 – 1:30 pm EDT” September 16, 2022 posting

These stories feature problems, which aren’t new but seem to be getting more attention,

While there have been issues over AI, the arts, and creativity previously, this year they sprang into high relief. The list starts with my two-part review of the Vancouver Art Gallery’s AI show; I share most of my concerns in part two. The third post covers intellectual property issues (mostly visual arts but literary arts get a nod too). The fourth post upends the discussion,

  • “Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (1 of 2): The Objects” July 28, 2022 posting
  • “Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations” July 28, 2022 posting
  • “AI (artificial intelligence) and art ethics: a debate + a Botto (AI artist) October 2022 exhibition in the Uk” October 24, 2022 posting
  • Should AI algorithms get patents for their inventions and is anyone talking about copyright for texts written by AI algorithms? August 30, 2022 posting

Interestingly, most of the concerns seem to be coming from the visual and literary arts communities; I haven’t come across major concerns from the music community. (The curious can check out Vancouver’s Metacreation Lab for Artificial Intelligence [located on a Simon Fraser University campus]. I haven’t seen any cautionary or warning essays there; it’s run by an AI and creativity enthusiast [professor Philippe Pasquier]. The dominant but not sole focus is art, i.e., music and AI.)

There is a ‘new kid on the block’ which has been attracting a lot of attention this month. If you’re curious about the latest and greatest AI anxiety,

  • Peter Csathy’s December 21, 2022 Yahoo News article (originally published in The WRAP) makes this proclamation in the headline “Chat GPT Proves That AI Could Be a Major Threat to Hollywood Creatives – and Not Just Below the Line | PRO Insight”
  • Mouhamad Rachini’s December 15, 2022 article for the Canadian Broadcasting Corporation’s (CBC) online news overs a more generalized overview of the ‘new kid’ along with an embedded CBC Radio file which runs approximately 19 mins. 30 secs. It’s titled “ChatGPT a ‘landmark event’ for AI, but what does it mean for the future of human labour and disinformation?” The chat bot’s developer, OpenAI, has been mentioned here many times including the previously listed July 28, 2022 posting (part two of the VAG review) and the October 24, 2022 posting.

Opposite world (quantum physics in Canada)

Quantum computing made more of an impact here (my blog) than usual. it started in 2021 with the announcement of a National Quantum Strategy in the Canadian federal government budget for that year and gained some momentum in 2022:

  • “Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more” July 26, 2022 posting Note: This turned into one of my ‘in depth’ pieces where I comment on the ‘Canadian quantum scene’ and highlight the appointment of an expert panel for the Council of Canada Academies’ report on Quantum Technologies.
  • “Bank of Canada and Multiverse Computing model complex networks & cryptocurrencies with quantum computing” July 25, 2022 posting
  • “Canada, quantum technology, and a public relations campaign?” December 29, 2022 posting

This one was a bit of a puzzle with regard to placement in this end-of-year review, it’s quantum but it’s also about brainlike computing

It’s getting hot in here

Fusion energy made some news this year.

There’s a Vancouver area company, General Fusion, highlighted in both postings and the October posting includes an embedded video of Canadian-born rapper Baba Brinkman’s “You Must LENR” [L ow E nergy N uclear R eactions or sometimes L attice E nabled N anoscale R eactions or Cold Fusion or CANR (C hemically A ssisted N uclear R eactions)].

BTW, fusion energy can generate temperatures up to 150 million degrees Celsius.

Ukraine, science, war, and unintended consequences

Here’s what you might expect,

These are the unintended consequences (from Rachel Kyte’s, Dean of the Fletcher School, Tufts University, December 26, 2022 essay on The Conversation [h/t December 27, 2022 news item on phys.org]), Note: Links have been removed,

Russian President Vladimir Putin’s war on Ukraine has reverberated through Europe and spread to other countries that have long been dependent on the region for natural gas. But while oil-producing countries and gas lobbyists are arguing for more drilling, global energy investments reflect a quickening transition to cleaner energy. [emphasis mine]

Call it the Putin effect – Russia’s war is speeding up the global shift away from fossil fuels.

In December [2022?], the International Energy Agency [IEA] published two important reports that point to the future of renewable energy.

First, the IEA revised its projection of renewable energy growth upward by 30%. It now expects the world to install as much solar and wind power in the next five years as it installed in the past 50 years.

The second report showed that energy use is becoming more efficient globally, with efficiency increasing by about 2% per year. As energy analyst Kingsmill Bond at the energy research group RMI noted, the two reports together suggest that fossil fuel demand may have peaked. While some low-income countries have been eager for deals to tap their fossil fuel resources, the IEA warns that new fossil fuel production risks becoming stranded, or uneconomic, in the next 20 years.

Kyte’s essay is not all ‘sweetness and light’ but it does provide a little optimism.

Kudos, nanotechnology, culture (pop & otherwise), fun, and a farewell in 2022

This one was a surprise for me,

Sometimes I like to know where the money comes from and I was delighted to learn of the Ărramăt Project funded through the federal government’s New Frontiers in Research Fund (NFRF). Here’s more about the Ărramăt Project from the February 14, 2022 posting,

“The Ărramăt Project is about respecting the inherent dignity and interconnectedness of peoples and Mother Earth, life and livelihood, identity and expression, biodiversity and sustainability, and stewardship and well-being. Arramăt is a word from the Tamasheq language spoken by the Tuareg people of the Sahel and Sahara regions which reflects this holistic worldview.” (Mariam Wallet Aboubakrine)

Over 150 Indigenous organizations, universities, and other partners will work together to highlight the complex problems of biodiversity loss and its implications for health and well-being. The project Team will take a broad approach and be inclusive of many different worldviews and methods for research (i.e., intersectionality, interdisciplinary, transdisciplinary). Activities will occur in 70 different kinds of ecosystems that are also spiritually, culturally, and economically important to Indigenous Peoples.

The project is led by Indigenous scholars and activists …

Kudos to the federal government and all those involved in the Salmon science camps, the Ărramăt Project, and other NFRF projects.

There are many other nanotechnology posts here but this appeals to my need for something lighter at this point,

  • “Say goodbye to crunchy (ice crystal-laden) in ice cream thanks to cellulose nanocrystals (CNC)” August 22, 2022 posting

The following posts tend to be culture-related, high and/or low but always with a science/nanotechnology edge,

Sadly, it looks like 2022 is the last year that Ada Lovelace Day is to be celebrated.

… this year’s Ada Lovelace Day is the final such event due to lack of financial backing. Suw Charman-Anderson told the BBC [British Broadcasting Corporation] the reason it was now coming to an end was:

You can read more about it here:

In the rearview mirror

A few things that didn’t fit under the previous heads but stood out for me this year. Science podcasts, which were a big feature in 2021, also proliferated in 2022. I think they might have peaked and now (in 2023) we’ll see what survives.

Nanotechnology, the main subject on this blog, continues to be investigated and increasingly integrated into products. You can search the ‘nanotechnology’ category here for posts of interest something I just tried. It surprises even me (I should know better) how broadly nanotechnology is researched and applied.

If you want a nice tidy list, Hamish Johnston in a December 29, 2022 posting on the Physics World Materials blog has this “Materials and nanotechnology: our favourite research in 2022,” Note: Links have been removed,

“Inherited nanobionics” makes its debut

The integration of nanomaterials with living organisms is a hot topic, which is why this research on “inherited nanobionics” is on our list. Ardemis Boghossian at EPFL [École polytechnique fédérale de Lausanne] in Switzerland and colleagues have shown that certain bacteria will take up single-walled carbon nanotubes (SWCNTs). What is more, when the bacteria cells split, the SWCNTs are distributed amongst the daughter cells. The team also found that bacteria containing SWCNTs produce a significantly more electricity when illuminated with light than do bacteria without nanotubes. As a result, the technique could be used to grow living solar cells, which as well as generating clean energy, also have a negative carbon footprint when it comes to manufacturing.

Getting to back to Canada, I’m finding Saskatchewan featured more prominently here. They do a good job of promoting their science, especially the folks at the Canadian Light Source (CLS), Canada’s synchrotron, in Saskatoon. Canadian live science outreach events seeming to be coming back (slowly). Cautious organizers (who have a few dollars to spare) are also enthusiastic about hybrid events which combine online and live outreach.

After what seems like a long pause, I’m stumbling across more international news, e.g. “Nigeria and its nanotechnology research” published December 19, 2022 and “China and nanotechnology” published September 6, 2022. I think there’s also an Iran piece here somewhere.

With that …

Making resolutions in the dark

Hopefully this year I will catch up with the Council of Canadian Academies (CCA) output and finally review a few of their 2021 reports such as Leaps and Boundaries; a report on artificial intelligence applied to science inquiry and, perhaps, Powering Discovery; a report on research funding and Natural Sciences and Engineering Research Council of Canada.

Given what appears to a renewed campaign to have germline editing (gene editing which affects all of your descendants) approved in Canada, I might even reach back to a late 2020 CCA report, Research to Reality; somatic gene and engineered cell therapies. it’s not the same as germline editing but gene editing exists on a continuum.

For anyone who wants to see the CCA reports for themselves they can be found here (both in progress and completed).

I’m also going to be paying more attention to how public relations and special interests influence what science is covered and how it’s covered. In doing this 2022 roundup, I noticed that I featured an overview of fusion energy not long before the breakthrough. Indirect influence on this blog?

My post was precipitated by an article by Alex Pasternak in Fast Company. I’m wondering what precipitated Alex Pasternack’s interest in fusion energy since his self-description on the Huffington Post website states this “… focus on the intersections of science, technology, media, politics, and culture. My writing about those and other topics—transportation, design, media, architecture, environment, psychology, art, music … .”

He might simply have received a press release that stimulated his imagination and/or been approached by a communications specialist or publicists with an idea. There’s a reason for why there are so many public relations/media relations jobs and agencies.

Que sera, sera (Whatever will be, will be)

I can confidently predict that 2023 has some surprises in store. I can also confidently predict that the European Union’s big research projects (1B Euros each in funding for the Graphene Flagship and Human Brain Project over a ten year period) will sunset in 2023, ten years after they were first announced in 2013. Unless, the powers that be extend the funding past 2023.

I expect the Canadian quantum community to provide more fodder for me in the form of a 2023 report on Quantum Technologies from the Council of Canadian academies, if nothing else otherwise.

I’ve already featured these 2023 science events but just in case you missed them,

  • 2023 Preview: Bill Nye the Science Guy’s live show and Marvel Avengers S.T.A.T.I.O.N. (Scientific Training And Tactical Intelligence Operative Network) coming to Vancouver (Canada) November 24, 2022 posting
  • September 2023: Auckland, Aotearoa New Zealand set to welcome women in STEM (science, technology, engineering, and mathematics) November 15, 2022 posting

Getting back to this blog, it may not seem like a new year during the first few weeks of 2023 as I have quite the stockpile of draft posts. At this point I have drafts that are dated from June 2022 and expect to be burning through them so as not to fall further behind but will be interspersing them, occasionally, with more current posts.

Most importantly: a big thank you to everyone who drops by and reads (and sometimes even comments) on my posts!!! it’s very much appreciated and on that note: I wish you all the best for 2023.

Canada, quantum technology, and a public relations campaign?

Stephanie Simmons’ October 31, 2022 essay on quantum technology and Canada for The Conversation (h/t Nov.1.22 news item on phys.org) was a bit startling—not due to the content—but for the chosen communications vehicle. It’s the kind of piece i expect to find in the Globe and Mail or the National Post not The Conversation, which aspires to present in depth, accessible academic research and informed news stories (or so I thought). (See The Conversation (website) Wikipedia entry for more.)

Simmons (who is an academic) seems to have ‘written’ a run-of-the-mill public relations piece (with a good and accessible description of quantum encryption and its future importance) about Canada and quantum technology aimed at influencing government policy makers while using some magic words (Note: Links have been removed),

Canada is a world leader in developing quantum technologies and is well-positioned to secure its place in the emerging quantum industry.

Quantum technologies are new and emerging technologies based on the unique properties of quantum mechanics — the science that deals with the physical properties of nature on an atomic and subatomic level.

In the future, we’ll see quantum technology transforming computing, communications, cryptography and much more. They will be incredibly powerful, offering capabilities that reach beyond today’s technologies.

The potential impact of these technologies on the Canadian economy [emphasis mine] will be transformative: the National Research Council of Canada has identified quantum technology as a $142 billion opportunity that could employ 229,000 Canadians by 2040 [emphasis mine].

Canada could gain far-reaching economic and social benefits from the rapidly developing quantum industry, but it must act now to secure them — before someone else [emphasis mine] delivers the first large-scale quantum computer, which will likely be sooner than expected.

This is standard stuff, any professional business writer, after a little research, could have pulled the article together. But, it’s Stephanie Simmons whose academic titles (Associate Professor, SFU and Tier 2 Canada Research Chair in Silicon Quantum Technologies, Simon Fraser University) and position as founder and Chief Quantum Officer of Photonic, Inc. give her comments added weight. (For an academic, this is an unusual writing style [perhaps Simmons had some help?] and it better belongs in the newspapers I’ve previously cited.)

Simmons, having stoked a little anxiety with “it [Canada] must act now to secure them [economic and social benefits] — before someone else delivers the first large-scale quantum computer, which will likely be sooner than expected,” gets to her main points, from the October 31, 2022 essay,

To maintain its leadership, Canada needs to move beyond research and development and accelerate a quantum ecosystem that includes a strong talent pipeline, businesses supported by supply chains and governments and industry involvement. There are a few things Canada can do to drive this leadership:

Continue to fund quantum research: … The Canadian government has invested more than $1 billion since 2005 in quantum research and will likely announce a national quantum strategy soon [emphasis mine]. Canada must continue funding quantum research or risk losing its talent base and current competitive advantage. [Note: Canada has announced a national quantum strategy in both the 2021 and 2022 federal budgets See more under the ‘Don’t we already have a national quantum strategy? subhead]

Build our talent pipeline with more open immigration: …

Be our own best customers: Canadian companies are leading the way, but they need support [emphasis mine; by support, does she mean money?]. Quantum Industry Canada boasts of more than 30 member companies. Vancouver is home to the pioneering D-Wave and Photonic Inc., …

As noted in a previous post (July 26, 2022 titled “Quantum Mechanics & Gravity conference [August 15 – 19, 2022] launches Vancouver (Canada)-based Quantum Gravity Institute and more”), all of this enthusiasm tends to come down to money, as in, ‘We will make money which will somehow benefit you but, first, we need more money from you’. As for the exhortation to loosen up immigration, that sounds like an attempt to exacerbate ‘brain drain’, i.e., lure people from other countries to settle in Canada. As a country whose brains were drained in the 1960s, 70s, etc., it should be noted those drives were deeply resented here and I expect that we will become objects of resentment should we resort to the same tactics although I thought we already had.

Same anxieties, same solution

Simmons concludes with a cautionary tale, from the October 31, 2022 essay, Note: Links have been removed,

Canada has an opportunity to break out of its pattern of inventing transformative technology, but not reaping the rewards. This is what happened with the invention of the transistor.

The first transistor patent was actually filed in Canada by Canadian-Hungarian physicist Julius Edgar Lilienfeld, 20 years before the Bell Labs demonstration. Canada was also one of the places where Alexander Graham Bell worked to develop and patent the telephone.

Despite this, the transistor was commercialized in the U.S. and led to the country’s US$63 billion semiconductor industry. Bell commercialized the telephone through The Bell Telephone Company, which eventually became AT&T.

Canada is poised to make even greater contributions to quantum technology. Much existing technology has been invented here in Canada — including quantum cryptography, which was co-invented by University of Montreal professor Gilles Brassard. Instead of repeating its past mistakes, Canada should act now to secure the success of the quantum technology industry.

I bought into this narrative too. It’s compelling and generally accepted (in short, it’s a part of Canadian culture) but somebody who’s smarter about business and economics than I am pointed out that Canada has a good standard of living and has had that standard for many years despite decades of worry over our ‘inability’ to commercialize our discoveries. Following on that thought, what’s so bad about our situation? Are we behind because we don’t have a huge semiconductor industry? I don’t know but perhaps we need to question this narrative a little more closely. Where some people see loss, others might see agility, inventiveness, and the ability to keep capitalizing on early stage technology, over and over again.

What I haven’t yet seen discussed as a problem is a Canadian culture that encourages technology entrepreneurs to create startups with the intention of selling them to a big US (or other country) corporation. I’m most familiar with the situation in the province of British Columbia where a 2003 British Columbia Techmap (developed by the accounting firm PriceWaterhouseCoopers [PWC]) provides a genealogy which stretched from the 1890s to 2003. The number of technology companies acquired by foreign corporations is astonishing. Our technology has been bought—over and over, since the 1890s.

(I believe there were three editions of the British Columbia Techmap: 1997, 2003 and 2012. PWC seems to have discontinued publication and the 2012 online edition is no longer available. For the curious, there’s a June 15, 2012 announcement, which provides a little information about and interesting facts from the 2012 digital edition.)

This ‘startup and sell’ story holds true at the national level as well. We have some large technology companies but none of them compare to these: Huawei (China), Ali Baba (China), Intel (US), Apple (US), Siemens (Germany), Sanofi (France; technically a pharmaceutical but heavily invested in technology), etc.

So, is this “… inventing transformative technology, but not reaping the rewards …” really a problem when Canadians live well? If so, we need to change our entrepreneurial and business culture.

Don’t we already have a national quantum strategy?

It’s a little puzzling to see Simmons appear to be arguing for a national quantum strategy given this (from my July 26, 2022 posting),

A National Quantum Strategy was first announced in the 2021 Canadian federal budget and reannounced in the 2022 federal budget (see my April 19, 2022 posting for a few more budget details).. Or, you may find this National Quantum Strategy Consultations: What We Heard Report more informative. There’s also a webpage for general information about the National Quantum Strategy.

As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,

Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.

Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.

it gets even more puzzling when you know that Simmons is part of a Canadian Council of Academies (CCA) expert panel (announced in May 2022) to produce a report on Quantum Technologies,

Budget 2021 included a National Quantum Strategy [emphasis mine] to amplify Canada’s strength in quantum research, grow quantum-ready technologies, and solidify Canada’s global leadership in this area. A comprehensive exploration of the capabilities and potential vulnerabilities of these technologies will help to inform their future deployment across the society and the economy.

This assessment will examine the impacts, opportunities, and challenges quantum technologies present for industry, governments, and people in Canada. [emphases mine]

The Sponsor:

National Research Council Canada and Innovation, Science and Economic Development Canada [emphasis mine]

It’s possible someone else wrote the essay, someone who doesn’t know about the strategy or Simmons’ involvement in a CCA report on how to address the issues highlighted in her October 31, 2022 essay. It’s also possible that Simmons is trying to emphasize the need for a commercialization strategy for quantum technologies.

Given that the Council of Canadian Academies (CCA) was asked to produce what looks like a comprehensive national strategy including commercialization, I prefer the second possibility.

*ETA December 29, 2022 1020 hours PT: On a purely speculative note, I just noticed involvement from a US PR agency in this project, from my “Bank of Canada and Multiverse Computing model complex networks & cryptocurrencies with quantum computing” July 25, 2022 posting,

As for the company that produced the news release, HKA Marketing Communications, based in Southern California, they claim this “Specialists in Quantum Tech PR: #1 agency in this space” on their homepage.

Simmons is on the CCA’s Quantum Technologies’ expert panel along with Eric Santor, Advisor to the Governor, Bank of Canada. HKA’s involvement would certainly explain why the writer didn’t know there’s already a National Quantum Strategy and not know about Simmons’ membership in the expert panel. As I noted, this is pure speculation; I have no proof.*

At any rate, there may be another problem, our national quantum dilemma may be due to difficulties within the Canadian quantum community.

A fractious Canadian quantum community

I commented on the competitiveness within the quantum technologies community in my May 4, 2021 posting about the federal 2021 budget, “While the folks in the quantum world are more obviously competitive … ,” i.e., they are strikingly public in comparison to the genomic and artificial intelligence communities. Scroll down to the ‘National Quantum Strategy’ subhead in the May 4, 2021 posting for an example.

It can also be seen in my July 26, 2022 posting about the Vancouver (Canada) launch of the Quantum Gravity Institute where I noted the lack of Canadian physicists (not one from the CCA expert panel, the Perimeter Institute, or TRIUMF; Canada’s particle accelerator centre, or the Institute for Quantum Computing at the University of Waterloo) in the speaker list and the prominent role wealthy men who’ve taken up quantum science as a hobby played in its founding. BTW, it seems two Canadian physicists (in addition to Philip Stamp; all from the University of British Columbia) were added to the speaker list and D-Wave Systems was added to the institute’s/conference’s webpage sponsorship list (scroll down about 70% of the way) after I posted.

Hopefully the quantum science/research community will pull together, in public, at least.

Who is the audience?

Getting back to Simmons’ piece on The Conversation, her essay, especially one that appears to be part of a public relations campaign, can appeal to more than one audience. The trick, as all (script, news, business, public relations, science, etc.) writers will tell you, is to write for one audience. As counter-intuitive as that trick may seem, it works.

Canadian policy makers should already know that the federal government has announced a national quantum strategy in two different budgets. Additionally, affected scientists should already know about the national strategy, such as it is. Clearly, children are not the intended audience. Perhaps it’s intended for a business audience but the specific business case is quite weak and, as I’ve noted here and elsewhere, the ‘failure’ to take advantage of early developments is a well worn science business trope which ignores a Canadian business model focused on developing emerging technology then, selling it.

This leaves a ‘general’ audience as the only one left and that audience doesn’t tend to read The Conversation website. Here’s the description of the publisher from its Wikipedia entry, Note: Links have been removed,

The Conversation is a network of not-for-profit media outlets publishing news stories and research reports online, with accompanying expert opinion and analysis.[1][2] Articles are written by academics and researchers [emphasis mine]under a free Creative Commons license, allowing reuse without modification.[3][2] Its model has been described as explanatory journalism.[4][5][6] [emphasis mine] Except in “exceptional circumstances”, it only publishes articles by “academics employed by, or otherwise formally connected to, accredited institutions, including universities and accredited research bodies”.[7]: 8 

Simmons’ piece is not so much explanatory as it is a plea for a policy on a website that newspapers use for free, pre-edited, and proofed content.

I imagine the hope was that a Canadian national newspaper such as the Globe & Mail and/or the National Post would republish it. That hope was realized when the National Post and, unexpectedly, a local paper, the Winnipeg Free Press, both republished it on November 1, 2022.

To sum up, it’s not clear to me what the goal for this piece was. Government policy makers don’t need it, the business case is not sufficiently supported, children are not going to care, and affected scientists are already aware of the situation. (Scientists who will be not affected by a national quantum policy will have their own agendas.) As for a member of the general audience, am I supposed to do something … other than care, that is?

The meaning of a banana

It is an odd piece which may or may not be part of a larger public relations campaign.

As a standalone piece, it reiterates the age old message regarding Canadian technology (“we don’t do a good job of commercializing our technology) to no great avail. As part of a strategy, it seems to be a misfire since we already have a national quantum strategy and Simmons is working on an expert panel that should be delivering the kind of policy she’s requesting.

In the end, all that can be said for certain is that Stephanie Simmons’ October 31, 2022 essay on quantum technology and Canada was published in The Conversation then republished elsewhere.

As Freud may or may not have said, “Sometimes a banana is just a banana.”

Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations

Dear friend,

I thought it best to break this up a bit. There are a couple of ‘objects’ still to be discussed but this is mostly the commentary part of this letter to you. (Here’s a link for anyone who stumbled here but missed Part 1.)

Ethics, the natural world, social justice, eeek, and AI

Dorothy Woodend in her March 10, 2022 review for The Tyee) suggests some ethical issues in her critique of the ‘bee/AI collaboration’ and she’s not the only one with concerns. UNESCO (United Nations Educational, Scientific and Cultural Organization) has produced global recommendations for ethical AI (see my March 18, 2022 posting). More recently, there’s “Racist and sexist robots have flawed AI,” a June 23, 2022 posting, where researchers prepared a conference presentation and paper about deeply flawed AI still being used in robots.

Ultimately, the focus is always on humans and Woodend has extended the ethical AI conversation to include insects and the natural world. In short, something less human-centric.

My friend, this reference to the de Young exhibit may seem off topic but I promise it isn’t in more ways than one. The de Young Museum in San Francisco (February 22, 2020 – June 27, 2021) also held and AI and art show called, “Uncanny Valley: Being Human in the Age of AI”), from the exhibitions page,

In today’s AI-driven world, increasingly organized and shaped by algorithms that track, collect, and evaluate our data, the question of what it means to be human [emphasis mine] has shifted. Uncanny Valley is the first major exhibition to unpack this question through a lens of contemporary art and propose new ways of thinking about intelligence, nature, and artifice. [emphasis mine]

Courtesy: de Young Museum [downloaded from https://deyoung.famsf.org/exhibitions/uncanny-valley]

As you can see, it hinted (perhaps?) at an attempt to see beyond human-centric AI. (BTW, I featured this ‘Uncanny Valley’ show in my February 25, 2020 posting where I mentioned Stephanie Dinkins [featured below] and other artists.)

Social justice

While the VAG show doesn’t see much past humans and AI, it does touch on social justice. In particular there’s Pod 15 featuring the Algorithmic Justice League (AJL). The group “combine[s] art and research to illuminate the social implications and harms of AI” as per their website’s homepage.

In Pod 9, Stephanie Dinkins’ video work with a robot (Bina48), which was also part of the de Young Museum ‘Uncanny Valley’ show, addresses some of the same issues.

Still of Stephanie Dinkins, “Conversations with Bina48,” 2014–present. Courtesy of the artist [downloaded from https://deyoung.famsf.org/stephanie-dinkins-conversations-bina48-0]

From the the de Young Museum’s Stephanie Dinkins “Conversations with Bina48” April 23, 2020 article by Janna Keegan (Dinkins submitted the same work you see at the VAG show), Note: Links have been removed,

Transdisciplinary artist and educator Stephanie Dinkins is concerned with fostering AI literacy. The central thesis of her social practice is that AI, the internet, and other data-based technologies disproportionately impact people of color, LGBTQ+ people, women, and disabled and economically disadvantaged communities—groups rarely given a voice in tech’s creation. Dinkins strives to forge a more equitable techno-future by generating AI that includes the voices of multiple constituencies …

The artist’s ongoing Conversations with Bina48 takes the form of a series of interactions with the social robot Bina48 (Breakthrough Intelligence via Neural Architecture, 48 exaflops per second). The machine is the brainchild of Martine Rothblatt, an entrepreneur in the field of biopharmaceuticals who, with her wife, Bina, cofounded the Terasem Movement, an organization that seeks to extend human life through cybernetic means. In 2007 Martine commissioned Hanson Robotics to create a robot whose appearance and consciousness simulate Bina’s. The robot was released in 2010, and Dinkins began her work with it in 2014.

Part psychoanalytical discourse, part Turing test, Conversations with Bina48 also participates in a larger dialogue regarding bias and representation in technology. Although Bina Rothblatt is a Black woman, Bina48 was not programmed with an understanding of its Black female identity or with knowledge of Black history. Dinkins’s work situates this omission amid the larger tech industry’s lack of diversity, drawing attention to the problems that arise when a roughly homogenous population creates technologies deployed globally. When this occurs, writes art critic Tess Thackara, “the unconscious biases of white developers proliferate on the internet, mapping our social structures and behaviors onto code and repeating imbalances and injustices that exist in the real world.” One of the most appalling and public of these instances occurred when a Google Photos image-recognition algorithm mislabeled the faces of Black people as “gorillas.”

Eeek

You will find as you go through the ‘imitation game’ a pod with a screen showing your movements through the rooms in realtime on a screen. The installation is called “Creepers” (2021-22). The student team from Vancouver’s Centre for Digital Media (CDM) describes their project this way, from the CDM’s AI-driven Installation Piece for the Vancouver Art Gallery webpage,

Project Description

Kaleidoscope [team name] is designing an installation piece that harnesses AI to collect and visualize exhibit visitor behaviours, and interactions with art, in an impactful and thought-provoking way.

There’s no warning that you’re being tracked and you can see they’ve used facial recognition software to track your movements through the show. It’s claimed on the pod’s signage that they are deleting the data once you’ve left.

‘Creepers’ is an interesting approach to the ethics of AI. The name suggests that even the student designers were aware it was problematic.

For the curious, there’s a description of the other VAG ‘imitation game’ installations provided by CDM students on the ‘Master of Digital Media Students Develop Revolutionary Installations for Vancouver Art Gallery AI Exhibition‘ webpage.

In recovery from an existential crisis (meditations)

There’s something greatly ambitious about “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” and walking up the VAG’s grand staircase affirms that ambition. Bravo to the two curators, Grenville and Entis for an exhibition.that presents a survey (or overview) of artificial intelligence, and its use in and impact on creative visual culture.

I’ve already enthused over the history (specifically Turing, Lovelace, Ovid), admitted to being mesmerized by Scott Eaton’s sculpture/AI videos, and confessed to a fascination (and mild repulsion) regarding Oxman’s honeycombs.

It’s hard to remember all of the ‘objects’ as the curators have offered a jumble of work, almost all of them on screens. Already noted, there’s Norbert Wiener’s The Moth (1949) and there are also a number of other computer-based artworks from the 1960s and 1970s. Plus, you’ll find works utilizing a GAN (generative adversarial network), an AI agent that is explained in the exhibit.

It’s worth going more than once to the show as there is so much to experience.

Why did they do that?

Dear friend, I’ve already commented on the poor flow through the show and It’s hard to tell if the curators intended the experience to be disorienting but this is to the point of chaos, especially when the exhibition is crowded.

I’ve seen Grenville’s shows before. In particular there was “MashUp: The Birth of Modern Culture, a massive survey documenting the emergence of a mode of creativity that materialized in the late 1800s and has grown to become the dominant model of cultural production in the 21st century” and there was “KRAZY! The Delirious World of Anime + Manga + Video Games + Art.” As you can see from the description, he pulls together disparate works and ideas into a show for you to ‘make sense’ of them.

One of the differences between those shows and the “imitation Game: …” is that most of us have some familiarity, whether we like it or not, with modern art/culture and anime/manga/etc. and can try to ‘make sense’ of it.

By contrast, artificial intelligence (which even experts have difficulty defining) occupies an entirely different set of categories; all of them associated with science/technology. This makes for a different kind of show so the curators cannot rely on the audience’s understanding of basics. It’s effectively an art/sci or art/tech show and, I believe, the first of its kind at the Vancouver Art Gallery. Unfortunately, the curators don’t seem to have changed their approach to accommodate that difference.

AI is also at the centre of a current panic over job loss, loss of personal agency, automated racism and sexism, etc. which makes the experience of viewing the show a little tense. In this context, their decision to commission and use ‘Creepers’ seems odd.

Where were Ai-Da and Dall-E-2 and the others?

Oh friend, I was hoping for a robot. Those roomba paintbots didn’t do much for me. All they did was lie there on the floor

To be blunt I wanted some fun and perhaps a bit of wonder and maybe a little vitality. I wasn’t necessarily expecting Ai-Da, an artisitic robot, but something three dimensional and fun in this very flat, screen-oriented show would have been nice.

This image has an empty alt attribute; its file name is image-asset.jpeg
Ai-Da was at the Glastonbury Festival in the U from 23-26th June 2022. Here’s Ai-Da and her Billie Eilish (one of the Glastonbury 2022 headliners) portrait. [downloaded from https://www.ai-darobot.com/exhibition]

Ai-Da was first featured here in a December 17, 2021 posting about performing poetry that she had written in honour of the 700th anniversary of poet Dante Alighieri’s death.

Named in honour of Ada Lovelace, Ai-Da visited the 2022 Venice Biennale as Leah Henrickson and Simone Natale describe in their May 12, 2022 article for Fast Company (Note: Links have been removed),

Ai-Da sits behind a desk, paintbrush in hand. She looks up at the person posing for her, and then back down as she dabs another blob of paint onto the canvas. A lifelike portrait is taking shape. If you didn’t know a robot produced it, this portrait could pass as the work of a human artist.

Ai-Da is touted as the “first robot to paint like an artist,” and an exhibition of her work, called Leaping into the Metaverse, opened at the Venice Biennale.

Ai-Da produces portraits of sitting subjects using a robotic hand attached to her lifelike feminine figure. She’s also able to talk, giving detailed answers to questions about her artistic process and attitudes toward technology. She even gave a TEDx talk about “The Intersection of Art and AI” in Oxford a few years ago. While the words she speaks are programmed, Ai-Da’s creators have also been experimenting with having her write and perform her own poetry.

She has her own website.

If not Ai-Da, what about Dall-E-2? Aaron Hertzmann’s June 20, 2022 commentary, “Give this AI a few words of description and it produces a stunning image – but is it art?” investigates for Salon (Note: Links have been removed),

DALL-E 2 is a new neural network [AI] algorithm that creates a picture from a short phrase or sentence that you provide. The program, which was announced by the artificial intelligence research laboratory OpenAI in April 2022, hasn’t been released to the public. But a small and growing number of people – myself included – have been given access to experiment with it.

As a researcher studying the nexus of technology and art, I was keen to see how well the program worked. After hours of experimentation, it’s clear that DALL-E – while not without shortcomings – is leaps and bounds ahead of existing image generation technology. It raises immediate questions about how these technologies will change how art is made and consumed. It also raises questions about what it means to be creative when DALL-E 2 seems to automate so much of the creative process itself.

A July 4, 2022 article “DALL-E, Make Me Another Picasso, Please” by Laura Lane for The New Yorker has a rebuttal to Ada Lovelace’s contention that creativity is uniquely human (Note: A link has been removed),

“There was this belief that creativity is this deeply special, only-human thing,” Sam Altman, OpenAI’s C.E.O., explained the other day. Maybe not so true anymore, he said. Altman, who wore a gray sweater and had tousled brown hair, was videoconferencing from the company’s headquarters, in San Francisco. DALL-E is still in a testing phase. So far, OpenAI has granted access to a select group of people—researchers, artists, developers—who have used it to produce a wide array of images: photorealistic animals, bizarre mashups, punny collages. Asked by a user to generate “a plate of various alien fruits from another planet photograph,” DALL-E returned something kind of like rambutans. “The rest of mona lisa” is, according to DALL-E, mostly just one big cliff. Altman described DALL-E as “an extension of your own creativity.”

There are other AI artists, in my August 16, 2019 posting, I had this,

AI artists first hit my radar in August 2018 when Christie’s Auction House advertised an art auction of a ‘painting’ by an algorithm (artificial intelligence). There’s more in my August 31, 2018 posting but, briefly, a French art collective, Obvious, submitted a painting, “Portrait of Edmond de Belamy,” that was created by an artificial intelligence agent to be sold for an estimated to $7000 – $10,000. They weren’t even close. According to Ian Bogost’s March 6, 2019 article for The Atlantic, the painting sold for $432,500 In October 2018.

That posting also included AI artist, AICAN. Both artist-AI agents (Obvious and AICAN) are based on GANs (generative adversarial networks) for learning and eventual output. Both artist-AI agents work independently or with human collaborators on art works that are available for purchase.

As might be expected not everyone is excited about AI and visual art. Sonja Drimmer, Professor of Medieval Art, University of Massachusetts at Amherst, provides another perspective on AI, visual art, and, her specialty, art history in her November 1, 2021 essay for The Conversation (Note: Links have been removed),

Over the past year alone, I’ve come across articles highlighting how artificial intelligence recovered a “secret” painting of a “lost lover” of Italian painter Modigliani, “brought to life” a “hidden Picasso nude”, “resurrected” Austrian painter Gustav Klimt’s destroyed works and “restored” portions of Rembrandt’s 1642 painting “The Night Watch.” The list goes on.

As an art historian, I’ve become increasingly concerned about the coverage and circulation of these projects.

They have not, in actuality, revealed one secret or solved a single mystery.

What they have done is generate feel-good stories about AI.

Take the reports about the Modigliani and Picasso paintings.

These were projects executed by the same company, Oxia Palus, which was founded not by art historians but by doctoral students in machine learning.

In both cases, Oxia Palus relied upon traditional X-rays, X-ray fluorescence and infrared imaging that had already been carried out and published years prior – work that had revealed preliminary paintings beneath the visible layer on the artists’ canvases.

The company edited these X-rays and reconstituted them as new works of art by applying a technique called “neural style transfer.” This is a sophisticated-sounding term for a program that breaks works of art down into extremely small units, extrapolates a style from them and then promises to recreate images of other content in that same style.

As you can ‘see’ my friend, the topic of AI and visual art is a juicy one. In fact, I have another example in my June 27, 2022 posting, which is titled, “Art appraised by algorithm.” So, Grenville’s and Entis’ decision to focus on AI and its impact on visual culture is quite timely.

Visual culture: seeing into the future

The VAG Imitation Game webpage lists these categories of visual culture “animation, architecture, art, fashion, graphic design, urban design and video games …” as being represented in the show. Movies and visual art, not mentioned in the write up, are represented while theatre and other performing arts are not mentioned or represented. That’ s not a surprise.

In addition to an area of science/technology that’s not well understood even by experts, the curators took on the truly amorphous (and overwhelming) topic of visual culture. Given that even writing this commentary has been a challenge, I imagine pulling the show together was quite the task.

Grenville often grounds his shows in a history of the subject and, this time, it seems especially striking. You’re in a building that is effectively a 19th century construct and in galleries that reflect a 20th century ‘white cube’ aesthetic, while looking for clues into the 21st century future of visual culture employing technology that has its roots in the 19th century and, to some extent, began to flower in the mid-20th century.

Chung’s collaboration is one of the only ‘optimistic’ notes about the future and, as noted earlier, it bears a resemblance to Wiener’s 1949 ‘Moth’

Overall, it seems we are being cautioned about the future. For example, Oxman’s work seems bleak (bees with no flowers to pollinate and living in an eternal spring). Adding in ‘Creepers’ and surveillance along with issues of bias and social injustice reflects hesitation and concern about what we will see, who sees it, and how it will be represented visually.

Learning about robots, automatons, artificial intelligence, and more

I wish the Vancouver Art Gallery (and Vancouver’s other art galleries) would invest a little more in audience education. A couple of tours, by someone who may or may not know what they’re talking, about during the week do not suffice. The extra material about Stephanie Dinkins and her work (“Conversations with Bina48,” 2014–present) came from the de Young Museum’s website. In my July 26, 2021 commentary on North Vancouver’s Polygon Gallery 2021 show “Interior Infinite,” I found background information for artist Zanele Muholi on the Tate Modern’s website. There is nothing on the VAG website that helps you to gain some perspective on the artists’ works.

It seems to me that if the VAG wants to be considered world class, it should conduct itself accordingly and beefing up its website with background information about their current shows would be a good place to start.

Robots, automata, and artificial intelligence

Prior to 1921, robots were known exclusively as automatons. These days, the word ‘automaton’ (or ‘automata’ in the plural) seems to be used to describe purely mechanical representations of humans from over 100 years ago whereas the word ‘robot’ can be either ‘humanlike’ or purely machine, e.g. a mechanical arm that performs the same function over and over. I have a good February 24, 2017 essay on automatons by Miguel Barral for OpenMind BBVA*, which provides some insight into the matter,

The concept of robot is relatively recent. The idea was introduced in 1921 by the Czech writer Karel Capek in his work R.U.R to designate a machine that performs tasks in place of man. But their predecessors, the automatons (from the Greek automata, or “mechanical device that works by itself”), have been the object of desire and fascination since antiquity. Some of the greatest inventors in history, such as Leonardo Da Vinci, have contributed to our fascination with these fabulous creations:

The Al-Jazari automatons

The earliest examples of known automatons appeared in the Islamic world in the 12th and 13th centuries. In 1206, the Arab polymath Al-Jazari, whose creations were known for their sophistication, described some of his most notable automatons: an automatic wine dispenser, a soap and towels dispenser and an orchestra-automaton that operated by the force of water. This latter invention was meant to liven up parties and banquets with music while floating on a pond, lake or fountain.

As the water flowed, it started a rotating drum with pegs that, in turn, moved levers whose movement produced different sounds and movements. As the pegs responsible for the musical notes could be exchanged for different ones in order to interpret another melody, it is considered one of the first programmable machines in history.

If you’re curious about automata, my friend, I found this Sept. 26, 2016 ABC news radio news item about singer Roger Daltrey’s and his wife, Heather’s auction of their collection of 19th century French automata (there’s an embedded video showcasing these extraordinary works of art). For more about automata, robots, and androids, there’s an excellent May 4, 2022 article by James Vincent, ‘A visit to the human factory; How to build the world’s most realistic robot‘ for The Verge; Vincent’s article is about Engineered Arts, the UK-based company that built Ai-Da.

AI is often used interchangeably with ‘robot’ but they aren’t the same. Not all robots have AI integrated into their processes. At its simplest AI is an algorithm or set of algorithms, which may ‘live’ in a CPU and be effectively invisible or ‘live’ in or make use of some kind of machine and/or humanlike body. As the experts have noted, the concept of artificial intelligence is a slippery concept.

*OpenMind BBVA is a Spanish multinational financial services company, Banco Bilbao Vizcaya Argentaria (BBVA), which runs the non-profit project, OpenMind (About us page) to disseminate information on robotics and so much more.*

You can’t always get what you want

My friend,

I expect many of the show’s shortcomings (as perceived by me) are due to money and/or scheduling issues. For example, Ai-Da was at the Venice Biennale and if there was a choice between the VAG and Biennale, I know where I’d be.

Even with those caveats in mind, It is a bit surprising that there were no examples of wearable technology. For example, Toronto’s Tapestry Opera recently performed R.U.R. A Torrent of Light (based on the word ‘robot’ from Karel Čapek’s play, R.U.R., ‘Rossumovi Univerzální Roboti’), from my May 24, 2022 posting,

I have more about tickets prices, dates, and location later in this post but first, here’s more about the opera and the people who’ve created it from the Tapestry Opera’s ‘R.U.R. A Torrent of Light’ performance webpage,

“This stunning new opera combines dance, beautiful multimedia design, a chamber orchestra including 100 instruments creating a unique electronica-classical sound, and wearable technology [emphasis mine] created with OCAD University’s Social Body Lab, to create an immersive and unforgettable science-fiction experience.”

And, from later in my posting,

“Despite current stereotypes, opera was historically a launchpad for all kinds of applied design technologies. [emphasis mine] Having the opportunity to collaborate with OCAD U faculty is an invigorating way to reconnect to that tradition and foster connections between art, music and design, [emphasis mine]” comments the production’s Director Michael Hidetoshi Mori, who is also Tapestry Opera’s Artistic Director. 

That last quote brings me back to the my comment about theatre and performing arts not being part of the show. Of course, the curators couldn’t do it all but a website with my hoped for background and additional information could have helped to solve the problem.

The absence of the theatrical and performing arts in the VAG’s ‘Imitation Game’ is a bit surprising as the Council of Canadian Academies (CCA) in their third assessment, “Competing in a Global Innovation Economy: The Current State of R&D in Canada” released in 2018 noted this (from my April 12, 2018 posting),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphasis mine] It accounts for more than 5% of world research in these fields. Conversely, Canada has lower research output than expected in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]

US-centric

My friend,

I was a little surprised that the show was so centered on work from the US given that Grenville has curated ate least one show where there was significant input from artists based in Asia. Both Japan and Korea are very active with regard to artificial intelligence and it’s hard to believe that their artists haven’t kept pace. (I’m not as familiar with China and its AI efforts, other than in the field of facial recognition, but it’s hard to believe their artists aren’t experimenting.)

The Americans, of course, are very important developers in the field of AI but they are not alone and it would have been nice to have seen something from Asia and/or Africa and/or something from one of the other Americas. In fact, anything which takes us out of the same old, same old. (Luba Elliott wrote this (2019/2020/2021?) essay, “Artificial Intelligence Art from Africa and Black Communities Worldwide” on Aya Data if you want to get a sense of some of the activity on the African continent. Elliott does seem to conflate Africa and Black Communities, for some clarity you may want to check out the Wikipedia entry on Africanfuturism, which contrasts with this August 12, 2020 essay by Donald Maloba, “What is Afrofuturism? A Beginner’s Guide.” Maloba also conflates the two.)

As it turns out, Luba Elliott presented at the 2019 Montréal Digital Spring event, which brings me to Canada’s artificial intelligence and arts scene.

I promise I haven’t turned into a flag waving zealot, my friend. It’s just odd there isn’t a bit more given that machine learning was pioneered at the University of Toronto. Here’s more about that (from Wikipedia entry for Geoffrey Hinston),

Geoffrey Everest HintonCCFRSFRSC[11] (born 6 December 1947) is a British-Canadian cognitive psychologist and computer scientist, most noted for his work on artificial neural networks.

Hinton received the 2018 Turing Award, together with Yoshua Bengio [Canadian scientist] and Yann LeCun, for their work on deep learning.[24] They are sometimes referred to as the “Godfathers of AI” and “Godfathers of Deep Learning“,[25][26] and have continued to give public talks together.[27][28]

Some of Hinton’s work was started in the US but since 1987, he has pursued his interests at the University of Toronto. He wasn’t proven right until 2012. Katrina Onstad’s February 29, 2018 article (Mr. Robot) for Toronto Life is a gripping read about Hinton and his work on neural networks. BTW, Yoshua Bengio (co-Godfather) is a Canadian scientist at the Université de Montréal and Yann LeCun (co-Godfather) is a French scientist at New York University.

Then, there’s another contribution, our government was the first in the world to develop a national artificial intelligence strategy. Adding those developments to the CCA ‘State of Science’ report findings about visual arts and performing arts, is there another word besides ‘odd’ to describe the lack of Canadian voices?

You’re going to point out the installation by Ben Bogart (a member of Simon Fraser University’s Metacreation Lab for Creative AI and instructor at the Emily Carr University of Art + Design (ECU)) but it’s based on the iconic US scifi film, 2001: A Space Odyssey. As for the other Canadian, Sougwen Chung, she left Canada pretty quickly to get her undergraduate degree in the US and has since moved to the UK. (You could describe hers as the quintessential success story, i.e., moving from Canada only to get noticed here after success elsewhere.)

Of course, there are the CDM student projects but the projects seem less like an exploration of visual culture than an exploration of technology and industry requirements, from the ‘Master of Digital Media Students Develop Revolutionary Installations for Vancouver Art Gallery AI Exhibition‘ webpage, Note: A link has been removed,

In 2019, Bruce Grenville, Senior Curator at Vancouver Art Gallery, approached [the] Centre for Digital Media to collaborate on several industry projects for the forthcoming exhibition. Four student teams tackled the project briefs over the course of the next two years and produced award-winning installations that are on display until October 23 [2022].

Basically, my friend, it would have been nice to see other voices or, at the least, an attempt at representing other voices and visual cultures informed by AI. As for Canadian contributions, maybe put something on the VAG website?

Playing well with others

it’s always a mystery to me why the Vancouver cultural scene seems comprised of a set of silos or closely guarded kingdoms. Reaching out to the public library and other institutions such as Science World might have cost time but could have enhanced the show

For example, one of the branches of the New York Public Library ran a programme called, “We are AI” in March 2022 (see my March 23, 2022 posting about the five-week course, which was run as a learning circle). The course materials are available for free (We are AI webpage) and I imagine that adding a ‘visual culture module’ wouldn’t be that difficult.

There is one (rare) example of some Vancouver cultural institutions getting together to offer an art/science programme and that was in 2017 when the Morris and Helen Belkin Gallery (at the University of British Columbia; UBC) hosted an exhibition of Santiago Ramon y Cajal’s work (see my Sept. 11, 2017 posting about the gallery show) along with that show was an ancillary event held by the folks at Café Scientifique at Science World and featuring a panel of professionals from UBC’s Faculty of Medicine and Dept. of Psychology, discussing Cajal’s work.

In fact, where were the science and technology communities for this show?

On a related note, the 2022 ACM SIGGRAPH conference (August 7 – 11, 2022) is being held in Vancouver. (ACM is the Association for Computing Machinery; SIGGRAPH is for Special Interest Group on Computer Graphics and Interactive Techniques.) SIGGRAPH has been holding conferences in Vancouver every few years since at least 2011.

At this year’s conference, they have at least two sessions that indicate interests similar to the VAG’s. First, there’s Immersive Visualization for Research, Science and Art which includes AI and machine learning along with other related topics. There’s also, Frontiers Talk: Art in the Age of AI: Can Computers Create Art?

This is both an international conference and an exhibition (of art) and the whole thing seems to have kicked off on July 25, 2022. If you’re interested, the programme can be found here and registration here.

Last time SIGGRAPH was here the organizers seemed interested in outreach and they offered some free events.

In the end

It was good to see the show. The curators brought together some exciting material. As is always the case, there were some missed opportunities and a few blind spots. But all is not lost.

July 27, 2022, the VAG held a virtual event with an artist,

Gwenyth Chao to learn more about what happened to the honeybees and hives in Oxman’s Synthetic Apiary project. As a transdisciplinary artist herself, Chao will also discuss the relationship between art, science, technology and design. She will then guide participants to create a space (of any scale, from insect to human) inspired by patterns found in nature.

Hopefully there will be more more events inspired by specific ‘objects’. Meanwhile, August 12, 2022, the VAG is hosting,

… in partnership with the Canadian Music Centre BC, New Music at the Gallery is a live concert series hosted by the Vancouver Art Gallery that features an array of musicians and composers who draw on contemporary art themes.

Highlighting a selection of twentieth- and twenty-first-century music compositions, this second concert, inspired by the exhibition The Imitation Game: Visual Culture in the Age of Artificial Intelligence, will spotlight The Iliac Suite (1957), the first piece ever written using only a computer, and Kaija Saariaho’s Terra Memoria (2006), which is in a large part dependent on a computer-generated musical process.

It would be lovely if they could include an Ada Lovelace Day event. This is an international celebration held on October 11, 2022.

Do go. Do enjoy, my friend.

Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (1 of 2): The Objects

To my imaginary AI friend

Dear friend,

I thought you might be amused by these Roomba-like* paintbots at the Vancouver Art Gallery’s (VAG) latest exhibition, “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” (March 5, 2022 – October 23, 2022).

Sougwen Chung, Omnia per Omnia, 2018, video (excerpt), Courtesy of the Artist

*A Roomba is a robot vacuum cleaner produced and sold by iRobot.

As far as I know, this is the Vancouver Art Gallery’s first art/science or art/technology exhibit and it is an alternately fascinating, exciting, and frustrating take on artificial intelligence and its impact on the visual arts. Curated by Bruce Grenville, VAG Senior Curator, and Glenn Entis, Guest Curator, the show features 20 ‘objects’ designed to both introduce viewers to the ‘imitation game’ and to challenge them. From the VAG Imitation Game webpage,

The Imitation Game surveys the extraordinary uses (and abuses) of artificial intelligence (AI) in the production of modern and contemporary visual culture around the world. The exhibition follows a chronological narrative that first examines the development of artificial intelligence, from the 1950s to the present [emphasis mine], through a precise historical lens. Building on this foundation, it emphasizes the explosive growth of AI across disciplines, including animation, architecture, art, fashion, graphic design, urban design and video games, over the past decade. Revolving around the important roles of machine learning and computer vision in AI research and experimentation, The Imitation Game reveals the complex nature of this new tool and demonstrates its importance for cultural production.

And now …

As you’ve probably guessed, my friend, you’ll find a combination of both background information and commentary on the show.

I’ve initially focused on two people (a scientist and a mathematician) who were seminal thinkers about machines, intelligence, creativity, and humanity. I’ve also provided some information about the curators, which hopefully gives you some insight into the show.

As for the show itself, you’ll find a few of the ‘objects’ highlighted with one of them being investigated at more length. The curators devoted some of the show to ethical and social justice issues, accordingly, the Vancouver Art Gallery hosted the University of British Columbia’s “Speculative Futures: Artificial Intelligence Symposium” on April 7, 2022,

Presented in conjunction with the exhibition The Imitation Game: Visual Culture in the Age of Artificial Intelligence, the Speculative Futures Symposium examines artificial intelligence and the specific uses of technology in its multifarious dimensions. Across four different panel conversations, leading thinkers of today will explore the ethical implications of technology and discuss how they are working to address these issues in cultural production.”

So, you’ll find more on these topics here too.

And for anyone else reading this (not you, my friend who is ‘strong’ AI and not similar to the ‘weak’ AI found in this show), there is a description of ‘weak’ and ‘strong’ AI on the avtsim.com/weak-ai-strong-ai webpage, Note: A link has been removed,

There are two types of AI: weak AI and strong AI.

Weak, sometimes called narrow, AI is less intelligent as it cannot work without human interaction and focuses on a more narrow, specific, or niched purpose. …

Strong AI on the other hand is in fact comparable to the fictitious AIs we see in media like the terminator. The theoretical Strong AI would be equivalent or greater to human intelligence.

….

My dear friend, I hope you will enjoy.

The Imitation Game and ‘mad, bad, and dangerous to know’

In some circles, it’s better known as ‘The Turing Test;” the Vancouver Art Gallery’s ‘Imitation Game’ hosts a copy of Alan Turing’s foundational paper for establishing whether artificial intelligence is possible (I thought this was pretty exciting).

Here’s more from The Turing Test essay by Graham Oppy and David Dowe for the Stanford Encyclopedia of Philosophy,

The phrase “The Turing Test” is most properly used to refer to a proposal made by Turing (1950) as a way of dealing with the question whether machines can think. According to Turing, the question whether machines can think is itself “too meaningless” to deserve discussion (442). However, if we consider the more precise—and somehow related—question whether a digital computer can do well in a certain kind of game that Turing describes (“The Imitation Game”), then—at least in Turing’s eyes—we do have a question that admits of precise discussion. Moreover, as we shall see, Turing himself thought that it would not be too long before we did have digital computers that could “do well” in the Imitation Game.

The phrase “The Turing Test” is sometimes used more generally to refer to some kinds of behavioural tests for the presence of mind, or thought, or intelligence in putatively minded entities. …

Next to the display holding Turing’s paper, is another display with an excerpt of an explanation from Turing about how he believed Ada Lovelace would have responded to the idea that machines could think based on a copy of some of her writing (also on display). She proposed that creativity, not thinking, is what set people apart from machines. (See the April 17, 2020 article “Thinking Machines? Has the Lovelace Test Been Passed?’ on mindmatters.ai.)

It’s like a dialogue between two seminal thinkers who lived about 100 years apart; Lovelace, born in 1815 and dead in 1852, and Turing, born in 1912 and dead in 1954. Both have fascinating back stories (more about those later) and both played roles in how computers and artificial intelligence are viewed.

Adding some interest to this walk down memory lane is a 3rd display, an illustration of the ‘Mechanical Turk‘, a chess playing machine that made the rounds in Europe from 1770 until it was destroyed in 1854. A hoax that fooled people for quite a while it is a reminder that we’ve been interested in intelligent machines for centuries. (Friend, Turing and Lovelace and the Mechanical Turk are found in Pod 1.)

Back story: Turing and the apple

Turing is credited with being instrumental in breaking the German ENIGMA code during World War II and helping to end the war. I find it odd that he ended up at the University of Manchester in the post-war years. One would expect him to have been at Oxford or Cambridge. At any rate, he died in 1954 of cyanide poisoning two years after he was arrested for being homosexual and convicted of indecency. Given the choice of incarceration or chemical castration, he chose the latter. There is, to this day, debate about whether or not it was suicide. Here’s how his death is described in this Wikipedia entry (Note: Links have been removed),

On 8 June 1954, at his house at 43 Adlington Road, Wilmslow,[150] Turing’s housekeeper found him dead. He had died the previous day at the age of 41. Cyanide poisoning was established as the cause of death.[151] When his body was discovered, an apple lay half-eaten beside his bed, and although the apple was not tested for cyanide,[152] it was speculated that this was the means by which Turing had consumed a fatal dose. An inquest determined that he had committed suicide. Andrew Hodges and another biographer, David Leavitt, have both speculated that Turing was re-enacting a scene from the Walt Disney film Snow White and the Seven Dwarfs (1937), his favourite fairy tale. Both men noted that (in Leavitt’s words) he took “an especially keen pleasure in the scene where the Wicked Queen immerses her apple in the poisonous brew”.[153] Turing’s remains were cremated at Woking Crematorium on 12 June 1954,[154] and his ashes were scattered in the gardens of the crematorium, just as his father’s had been.[155]

Philosopher Jack Copeland has questioned various aspects of the coroner’s historical verdict. He suggested an alternative explanation for the cause of Turing’s death: the accidental inhalation of cyanide fumes from an apparatus used to electroplate gold onto spoons. The potassium cyanide was used to dissolve the gold. Turing had such an apparatus set up in his tiny spare room. Copeland noted that the autopsy findings were more consistent with inhalation than with ingestion of the poison. Turing also habitually ate an apple before going to bed, and it was not unusual for the apple to be discarded half-eaten.[156] Furthermore, Turing had reportedly borne his legal setbacks and hormone treatment (which had been discontinued a year previously) “with good humour” and had shown no sign of despondency prior to his death. He even set down a list of tasks that he intended to complete upon returning to his office after the holiday weekend.[156] Turing’s mother believed that the ingestion was accidental, resulting from her son’s careless storage of laboratory chemicals.[157] Biographer Andrew Hodges theorised that Turing arranged the delivery of the equipment to deliberately allow his mother plausible deniability with regard to any suicide claims.[158]

The US Central Intelligence Agency (CIA) also has an entry for Alan Turing dated April 10, 2015 it’s titled, The Enigma of Alan Turing.

Back story: Ada Byron Lovelace, the 2nd generation of ‘mad, bad, and dangerous to know’

A mathematician and genius in her own right, Ada Lovelace’s father George Gordon Byron, better known as the poet Lord Byron, was notoriously described as ‘mad, bad, and dangerous to know’.

Lovelace too could have been been ‘mad, bad, …’ but she is described less memorably as “… manipulative and aggressive, a drug addict, a gambler and an adulteress, …” as mentioned in my October 13, 20215 posting. It marked the 200th anniversary of her birth, which was celebrated with a British Broadcasting Corporation (BBC) documentary and an exhibit at the Science Museum in London, UK.

She belongs in the Vancouver Art Gallery’s show along with Alan Turing due to her prediction that computers could be made to create music. She also published the first computer program. Her feat is astonishing when you know only one working model {1/7th of the proposed final size) of a computer was ever produced. (The machine invented by Charles Babbage was known as a difference engine. You can find out more about the Difference engine on Wikipedia and about Babbage’s proposed second invention, the Analytical engine.)

(Byron had almost nothing to do with his daughter although his reputation seems to have dogged her. You can find out more about Lord Byron here.)

AI and visual culture at the VAG: the curators

As mentioned earlier, the VAG’s “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” show runs from March 5, 2022 – October 23, 2022. Twice now, I have been to this weirdly exciting and frustrating show.

Bruce Grenville, VAG Chief/Senior Curator, seems to specialize in pulling together diverse materials to illustrate ‘big’ topics. His profile for Emily Carr University of Art + Design (where Grenville teaches) mentions these shows ,

… He has organized many thematic group exhibitions including, MashUp: The Birth of Modern Culture [emphasis mine], a massive survey documenting the emergence of a mode of creativity that materialized in the late 1800s and has grown to become the dominant model of cultural production in the 21st century; KRAZY! The Delirious World [emphasis mine] of Anime + Manga + Video Games + Art, a timely and important survey of modern and contemporary visual culture from around the world; Home and Away: Crossing Cultures on the Pacific Rim [emphasis mine] a look at the work of six artists from Vancouver, Beijing, Ho Chi Minh City, Seoul and Los Angeles, who share a history of emigration and diaspora. …

Glenn Entis, Guest Curator and founding faculty member of Vancouver’s Centre for Digital Media (CDM) is Grenville’s co-curator, from Entis’ CDM profile,

“… an Academy Award-winning animation pioneer and games industry veteran. The former CEO of Dreamworks Interactive, Glenn worked with Steven Spielberg and Jeffrey Katzenberg on a number of video games …,”

Steve Newton in his March 4, 2022 preview does a good job of describing the show although I strongly disagree with the title of his article which proclaims “The Vancouver Art Gallery takes a deep dive into artificial intelligence with The Imitation Game.” I think it’s more of a shallow dive meant to cover more distance than depth,

… The exhibition kicks off with an interactive introduction inviting visitors to actively identify diverse areas of cultural production influenced by AI.

“That was actually one of the pieces that we produced in collaboration with the Centre for Digital Media,” Grenville notes, “so we worked with some graduate-student teams that had actually helped us to design that software. It was the beginning of COVID when we started to design this, so we actually wanted a no-touch interactive. So, really, the idea was to say, ‘Okay, this is the very entrance to the exhibition, and artificial intelligence, this is something I’ve heard about, but I’m not really sure how it’s utilized in ways. But maybe I know something about architecture; maybe I know something about video games; maybe I know something about the history of film.

“So you point to these 10 categories of visual culture [emphasis mine]–video games, architecture, fashion design, graphic design, industrial design, urban design–so you point to one of those, and you might point to ‘film’, and then when you point at it that opens up into five different examples of what’s in the show, so it could be 2001: A Space Odyssey, or Bladerunner, or World on a Wire.”

After the exhibition’s introduction—which Grenville equates to “opening the door to your curiosity” about artificial intelligence–visitors encounter one of its main categories, Objects of Wonder, which speaks to the history of AI and the critical advances the technology has made over the years.

“So there are 20 Objects of Wonder [emphasis mine],” Grenville says, “which go from 1949 to 2022, and they kind of plot out the history of artificial intelligence over that period of time, focusing on a specific object. Like [mathematician and philosopher] Norbert Wiener made this cybernetic creature, he called it a ‘Moth’, in 1949. So there’s a section that looks at this idea of kind of using animals–well, machine animals–and thinking about cybernetics, this idea of communication as feedback, early thinking around neuroscience and how neuroscience starts to imagine this idea of a thinking machine.

And there’s this from Newton’s March 4, 2022 preview,

“It’s interesting,” Grenville ponders, “artificial intelligence is virtually unregulated. [emphasis mine] You know, if you think about the regulatory bodies that govern TV or radio or all the types of telecommunications, there’s no equivalent for artificial intelligence, which really doesn’t make any sense. And so what happens is, sometimes with the best intentions [emphasis mine]—sometimes not with the best intentions—choices are made about how artificial intelligence develops. So one of the big ones is facial-recognition software [emphasis mine], and any body-detection software that’s being utilized.

In addition to it being the best overview of the show I’ve seen so far, this is the only one where you get a little insight into what the curators were thinking when they were developing it.

A deep dive into AI?

it was only while searching for a little information before the show that I realized I don’t have any definitions for artificial intelligence! What is AI? Sadly, there are no definitions of AI in the exhibit.

It seems even experts don’t have a good definition. Take a look at this,

The definition of AI is fluid [emphasis mine] and reflects a constantly shifting landscape marked by technological advancements and growing areas of application. Indeed, it has frequently been observed that once AI becomes capable of solving a particular problem or accomplishing a certain task, it is often no longer considered to be “real” intelligence [emphasis mine] (Haenlein & Kaplan, 2019). A firm definition was not applied for this report [emphasis mine], given the variety of implementations described above. However, for the purposes of deliberation, the Panel chose to interpret AI as a collection of statistical and software techniques, as well as the associated data and the social context in which they evolve — this allows for a broader and more inclusive interpretation of AI technologies and forms of agency. The Panel uses the term AI interchangeably to describe various implementations of machine-assisted design and discovery, including those based on machine learning, deep learning, and reinforcement learning, except for specific examples where the choice of implementation is salient. [p. 6 print version; p. 34 PDF version]

The above is from the Leaps and Boundaries report released May 10, 2022 by the Council of Canadian Academies’ Expert Panel on Artificial Intelligence for Science and Engineering.

Sometimes a show will take you in an unexpected direction. I feel a lot better ‘not knowing’. Still, I wish the curators had acknowledged somewhere in the show that artificial intelligence is a slippery concept. Especially when you add in robots and automatons. (more about them later)

21st century technology in a 19th/20th century building

Void stairs inside the building. Completed in 1906, the building was later designated as a National Historic Site in 1980 [downloaded from https://en.wikipedia.org/wiki/Vancouver_Art_Gallery#cite_note-canen-7]

Just barely making it into the 20th century, the building where the Vancouver Art Gallery currently resides was for many years the provincial courthouse (1911 – 1978). In some ways, it’s a disconcerting setting for this show.

They’ve done their best to make the upstairs where the exhibit is displayed look like today’s galleries with their ‘white cube aesthetic’ and strong resemblance to the scientific laboratories seen in movies.

(For more about the dominance, since the 1930s, of the ‘white cube aesthetic’ in art galleries around the world, see my July 26, 2021 posting; scroll down about 50% of the way.)

It makes for an interesting tension, the contrast between the grand staircase, the cupola, and other architectural elements and the sterile, ‘laboratory’ environment of the modern art gallery.

20 Objects of Wonder and the flow of the show

It was flummoxing. Where are the 20 objects? Why does it feel like a maze in a laboratory? Loved the bees, but why? Eeeek Creepers! What is visual culture anyway? Where am I?

The objects of the show

It turns out that the curators have a more refined concept for ‘object’ than I do. There weren’t 20 material objects, there were 20 numbered ‘pods’ with perhaps a screen or a couple of screens or a screen and a material object or two illustrating the pod’s topic.

Looking up a definition for the word (accessed from a June 9, 2022 duckduckgo.com search). yielded this, (the second one seems à propos),

objectŏb′jĭkt, -jĕkt″

noun

1. Something perceptible by one or more of the senses, especially by vision or touch; a material thing.

2. A focus of attention, feeling, thought, or action.

3. A limiting factor that must be considered.

The American Heritage® Dictionary of the English Language, 5th Edition.

Each pod = a focus of attention.

The show’s flow is a maze. Am I a rat?

The pods are defined by a number and by temporary walls. So if you look up, you’ll see a number and a space partly enclosed by a temporary wall or two.

It’s a very choppy experience. For example, one minute you can be in pod 1 and, when you turn the corner, you’re in pod 4 or 5 or ? There are pods I’ve not seen, despite my two visits, because I kept losing my way. This led to an existential crisis on my second visit. “Had I missed the greater meaning of this show? Was there some sort of logic to how it was organized? Was there meaning to my life? Was I a rat being nudged around in a maze?” I didn’t know.

Thankfully, I have since recovered. But, I will return to my existential crisis later, with a special mention for “Creepers.”

The fascinating

My friend, you know I appreciated the history and in addition to Alan Turing, Ada Lovelace and the Mechanical Turk, at the beginning of the show, they included a reference to Ovid (or Pūblius Ovidius Nāsō), a Roman poet who lived from 43 BCE – 17/18 CE in one of the double digit (17? or 10? or …) in one of the pods featuring a robot on screen. As to why Ovid might be included, this excerpt from a February 12, 2018 posting on the cosmolocal.org website provides a clue (Note. Links have been removed),

The University of King’s College [Halifax, Nova Scotia] presents Automatons! From Ovid to AI, a nine-lecture series examining the history, issues and relationships between humans, robots, and artificial intelligence [emphasis mine]. The series runs from January 10 to April 4 [2018], and features leading scholars, performers and critics from Canada, the US and Britain.

“Drawing from theatre, literature, art, science and philosophy, our 2018 King’s College Lecture Series features leading international authorities exploring our intimate relationships with machines,” says Dr. Gordon McOuat, professor in the King’s History of Science and Technology (HOST) and Contemporary Studies Programs.

“From the myths of Ovid [emphasis mine] and the automatons [emphasis mine] of the early modern period to the rise of robots, cyborgs, AI and artificial living things in the modern world, the 2018 King’s College Lecture Series examines the historical, cultural, scientific and philosophical place of automatons in our lives—and our future,” adds McOuat.

I loved the way the curators managed to integrate the historical roots for artificial intelligence and, by extension, the world of automatons, robots, cyborgs, and androids. Yes, starting the show with Alan Turing and Ada Lovelace could be expected but Norbert Wiener’s Moth (1949) acts as a sort of preview for Sougwen Chung’s “Omnia per Omnia, 2018” (GIF seen at the beginning of this post). Take a look for yourself (from the cyberneticzoo.com September 19, 2009 posting by cyberne1. Do you see the similarity or am I the only one?

[sourced from Google images, Source:life) & downloaded from https://cyberneticzoo.com/cyberneticanimals/1949-wieners-moth-wiener-wiesner-singleton/]

Sculpture

This is the first time I’ve come across an AI/sculpture project. The VAG show features Scott Eaton’s sculptures on screens in a room devoted to his work.

Scott Eaton: Entangled II, 2019 4k video (still) Courtesy of the Artist [downloaded from https://www.vanartgallery.bc.ca/exhibitions/the-imitation-game]

This looks like an image of a piece of ginger root and It’s fascinating to watch the process as the AI agent ‘evolves’ Eaton’s drawings into onscreen sculptures. It would have enhanced the experience if at least one of Eaton’s ‘evolved’ and physically realized sculptures had been present in the room but perhaps there were financial and/or logistical reasons for the absence.

Both Chung and Eaton are collaborating with an AI agent. In Chung’s case the AI is integrated into the paintbots with which she interacts and paints alongside and in Eaton’s case, it’s via a computer screen. In both cases, the work is mildly hypnotizing in a way that reminds me of lava lamps.

One last note about Chung and her work. She was one of the artists invited to present new work at an invite-only April 22, 2022 Embodied Futures workshop at the “What will life become?” event held by the Berrgruen Institute and the University of Southern California (USC),

Embodied Futures invites participants to imagine novel forms of life, mind, and being through artistic and intellectual provocations on April 22 [2022].

Beginning at 1 p.m., together we will experience the launch of five artworks commissioned by the Berggruen Institute. We asked these artists: How does your work inflect how we think about “the human” in relation to alternative “embodiments” such as machines, AIs, plants, animals, the planet, and possible alien life forms in the cosmos? [emphases mine]  Later in the afternoon, we will take provocations generated by the morning’s panels and the art premieres in small breakout groups that will sketch futures worlds, and lively entities that might dwell there, in 2049.

This leads to (and my friend, while I too am taking a shallow dive, for this bit I’m going a little deeper):

Bees and architecture

Neri Oxman’s contribution (Golden Bee Cube, Synthetic Apiary II [2020]) is an exhibit featuring three honeycomb structures and a video featuring the bees in her synthetic apiary.

Neri Oxman and the MIT Mediated Matter Group, Golden Bee Cube, Synthetic Apiary II, 2020, beeswax, acrylic, gold particles, gold powder Courtesy of Neri Oxman and the MIT Mediated Matter Group

Neri Oxman (then a faculty member of the Mediated Matter Group at the Massachusetts Institute of Technology) described the basis for the first and all other iterations of her synthetic apiary in Patrick Lynch’s October 5, 2016 article for ‘ArchDaily; Broadcasting Architecture Worldwide’, Note: Links have been removed,

Designer and architect Neri Oxman and the Mediated Matter group have announced their latest design project: the Synthetic Apiary. Aimed at combating the massive bee colony losses that have occurred in recent years, the Synthetic Apiary explores the possibility of constructing controlled, indoor environments that would allow honeybee populations to thrive year-round.

“It is time that the inclusion of apiaries—natural or synthetic—for this “keystone species” be considered a basic requirement of any sustainability program,” says Oxman.

In developing the Synthetic Apiary, Mediated Matter studied the habits and needs of honeybees, determining the precise amounts of light, humidity and temperature required to simulate a perpetual spring environment. [emphasis mine] They then engineered an undisturbed space where bees are provided with synthetic pollen and sugared water and could be evaluated regularly for health.

In the initial experiment, the honeybees’ natural cycle proved to adapt to the new environment, as the Queen was able to successfully lay eggs in the apiary. The bees showed the ability to function normally in the environment, suggesting that natural cultivation in artificial spaces may be possible across scales, “from organism- to building-scale.”

“At the core of this project is the creation of an entirely synthetic environment enabling controlled, large-scale investigations of hives,” explain the designers.

Mediated Matter chose to research into honeybees not just because of their recent loss of habitat, but also because of their ability to work together to create their own architecture, [emphasis mine] a topic the group has explored in their ongoing research on biologically augmented digital fabrication, including employing silkworms to create objects and environments at product, architectural, and possibly urban, scales.

“The Synthetic Apiary bridges the organism- and building-scale by exploring a “keystone species”: bees. Many insect communities present collective behavior known as “swarming,” prioritizing group over individual survival, while constantly working to achieve common goals. Often, groups of these eusocial organisms leverage collaborative behavior for relatively large-scale construction. For example, ants create extremely complex networks by tunneling, wasps generate intricate paper nests with materials sourced from local areas, and bees deposit wax to build intricate hive structures.”

This January 19, 2022 article by Crown Honey for its eponymous blog updates Oxman’s work (Note 1: All emphases are mine; Note 2: A link has been removed),

Synthetic Apiary II investigates co-fabrication between humans and honey bees through the use of designed environments in which Apis mellifera colonies construct comb. These designed environments serve as a means by which to convey information to the colony. The comb that the bees construct within these environments comprises their response to the input information, enabling a form of communication through which we can begin to understand the hive’s collective actions from their perspective.

Some environments are embedded with chemical cues created through a novel pheromone 3D-printing process, while others generate magnetic fields of varying strength and direction. Others still contain geometries of varying complexity or designs that alter their form over time.

When offered wax augmented with synthetic biomarkers, bees appear to readily incorporate it into their construction process, likely due to the high energy cost of producing fresh wax. This suggests that comb construction is a responsive and dynamic process involving complex adaptations to perturbations from environmental stimuli, not merely a set of predefined behaviors building toward specific constructed forms. Each environment therefore acts as a signal that can be sent to the colony to initiate a process of co-fabrication.

Characterization of constructed comb morphology generally involves visual observation and physical measurements of structural features—methods which are limited in scale of analysis and blind to internal architecture. In contrast, the wax structures built by the colonies in Synthetic Apiary II are analyzed through high-throughput X-ray computed tomography (CT) scans that enable a more holistic digital reconstruction of the hive’s structure.

Geometric analysis of these forms provides information about the hive’s design process, preferences, and limitations when tied to the inputs, and thereby yields insights into the invisible mediations between bees and their environment.
Developing computational tools to learn from bees can facilitate the very beginnings of a dialogue with them. Refined by evolution over hundreds of thousands of years, their comb-building behaviors and social organizations may reveal new forms and methods of formation that can be applied across our human endeavors in architecture, design, engineering, and culture.

Further, with a basic understanding and language established, methods of co-fabrication together with bees may be developed, enabling the use of new biocompatible materials and the creation of more efficient structural geometries that modern technology alone cannot achieve.

In this way, we also move our built environment toward a more synergistic embodiment, able to be more seamlessly integrated into natural environments through material and form, even providing habitats of benefit to both humans and nonhumans. It is essential to our mutual survival for us to not only protect but moreover to empower these critical pollinators – whose intrinsic behaviors and ecosystems we have altered through our industrial processes and practices of human-centric design – to thrive without human intervention once again.

In order to design our way out of the environmental crisis that we ourselves created, we must first learn to speak nature’s language. …

The three (natural, gold nanoparticle, and silver nanoparticle) honeycombs in the exhibit are among the few physical objects (the others being the historical documents and the paintbots with their canvasses) in the show and it’s almost a relief after the parade of screens. It’s the accompanying video that’s eerie. Everything is in white, as befits a science laboratory, in this synthetic apiary where bees are fed sugar water and fooled into a spring that is eternal.

Courtesy: Massachusetts Institute of Technology Copyright: Mediated Matter [downloaded from https://www.media.mit.edu/projects/synthetic-apiary/overview/]

(You may want to check out Lynch’s October 5, 2016 article or Crown Honey’s January 19, 2022 article as both have embedded images and the Lynch article includes a Synthetic Apiary video. The image above is a still from the video.)

As I asked a friend, where are the flowers? Ron Miksha, a bee ecologist working at the University of Calgary, details some of the problems with Oxman’s Synthetic Apiary this way in his October 7, 2016 posting on his Bad Beekeeping Blog,

In a practical sense, the synthetic apiary fails on many fronts: Bees will survive a few months on concoctions of sugar syrup and substitute pollen, but they need a natural variety of amino acids and minerals to actually thrive. They need propolis and floral pollen. They need a ceiling 100 metres high and a 2-kilometre hallway if drone and queen will mate, or they’ll die after the old queen dies. They need an artificial sun that travels across the sky, otherwise, the bees will be attracted to artificial lights and won’t return to their hive. They need flowery meadows, fresh water, open skies. [emphasis mine] They need a better holodeck.

Dorothy Woodend’s March 10, 2022 review of the VAG show for The Tyee poses other issues with the bees and the honeycombs,

When AI messes about with other species, there is something even more unsettling about the process. American-Israeli artist Neri Oxman’s Golden Bee Cube, Synthetic Apiary II, 2020 uses real bees who are proffered silver and gold [nanoparticles] to create their comb structures. While the resulting hives are indeed beautiful, rendered in shades of burnished metal, there is a quality of unease imbued in them. Is the piece akin to apiary torture chambers? I wonder how the bees feel about this collaboration and whether they’d like to renegotiate the deal.

There’s no question the honeycombs are fascinating and disturbing but I don’t understand how artificial intelligence was a key factor in either version of Oxman’s synthetic apiary. In the 2022 article by Crown Honey, there’s this “Developing computational tools to learn from bees can facilitate the very beginnings of a dialogue with them [honeybees].” It’s probable that the computational tools being referenced include AI and the Crown Honey article seems to suggest those computational tools are being used to analyze the bees behaviour after the fact.

Yes, I can imagine a future where ‘strong’ AI (such as you, my friend) is in ‘dialogue’ with the bees and making suggestions and running the experiments but it’s not clear that this is the case currently. The Oxman exhibit contribution would seem to be about the future and its possibilities whereas many of the other ‘objects’ concern the past and/or the present.

Friend, let’s take a break, shall we? Part 2 is coming up.

Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more

I received (via email) a July 21, 2022 news release about the launch of a quantum science initiative in Vancouver (BTW, I have more about the Canadian quantum scene later in this post),

World’s top physicists unite to tackle one of Science’s greatest
mysteries


Vancouver-based Quantum Gravity Society leads international quest to
discover Theory of Quantum Gravity

Vancouver, B.C. (July 21, 2022): More than two dozen of the world’s
top physicists, including three Nobel Prize winners, will gather in
Vancouver this August for a Quantum Gravity Conference that will host
the launch a Vancouver-based Quantum Gravity Institute (QGI) and a
new global research collaboration that could significantly advance our
understanding of physics and gravity and profoundly change the world as
we know it.

For roughly 100 years, the world’s understanding of physics has been
based on Albert Einstein’s General Theory of Relativity (GR), which
explored the theory of space, time and gravity, and quantum mechanics
(QM), which focuses on the behaviour of matter and light on the atomic
and subatomic scale. GR has given us a deep understanding of the cosmos,
leading to space travel and technology like atomic clocks, which govern
global GPS systems. QM is responsible for most of the equipment that
runs our world today, including the electronics, lasers, computers, cell
phones, plastics, and other technologies that support modern
transportation, communications, medicine, agriculture, energy systems
and more.

While each theory has led to countless scientific breakthroughs, in many
cases, they are incompatible and seemingly contradictory. Discovering a
unifying connection between these two fundamental theories, the elusive
Theory of Quantum Gravity, could provide the world with a deeper
understanding of time, gravity and matter and how to potentially control
them. It could also lead to new technologies that would affect most
aspects of daily life, including how we communicate, grow food, deliver
health care, transport people and goods, and produce energy.

“Discovering the Theory of Quantum Gravity could lead to the
possibility of time travel, new quantum devices, or even massive new
energy resources that produce clean energy and help us address climate
change,” said Philip Stamp, Professor, Department of Physics and
Astronomy, University of British Columbia, and Visiting Associate in
Theoretical Astrophysics at Caltech [California Institute of Technology]. “The potential long-term ramifications of this discovery are so incredible that life on earth 100
years from now could look as miraculous to us now as today’s
technology would have seemed to people living 100 years ago.”

The new Quantum Gravity Institute and the conference were founded by the
Quantum Gravity Society, which was created in 2022 by a group of
Canadian technology, business and community leaders, and leading
physicists. Among its goals are to advance the science of physics and
facilitate research on the Theory of Quantum Gravity through initiatives
such as the conference and assembling the world’s leading archive of
scientific papers and lectures associated with the attempts to reconcile
these two theories over the past century.

Attending the Quantum Gravity Conference in Vancouver (August 15-19 [2022])
will be two dozen of the world’s top physicists, including Nobel
Laureates Kip Thorne, Jim Peebles and Sir Roger Penrose, as well as
physicists Baron Martin Rees, Markus Aspelmeyer, Viatcheslav Mukhanov
and Paul Steinhardt. On Wednesday, August 17, the conference will be
open to the public, providing them with a once-in-a-lifetime opportunity
to attend keynote addresses from the world’s pre-eminent physicists.
… A noon-hour discussion on the importance of the
research will be delivered by Kip Thorne, the former Feynman Professor
of physics at Caltech. Thorne is well known for his popular books, and
for developing the original idea for the 2014 film “Interstellar.” He
was also crucial to the development of the book “Contact” by Carl Sagan,
which was also made into a motion picture.

“We look forward to welcoming many of the world’s brightest minds to
Vancouver for our first Quantum Gravity Conference,” said Frank
Giustra, CEO Fiore Group and Co-Founder, Quantum Gravity Society. “One
of the goals of our Society will be to establish Vancouver as a
supportive home base for research and facilitate the scientific
collaboration that will be required to unlock this mystery that has
eluded some of the world’s most brilliant physicists for so long.”

“The format is key,” explains Terry Hui, UC Berkley Physics alumnus
and Co-Founder, Quantum Gravity Society [and CEO of Concord Pacific].
“Like the Solvay Conference nearly 100 years ago, the Quantum Gravity
Conference will bring top scientists together in salon-style gatherings. The
relaxed evening format following the conference will reduce barriers and
allow these great minds to freely exchange ideas. I hope this will help accelerate
the solution of this hundred-year bottleneck between theories relatively
soon.”

“As amazing as our journey of scientific discovery has been over the
past century, we still have so much to learn about how the universe
works on a macro, atomic and subatomic level,” added Paul Lee,
Managing Partner, Vanedge Capital, and Co-Founder, Quantum Gravity
Society. “New experiments and observations capable of advancing work
on this scientific challenge are becoming increasingly possible in
today’s physics labs and using new astronomical tools. The Quantum
Gravity Society looks forward to leveraging that growing technical
capacity with joint theory and experimental work that harnesses the
collective expertise of the world’s great physicists.”

About Quantum Gravity Society

Quantum Gravity Society was founded in Vancouver, Canada in 2020 by a
group of Canadian business, technology and community leaders, and
leading international physicists. The Society’s founding members
include Frank Giustra (Fiore Group), Terry Hui (Concord Pacific), Paul
Lee and Moe Kermani (Vanedge Capital) and Markus Frind (Frind Estate
Winery), along with renowned physicists Abhay Ashtekar, Sir Roger
Penrose, Philip Stamp, Bill Unruh and Birgitta Whaley. For more
information, visit Quantum Gravity Society.

About the Quantum Gravity Conference (Vancouver 2022)


The inaugural Quantum Gravity Conference (August 15-19 [2022]) is presented by
Quantum Gravity Society, Fiore Group, Vanedge Capital, Concord Pacific,
The Westin Bayshore, Vancouver and Frind Estate Winery. For conference
information, visit conference.quantumgravityinstitute.ca. To
register to attend the conference, visit Eventbrite.com.

The front page on the Quantum Gravity Society website is identical to the front page for the Quantum Mechanics & Gravity: Marrying Theory & Experiment conference website. It’s probable that will change with time.

This seems to be an in-person event only.

The site for the conference is in an exceptionally pretty location in Coal Harbour and it’s close to Stanley Park (a major tourist attraction),

The Westin Bayshore, Vancouver
1601 Bayshore Drive
Vancouver, BC V6G 2V4
View map

Assuming that most of my readers will be interested in the ‘public’ day, here’s more from the Wednesday, August 17, 2022 registration page on Eventbrite,

Tickets:

  • Corporate Table of 8 all day access – includes VIP Luncheon: $1,100
  • Ticket per person all day access – includes VIP Luncheon: $129
  • Ticket per person all day access (no VIP luncheon): $59
  • Student / Academia Ticket – all day access (no VIP luncheon): $30

Date:

Wednesday, August 17, 2022 @ 9:00 a.m. – 5:15 p.m. (PT)

Schedule:

  • Registration Opens: 8:00 a.m.
  • Morning Program: 9:00 a.m. – 12:30 p.m.
  • VIP Lunch: 12:30 p.m. – 2:30 p.m.
  • Afternoon Program: 2:30 p.m. – 4:20 p.m.
  • Public Discussion / Debate: 4:20 p.m. – 5:15 p.m.

Program:

9:00 a.m. Session 1: Beginning of the Universe

  • Viatcheslav Mukhanov – Theoretical Physicist and Cosmologist, University of Munich
  • Paul Steinhardt – Theoretical Physicist, Princeton University

Session 2: History of the Universe

  • Jim Peebles, 2019 Nobel Laureate, Princeton University
  • Baron Martin Rees – Cosmologist and Astrophysicist, University of Cambridge
  • Sir Roger Penrose, 2020 Nobel Laureate, University of Oxford (via zoom)

12:30 p.m. VIP Lunch Session: Quantum Gravity — Why Should We Care?

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

2:30 p.m. Session 3: What do Experiments Say?

  • Markus Aspelmeyer – Experimental Physicist, Quantum Optics and Optomechanics Leader, University of Vienna
  • Sir Roger Penrose – 2020 Nobel Laureate (via zoom)

Session 4: Time Travel

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

Event Partners

  • Quantum Gravity Society
  • Westin Bayshore
  • Fiore Group
  • Concord Pacific
  • VanEdge Capital
  • Frind Estate Winery

Marketing Partners

  • BC Business Council
  • Greater Vancouver Board of Trade

Please note that Sir Roger Penrose will be present via Zoom but all the others will be there in the room with you.

Given that Kip Thorne won his 2017 Nobel Prize in Physics (with Rainer Weiss and Barry Barish) for work on gravitational waves, it’s surprising there’s no mention of this in the publicity for a conference on quantum gravity. Finding gravitational waves in 2016 was a very big deal (see Josh Fischman’s and Steve Mirsky’s February 11, 2016 interview with Kip Thorne for Scientific American).

Some thoughts on this conference and the Canadian quantum scene

This conference has a fascinating collection of players. Even I recognized some of the names, e.g., Penrose, Rees, Thorne.

The academics were to be expected and every presenter is an academic, often with their own Wikipedia page. Weirdly, there’s no one from the Perimeter Institute Institute for Theoretical Physics or TRIUMF (a national physics laboratory and centre for particle acceleration) or from anywhere else in Canada, which may be due to their academic specialty rather than an attempt to freeze out Canadian physicists. In any event, the conference academics are largely from the US (a lot of them from CalTech and Stanford) and from the UK.

The business people are a bit of a surprise. The BC Business Council and the Greater Vancouver Board of Trade? Frank Giustra who first made his money with gold mines, then with Lionsgate Entertainment, and who continues to make a great deal of money with his equity investment company, Fiore Group? Terry Hui, Chief Executive Office of Concord Pacific, a real estate development company? VanEdge Capital, an early stage venture capital fund? A winery? Missing from this list is D-Wave Systems, Canada’s quantum calling card and local company. While their area of expertise is quantum computing, I’d still expect to see them present as sponsors. *ETA December 6, 2022: I just looked at the conference page again and D-Wave is now listed as a sponsor.*

The academics? These people are not cheap dates (flights, speaker’s fees, a room at the Bayshore, meals). This is a very expensive conference and $129 for lunch and a daypass is likely a heavily subsidized ticket.

Another surprise? No government money/sponsorship. I don’t recall seeing another academic conference held in Canada without any government participation.

Canadian quantum scene

A National Quantum Strategy was first announced in the 2021 Canadian federal budget and reannounced in the 2022 federal budget (see my April 19, 2022 posting for a few more budget details).. Or, you may find this National Quantum Strategy Consultations: What We Heard Report more informative. There’s also a webpage for general information about the National Quantum Strategy.

As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,

Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.

Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.

Quick facts

Budget 2021 committed $360 million to build the foundation for a National Quantum Strategy, enabling the Government of Canada to build on previous investments in the sector to advance the emerging field of quantum technologies. The quantum sector is key to fuelling Canada’s economy, long-term resilience and growth, especially as technologies mature and more sectors harness quantum capabilities.

Development of quantum technologies offers job opportunities in research and science, software and hardware engineering and development, manufacturing, technical support, sales and marketing, business operations and other fields.

The Government of Canada also invested more than $1 billion in quantum research and science from 2009 to 2020—mainly through competitive granting agency programs, including Natural Sciences and Engineering Research Council of Canada programs and the Canada First Research Excellence Fund—to help establish Canada as a global leader in quantum science.

In addition, the government has invested in bringing new quantum technologies to market, including investments through Canada’s regional development agencies, the Strategic Innovation Fund and the National Research Council of Canada’s Industrial Research Assistance Program.

Bank of Canada, cryptocurrency, and quantum computing

My July 25, 2022 posting features a special project, Note: All emphases are mine,

… (from an April 14, 2022 HKA Marketing Communications news release on EurekAlert),

Multiverse Computing, a global leader in quantum computing solutions for the financial industry and beyond with offices in Toronto and Spain, today announced it has completed a proof-of-concept project with the Bank of Canada through which the parties used quantum computing to simulate the adoption of cryptocurrency as a method of payment by non-financial firms.

“We are proud to be a trusted partner of the first G7 central bank to explore modelling of complex networks and cryptocurrencies through the use of quantum computing,” said Sam Mugel, CTO [Chief Technical Officer] at Multiverse Computing. “The results of the simulation are very intriguing and insightful as stakeholders consider further research in the domain. Thanks to the algorithm we developed together with our partners at the Bank of Canada, we have been able to model a complex system reliably and accurately given the current state of quantum computing capabilities.”

Multiverse Computing conducted its innovative work related to applying quantum computing for modelling complex economic interactions in a research project with the Bank of Canada. The project explored quantum computing technology as a way to simulate complex economic behaviour that is otherwise very difficult to simulate using traditional computational techniques.

By implementing this solution using D-Wave’s annealing quantum computer, the simulation was able to tackle financial networks as large as 8-10 players, with up to 2^90 possible network configurations. Note that classical computing approaches cannot solve large networks of practical relevance as a 15-player network requires as many resources as there are atoms in the universe.

Quantum Technologies and the Council of Canadian Academies (CCA)

In a May 26, 2022 blog posting the CCA announced its Expert Panel on Quantum Technologies (they will be issuing a Quantum Technologies report),

The emergence of quantum technologies will impact all sectors of the Canadian economy, presenting significant opportunities but also risks. At the request of the National Research Council of Canada (NRC) and Innovation, Science and Economic Development Canada (ISED), the Council of Canadian Academies (CCA) has formed an Expert Panel to examine the impacts, opportunities, and challenges quantum technologies present for Canadian industry, governments, and Canadians. Raymond Laflamme, O.C., FRSC, Canada Research Chair in Quantum Information and Professor in the Department of Physics and Astronomy at the University of Waterloo, will serve as Chair of the Expert Panel.

“Quantum technologies have the potential to transform computing, sensing, communications, healthcare, navigation and many other areas,” said Dr. Laflamme. “But a close examination of the risks and vulnerabilities of these technologies is critical, and I look forward to undertaking this crucial work with the panel.”

As Chair, Dr. Laflamme will lead a multidisciplinary group with expertise in quantum technologies, economics, innovation, ethics, and legal and regulatory frameworks. The Panel will answer the following question:

In light of current trends affecting the evolution of quantum technologies, what impacts, opportunities and challenges do these present for Canadian industry, governments and Canadians more broadly?

The Expert Panel on Quantum Technologies:

Raymond Laflamme, O.C., FRSC (Chair), Canada Research Chair in Quantum Information; the Mike and Ophelia Lazaridis John von Neumann Chair in Quantum Information; Professor, Department of Physics and Astronomy, University of Waterloo

Sally Daub, Founder and Managing Partner, Pool Global Partners

Shohini Ghose, Professor, Physics and Computer Science, Wilfrid Laurier University; NSERC Chair for Women in Science and Engineering

Paul Gulyas, Senior Innovation Executive, IBM Canada

Mark W. Johnson, Senior Vice-President, Quantum Technologies and Systems Products, D-Wave Systems

Elham Kashefi, Professor of Quantum Computing, School of Informatics, University of Edinburgh; Directeur de recherche au CNRS, LIP6 Sorbonne Université

Mauritz Kop, Fellow and Visiting Scholar, Stanford Law School, Stanford University

Dominic Martin, Professor, Département d’organisation et de ressources humaines, École des sciences de la gestion, Université du Québec à Montréal

Darius Ornston, Associate Professor, Munk School of Global Affairs and Public Policy, University of Toronto

Barry Sanders, FRSC, Director, Institute for Quantum Science and Technology, University of Calgary

Eric Santor, Advisor to the Governor, Bank of Canada

Christian Sarra-Bournet, Quantum Strategy Director and Executive Director, Institut quantique, Université de Sherbrooke

Stephanie Simmons, Associate Professor, Canada Research Chair in Quantum Nanoelectronics, and CIFAR Quantum Information Science Fellow, Department of Physics, Simon Fraser University

Jacqueline Walsh, Instructor; Director, initio Technology & Innovation Law Clinic, Dalhousie University

You’ll note that both the Bank of Canada and D-Wave Systems are represented on this expert panel.

The CCA Quantum Technologies report (in progress) page can be found here.

Does it mean anything?

Since I only skim the top layer of information (disparagingly described as ‘high level’ by the technology types I used to work with), all I can say is there’s a remarkable level of interest from various groups who are self-organizing. (The interest is international as well. I found the International Society for Quantum Gravity [ISQG], which had its first meeting in 2021.)

I don’t know what the purpose is other than it seems the Canadian focus seems to be on money. The board of trade and business council have no interest in primary research and the federal government’s national quantum strategy is part of Innovation, Science and Economic Development (ISED) Canada’s mandate. You’ll notice ‘science’ is sandwiched between ‘innovation’, which is often code for business, and economic development.

The Bank of Canada’s monetary interests are quite obvious.

The Perimeter Institute mentioned earlier was founded by Mike Lazaridis (from his Wikipedia entry) Note: Links have been removed,

… a Canadian businessman [emphasis mine], investor in quantum computing technologies, and founder of BlackBerry, which created and manufactured the BlackBerry wireless handheld device. With an estimated net worth of US$800 million (as of June 2011), Lazaridis was ranked by Forbes as the 17th wealthiest Canadian and 651st in the world.[4]

In 2000, Lazaridis founded and donated more than $170 million to the Perimeter Institute for Theoretical Physics.[11][12] He and his wife Ophelia founded and donated more than $100 million to the Institute for Quantum Computing at the University of Waterloo in 2002.[8]

That Institute for Quantum Computing? There’s an interesting connection. Raymond Laflamme, the chair for the CCA expert panel, was its director for a number of years and he’s closely affiliated with the Perimeter Institute. (I’m not suggesting anything nefarious or dodgy. It’s a small community in Canada and relationships tend to be tightly interlaced.) I’m surprised he’s not part of the quantum mechanics and gravity conference but that could have something to do with scheduling.

One last interesting bit about Laflamme, from his Wikipedia entry, Note: Links have been removed)

As Stephen Hawking’s PhD student, he first became famous for convincing Hawking that time does not reverse in a contracting universe, along with Don Page. Hawking told the story of how this happened in his famous book A Brief History of Time in the chapter The Arrow of Time.[3] Later on Laflamme made a name for himself in quantum computing and quantum information theory, which is what he is famous for today.

Getting back to the Quantum Mechanics & Gravity: Marrying Theory & Experiment, the public day looks pretty interesting and when is the next time you’ll have a chance to hobnob with all those Nobel Laureates?

Council of Canadian Academies (CCA) Appoints Expert Panel on International Science and Technology Partnerships

Now the Council of Canadian Academies (CCA) has announced its expert panel for the “International Science and Technology Partnership Opportunities” project, I offer my usual guess analysis of the connections between the members of the panle.

This project first was mentioned in my March 2, 2022 posting, scroll down to the “Council of Canadian Academies launches four projects” subhead. One comment before launching into the expert panel, the word innovation, which you’ll see in the announcement, is almost always code for commercialization, business and/or entrepreneurship.

A May 9, 2022 CCA news release (received via email) announced the members of expert panel,

CCA Appoints Expert Panel on International Science and Technology Partnerships

May 9, 2022 – Ottawa, ON

Canada has numerous opportunities to pursue beneficial international partnerships focused on science, technology, and innovation (STI), but finite resources to support them. At the request of Global Affairs Canada, the Council of Canadian Academies (CCA) has formed an Expert Panel to examine best practices and identify key elements of a rigorous, data-enabled approach to selecting international STI partnership opportunities. Monica Gattinger, Director of the Institute for Science, Society and Policy at the University of Ottawa, will serve as Chair of the Expert Panel.

“International STI partnerships can be crucial to advancing Canada’s interests, from economic growth to public health, sustainability, and security,” said Dr. Gattinger. “I look forward to leading this important assessment and working with panel members to develop clear, comprehensive and coherent approaches for evaluating partnership opportunities.”

As Chair, Dr. Gattinger will lead a multidisciplinary group with expertise in science diplomacy, global security, economics and trade, international research collaboration, and program evaluation. The Panel will answer the following question:

In a post-COVID world, how can Canadian public, private and academic organizations evaluate and prioritize STI partnership opportunities with foreign countries to achieve key national objectives, using indicators supported by objective data where possible?

“I’m delighted that an expert of Dr. Gattinger’s experience and knowledge has agreed to chair this panel,” said Eric M. Meslin, PhD, FRSC, FCAHS, President and CEO of the CCA. “I look forward to the report’s findings for informing the use of international partnerships in science, technology, and innovation.”

More information can be found here.

The Expert Panel on International Science and Technology Partnerships:

Monica Gattinger (Chair), Director of the Institute for Science, Society and Policy at the University of Ottawa

David Audretsch, Distinguished Professor; Ameritech Chair of Economic Development; Director, Institute for Development Strategies, Indiana University

Stewart Beck, Distinguished Fellow, Asia Pacific Foundation of Canada

Paul Arthur Berkman, Faculty Associate, Program on Negotiation, Harvard Law School, and Associate Director, Science Diplomacy Centre, Harvard-MIT Public Disputes Program, Harvard University; Associated Fellow, United Nations Institute for Training and Research

Karen Croteau, Partner, Goss Gilroy

Paul Dufour, Principal, PaulicyWorks

Meredith Lilly, Associate Professor, Simon Reisman Chair in International Economic Policy, Norman Paterson School of International Affairs, Carleton University [located in Ottawa]

David Perry, President, Canadian Global Affairs Institute

Peggy Van de Plassche, Managing Partner, Roar Growth

Caroline S. Wagner, Professor, John Glenn College of Public Affairs, The Ohio State University

Jennifer M. Welsh, Professor; Canada 150 Research Chair in Global Governance and Security; Director, Centre for International Peace and Security Studies, McGill University

Given the discussion of pronouns and identification, I note that the panel of 11 experts includes six names commonly associated with women and five names commonly associated with men, which suggests some of the gender imbalance (male/female) I’ve noticed in the past is not present in the makeup of this panel.

There are three ‘international’ members and all are from the US. Based on past panels, international members tend to be from the US or the UK or, occasionally, from Australia or Europe.

Geographically, we have extraordinarily high representation (Monica Gattinger, David Perry, Meredith Lilly, Paul Dufour, and Karen Croteau) from people who are linked to Ottawa, Ontario, either educated or working at the University of Ottawa or Carleton University. (Thank goodness; it’s not as if the nation’s capital dominates almost every discussion about Canada. Ottawa, represent!)

As usual, there is no Canadian representing the North. This seems a bit odd given the very high international interest in the Arctic regions.

Ottawa connections

Here are some of the links (that I’ve been able to find) to Ottawa,

Monica Gattinger (from her Institute of Governance profile page),

Dr. Gattinger is an award-winning researcher and highly sought-after speaker, adviser and media commentator in the energy and arts/cultural [emphasis mine] policy sectors….

Gattinger is Fellow at the Canadian Global Affairs Institute, … She holds a Ph.D. in public policy from Carleton University. [emphases mine]

You’ll note David Perry is president of the Canadian Global Affairs Institute and Meredith Lilly is currently at Carleton University.

Perry is a professor at the University of Calgary where the Canadian Global Affairs Institute is headquartered (and it has offices in Ottawa). Here’s more from Perry’s institute profile page,

… He received his PhD in political science from Carleton University [emphasis mine] where his dissertation examined the link between defence budgeting and defence procurement. He is an adjunct professor at the Centre for Military and Strategic Studies at the University of Calgary and a research fellow of the Centre for the Study of Security and Development at Dalhousie University. …

Paul Dufour also has an Ottawa connection, from his 2017 CCA profile page,

Paul Dufour is a Fellow and Adjunct Professor at the Institute for Science, Society and Policy in the University of Ottawa [emphasis mine] and science policy Principal with PaulicyWorks in Gatineau, Québec. He is on the Board of Directors of the graduate student led Science Policy Exchange based in Montréal [emphasis mine], and is [a] member of the Investment Committee for Grand Challenges Canada.

Paul Dufour has been senior advisor in science policy with several Canadian agencies and organizations over the course of the past 30 years. Among these: Senior Program Specialist with the International Development Research Centre, and interim Executive Director at the former Office of the National Science Advisor to the Canadian Government advising on international S&T matters and broad questions of R&D policy directions for the country.

Born in Montréal, Mr. Dufour was educated at McGill University [emphasis mine], the Université de Montréal, and Concordia University in the history of science and science policy, …

Role: Steering Committee Member

Report: Science Policy: Considerations for Subnational Governments (April 2017)

Finally, there’s Karen Croteau a partner at Goss Gilroy. Here’s more from her LinkedIn profile page,

A seasoned management consultant professional and Credentialed Evaluator with more than 18 years experience in a variety of areas including: program evaluation, performance measurement, organizational/ resource review, benefit/cost analysis, reviews of regulatory management programs, organizational benchmarking, business case development, business process improvement, risk management, change management and project/ program management.

Experience

Partner

Goss Gilroy Inc

Jul 2019 – Present 2 years 11 months

Ottawa, Ontario [emphasis mine]

Education

Carleton University [emphasis mine]

Carleton University [emphasis mine]
Master’s Diploma Public Policy and Program Evaluation

The east coast

I think of Toronto, Ottawa, and Montréal as a kind of East Coast triangle.

Interestingly, Jennifer M. Welsh is at McGill University in Montréal where Paul Dufour was educated.

Representing the third point, Toronto, is Peggy Van de Plassche (judging by her accent in her YouTube videos, she’s from France), from her LinkedIn profile page,

I am a financial services and technology expert, corporate director, business advisor, investor, entrepreneur, and public speaker, fluent in French and English.

Prior to starting Roar Growth, I led innovation for CIBC [Canadian Imperial Bank of Commerce], allocated several billions of capital to technology projects on behalf of CGI and BMO [Bank of Montreal], managed a European family office, and started 2 Fintechs.

Education

Harvard Business School [emphasis mine]

Executive Education – Investment

IÉSEG School of Management [France]

Master of Science (MSc) – Business Administration and Management, General

IÉSEG School of Management

Bachelor of Business Administration (BBA) – Accounting and Finance

I didn’t find any connections to the Ottawa or Montréal panel members but I was mildly interested to see that one of the US members Paul Arthur Berkman is from Harvard University. Otherwise, Van de Plassche stands mostly alone.

The last of my geographical comments

David Perry manages to connect Alberta via his adjunct professorship at the University of Calgary, Ottawa (as noted previously) and Nova Scotia via his fellowship at Dalhousie University.

In addition to Montréal and the ever important Québec connection, Jennifer M. Welsh could be said to connect another prairie province while adding a little more international flair to this panel (from her McGill University profile page,

Professor Jennifer M. Welsh is the Canada 150 Research Chair in Global Governance and Security at McGill University (Montreal, Canada). She was previously Professor and Chair in International Relations at the European University Institute (Florence, Italy) [emphasis mine] and Professor in International Relations at the University of Oxford, [emphasis mine] where she co-founded the Oxford Institute for Ethics, Law and Armed Conflict. From 2013-2016, she served as the Special Adviser to the UN Secretary General, Ban Ki-moon, on the Responsibility to Protect.

… She has a BA from the University of Saskatchewan (Canada),[emphasis mine] and a Masters and Doctorate from the University of Oxford (where she studied as a Rhodes Scholar).

Stewart Beck seems to be located in Vancouver, Canada which gives the panel one West Coast connection, here’s more from his LinkedIn profile page,

As a diplomat, a trade commissioner, and a policy expert, I’ve spent the last 40 years as one of the foremost advocates of Canada’s interests in the U.S. and Asia. From 2014 to 2021 (August), I was the President and CEO of the Asia Pacific Foundation of Canada [APF] [emphasis mine], Canada’s leading research institution on Asia. Under my leadership, the organization added stakeholder value through applied research and as a principal convener on Asia topics, a builder of enviable networks of public and private sector stakeholders, and a leader of conversations on crucial regional issues. Before joining APF Canada, I led a distinguished 30+ year career with Canada’s diplomatic corps. With postings in the U.S. and Asia, culminating with an assignment as Canada’s High Commissioner to India (Ambassador) [emphasis mine], I gained the knowledge and experience to be one of Canada’s recognized experts on Asia and innovation policy. Along the way, I also served in many senior foreign policy and trade positions, including as Canada’s most senior trade and investment development official, Consul General to Shanghai [emphasis mine]and Consul General to San Francisco. Today, Asia is vitally critical to Canada’s economic security, both financially and technologically. Applying my understanding and navigating the challenging geopolitical, economic, and trade environment is the value I bring to strategic conversations on the region. An established network of senior private and public sector officials in Canada and Asia complements the experience I’ve gained over the many years living and working in Asia.

He completed undergraduate and graduate degrees at Queen’s University in Ontario and, given his career in diplomacy, I expect there are many Ottawa connections.

David Audretsch and Caroline S. Wagner of Indiana University and Ohio State University, respectively, are a little unusual. Most of the time, US members are from the East Coast or the West Coast not from one of the Midwest states.

One last comment about Paul Arthur Berkman, his profile page on the Harvard University website reveals unexpected polar connections,

Fulbright Arctic Chair [emphasis mine] 2021-2022, United States Department of State and Norwegian Ministry of Foreign Affairs

Paul Arthur Berkman is science diplomat, polar explorer and global thought leader applying international, interdisciplinary and inclusive processes with informed decisionmaking to balance national interests and common interests for the benefit of all on Earth across generations. Paul wintered in Antarctica [emphasis mine] when he was twenty-two, SCUBA diving throughout the year under the ice, and then taught a course on science into policy as a Visiting Professor at the University of California Los Angeles the following year, visiting all seven continents before the age of thirty.

Hidden diversity

While the panel is somewhat Ottawa-centric with a strong bias towards the US and Europe, there are some encouraging signs.

Beck’s experience in Asia and Berkman’s in the polar regions is good to see. Dufour has written the Canada chapter in two (2015 and 2021) UNESCO Science Reports and offers an excellent overview of the Canadian situation within a global context in the 2021 edition (I haven’t had the time to view the 2015 report).

Economist Audretsch and FinTech entrepreneur Van de Plassche, offer academic and practical perspectives for ‘innovation’ while Perry and Welsh both offer badly needed (Canada has been especially poor in this area; see below) security perspectives.

The rest of the panel offers what you’d expect, extensive science policy experience. I hope Gattinger’s experience with arts/cultural policy will enhance this project.

This CCA project comes at a time when Canada is looking at establishing closer links to the European Union’s science programmes as per my May 11, 2022 posting: Canada’s exploratory talks about joining the European Union’s science funding programme (Horizon Europe).

This project also comes at about the same time the Canadian federal government announced in its 2022 federal budget (covered in my April 19, 2022 posting, scroll down about 25% of the way; you’ll recognize the subhead) a new Canadian investment and Innovation Agency.

Notes on security

Canada has stumbled more than once in this area.The current war waged by Russia in Ukraine offers one of the latest examples of how state actors can wage damage not just in the obvious physical sense but also with cyberattacks. The US suffered a notable attack in May 2021 which forced the shutdown of a major gas pipeline (May 9, 2021 NBC news report).

As for Canada, there is a July 9, 2014 Canadian Broadcasting Corporation news report about a cyberattack on the National Research Council (NRC),

A “highly sophisticated Chinese state-sponsored actor” recently managed to hack into the computer systems at Canada’s National Research Council, according to Canada’s chief information officer, Corinne Charette.

For its part, the NRC says in a statement released Tuesday morning that it is now attempting to rebuild its computer infrastructure and this could take as much a year.

The NRC works with private businesses to advance and develop technological innovations through science and research.

This is not the first time the Canadian government has fallen victim to a cyberattack that seems to have originated in China — but it is the first time the Canadian government has unequivocally blamed China for the attack.

In September 2021 an announcement was made about a new security alliance where Canada was not included (from my September 17, 2021 posting),

Wednesday, September 15, 2021 an announcement of a new alliance in the Indo-Pacific region, the Three Eyes (Australia, UK, and US or AUKUS) was made.

Interestingly all three are part of the Five Eyes intelligence alliance comprised of Australia, Canada, New Zealand, UK, and US. Hmmm … Canada and New Zealand both border the Pacific and last I heard, the UK is still in Europe.

I mention other security breaches such as the Cameron Ortis situation and the Winnipeg-based National Microbiology Lab (NML), the only level 4 lab in Canada in the September 17, 2021 posting under the ‘What is public safety?’ subheading.

It seems like there might be some federal movement on the issues assuming funding for “Securing Canada’s Research from Foreign Threats” in the 2022 federal budget actually appears. It’s in my April 19, 2022 posting about 45% of the way down under the subheading Research security.

I wish the panel good luck.