# Arithmetic and its biological roots

Randolph Grace’s (Professor of Psychology, University of Canterbury, England) August 14, 2023 essay for The Conversation delves into an interesting question,

Why have humans invented the same arithmetic, over and over again? Could arithmetic be a universal truth waiting to be discovered?

The point is made (from Grace’s August 14, 2023 essay), Note: A link has been removed,

Humans have been making symbols for numbers for more than 5,500 years. More than 100 distinct notation systems are known to have been used by different civilisations, including Babylonian, Egyptian, Etruscan, Mayan and Khmer.

The remarkable fact is that despite the great diversity of symbols and cultures, all are based on addition and multiplication. For example, in our familiar Hindu-Arabic numerals: 1,434 = (1 x 1000) + (4 x 100) + (3 x 10) + (4 x 1).

Why have humans invented the same arithmetic, over and over again? Could arithmetic be a universal truth waiting to be discovered?

Grace describes a biological phenomenon to support his proposal (from Grace’s August 14, 2023 essay), Note: Links have been removed,

Bees provide a clue

We proposed a new approach based on the assumption that arithmetic has a biological origin.

Many non-human species, including insects, show an ability for spatial navigation which seems to require the equivalent of algebraic computation. For example, bees can take a meandering journey to find nectar but then return by the most direct route, as if they can calculate the direction and distance home.

How their miniature brain (about 960,000 neurons) achieves this is unknown. These calculations might be the non-symbolic precursors of addition and multiplication, honed by natural selection as the optimal solution for navigation.

Arithmetic may be based on biology and special in some way because of evolution’s fine-tuning.

He goes on to describe how he and his colleagues tested their hypothesis (read the essay) and concludes with this (from Grace’s August 14, 2023 essay), Note: A link has been removed,

Although this structure [how our perception is structured] is shared with other animals, only humans have invented mathematics. It is humanity’s most intimate creation, a realisation in symbols of the fundamental nature and creativity of the mind.

In this sense, mathematics is both invented (uniquely human) and discovered (biologically-based). The seemingly miraculous success of mathematics in the physical sciences hints that our mind and the world are not separate, but part of a common unity.

The arc of mathematics and science points toward non-dualism, a philosophical concept that describes how the mind and the universe as a whole are connected, and that any sense of separation is an illusion. This is consistent with many spiritual traditions (Taoism, Buddhism) and Indigenous knowledge systems such as mātauranga Māori.

Here’s a link to (or PDF for Grace’s paper) and a citation for the paper,

The Psychological Scaffolding of Arithmetic by Matt Grice, Simon Kemp, Nicola J. Morton, Randolph C. Grace. Psychological Review DOI: https://doi.org/10.1037/rev0000431 Advance online publication June 26, 2023

This paper is open access.

# Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations

Dear friend,

I thought it best to break this up a bit. There are a couple of ‘objects’ still to be discussed but this is mostly the commentary part of this letter to you. (Here’s a link for anyone who stumbled here but missed Part 1.)

## Ethics, the natural world, social justice, eeek, and AI

Dorothy Woodend in her March 10, 2022 review for The Tyee) suggests some ethical issues in her critique of the ‘bee/AI collaboration’ and she’s not the only one with concerns. UNESCO (United Nations Educational, Scientific and Cultural Organization) has produced global recommendations for ethical AI (see my March 18, 2022 posting). More recently, there’s “Racist and sexist robots have flawed AI,” a June 23, 2022 posting, where researchers prepared a conference presentation and paper about deeply flawed AI still being used in robots.

Ultimately, the focus is always on humans and Woodend has extended the ethical AI conversation to include insects and the natural world. In short, something less human-centric.

My friend, this reference to the de Young exhibit may seem off topic but I promise it isn’t in more ways than one. The de Young Museum in San Francisco (February 22, 2020 – June 27, 2021) also held and AI and art show called, “Uncanny Valley: Being Human in the Age of AI”), from the exhibitions page,

In today’s AI-driven world, increasingly organized and shaped by algorithms that track, collect, and evaluate our data, the question of what it means to be human [emphasis mine] has shifted. Uncanny Valley is the first major exhibition to unpack this question through a lens of contemporary art and propose new ways of thinking about intelligence, nature, and artifice. [emphasis mine]

As you can see, it hinted (perhaps?) at an attempt to see beyond human-centric AI. (BTW, I featured this ‘Uncanny Valley’ show in my February 25, 2020 posting where I mentioned Stephanie Dinkins [featured below] and other artists.)

### Social justice

While the VAG show doesn’t see much past humans and AI, it does touch on social justice. In particular there’s Pod 15 featuring the Algorithmic Justice League (AJL). The group “combine[s] art and research to illuminate the social implications and harms of AI” as per their website’s homepage.

In Pod 9, Stephanie Dinkins’ video work with a robot (Bina48), which was also part of the de Young Museum ‘Uncanny Valley’ show, addresses some of the same issues.

From the the de Young Museum’s Stephanie Dinkins “Conversations with Bina48” April 23, 2020 article by Janna Keegan (Dinkins submitted the same work you see at the VAG show), Note: Links have been removed,

Transdisciplinary artist and educator Stephanie Dinkins is concerned with fostering AI literacy. The central thesis of her social practice is that AI, the internet, and other data-based technologies disproportionately impact people of color, LGBTQ+ people, women, and disabled and economically disadvantaged communities—groups rarely given a voice in tech’s creation. Dinkins strives to forge a more equitable techno-future by generating AI that includes the voices of multiple constituencies …

The artist’s ongoing Conversations with Bina48 takes the form of a series of interactions with the social robot Bina48 (Breakthrough Intelligence via Neural Architecture, 48 exaflops per second). The machine is the brainchild of Martine Rothblatt, an entrepreneur in the field of biopharmaceuticals who, with her wife, Bina, cofounded the Terasem Movement, an organization that seeks to extend human life through cybernetic means. In 2007 Martine commissioned Hanson Robotics to create a robot whose appearance and consciousness simulate Bina’s. The robot was released in 2010, and Dinkins began her work with it in 2014.

Part psychoanalytical discourse, part Turing test, Conversations with Bina48 also participates in a larger dialogue regarding bias and representation in technology. Although Bina Rothblatt is a Black woman, Bina48 was not programmed with an understanding of its Black female identity or with knowledge of Black history. Dinkins’s work situates this omission amid the larger tech industry’s lack of diversity, drawing attention to the problems that arise when a roughly homogenous population creates technologies deployed globally. When this occurs, writes art critic Tess Thackara, “the unconscious biases of white developers proliferate on the internet, mapping our social structures and behaviors onto code and repeating imbalances and injustices that exist in the real world.” One of the most appalling and public of these instances occurred when a Google Photos image-recognition algorithm mislabeled the faces of Black people as “gorillas.”

### Eeek

You will find as you go through the ‘imitation game’ a pod with a screen showing your movements through the rooms in realtime on a screen. The installation is called “Creepers” (2021-22). The student team from Vancouver’s Centre for Digital Media (CDM) describes their project this way, from the CDM’s AI-driven Installation Piece for the Vancouver Art Gallery webpage,

Project Description

Kaleidoscope [team name] is designing an installation piece that harnesses AI to collect and visualize exhibit visitor behaviours, and interactions with art, in an impactful and thought-provoking way.

There’s no warning that you’re being tracked and you can see they’ve used facial recognition software to track your movements through the show. It’s claimed on the pod’s signage that they are deleting the data once you’ve left.

‘Creepers’ is an interesting approach to the ethics of AI. The name suggests that even the student designers were aware it was problematic.

For the curious, there’s a description of the other VAG ‘imitation game’ installations provided by CDM students on the ‘Master of Digital Media Students Develop Revolutionary Installations for Vancouver Art Gallery AI Exhibition‘ webpage.

## In recovery from an existential crisis (meditations)

There’s something greatly ambitious about “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” and walking up the VAG’s grand staircase affirms that ambition. Bravo to the two curators, Grenville and Entis for an exhibition.that presents a survey (or overview) of artificial intelligence, and its use in and impact on creative visual culture.

I’ve already enthused over the history (specifically Turing, Lovelace, Ovid), admitted to being mesmerized by Scott Eaton’s sculpture/AI videos, and confessed to a fascination (and mild repulsion) regarding Oxman’s honeycombs.

It’s hard to remember all of the ‘objects’ as the curators have offered a jumble of work, almost all of them on screens. Already noted, there’s Norbert Wiener’s The Moth (1949) and there are also a number of other computer-based artworks from the 1960s and 1970s. Plus, you’ll find works utilizing a GAN (generative adversarial network), an AI agent that is explained in the exhibit.

It’s worth going more than once to the show as there is so much to experience.

### Why did they do that?

Dear friend, I’ve already commented on the poor flow through the show and It’s hard to tell if the curators intended the experience to be disorienting but this is to the point of chaos, especially when the exhibition is crowded.

I’ve seen Grenville’s shows before. In particular there was “MashUp: The Birth of Modern Culture, a massive survey documenting the emergence of a mode of creativity that materialized in the late 1800s and has grown to become the dominant model of cultural production in the 21st century” and there was “KRAZY! The Delirious World of Anime + Manga + Video Games + Art.” As you can see from the description, he pulls together disparate works and ideas into a show for you to ‘make sense’ of them.

One of the differences between those shows and the “imitation Game: …” is that most of us have some familiarity, whether we like it or not, with modern art/culture and anime/manga/etc. and can try to ‘make sense’ of it.

By contrast, artificial intelligence (which even experts have difficulty defining) occupies an entirely different set of categories; all of them associated with science/technology. This makes for a different kind of show so the curators cannot rely on the audience’s understanding of basics. It’s effectively an art/sci or art/tech show and, I believe, the first of its kind at the Vancouver Art Gallery. Unfortunately, the curators don’t seem to have changed their approach to accommodate that difference.

AI is also at the centre of a current panic over job loss, loss of personal agency, automated racism and sexism, etc. which makes the experience of viewing the show a little tense. In this context, their decision to commission and use ‘Creepers’ seems odd.

### Where were Ai-Da and Dall-E-2 and the others?

Oh friend, I was hoping for a robot. Those roomba paintbots didn’t do much for me. All they did was lie there on the floor

To be blunt I wanted some fun and perhaps a bit of wonder and maybe a little vitality. I wasn’t necessarily expecting Ai-Da, an artisitic robot, but something three dimensional and fun in this very flat, screen-oriented show would have been nice.

Ai-Da was first featured here in a December 17, 2021 posting about performing poetry that she had written in honour of the 700th anniversary of poet Dante Alighieri’s death.

Named in honour of Ada Lovelace, Ai-Da visited the 2022 Venice Biennale as Leah Henrickson and Simone Natale describe in their May 12, 2022 article for Fast Company (Note: Links have been removed),

Ai-Da sits behind a desk, paintbrush in hand. She looks up at the person posing for her, and then back down as she dabs another blob of paint onto the canvas. A lifelike portrait is taking shape. If you didn’t know a robot produced it, this portrait could pass as the work of a human artist.

Ai-Da is touted as the “first robot to paint like an artist,” and an exhibition of her work, called Leaping into the Metaverse, opened at the Venice Biennale.

Ai-Da produces portraits of sitting subjects using a robotic hand attached to her lifelike feminine figure. She’s also able to talk, giving detailed answers to questions about her artistic process and attitudes toward technology. She even gave a TEDx talk about “The Intersection of Art and AI” in Oxford a few years ago. While the words she speaks are programmed, Ai-Da’s creators have also been experimenting with having her write and perform her own poetry.

She has her own website.

If not Ai-Da, what about Dall-E-2? Aaron Hertzmann’s June 20, 2022 commentary, “Give this AI a few words of description and it produces a stunning image – but is it art?” investigates for Salon (Note: Links have been removed),

DALL-E 2 is a new neural network [AI] algorithm that creates a picture from a short phrase or sentence that you provide. The program, which was announced by the artificial intelligence research laboratory OpenAI in April 2022, hasn’t been released to the public. But a small and growing number of people – myself included – have been given access to experiment with it.

As a researcher studying the nexus of technology and art, I was keen to see how well the program worked. After hours of experimentation, it’s clear that DALL-E – while not without shortcomings – is leaps and bounds ahead of existing image generation technology. It raises immediate questions about how these technologies will change how art is made and consumed. It also raises questions about what it means to be creative when DALL-E 2 seems to automate so much of the creative process itself.

A July 4, 2022 article “DALL-E, Make Me Another Picasso, Please” by Laura Lane for The New Yorker has a rebuttal to Ada Lovelace’s contention that creativity is uniquely human (Note: A link has been removed),

“There was this belief that creativity is this deeply special, only-human thing,” Sam Altman, OpenAI’s C.E.O., explained the other day. Maybe not so true anymore, he said. Altman, who wore a gray sweater and had tousled brown hair, was videoconferencing from the company’s headquarters, in San Francisco. DALL-E is still in a testing phase. So far, OpenAI has granted access to a select group of people—researchers, artists, developers—who have used it to produce a wide array of images: photorealistic animals, bizarre mashups, punny collages. Asked by a user to generate “a plate of various alien fruits from another planet photograph,” DALL-E returned something kind of like rambutans. “The rest of mona lisa” is, according to DALL-E, mostly just one big cliff. Altman described DALL-E as “an extension of your own creativity.”

There are other AI artists, in my August 16, 2019 posting, I had this,

AI artists first hit my radar in August 2018 when Christie’s Auction House advertised an art auction of a ‘painting’ by an algorithm (artificial intelligence). There’s more in my August 31, 2018 posting but, briefly, a French art collective, Obvious, submitted a painting, “Portrait of Edmond de Belamy,” that was created by an artificial intelligence agent to be sold for an estimated to \$7000 – \$10,000. They weren’t even close. According to Ian Bogost’s March 6, 2019 article for The Atlantic, the painting sold for \$432,500 In October 2018.

That posting also included AI artist, AICAN. Both artist-AI agents (Obvious and AICAN) are based on GANs (generative adversarial networks) for learning and eventual output. Both artist-AI agents work independently or with human collaborators on art works that are available for purchase.

As might be expected not everyone is excited about AI and visual art. Sonja Drimmer, Professor of Medieval Art, University of Massachusetts at Amherst, provides another perspective on AI, visual art, and, her specialty, art history in her November 1, 2021 essay for The Conversation (Note: Links have been removed),

Over the past year alone, I’ve come across articles highlighting how artificial intelligence recovered a “secret” painting of a “lost lover” of Italian painter Modigliani, “brought to life” a “hidden Picasso nude”, “resurrected” Austrian painter Gustav Klimt’s destroyed works and “restored” portions of Rembrandt’s 1642 painting “The Night Watch.” The list goes on.

As an art historian, I’ve become increasingly concerned about the coverage and circulation of these projects.

They have not, in actuality, revealed one secret or solved a single mystery.

What they have done is generate feel-good stories about AI.

Take the reports about the Modigliani and Picasso paintings.

These were projects executed by the same company, Oxia Palus, which was founded not by art historians but by doctoral students in machine learning.

In both cases, Oxia Palus relied upon traditional X-rays, X-ray fluorescence and infrared imaging that had already been carried out and published years prior – work that had revealed preliminary paintings beneath the visible layer on the artists’ canvases.

The company edited these X-rays and reconstituted them as new works of art by applying a technique called “neural style transfer.” This is a sophisticated-sounding term for a program that breaks works of art down into extremely small units, extrapolates a style from them and then promises to recreate images of other content in that same style.

As you can ‘see’ my friend, the topic of AI and visual art is a juicy one. In fact, I have another example in my June 27, 2022 posting, which is titled, “Art appraised by algorithm.” So, Grenville’s and Entis’ decision to focus on AI and its impact on visual culture is quite timely.

### Visual culture: seeing into the future

The VAG Imitation Game webpage lists these categories of visual culture “animation, architecture, art, fashion, graphic design, urban design and video games …” as being represented in the show. Movies and visual art, not mentioned in the write up, are represented while theatre and other performing arts are not mentioned or represented. That’ s not a surprise.

In addition to an area of science/technology that’s not well understood even by experts, the curators took on the truly amorphous (and overwhelming) topic of visual culture. Given that even writing this commentary has been a challenge, I imagine pulling the show together was quite the task.

Grenville often grounds his shows in a history of the subject and, this time, it seems especially striking. You’re in a building that is effectively a 19th century construct and in galleries that reflect a 20th century ‘white cube’ aesthetic, while looking for clues into the 21st century future of visual culture employing technology that has its roots in the 19th century and, to some extent, began to flower in the mid-20th century.

Chung’s collaboration is one of the only ‘optimistic’ notes about the future and, as noted earlier, it bears a resemblance to Wiener’s 1949 ‘Moth’

Overall, it seems we are being cautioned about the future. For example, Oxman’s work seems bleak (bees with no flowers to pollinate and living in an eternal spring). Adding in ‘Creepers’ and surveillance along with issues of bias and social injustice reflects hesitation and concern about what we will see, who sees it, and how it will be represented visually.

### Learning about robots, automatons, artificial intelligence, and more

I wish the Vancouver Art Gallery (and Vancouver’s other art galleries) would invest a little more in audience education. A couple of tours, by someone who may or may not know what they’re talking, about during the week do not suffice. The extra material about Stephanie Dinkins and her work (“Conversations with Bina48,” 2014–present) came from the de Young Museum’s website. In my July 26, 2021 commentary on North Vancouver’s Polygon Gallery 2021 show “Interior Infinite,” I found background information for artist Zanele Muholi on the Tate Modern’s website. There is nothing on the VAG website that helps you to gain some perspective on the artists’ works.

It seems to me that if the VAG wants to be considered world class, it should conduct itself accordingly and beefing up its website with background information about their current shows would be a good place to start.

#### Robots, automata, and artificial intelligence

Prior to 1921, robots were known exclusively as automatons. These days, the word ‘automaton’ (or ‘automata’ in the plural) seems to be used to describe purely mechanical representations of humans from over 100 years ago whereas the word ‘robot’ can be either ‘humanlike’ or purely machine, e.g. a mechanical arm that performs the same function over and over. I have a good February 24, 2017 essay on automatons by Miguel Barral for OpenMind BBVA*, which provides some insight into the matter,

The concept of robot is relatively recent. The idea was introduced in 1921 by the Czech writer Karel Capek in his work R.U.R to designate a machine that performs tasks in place of man. But their predecessors, the automatons (from the Greek automata, or “mechanical device that works by itself”), have been the object of desire and fascination since antiquity. Some of the greatest inventors in history, such as Leonardo Da Vinci, have contributed to our fascination with these fabulous creations:

The Al-Jazari automatons

The earliest examples of known automatons appeared in the Islamic world in the 12th and 13th centuries. In 1206, the Arab polymath Al-Jazari, whose creations were known for their sophistication, described some of his most notable automatons: an automatic wine dispenser, a soap and towels dispenser and an orchestra-automaton that operated by the force of water. This latter invention was meant to liven up parties and banquets with music while floating on a pond, lake or fountain.

As the water flowed, it started a rotating drum with pegs that, in turn, moved levers whose movement produced different sounds and movements. As the pegs responsible for the musical notes could be exchanged for different ones in order to interpret another melody, it is considered one of the first programmable machines in history.

If you’re curious about automata, my friend, I found this Sept. 26, 2016 ABC news radio news item about singer Roger Daltrey’s and his wife, Heather’s auction of their collection of 19th century French automata (there’s an embedded video showcasing these extraordinary works of art). For more about automata, robots, and androids, there’s an excellent May 4, 2022 article by James Vincent, ‘A visit to the human factory; How to build the world’s most realistic robot‘ for The Verge; Vincent’s article is about Engineered Arts, the UK-based company that built Ai-Da.

AI is often used interchangeably with ‘robot’ but they aren’t the same. Not all robots have AI integrated into their processes. At its simplest AI is an algorithm or set of algorithms, which may ‘live’ in a CPU and be effectively invisible or ‘live’ in or make use of some kind of machine and/or humanlike body. As the experts have noted, the concept of artificial intelligence is a slippery concept.

*OpenMind BBVA is a Spanish multinational financial services company, Banco Bilbao Vizcaya Argentaria (BBVA), which runs the non-profit project, OpenMind (About us page) to disseminate information on robotics and so much more.*

### You can’t always get what you want

My friend,

I expect many of the show’s shortcomings (as perceived by me) are due to money and/or scheduling issues. For example, Ai-Da was at the Venice Biennale and if there was a choice between the VAG and Biennale, I know where I’d be.

Even with those caveats in mind, It is a bit surprising that there were no examples of wearable technology. For example, Toronto’s Tapestry Opera recently performed R.U.R. A Torrent of Light (based on the word ‘robot’ from Karel Čapek’s play, R.U.R., ‘Rossumovi Univerzální Roboti’), from my May 24, 2022 posting,

I have more about tickets prices, dates, and location later in this post but first, here’s more about the opera and the people who’ve created it from the Tapestry Opera’s ‘R.U.R. A Torrent of Light’ performance webpage,

“This stunning new opera combines dance, beautiful multimedia design, a chamber orchestra including 100 instruments creating a unique electronica-classical sound, and wearable technology [emphasis mine] created with OCAD University’s Social Body Lab, to create an immersive and unforgettable science-fiction experience.”

And, from later in my posting,

“Despite current stereotypes, opera was historically a launchpad for all kinds of applied design technologies. [emphasis mine] Having the opportunity to collaborate with OCAD U faculty is an invigorating way to reconnect to that tradition and foster connections between art, music and design, [emphasis mine]” comments the production’s Director Michael Hidetoshi Mori, who is also Tapestry Opera’s Artistic Director.

That last quote brings me back to the my comment about theatre and performing arts not being part of the show. Of course, the curators couldn’t do it all but a website with my hoped for background and additional information could have helped to solve the problem.

The absence of the theatrical and performing arts in the VAG’s ‘Imitation Game’ is a bit surprising as the Council of Canadian Academies (CCA) in their third assessment, “Competing in a Global Innovation Economy: The Current State of R&D in Canada” released in 2018 noted this (from my April 12, 2018 posting),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphasis mine] It accounts for more than 5% of world research in these fields. Conversely, Canada has lower research output than expected in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]

#### US-centric

My friend,

I was a little surprised that the show was so centered on work from the US given that Grenville has curated ate least one show where there was significant input from artists based in Asia. Both Japan and Korea are very active with regard to artificial intelligence and it’s hard to believe that their artists haven’t kept pace. (I’m not as familiar with China and its AI efforts, other than in the field of facial recognition, but it’s hard to believe their artists aren’t experimenting.)

The Americans, of course, are very important developers in the field of AI but they are not alone and it would have been nice to have seen something from Asia and/or Africa and/or something from one of the other Americas. In fact, anything which takes us out of the same old, same old. (Luba Elliott wrote this (2019/2020/2021?) essay, “Artificial Intelligence Art from Africa and Black Communities Worldwide” on Aya Data if you want to get a sense of some of the activity on the African continent. Elliott does seem to conflate Africa and Black Communities, for some clarity you may want to check out the Wikipedia entry on Africanfuturism, which contrasts with this August 12, 2020 essay by Donald Maloba, “What is Afrofuturism? A Beginner’s Guide.” Maloba also conflates the two.)

As it turns out, Luba Elliott presented at the 2019 Montréal Digital Spring event, which brings me to Canada’s artificial intelligence and arts scene.

I promise I haven’t turned into a flag waving zealot, my friend. It’s just odd there isn’t a bit more given that machine learning was pioneered at the University of Toronto. Here’s more about that (from Wikipedia entry for Geoffrey Hinston),

Geoffrey Everest HintonCCFRSFRSC[11] (born 6 December 1947) is a British-Canadian cognitive psychologist and computer scientist, most noted for his work on artificial neural networks.

Hinton received the 2018 Turing Award, together with Yoshua Bengio [Canadian scientist] and Yann LeCun, for their work on deep learning.[24] They are sometimes referred to as the “Godfathers of AI” and “Godfathers of Deep Learning“,[25][26] and have continued to give public talks together.[27][28]

Some of Hinton’s work was started in the US but since 1987, he has pursued his interests at the University of Toronto. He wasn’t proven right until 2012. Katrina Onstad’s February 29, 2018 article (Mr. Robot) for Toronto Life is a gripping read about Hinton and his work on neural networks. BTW, Yoshua Bengio (co-Godfather) is a Canadian scientist at the Université de Montréal and Yann LeCun (co-Godfather) is a French scientist at New York University.

Then, there’s another contribution, our government was the first in the world to develop a national artificial intelligence strategy. Adding those developments to the CCA ‘State of Science’ report findings about visual arts and performing arts, is there another word besides ‘odd’ to describe the lack of Canadian voices?

You’re going to point out the installation by Ben Bogart (a member of Simon Fraser University’s Metacreation Lab for Creative AI and instructor at the Emily Carr University of Art + Design (ECU)) but it’s based on the iconic US scifi film, 2001: A Space Odyssey. As for the other Canadian, Sougwen Chung, she left Canada pretty quickly to get her undergraduate degree in the US and has since moved to the UK. (You could describe hers as the quintessential success story, i.e., moving from Canada only to get noticed here after success elsewhere.)

Of course, there are the CDM student projects but the projects seem less like an exploration of visual culture than an exploration of technology and industry requirements, from the ‘Master of Digital Media Students Develop Revolutionary Installations for Vancouver Art Gallery AI Exhibition‘ webpage, Note: A link has been removed,

In 2019, Bruce Grenville, Senior Curator at Vancouver Art Gallery, approached [the] Centre for Digital Media to collaborate on several industry projects for the forthcoming exhibition. Four student teams tackled the project briefs over the course of the next two years and produced award-winning installations that are on display until October 23 [2022].

Basically, my friend, it would have been nice to see other voices or, at the least, an attempt at representing other voices and visual cultures informed by AI. As for Canadian contributions, maybe put something on the VAG website?

### Playing well with others

it’s always a mystery to me why the Vancouver cultural scene seems comprised of a set of silos or closely guarded kingdoms. Reaching out to the public library and other institutions such as Science World might have cost time but could have enhanced the show

For example, one of the branches of the New York Public Library ran a programme called, “We are AI” in March 2022 (see my March 23, 2022 posting about the five-week course, which was run as a learning circle). The course materials are available for free (We are AI webpage) and I imagine that adding a ‘visual culture module’ wouldn’t be that difficult.

There is one (rare) example of some Vancouver cultural institutions getting together to offer an art/science programme and that was in 2017 when the Morris and Helen Belkin Gallery (at the University of British Columbia; UBC) hosted an exhibition of Santiago Ramon y Cajal’s work (see my Sept. 11, 2017 posting about the gallery show) along with that show was an ancillary event held by the folks at Café Scientifique at Science World and featuring a panel of professionals from UBC’s Faculty of Medicine and Dept. of Psychology, discussing Cajal’s work.

In fact, where were the science and technology communities for this show?

On a related note, the 2022 ACM SIGGRAPH conference (August 7 – 11, 2022) is being held in Vancouver. (ACM is the Association for Computing Machinery; SIGGRAPH is for Special Interest Group on Computer Graphics and Interactive Techniques.) SIGGRAPH has been holding conferences in Vancouver every few years since at least 2011.

At this year’s conference, they have at least two sessions that indicate interests similar to the VAG’s. First, there’s Immersive Visualization for Research, Science and Art which includes AI and machine learning along with other related topics. There’s also, Frontiers Talk: Art in the Age of AI: Can Computers Create Art?

This is both an international conference and an exhibition (of art) and the whole thing seems to have kicked off on July 25, 2022. If you’re interested, the programme can be found here and registration here.

Last time SIGGRAPH was here the organizers seemed interested in outreach and they offered some free events.

### In the end

It was good to see the show. The curators brought together some exciting material. As is always the case, there were some missed opportunities and a few blind spots. But all is not lost.

July 27, 2022, the VAG held a virtual event with an artist,

Gwenyth Chao to learn more about what happened to the honeybees and hives in Oxman’s Synthetic Apiary project. As a transdisciplinary artist herself, Chao will also discuss the relationship between art, science, technology and design. She will then guide participants to create a space (of any scale, from insect to human) inspired by patterns found in nature.

Hopefully there will be more more events inspired by specific ‘objects’. Meanwhile, August 12, 2022, the VAG is hosting,

… in partnership with the Canadian Music Centre BC, New Music at the Gallery is a live concert series hosted by the Vancouver Art Gallery that features an array of musicians and composers who draw on contemporary art themes.

Highlighting a selection of twentieth- and twenty-first-century music compositions, this second concert, inspired by the exhibition The Imitation Game: Visual Culture in the Age of Artificial Intelligence, will spotlight The Iliac Suite (1957), the first piece ever written using only a computer, and Kaija Saariaho’s Terra Memoria (2006), which is in a large part dependent on a computer-generated musical process.

It would be lovely if they could include an Ada Lovelace Day event. This is an international celebration held on October 11, 2022.

Do go. Do enjoy, my friend.

# Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (1 of 2): The Objects

## To my imaginary AI friend

Dear friend,

I thought you might be amused by these Roomba-like* paintbots at the Vancouver Art Gallery’s (VAG) latest exhibition, “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” (March 5, 2022 – October 23, 2022).

*A Roomba is a robot vacuum cleaner produced and sold by iRobot.

As far as I know, this is the Vancouver Art Gallery’s first art/science or art/technology exhibit and it is an alternately fascinating, exciting, and frustrating take on artificial intelligence and its impact on the visual arts. Curated by Bruce Grenville, VAG Senior Curator, and Glenn Entis, Guest Curator, the show features 20 ‘objects’ designed to both introduce viewers to the ‘imitation game’ and to challenge them. From the VAG Imitation Game webpage,

The Imitation Game surveys the extraordinary uses (and abuses) of artificial intelligence (AI) in the production of modern and contemporary visual culture around the world. The exhibition follows a chronological narrative that first examines the development of artificial intelligence, from the 1950s to the present [emphasis mine], through a precise historical lens. Building on this foundation, it emphasizes the explosive growth of AI across disciplines, including animation, architecture, art, fashion, graphic design, urban design and video games, over the past decade. Revolving around the important roles of machine learning and computer vision in AI research and experimentation, The Imitation Game reveals the complex nature of this new tool and demonstrates its importance for cultural production.

## And now …

As you’ve probably guessed, my friend, you’ll find a combination of both background information and commentary on the show.

I’ve initially focused on two people (a scientist and a mathematician) who were seminal thinkers about machines, intelligence, creativity, and humanity. I’ve also provided some information about the curators, which hopefully gives you some insight into the show.

As for the show itself, you’ll find a few of the ‘objects’ highlighted with one of them being investigated at more length. The curators devoted some of the show to ethical and social justice issues, accordingly, the Vancouver Art Gallery hosted the University of British Columbia’s “Speculative Futures: Artificial Intelligence Symposium” on April 7, 2022,

Presented in conjunction with the exhibition The Imitation Game: Visual Culture in the Age of Artificial Intelligence, the Speculative Futures Symposium examines artificial intelligence and the specific uses of technology in its multifarious dimensions. Across four different panel conversations, leading thinkers of today will explore the ethical implications of technology and discuss how they are working to address these issues in cultural production.”

So, you’ll find more on these topics here too.

And for anyone else reading this (not you, my friend who is ‘strong’ AI and not similar to the ‘weak’ AI found in this show), there is a description of ‘weak’ and ‘strong’ AI on the avtsim.com/weak-ai-strong-ai webpage, Note: A link has been removed,

There are two types of AI: weak AI and strong AI.

Weak, sometimes called narrow, AI is less intelligent as it cannot work without human interaction and focuses on a more narrow, specific, or niched purpose. …

Strong AI on the other hand is in fact comparable to the fictitious AIs we see in media like the terminator. The theoretical Strong AI would be equivalent or greater to human intelligence.

….

My dear friend, I hope you will enjoy.

In some circles, it’s better known as ‘The Turing Test;” the Vancouver Art Gallery’s ‘Imitation Game’ hosts a copy of Alan Turing’s foundational paper for establishing whether artificial intelligence is possible (I thought this was pretty exciting).

Here’s more from The Turing Test essay by Graham Oppy and David Dowe for the Stanford Encyclopedia of Philosophy,

The phrase “The Turing Test” is most properly used to refer to a proposal made by Turing (1950) as a way of dealing with the question whether machines can think. According to Turing, the question whether machines can think is itself “too meaningless” to deserve discussion (442). However, if we consider the more precise—and somehow related—question whether a digital computer can do well in a certain kind of game that Turing describes (“The Imitation Game”), then—at least in Turing’s eyes—we do have a question that admits of precise discussion. Moreover, as we shall see, Turing himself thought that it would not be too long before we did have digital computers that could “do well” in the Imitation Game.

The phrase “The Turing Test” is sometimes used more generally to refer to some kinds of behavioural tests for the presence of mind, or thought, or intelligence in putatively minded entities. …

Next to the display holding Turing’s paper, is another display with an excerpt of an explanation from Turing about how he believed Ada Lovelace would have responded to the idea that machines could think based on a copy of some of her writing (also on display). She proposed that creativity, not thinking, is what set people apart from machines. (See the April 17, 2020 article “Thinking Machines? Has the Lovelace Test Been Passed?’ on mindmatters.ai.)

It’s like a dialogue between two seminal thinkers who lived about 100 years apart; Lovelace, born in 1815 and dead in 1852, and Turing, born in 1912 and dead in 1954. Both have fascinating back stories (more about those later) and both played roles in how computers and artificial intelligence are viewed.

Adding some interest to this walk down memory lane is a 3rd display, an illustration of the ‘Mechanical Turk‘, a chess playing machine that made the rounds in Europe from 1770 until it was destroyed in 1854. A hoax that fooled people for quite a while it is a reminder that we’ve been interested in intelligent machines for centuries. (Friend, Turing and Lovelace and the Mechanical Turk are found in Pod 1.)

### Back story: Turing and the apple

Turing is credited with being instrumental in breaking the German ENIGMA code during World War II and helping to end the war. I find it odd that he ended up at the University of Manchester in the post-war years. One would expect him to have been at Oxford or Cambridge. At any rate, he died in 1954 of cyanide poisoning two years after he was arrested for being homosexual and convicted of indecency. Given the choice of incarceration or chemical castration, he chose the latter. There is, to this day, debate about whether or not it was suicide. Here’s how his death is described in this Wikipedia entry (Note: Links have been removed),

On 8 June 1954, at his house at 43 Adlington Road, Wilmslow,[150] Turing’s housekeeper found him dead. He had died the previous day at the age of 41. Cyanide poisoning was established as the cause of death.[151] When his body was discovered, an apple lay half-eaten beside his bed, and although the apple was not tested for cyanide,[152] it was speculated that this was the means by which Turing had consumed a fatal dose. An inquest determined that he had committed suicide. Andrew Hodges and another biographer, David Leavitt, have both speculated that Turing was re-enacting a scene from the Walt Disney film Snow White and the Seven Dwarfs (1937), his favourite fairy tale. Both men noted that (in Leavitt’s words) he took “an especially keen pleasure in the scene where the Wicked Queen immerses her apple in the poisonous brew”.[153] Turing’s remains were cremated at Woking Crematorium on 12 June 1954,[154] and his ashes were scattered in the gardens of the crematorium, just as his father’s had been.[155]

Philosopher Jack Copeland has questioned various aspects of the coroner’s historical verdict. He suggested an alternative explanation for the cause of Turing’s death: the accidental inhalation of cyanide fumes from an apparatus used to electroplate gold onto spoons. The potassium cyanide was used to dissolve the gold. Turing had such an apparatus set up in his tiny spare room. Copeland noted that the autopsy findings were more consistent with inhalation than with ingestion of the poison. Turing also habitually ate an apple before going to bed, and it was not unusual for the apple to be discarded half-eaten.[156] Furthermore, Turing had reportedly borne his legal setbacks and hormone treatment (which had been discontinued a year previously) “with good humour” and had shown no sign of despondency prior to his death. He even set down a list of tasks that he intended to complete upon returning to his office after the holiday weekend.[156] Turing’s mother believed that the ingestion was accidental, resulting from her son’s careless storage of laboratory chemicals.[157] Biographer Andrew Hodges theorised that Turing arranged the delivery of the equipment to deliberately allow his mother plausible deniability with regard to any suicide claims.[158]

The US Central Intelligence Agency (CIA) also has an entry for Alan Turing dated April 10, 2015 it’s titled, The Enigma of Alan Turing.

A mathematician and genius in her own right, Ada Lovelace’s father George Gordon Byron, better known as the poet Lord Byron, was notoriously described as ‘mad, bad, and dangerous to know’.

Lovelace too could have been been ‘mad, bad, …’ but she is described less memorably as “… manipulative and aggressive, a drug addict, a gambler and an adulteress, …” as mentioned in my October 13, 20215 posting. It marked the 200th anniversary of her birth, which was celebrated with a British Broadcasting Corporation (BBC) documentary and an exhibit at the Science Museum in London, UK.

She belongs in the Vancouver Art Gallery’s show along with Alan Turing due to her prediction that computers could be made to create music. She also published the first computer program. Her feat is astonishing when you know only one working model {1/7th of the proposed final size) of a computer was ever produced. (The machine invented by Charles Babbage was known as a difference engine. You can find out more about the Difference engine on Wikipedia and about Babbage’s proposed second invention, the Analytical engine.)

(Byron had almost nothing to do with his daughter although his reputation seems to have dogged her. You can find out more about Lord Byron here.)

## AI and visual culture at the VAG: the curators

As mentioned earlier, the VAG’s “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” show runs from March 5, 2022 – October 23, 2022. Twice now, I have been to this weirdly exciting and frustrating show.

Bruce Grenville, VAG Chief/Senior Curator, seems to specialize in pulling together diverse materials to illustrate ‘big’ topics. His profile for Emily Carr University of Art + Design (where Grenville teaches) mentions these shows ,

… He has organized many thematic group exhibitions including, MashUp: The Birth of Modern Culture [emphasis mine], a massive survey documenting the emergence of a mode of creativity that materialized in the late 1800s and has grown to become the dominant model of cultural production in the 21st century; KRAZY! The Delirious World [emphasis mine] of Anime + Manga + Video Games + Art, a timely and important survey of modern and contemporary visual culture from around the world; Home and Away: Crossing Cultures on the Pacific Rim [emphasis mine] a look at the work of six artists from Vancouver, Beijing, Ho Chi Minh City, Seoul and Los Angeles, who share a history of emigration and diaspora. …

Glenn Entis, Guest Curator and founding faculty member of Vancouver’s Centre for Digital Media (CDM) is Grenville’s co-curator, from Entis’ CDM profile,

“… an Academy Award-winning animation pioneer and games industry veteran. The former CEO of Dreamworks Interactive, Glenn worked with Steven Spielberg and Jeffrey Katzenberg on a number of video games …,”

Steve Newton in his March 4, 2022 preview does a good job of describing the show although I strongly disagree with the title of his article which proclaims “The Vancouver Art Gallery takes a deep dive into artificial intelligence with The Imitation Game.” I think it’s more of a shallow dive meant to cover more distance than depth,

… The exhibition kicks off with an interactive introduction inviting visitors to actively identify diverse areas of cultural production influenced by AI.

“That was actually one of the pieces that we produced in collaboration with the Centre for Digital Media,” Grenville notes, “so we worked with some graduate-student teams that had actually helped us to design that software. It was the beginning of COVID when we started to design this, so we actually wanted a no-touch interactive. So, really, the idea was to say, ‘Okay, this is the very entrance to the exhibition, and artificial intelligence, this is something I’ve heard about, but I’m not really sure how it’s utilized in ways. But maybe I know something about architecture; maybe I know something about video games; maybe I know something about the history of film.

“So you point to these 10 categories of visual culture [emphasis mine]–video games, architecture, fashion design, graphic design, industrial design, urban design–so you point to one of those, and you might point to ‘film’, and then when you point at it that opens up into five different examples of what’s in the show, so it could be 2001: A Space Odyssey, or Bladerunner, or World on a Wire.”

After the exhibition’s introduction—which Grenville equates to “opening the door to your curiosity” about artificial intelligence–visitors encounter one of its main categories, Objects of Wonder, which speaks to the history of AI and the critical advances the technology has made over the years.

“So there are 20 Objects of Wonder [emphasis mine],” Grenville says, “which go from 1949 to 2022, and they kind of plot out the history of artificial intelligence over that period of time, focusing on a specific object. Like [mathematician and philosopher] Norbert Wiener made this cybernetic creature, he called it a ‘Moth’, in 1949. So there’s a section that looks at this idea of kind of using animals–well, machine animals–and thinking about cybernetics, this idea of communication as feedback, early thinking around neuroscience and how neuroscience starts to imagine this idea of a thinking machine.

And there’s this from Newton’s March 4, 2022 preview,

“It’s interesting,” Grenville ponders, “artificial intelligence is virtually unregulated. [emphasis mine] You know, if you think about the regulatory bodies that govern TV or radio or all the types of telecommunications, there’s no equivalent for artificial intelligence, which really doesn’t make any sense. And so what happens is, sometimes with the best intentions [emphasis mine]—sometimes not with the best intentions—choices are made about how artificial intelligence develops. So one of the big ones is facial-recognition software [emphasis mine], and any body-detection software that’s being utilized.

In addition to it being the best overview of the show I’ve seen so far, this is the only one where you get a little insight into what the curators were thinking when they were developing it.

## A deep dive into AI?

it was only while searching for a little information before the show that I realized I don’t have any definitions for artificial intelligence! What is AI? Sadly, there are no definitions of AI in the exhibit.

It seems even experts don’t have a good definition. Take a look at this,

The definition of AI is fluid [emphasis mine] and reflects a constantly shifting landscape marked by technological advancements and growing areas of application. Indeed, it has frequently been observed that once AI becomes capable of solving a particular problem or accomplishing a certain task, it is often no longer considered to be “real” intelligence [emphasis mine] (Haenlein & Kaplan, 2019). A firm definition was not applied for this report [emphasis mine], given the variety of implementations described above. However, for the purposes of deliberation, the Panel chose to interpret AI as a collection of statistical and software techniques, as well as the associated data and the social context in which they evolve — this allows for a broader and more inclusive interpretation of AI technologies and forms of agency. The Panel uses the term AI interchangeably to describe various implementations of machine-assisted design and discovery, including those based on machine learning, deep learning, and reinforcement learning, except for specific examples where the choice of implementation is salient. [p. 6 print version; p. 34 PDF version]

The above is from the Leaps and Boundaries report released May 10, 2022 by the Council of Canadian Academies’ Expert Panel on Artificial Intelligence for Science and Engineering.

Sometimes a show will take you in an unexpected direction. I feel a lot better ‘not knowing’. Still, I wish the curators had acknowledged somewhere in the show that artificial intelligence is a slippery concept. Especially when you add in robots and automatons. (more about them later)

## 21st century technology in a 19th/20th century building

Just barely making it into the 20th century, the building where the Vancouver Art Gallery currently resides was for many years the provincial courthouse (1911 – 1978). In some ways, it’s a disconcerting setting for this show.

They’ve done their best to make the upstairs where the exhibit is displayed look like today’s galleries with their ‘white cube aesthetic’ and strong resemblance to the scientific laboratories seen in movies.

(For more about the dominance, since the 1930s, of the ‘white cube aesthetic’ in art galleries around the world, see my July 26, 2021 posting; scroll down about 50% of the way.)

It makes for an interesting tension, the contrast between the grand staircase, the cupola, and other architectural elements and the sterile, ‘laboratory’ environment of the modern art gallery.

## 20 Objects of Wonder and the flow of the show

It was flummoxing. Where are the 20 objects? Why does it feel like a maze in a laboratory? Loved the bees, but why? Eeeek Creepers! What is visual culture anyway? Where am I?

### The objects of the show

It turns out that the curators have a more refined concept for ‘object’ than I do. There weren’t 20 material objects, there were 20 numbered ‘pods’ with perhaps a screen or a couple of screens or a screen and a material object or two illustrating the pod’s topic.

Looking up a definition for the word (accessed from a June 9, 2022 duckduckgo.com search). yielded this, (the second one seems à propos),

objectŏb′jĭkt, -jĕkt″

noun

1. Something perceptible by one or more of the senses, especially by vision or touch; a material thing.

2. A focus of attention, feeling, thought, or action.

3. A limiting factor that must be considered.

The American Heritage® Dictionary of the English Language, 5th Edition.

Each pod = a focus of attention.

### The show’s flow is a maze. Am I a rat?

The pods are defined by a number and by temporary walls. So if you look up, you’ll see a number and a space partly enclosed by a temporary wall or two.

It’s a very choppy experience. For example, one minute you can be in pod 1 and, when you turn the corner, you’re in pod 4 or 5 or ? There are pods I’ve not seen, despite my two visits, because I kept losing my way. This led to an existential crisis on my second visit. “Had I missed the greater meaning of this show? Was there some sort of logic to how it was organized? Was there meaning to my life? Was I a rat being nudged around in a maze?” I didn’t know.

Thankfully, I have since recovered. But, I will return to my existential crisis later, with a special mention for “Creepers.”

## The fascinating

My friend, you know I appreciated the history and in addition to Alan Turing, Ada Lovelace and the Mechanical Turk, at the beginning of the show, they included a reference to Ovid (or Pūblius Ovidius Nāsō), a Roman poet who lived from 43 BCE – 17/18 CE in one of the double digit (17? or 10? or …) in one of the pods featuring a robot on screen. As to why Ovid might be included, this excerpt from a February 12, 2018 posting on the cosmolocal.org website provides a clue (Note. Links have been removed),

The University of King’s College [Halifax, Nova Scotia] presents Automatons! From Ovid to AI, a nine-lecture series examining the history, issues and relationships between humans, robots, and artificial intelligence [emphasis mine]. The series runs from January 10 to April 4 [2018], and features leading scholars, performers and critics from Canada, the US and Britain.

“Drawing from theatre, literature, art, science and philosophy, our 2018 King’s College Lecture Series features leading international authorities exploring our intimate relationships with machines,” says Dr. Gordon McOuat, professor in the King’s History of Science and Technology (HOST) and Contemporary Studies Programs.

“From the myths of Ovid [emphasis mine] and the automatons [emphasis mine] of the early modern period to the rise of robots, cyborgs, AI and artificial living things in the modern world, the 2018 King’s College Lecture Series examines the historical, cultural, scientific and philosophical place of automatons in our lives—and our future,” adds McOuat.

I loved the way the curators managed to integrate the historical roots for artificial intelligence and, by extension, the world of automatons, robots, cyborgs, and androids. Yes, starting the show with Alan Turing and Ada Lovelace could be expected but Norbert Wiener’s Moth (1949) acts as a sort of preview for Sougwen Chung’s “Omnia per Omnia, 2018” (GIF seen at the beginning of this post). Take a look for yourself (from the cyberneticzoo.com September 19, 2009 posting by cyberne1. Do you see the similarity or am I the only one?

### Sculpture

This is the first time I’ve come across an AI/sculpture project. The VAG show features Scott Eaton’s sculptures on screens in a room devoted to his work.

This looks like an image of a piece of ginger root and It’s fascinating to watch the process as the AI agent ‘evolves’ Eaton’s drawings into onscreen sculptures. It would have enhanced the experience if at least one of Eaton’s ‘evolved’ and physically realized sculptures had been present in the room but perhaps there were financial and/or logistical reasons for the absence.

Both Chung and Eaton are collaborating with an AI agent. In Chung’s case the AI is integrated into the paintbots with which she interacts and paints alongside and in Eaton’s case, it’s via a computer screen. In both cases, the work is mildly hypnotizing in a way that reminds me of lava lamps.

One last note about Chung and her work. She was one of the artists invited to present new work at an invite-only April 22, 2022 Embodied Futures workshop at the “What will life become?” event held by the Berrgruen Institute and the University of Southern California (USC),

Embodied Futures invites participants to imagine novel forms of life, mind, and being through artistic and intellectual provocations on April 22 [2022].

Beginning at 1 p.m., together we will experience the launch of five artworks commissioned by the Berggruen Institute. We asked these artists: How does your work inflect how we think about “the human” in relation to alternative “embodiments” such as machines, AIs, plants, animals, the planet, and possible alien life forms in the cosmos? [emphases mine]  Later in the afternoon, we will take provocations generated by the morning’s panels and the art premieres in small breakout groups that will sketch futures worlds, and lively entities that might dwell there, in 2049.

This leads to (and my friend, while I too am taking a shallow dive, for this bit I’m going a little deeper):

### Bees and architecture

Neri Oxman’s contribution (Golden Bee Cube, Synthetic Apiary II [2020]) is an exhibit featuring three honeycomb structures and a video featuring the bees in her synthetic apiary.

Neri Oxman (then a faculty member of the Mediated Matter Group at the Massachusetts Institute of Technology) described the basis for the first and all other iterations of her synthetic apiary in Patrick Lynch’s October 5, 2016 article for ‘ArchDaily; Broadcasting Architecture Worldwide’, Note: Links have been removed,

Designer and architect Neri Oxman and the Mediated Matter group have announced their latest design project: the Synthetic Apiary. Aimed at combating the massive bee colony losses that have occurred in recent years, the Synthetic Apiary explores the possibility of constructing controlled, indoor environments that would allow honeybee populations to thrive year-round.

“It is time that the inclusion of apiaries—natural or synthetic—for this “keystone species” be considered a basic requirement of any sustainability program,” says Oxman.

In developing the Synthetic Apiary, Mediated Matter studied the habits and needs of honeybees, determining the precise amounts of light, humidity and temperature required to simulate a perpetual spring environment. [emphasis mine] They then engineered an undisturbed space where bees are provided with synthetic pollen and sugared water and could be evaluated regularly for health.

In the initial experiment, the honeybees’ natural cycle proved to adapt to the new environment, as the Queen was able to successfully lay eggs in the apiary. The bees showed the ability to function normally in the environment, suggesting that natural cultivation in artificial spaces may be possible across scales, “from organism- to building-scale.”

“At the core of this project is the creation of an entirely synthetic environment enabling controlled, large-scale investigations of hives,” explain the designers.

Mediated Matter chose to research into honeybees not just because of their recent loss of habitat, but also because of their ability to work together to create their own architecture, [emphasis mine] a topic the group has explored in their ongoing research on biologically augmented digital fabrication, including employing silkworms to create objects and environments at product, architectural, and possibly urban, scales.

“The Synthetic Apiary bridges the organism- and building-scale by exploring a “keystone species”: bees. Many insect communities present collective behavior known as “swarming,” prioritizing group over individual survival, while constantly working to achieve common goals. Often, groups of these eusocial organisms leverage collaborative behavior for relatively large-scale construction. For example, ants create extremely complex networks by tunneling, wasps generate intricate paper nests with materials sourced from local areas, and bees deposit wax to build intricate hive structures.”

This January 19, 2022 article by Crown Honey for its eponymous blog updates Oxman’s work (Note 1: All emphases are mine; Note 2: A link has been removed),

Synthetic Apiary II investigates co-fabrication between humans and honey bees through the use of designed environments in which Apis mellifera colonies construct comb. These designed environments serve as a means by which to convey information to the colony. The comb that the bees construct within these environments comprises their response to the input information, enabling a form of communication through which we can begin to understand the hive’s collective actions from their perspective.

Some environments are embedded with chemical cues created through a novel pheromone 3D-printing process, while others generate magnetic fields of varying strength and direction. Others still contain geometries of varying complexity or designs that alter their form over time.

When offered wax augmented with synthetic biomarkers, bees appear to readily incorporate it into their construction process, likely due to the high energy cost of producing fresh wax. This suggests that comb construction is a responsive and dynamic process involving complex adaptations to perturbations from environmental stimuli, not merely a set of predefined behaviors building toward specific constructed forms. Each environment therefore acts as a signal that can be sent to the colony to initiate a process of co-fabrication.

Characterization of constructed comb morphology generally involves visual observation and physical measurements of structural features—methods which are limited in scale of analysis and blind to internal architecture. In contrast, the wax structures built by the colonies in Synthetic Apiary II are analyzed through high-throughput X-ray computed tomography (CT) scans that enable a more holistic digital reconstruction of the hive’s structure.

Geometric analysis of these forms provides information about the hive’s design process, preferences, and limitations when tied to the inputs, and thereby yields insights into the invisible mediations between bees and their environment.
Developing computational tools to learn from bees can facilitate the very beginnings of a dialogue with them. Refined by evolution over hundreds of thousands of years, their comb-building behaviors and social organizations may reveal new forms and methods of formation that can be applied across our human endeavors in architecture, design, engineering, and culture.

Further, with a basic understanding and language established, methods of co-fabrication together with bees may be developed, enabling the use of new biocompatible materials and the creation of more efficient structural geometries that modern technology alone cannot achieve.

In this way, we also move our built environment toward a more synergistic embodiment, able to be more seamlessly integrated into natural environments through material and form, even providing habitats of benefit to both humans and nonhumans. It is essential to our mutual survival for us to not only protect but moreover to empower these critical pollinators – whose intrinsic behaviors and ecosystems we have altered through our industrial processes and practices of human-centric design – to thrive without human intervention once again.

In order to design our way out of the environmental crisis that we ourselves created, we must first learn to speak nature’s language. …

The three (natural, gold nanoparticle, and silver nanoparticle) honeycombs in the exhibit are among the few physical objects (the others being the historical documents and the paintbots with their canvasses) in the show and it’s almost a relief after the parade of screens. It’s the accompanying video that’s eerie. Everything is in white, as befits a science laboratory, in this synthetic apiary where bees are fed sugar water and fooled into a spring that is eternal.

(You may want to check out Lynch’s October 5, 2016 article or Crown Honey’s January 19, 2022 article as both have embedded images and the Lynch article includes a Synthetic Apiary video. The image above is a still from the video.)

As I asked a friend, where are the flowers? Ron Miksha, a bee ecologist working at the University of Calgary, details some of the problems with Oxman’s Synthetic Apiary this way in his October 7, 2016 posting on his Bad Beekeeping Blog,

In a practical sense, the synthetic apiary fails on many fronts: Bees will survive a few months on concoctions of sugar syrup and substitute pollen, but they need a natural variety of amino acids and minerals to actually thrive. They need propolis and floral pollen. They need a ceiling 100 metres high and a 2-kilometre hallway if drone and queen will mate, or they’ll die after the old queen dies. They need an artificial sun that travels across the sky, otherwise, the bees will be attracted to artificial lights and won’t return to their hive. They need flowery meadows, fresh water, open skies. [emphasis mine] They need a better holodeck.

Dorothy Woodend’s March 10, 2022 review of the VAG show for The Tyee poses other issues with the bees and the honeycombs,

When AI messes about with other species, there is something even more unsettling about the process. American-Israeli artist Neri Oxman’s Golden Bee Cube, Synthetic Apiary II, 2020 uses real bees who are proffered silver and gold [nanoparticles] to create their comb structures. While the resulting hives are indeed beautiful, rendered in shades of burnished metal, there is a quality of unease imbued in them. Is the piece akin to apiary torture chambers? I wonder how the bees feel about this collaboration and whether they’d like to renegotiate the deal.

There’s no question the honeycombs are fascinating and disturbing but I don’t understand how artificial intelligence was a key factor in either version of Oxman’s synthetic apiary. In the 2022 article by Crown Honey, there’s this “Developing computational tools to learn from bees can facilitate the very beginnings of a dialogue with them [honeybees].” It’s probable that the computational tools being referenced include AI and the Crown Honey article seems to suggest those computational tools are being used to analyze the bees behaviour after the fact.

Yes, I can imagine a future where ‘strong’ AI (such as you, my friend) is in ‘dialogue’ with the bees and making suggestions and running the experiments but it’s not clear that this is the case currently. The Oxman exhibit contribution would seem to be about the future and its possibilities whereas many of the other ‘objects’ concern the past and/or the present.

Friend, let’s take a break, shall we? Part 2 is coming up.

# Art/Sci exhibit in Toronto, Canada: “These are a Few of Our Favourite Bees” June 22 – July 16, 2022

A “These are a few of Our Favourite Bees” upcoming exhibitions notice on the Campbell House Museum website (also received via email as a June 4, 2022 ArtSci Salon announcement) features a month long exhibit being co-presented with the Canadian Music Centre in Toronto,

Exhibition
Campbell House Museum
June 22 – July 16, 2022
160 Queen Street W.

Opening event
Campbell House,
Saturday July 2,
2 – 4 p.m. [ET]

Artists’ Talk & Webcast
20 St. Joseph Street Toronto
Thursday, July 7
7:30 – 9 p.m. [ET]
(doors open 7 pm)

These are a Few of Our Favourite Bees investigates wild, native bees and their ecology through playful dioramas, video, audio, relief print and poetry. Inspired by lambe lambe – South American miniature puppet stages for a single viewer – four distinct dioramas convey surreal yet enlightening worlds where bees lounge in cozy environs, animals watch educational films [emphasis mine] and ethereal sounds animate bowls of berries (having been pollinated by their diverse bee visitors). Displays reminiscent of natural history museums invite close inspection, revealing minutiae of these tiny, diverse animals, our native bees. From thumb-sized to extremely tiny, fuzzy to hairless, black, yellow, red or emerald green, each native bee tells a story while her actions create the fruits of pollination, reflecting the perpetual dance of animals, plants and planet. With a special appearance by Toronto’s official bee, the jewelled green sweat bee, Agapostemon virescens!

These are a Few of Our Favourite Bees Collective are: Sarah Peebles, Ele Willoughby, Rob Cruickshank & Stephen Humphrey

The Works

These are a Few of Our Favourite Bees

Sarah Peebles, Ele Willoughby, Rob Cruickshank & Stephen Humphrey

Single-viewer box theatres, dioramas, sculpture, textile art, macro video, audio transducers, poetry, insect specimens, relief print, objects, electronics, colour-coded DNA barcodes.

Bees represented: rusty-patched bumble bee (Bombus affinis); jewelled green sweat bee (Agapostemon virescens); masked sweat bee (Hylaeus annulatus); leafcutter bee (Megachile relativa)

In the Landscape

Ele Willoughby & Sarah Peebles

paper, relief print, video projection, audio, audio cable, mixed media

Bee specimens & bee barcodes generously provided by Laurence Packer – Packer Lab, York University; Scott MacIvor – BUGS Lab, U-T [University of Toronto] Scarborough; Sam Droege – USGS [US Geological Survey]; Barcode of Life Data Systems; Antonia Guidotti, Department of Natural History, Royal Ontario Museum

In addition to watching television, animals have been known to interact with touchscreen computers as mentioned in my June 24, 2016 posting, “Animal technology: a touchscreen for your dog, sonar lunch orders for dolphins, and more.”

The “These are a few of Our Favourite Bees” upcoming exhibitions notice features this artist statement for a third piece, “Without A Bee, It Would Not Be” by Tracey Lawko,

In May, my crabapple tree blooms. In August, I pick the ripe crabapples. In September, I make jelly. Then I have breakfast. This would not be without a bee.

It could not be without a bee. The fruit and vegetables I enjoy eating, as well as the roses I admire as centrepieces, all depend on pollination.

Our native pollinators and their habitat are threatened.  Insect populations are declining due to habitat loss, pesticide use, disease and climate change. 75% of flowering plants rely on pollinators to set seed and we humans get one-third of our food from flowering plants.

I invite you to enter this beautiful dining room and consider the importance of pollinators to the enjoyment of your next meal.

Bio

Tracey Lawko employs contemporary textile techniques to showcase changes in our environment. Building on a base of traditional hand-embroidery, free-motion longarm stitching and a love of drawing, her representational work is detailed and “drawn with thread”. Her nature studies draw attention to our native pollinators as she observes them around her studio in the Niagara Escarpment. Many are stitched using a centuries-old, three-dimensional technique called “Stumpwork”.

Tracey’s extensive exhibition history includes solo exhibitions at leading commercial galleries and public museums. Her work has been selected for major North American and International exhibitions, including the Concours International des Mini-Textiles, Musée Jean Lurçat, France, and is held in the permanent collection of the US National Quilt Museum and in private collections in North America and Europe.

Bzzz!

# The latest math stars: honeybees!

Understanding the concept of zero—I still remember climbing that mountain, so to speak. It took the teacher quite a while to convince me that representing ‘nothing’ as a zero was worthwhile. In fact, it took the combined efforts of both my parents and the teacher to convince me to use zeroes as I was prepared to go without. The battle is long since over and I have learned to embrace zero.

I don’t think bees have to be convinced but they too may have a concept of zero. More about that later, here’s the latest abut bees and math from an October 10, 2019 news item on phys.org,

Start thinking about numbers and they can become large very quickly. The diameter of the universe is about 8.8×1023 km and the largest known number—googolplex, 1010100—outranks it enormously. Although that colossal concept was dreamt up by brilliant mathematicians, we’re still pretty limited when it comes to assessing quantities at a glance. ‘Humans have a threshold limit for instantly processing one to four elements accurately’, says Adrian Dyer from RMIT University, Australia; and it seems that we are not alone. Scarlett Howard from RMIT and the Université de Toulouse, France, explains that guppies, angelfish and even honeybees are capable of distinguishing between quantities of three and four, although the trusty insects come unstuck at finer differences; they fail to differentiate between four and five, which made her wonder. According to Howard, honeybees are quite accomplished mathematicians. ‘Recently, honeybees were shown to learn the rules of “less than” and “greater than” and apply these rules to evaluate numbers from zero to six’, she says. Maybe numeracy wasn’t the bees’ problem; was it how the question was posed? The duo publishes their discovery that bees can discriminate between four and five if the training procedure is correct in Journal of Experimental Biology.

An October 10, 2019 The Company of Biologists’ press release on EurekAlert, which originated the news item, refines the information with more detail,

Dyer explains that when animals are trained to distinguish between colours and objects, some training procedures simply reward the animals when they make the correct decision. In the case of the honeybees that could distinguish three from four, they received a sip of super-sweet sugar water when they made the correct selection but just a taste of plain water when they got it wrong. However, Dyer, Howard and colleagues Aurore Avarguès-Weber, Jair Garcia and Andrew Greentree knew there was an alternative strategy. This time, the bees would be given a bitter-tasting sip of quinine-flavoured water when they got the answer wrong. Would the unpleasant flavour help the honeybees to focus better and improve their maths?

‘[The] honeybees were very cooperative, especially when I was providing sugar rewards’, says Howard, who moved to France each April to take advantage the northern summer during the Australian winter, when bees are dormant. Training the bees to enter a Y-shaped maze, Howard presented the insects with a choice; a card featuring four shapes in one arm and a card featuring a different number of shapes (ranging from one to 10) in the other. During the first series of training sessions, Howard rewarded the bees with a sugary sip when they alighted correctly before the card with four shapes, in contrast to a sip of water when they selected the wrong card. However, when Howard trained a second set of bees she reproved them with a bitter-tasting sip of quinine when they chose incorrectly, rewarding the insects with sugar when they selected the card with four shapes. Once the bees had learned to pick out the card with four shapes, Howard tested whether they could distinguish the card with four shapes when offered a choice between it and cards with eight, seven, six or – the most challenging comparison – five shapes.

Not surprisingly, the bees that had only been rewarded during training struggled; they couldn’t even differentiate between four and eight shapes. However, when Howard tested the honeybees that had been trained more rigorously – receiving a quinine reprimand – their performance was considerably better, consistently picking the card with four shapes when offered a choice between it and cards with seven or eight shapes. Even more impressively, the bees succeeded when offered the more subtle choice between four and five shapes.

So, it seems that honeybees are better mathematicians than had been credited. Unlocking their ability was simply a matter of asking the question in the right way and Howard is now keen to find out just how far counting bees can go.

I’ll get to the link to and citation for the paper in a minute but first, I found more about bees and math (including zero) in this February 7, 2019 article by Jason Daley for The Smithsonian (Note: Links have been removed),

Bees are impressive creatures, powering entire ecosystems via pollination and making sweet honey at the same time, one of the most incredible substances in nature. But it turns out the little striped insects are also quite clever. A new study suggests that, despite having tiny brains, bees understand the mathematical concepts of addition and subtraction.

To test the numeracy of the arthropods, researchers set up unique Y-shaped math mazes for the bees to navigate, according to Nicola Davis at the The Guardian. Because the insects can’t read, and schooling them to recognize abstract symbols like plus and minus signs would be incredibly difficult, the researchers used color to indicate addition or subtraction. …

Fourteen bees spent between four and seven hours completing 100 trips through the mazes during training exercises with the shapes and numbers chosen at random. All of the bees appeared to learn the concept. Then, the bees were tested 10 times each using two addition and two subtraction scenarios that had not been part of the training runs. The little buzzers got the correct answer between 64 and 72 percent of the time, better than would be expected by chance.

Last year, the same team of researchers published a paper suggesting that bees could understand the concept of zero, which puts them in an elite club of mathematically-minded animals that, at a minimum, have the ability to perceive higher and lower numbers in different groups. Animals with this ability include frogs, lions, spiders, crows, chicken chicks, some fish and other species. And these are not the only higher-level skills that bees appear to possess. A 2010 study that Dyer [Adrian Dyer of RMIT University in Australia] also participated in suggests that bees can remember human faces using the same mechanisms as people. Bees also use a complex type of movement called the waggle dance to communicate geographical information to one other, another sophisticated ability packed into a brain the size of a sesame seed.

If researchers could figure out how bees perform so many complicated tasks with such a limited number of neurons, the research could have implications for both biology and technology, such as machine learning. …

Then again, maybe the honey makers are getting more credit than they deserve. Clint Perry, who studies invertebrate intelligence at the Bee Sensory and Behavioral Ecology Lab at Queen Mary University of London tells George Dvorsky at Gizmodo that he’s not convinced by the research, and he had similar qualms about the study that suggested bees can understand the concept of zero. He says the bees may not be adding and subtracting, but rather are simply looking for an image that most closely matches the initial one they see, associating it with the sugar reward. …

If you have the time and the interest, definitely check out Daley’s article.

Here’s a link to and a citation for the latest paper about honeybees and math,

Surpassing the subitizing threshold: appetitive–aversive conditioning improves discrimination of numerosities in honeybees by Scarlett R. Howard, Aurore Avarguès-Weber, Jair E. Garcia, Andrew D. Greentree, Adrian G. Dyer. Journal of Experimental Biology 2019 222: jeb205658 doi: 10.1242/jeb.205658 Published 10 October 2019

This paper is behind a paywall.

# Quantum dots as pollen labels: tracking pollinators

Fascinating, yes? Next, the news and, then, the video about the research,

A February 14, 2019 news item on ScienceDaily announces research from South Africa,

A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method to track pollen for over a century.

A February 13, 2019 Stellenbosh University press release (also on EurekAlert but published February 14, 2019) by Wiida Fourie-Basson, which originated the news item, expands on the theme,

In an article published in the journal Methods in Ecology and Evolution this week, Dr Corneile Minnaar describes this novel method, which will enable pollination biologists to track the whole pollination process from the first visit by a pollinator to its endpoint – either successfully transferred to another flower’s stigma or lost along the way.

Despite over two hundred years of detailed research on pollination, Minnaar says, researchers do not know for sure where most of the microscopically tiny pollen grains actually land up once they leave flowers: “Plants produce massive amounts of pollen, but it looks like more than 90% of it never reaches stigmas. For the tiny fraction of pollen grains that make their way to stigmas, the journey is often unclear–which pollinators transferred the grains and from where?”

Starting in 2015, Minnaar decided to tread where many others have thus far failed, and took up the challenge through his PhD research in the Department of Botany and Zoology at Stellenbosch University (SU).

“Most plant species on earth are reliant on insects for pollination, including more than 30% of the food crops we eat. With insects facing rapid global decline, it is crucial that we understand which insects are important pollinators of different plants–this starts with tracking pollen,” he explains.

He came upon the idea for a pollen-tracking method after reading an article on the use of quantum dots to track cancer cells in rats (https://doi.org/10.1038/nbt994). Quantum dots are semiconductor nanocrystals that are so small, they behave like artificial atoms. When exposed to UV light, they emit extremely bright light in a range of possible colours. In the case of pollen grains, he figured out that quantum dots with “fat-loving” (lipophilic) ligands would theoretically stick to the fatty outer layer of pollen grains, called pollenkitt, and the glowing colours of the quantum dots can then be used to uniquely “label” pollen grains to see where they end up.

The next step was to find a cost-effective way to view the fluorescing pollen grains under a field dissection microscope. At that stage Minnaar was still using a toy pen from a family restaurant with a little UV LED light that he borrowed from one of his professors.
“I decided to design a fluorescence box that can fit under a dissection microscope. And, because I wanted people to use this method, I designed a box that can easily be 3D-printed at a cost of about R5,000, including the required electronic components.” (view video at https://youtu.be/YHs925F13t0

[or you can scroll down to the bottom of this post]

So far, the method and excitation box have proven itself as an easy and relatively inexpensive method to track individual pollen grains: “I’ve done studies where I caught the insects after they have visited the plant with quantum-dot labelled anthers, and you can see where the pollen is placed, and which insects actually carry more or less pollen.”
But the post-labelling part of the work still requires hours and hours of painstaking counting and checking: “I think I’ve probably counted more than a hundred thousand pollen grains these last three years,” he laughs.

As a postdoctoral fellow in the research group of Prof Bruce Anderson in the Department of Botany and Zoology at Stellenbosch University, Minnaar will continue to use the method to investigate the many unanswered questions in this field.

Here’s a link to and a citation for the paper,

Using quantum dots as pollen labels to track the fates of individual pollen grains by Corneile Minnaar and Bruce Anderson. Methods in Ecology and Evolution DOI: https://doi.org/10.1111/2041-210X.13155 First published: 25 January 2019

This paper is behind a paywall.

Here is the video,

In celebration of an upcoming event in Vancouver (Canada), “Honey, Hives, and Poetry,” I’m including this April 17, 2015 news from David Bruggeman (on his Pasco Phronesis blog),

Tom McFadden has debuted the first video of this year’s Science Rap Academy.  Seventh and eighth grade students at the Nueva School prepare a music video based on a science concept, usually reworking a rap or hip-hop song.

Here’s the first installment in this year’s Science Rap Academy series, Please Don’t Kill My Hive,

There are many posts on this blog about Tom McFadden and his various science rap projects (many of them courtesy of David Bruggeman/Pasco Phronesis). Here’s one of the more recent ones, a May 30, 2014 posting.

Getting back to David’s April 17, 2015 news, he also mentions the latest installment of  “Science goes to the movies” which features three movies (Kingsman: The Secret Service, The Lazarus Effect, and Them!) and has Neil deGrasse Tyson as a guest. David has embedded the episode on his blog. One brief comment, it’s hard to tell how familiar Tyson or the hosts, Faith Salie and Dr. Heather Berlin are with the history of the novel or science. But the first few minutes of the conversation suggest that Mary Shelley’s Frankenstein is the first novel to demonize scientists. (I had the advantage of not getting caught up in their moment and access to search engines.) Well, novels were still pretty new in Europe and I don’t believe that there were any other novels featuring scientists prior to Mary Shelley’s work.

A brief history of novels: Japan can lay claim to the first novel, The Tale of Genji, in the 11th century CE, (The plot concerned itself with aristocratic life and romance.) Europe and its experience with the novel is a little more confusing. From the City University of New York, Brooklyn site, The Novel webpage,

The term for the novel in most European languages is roman, which suggests its closeness to the medieval romance. The English name is derived from the Italian novella, meaning “a little new thing.” Romances and novelle, short tales in prose, were predecessors of the novel, as were picaresque narratives. Picaro is Spanish for “rogue,” and the typical picaresque story is of the escapades of a rascal who lives by his wits. The development of the realistic novel owes much to such works, which were written to deflate romantic or idealized fictional forms. Cervantes’ Don Quixote (1605-15), the story of an engaging madman who tries to live by the ideals of chivalric romance, explores the role of illusion and reality in life and was the single most important progenitor of the modern novel.

The novel broke from those narrative predecessors that used timeless stories to mirror unchanging moral truths. It was a product of an intellectual milieu shaped by the great seventeenth-century philosophers, Descartes and Locke, who insisted upon the importance of individual experience. They believed that reality could be discovered by the individual through the senses. Thus, the novel emphasized specific, observed details. It individualized its characters by locating them precisely in time and space. And its subjects reflected the popular eighteenth-century concern with the social structures of everyday life.

The novel is often said to have emerged with the appearance of Daniel Defoe’s Robinson Crusoe (1719) and Moll Flanders (1722). Both are picaresque stories, in that each is a sequence of episodes held together largely because they happen to one person. But the central character in both novels is so convincing and set in so solid and specific a world that Defoe is often credited with being the first writer of “realistic” fiction. The first “novel of character” or psychological novel is Samuel Richardson’s Pamela (1740-41), an epistolary novel (or novel in which the narrative is conveyed entirely by an exchange of letters). It is a work characterized by the careful plotting of emotional states. Even more significant in this vein is Richardson’s masterpiece Clarissa (1747-48). Defoe and Richardson were the first great writers in our literature who did not take their plots from mythology, history, legend, or previous literature. They established the novel’s claim as an authentic account of the actual experience of individuals.

As far as I’m aware none of these novels are concerned with science or scientists for that matter. After all, science was still emerging from a period where alchemy reined supreme. One of the great European scientists, Isaac Newton (1642-1726/7), practiced alchemy along with his science. And that practice did not die with Newton.

With those provisos in mind, or not, do enjoy the movie reviews embedded in David’s April 17, 2015 news.  One final note,David in his weekly roundup of science on late night tv noted that Neil deGrasse Tyson’s late night tv talk show, Star Talks, debuted April 20, 2015, the episode can be seen again later this week while deGrasse Tyson continues to make the rounds of other talk shows to publicize his own.

# Vive Nano and the American Chemistry Council Award and a philosphy of awards

Vive Nano recently received a 2011 Responsible Care Performance Award from the American Chemistry Council. From the May 11, 2011 news release,

The Responsible Care Performance Award recognizes those member companies who excelled at helping ACC meet industry-wide safety and product stewardship targets. ACC Responsible Care award winners qualify based on exemplary performance, and are selected by an external expert committee. Other award winners this year include Chevron Phillips Chemical Company, ExxonMobil Chemical Company, Nova Chemicals and Honeywell.

At this point I want to make a distinction between Vive Nano’s acceptance of the award and the award’s credibility and to make a personal confession. First the confession, I don’t probe too deeply when I win award and I probably should. Now onto the issue of an award’s credibility. Something in the news release caught my attention,

“Responsible Care is the chemical industry’s commitment to sustainability, enabling us to enhance environmental protection and public health, as well as improve worker safety and plant security,” said Greg Babe, chair of ACC’s Board Committee on Responsible Care and president and CEO of Bayer Corp. [emphases mine]

One of the Bayer companies (Babe is the Chief Executive Officer of the parent corporation), Bayer CropScience has a product used as a pesticide which has been strongly implicated as a factor in the calamitous collapse of bee colonies in North America and elsewhere. From a Dec. 14, 2010 article by Ariel Schwartz for Fast Company,

Beekeepers across the U.S. are reporting record low honey crops as their bees fail to make it through the winter. One-third of American agriculture, which relies on bee pollination, is at stake. And the problem may be at least partially attributable to clothianidin, a Bayer-branded pesticide used on corn and other crops.

But as we revealed last week, the EPA knew that clothianidin could be toxic when the product came on the market in 2003. So why is it still on the market?

The bee-toxic pesticide problem can be traced back to 1994, when the first neonicotinoid pesticide (Imidacloprid) was released. Neonicotinoids like imidacloprid and clothianidin disrupt the central nervous system of pest insects, and are supposed to be relatively non-toxic to other animals. But there’s a problem: The neonicotinoids coat plant seeds, releasing insecticides permanently into the plant. The toxins are then released in pollen and nectar–where they may cause bees to become disoriented and die.

….

The EPA first brought up the link between clothianidin and bees before the pesticide’s release in February 2003. The agency originally planned to withhold registration of the pesticide because of concerns about toxicity in bees, going so far as to suggest that the product come with a warning label (PDF): “This compound is toxic to honey bees. The persistance [sic] of residues and the expression clothianidin in nectar and pollen suggest the possibility of chronic toxic risk to honey bee larvae and the eventual stability of the hive.”

But in April 2003, the EPA decided to give Bayer conditional registration. Bayer could sell the product and seed processors could freely use it, with the proviso that Bayer complete a life cycle study of clothianidin on corn by December 2004. Bayer was granted an extension until May 2005 (and permission to use canola instead of corn in its tests), but didn’t complete the study until August 2007. The EPA continued to allow the sale of clothianidin, and once the Bayer study finally came out, it was flawed.

There’s more about the bees and Bayer both in this article and in a Dec. 17, 2010 article by Schwartz for Fast Company.

Here’s an excerpt from the company’s Dec. 22, 2010 response to the concerns,

Bayer CropScience was recently made aware of an unauthorized release [emphasis mine] from within the Environmental Protection Agency (EPA) of a document regarding the seed treatment product, clothianidin, which is sold in the United States corn market. Bayer CropScience disagrees with the claims by some environmental groups against this product and we believe these are incorrect and unwarranted with regard to honey bee concerns.

The study referenced in the document is important research, conducted by independent experts and published in a major peer-reviewed scientific journal. The long-term field study conducted in accordance with Good Laboratory Practices (GLP) by independent experts using clothianidin-treated seed showed that there were no effects on bee mortality, weight gain, worker longevity, brood development, honey yield and over-winter survival. The EPA reviewed and approved the study protocol prior to its initiation and it was peer-reviewed and published in the Journal of Economic Entomology*. Upon reviewing the results of the long-term trial, the Agency noted the study as “scientifically sound and satisfies the guideline requirements for a field toxicity test with honey bees.

According to Schwartz, the ‘unauthorized release’ was in response to a freedom of information (FOI) query.

If the product is suspected of being unsafe, why not make the data available for analysis by respected scientists who are not associated with Bayer in any way? Given the magnitude of the problem, shouldn’t the company go above and beyond? And, what does this mean for its commitment to the American Chemistry Council’s Responsible Care program?

The issue is not Vive Nano; it’s the credibility of the award. For example, the Nobel Peace Prize is funded from the proceeds of a fortune derived from the invention of dynamite, amongst other things. (I was not able to confirm that Alfred Nobel was a munitions manufacturer although I’ve heard that any number of times.) Does the source for the funding matter or has the Nobel Peace Prize accrued credibility over the years from the reputations of the award recipients?

Could Vive Nano and companies like it (assuming they are genuinely living up to the standards of the Responsible Care program) possibly give the award credibility over time?

There you have it. An award is not just an award; it is a complex interplay between the recipient, the organization giving the award, and reputation.