Tag Archives: musings

Gray Matters volume 2: Integrative Approaches for Neuroscience, Ethics, and Society issued March 2015 by US Presidential Bioethics Commission

The second and final volume in the Grey Matters  set (from the US Presidential Commission for the Study of Bioethical Issues produced in response to a request from President Barack Obama regarding the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative) has just been released.

The formal title of the latest volume is Gray Matters: Topics at the Intersection of Neuroscience, Ethics, and Society, volume two. The first was titled: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society, volume one.)

According to volume 2 of the report’s executive summary,

… In its first volume on neuroscience and ethics, Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society, the Bioethics Commission emphasized the importance of integrating ethics and neuroscience throughout the research endeavor.1 This second volume, Gray Matters: Topics at the Intersection of Neuroscience, Ethics, and Society, takes an in-depth look at three topics at the intersection of neuroscience and society that have captured the public’s attention.

The Bioethics Commission found widespread agreement that contemporary neuroscience holds great promise for relieving human suffering from a number of devastating neurological disorders. Less agreement exists on multiple other topics, and the Bioethics Commission focused on three cauldrons of controversy—cognitive enhancement, consent capacity, and neuroscienceand the legal system. These topics illustrate the ethical tensions and societal implications of advancing neuroscience and technology, and bring into heightened relief many important ethical considerations.

A March 26, 2015 post by David Bruggeman on his Pasco Phronesis blog further describes the 168 pp. second volume of the report,

There are fourteen main recommendations in the report:

Prioritize Existing Strategies to Maintain and Improve Neural Health

Continue to examine and develop existing tools and techniques for brain health

Prioritize Treatment of Neurological Disorders

As with the previous recommendation, it would be valuable to focus on existing means of addressing neurological disorders and working to improve them.

Study Novel Neural Modifiers to Augment or Enhance Neural Function

Existing research in this area is limited and inconclusive.

Ensure Equitable Access to Novel Neural Modifiers to Augment or Enhance Neural Function

Access to cognitive enhancements will need to be handled carefully to avoid exacerbating societal inequities (think the stratified societies of the film Elysium or the Star Trek episode “The Cloud Minders“).

Create Guidance About the Use of Neural Modifiers

Professional societies and expert groups need to develop guidance for health care providers that receive requests for prescriptions for cognitive enhancements (something like an off-label use of attention deficit drugs, beta blockers or other medicines to boost cognition rather than address perceived deficits).

If you don’t have time to look at the 2nd volume, David’s post covers many of the important points.

Brains, prostheses, nanotechnology, and human enhancement: summary (part five of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’.

Now for the summary. Ranging from research meant to divulge more about how the brain operates in hopes of healing conditions such as Parkinson’s and Alzeheimer’s diseases to utilizing public engagement exercises (first developed for nanotechnology) for public education and acceptance of brain research to the development of prostheses for the nervous system such as the Walk Again robotic suit for individuals with paraplegia (and, I expect quadriplegia [aka tetraplegia] in the future), brain research is huge in terms of its impact socially and economically across the globe.

Until now, I have not included information about neuromorphic engineering (creating computers with the processing capabilities of human brains). My May 16, 2014 posting (Wacky oxide. biological synchronicity, and human brainlike computing) features one of the latest developments along with this paragraph providing links to overview materials of the field,

As noted earlier, there are other approaches to creating an artificial brain, i.e., neuromorphic engineering. My April 7, 2014 posting is the most recent synopsis posted here; it includes excerpts from a Nanowerk Spotlight article overview along with a mention of the ‘brain jelly’ approach and a discussion of my somewhat extensive coverage of memristors and a mention of work on nanoionic devices. There is also a published roadmap to neuromorphic engineering featuring both analog and digital devices, mentioned in my April 18, 2014 posting.

There is an international brain (artificial and organic) enterprise underway. Meanwhile, work understanding the brain will lead to new therapies and, inevitably, attempts to enhance intelligence. There are already drugs and magic potions (e.g. oxygenated water in Mental clarity, stamina, endurance — is it in the bottle? Celebrity athletes tout the benefits of oxygenated water, but scientists have their doubts, a May 16,2014 article by Pamela Fayerman for the Vancouver Sun). In a June 19, 2009 posting featured Jamais Cascio’s  speculations about augmenting intelligence in an Atlantic magazine article.

While researchers such Miguel Nicolelis work on exoskeletons (externally worn robotic suits) controlled by the wearer’s thoughts and giving individuals with paraplegia the ability to walk, researchers from one of Germany’s Fraunhofer Institutes reveal a different technology for achieving the same ends. From a May 16, 2014 news item on Nanowerk,

People with severe injuries to their spinal cord currently have no prospect of recovery and remain confined to their wheelchairs. Now, all that could change with a new treatment that stimulates the spinal cord using electric impulses. The hope is that the technique will help paraplegic patients learn to walk again. From June 3 – 5 [2-14], Fraunhofer researchers will be at the Sensor + Test measurement fair in Nürnberg to showcase the implantable microelectrode sensors they have developed in the course of pre-clinical development work (Hall 12, Booth 12-537).

A May 14, 2014 Fraunhofer Institute news release, which originated the news item, provides more details about this technology along with an image of the implantable microelectrode sensors,

The implantable microelectrode sensors are flexible and wafer-thin. © Fraunhofer IMM

The implantable microelectrode sensors are flexible and wafer-thin.
© Fraunhofer IMM

Now a consortium of European research institutions and companies want to get affected patients quite literally back on their feet. In the EU’s [European Union’s] NEUWalk project, which has been awarded funding of some nine million euros, researchers are working on a new method of treatment designed to restore motor function in patients who have suffered severe injuries to their spinal cord. The technique relies on electrically stimulating the nerve pathways in the spinal cord. “In the injured area, the nerve cells have been damaged to such an extent that they no longer receive usable information from the brain, so the stimulation needs to be delivered beneath that,” explains Dr. Peter Detemple, head of department at the Fraunhofer Institute for Chemical Technology’s Mainz branch (IMM) and NEUWalk project coordinator. To do this, Detemple and his team are developing flexible, wafer-thin microelectrodes that are implanted within the spinal canal on the spinal cord. These multichannel electrode arrays stimulate the nerve pathways with electric impulses that are generated by the accompanying by microprocessor-controlled neurostimulator. “The various electrodes of the array are located around the nerve roots responsible for locomotion. By delivering a series of pulses, we can trigger those nerve roots in the correct order to provoke motion sequences of movements and support the motor function,” says Detemple.

Researchers from the consortium have already successfully conducted tests on rats in which the spinal cord had not been completely severed. As well as stimulating the spinal cord, the rats were given a combination of medicine and rehabilitation training. Afterwards the animals were able not only to walk but also to run, climb stairs and surmount obstacles. “We were able to trigger specific movements by delivering certain sequences of pulses to the various electrodes implanted on the spinal cord,” says Detemple. The research scientist and his team believe that the same approach could help people to walk again, too. “We hope that we will be able to transfer the results of our animal testing to people. Of course, people who have suffered injuries to their spinal cord will still be limited when it comes to sport or walking long distances. The first priority is to give them a certain level of independence so that they can move around their apartment and look after themselves, for instance, or walk for short distances without requiring assistance,” says Detemple.

Researchers from the NEUWalk project intend to try out their system on two patients this summer. In this case, the patients are not completely paraplegic, which means there is still some limited communication between the brain and the legs. The scientists are currently working on tailored implants for the intervention. “However, even if both trials are a success, it will still be a few years before the system is ready for the general market. First, the method has to undergo clinical studies and demonstrate its effectiveness among a wider group of patients,” says Detemple.

Patients with Parkinson’s disease could also benefit from the neural prostheses. The most well-known symptoms of the disease are trembling, extreme muscle tremors and a short, [emphasis mine] stooped gait that has a profound effect on patients’ mobility. Until now this neurodegenerative disorder has mostly been treated with dopamine agonists – drugs that chemically imitate the effects of dopamine but that often lead to severe side effects when taken over a longer period of time. Once the disease has reached an advanced stage, doctors often turn to deep brain stimulation. This involves a complex operation to implant electrodes in specific parts of the brain so that the nerve cells in the region can be stimulated or suppressed as required. In the NEUWalk project, researchers are working on electric spinal cord simulation – an altogether less dangerous intervention that should however ease the symptoms of Parkinson’s disease just as effectively. “Initial animal testing has yielded some very promising results,” says Detemple.

(For anyone interested in the NEUWalk project, you can find more here,) Note the reference to Parkinson’s in the context of work designed for people with paraplegia. Brain research and prosthetics (specifically neuroprosthetics or neural prosthetics), are interconnected. As for the nanotechnology connection, in its role as an enabling technology it has provided some of the tools that make these efforts possible. It has also made some of the work in neuromorphic engineering (attempts to create an artificial brain that mimics the human brain) possible. It is a given that research on the human brain will inform efforts in neuromorphic engineering and that attempts will be made to create prostheses for the brain (cyborg brain) and other enhancements.

One final comment, I’m not so sure that transferring approaches and techniques developed to gain public acceptance of nanotechnology are necessarily going to be effective. (Harthorn seemed to be suggesting in her presentation to the Presidential Presidential Commission for the Study of Bioethical Issues that these ‘nano’ approaches could be adopted. Other researchers [Caulfield with the genome and Racine with previous neuroscience efforts] also suggested their experience could be transferred. While some of that is likely true,, it should be noted that some self-interest may be involved as brain research is likely to be a fresh source of funding for social science researchers with experience in nanotechnology and genomics who may be finding their usual funding sources less generous than previously.)

The likelihood there will be a substantive public panic over brain research is higher than it ever was for a nanotechnology panic (I am speaking with the benefit of hindsight re: nano panics). Everyone understands the word, ‘brain’, far fewer understand the word ‘nanotechnology’ which means that the level of interest is lower and people are less likely to get disturbed by an obscure technology. (The GMO panic gained serious traction with the ‘Frankenfood’ branding and when it fused rather unexpectedly with another research story,  stem cell research. In the UK, one can also add the panic over ‘mad cow’ disease or Creutzfeldt-Jakob disease (CJD), as it’s also known, to the mix. It was the GMO and other assorted panics which provided the impetus for much of the public engagement funding for nanotechnology.)

All one has to do in this instance is start discussions about changing someone’s brain and cyborgs and these researchers may find they have a much more volatile situation on their hands. As well, everyone (the general public and civil society groups/activists, not just the social science and science researchers) involved in the nanotechnology public engagement exercises has learned from the experience. In the meantime, pop culture concerns itself with zombies and we all know what they like to eat.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (part four of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

Brazil’s World Cup for soccer/football which opens on June 12, 2014 will be the first public viewing of someone with paraplegia demonstrating a mind-controlled exoskeleton (or a robotic suit as it’s sometimes called) by opening the 2014 games with the first kick-off.

I’ve been covering this story since 2011 and, even so, was late to the party as per this May 7, 2014 article by Alejandra Martins for BBC World news online,

The World Cup curtain-raiser will see the first public demonstration of a mind-controlled exoskeleton that will enable a person with paralysis to walk.

If all goes as planned, the robotic suit will spring to life in front of almost 70,000 spectators and a global audience of billions of people.

The exoskeleton was developed by an international team of scientists as part of the Walk Again Project and is the culmination of more than a decade of work for Dr Miguel Nicolelis, a Brazilian neuroscientist based at Duke University in North Carolina. [emphasis mine]

Since November [2013], Dr Nicolelis has been training eight patients at a lab in Sao Paulo, in the midst of huge media speculation that one of them will stand up from his or her wheelchair and deliver the first kick of this year’s World Cup.

“That was the original plan,” the Duke University researcher told the BBC. “But not even I could tell you the specifics of how the demonstration will take place. This is being discussed at the moment.”

Speaking in Portuguese from Sao Paulo, Miguel Nicolelis explained that all the patients are over 20 years of age, with the oldest about 35.

“We started the training in a virtual environment with a simulator. In the last few days, four patients have donned the exoskeleton to take their first steps and one of them has used mental control to kick a ball,” he explained.

The history of Nicolelis’ work is covered here in a series of a posts starting the with an Oct. 5, 2011 post (Advertising for the 21st Century: B-Reel, ‘storytelling’, and mind control; scroll down 2/3 of the way for a reference to Ed Yong’s article where I first learned of Nicolelis).

The work was explored in more depth in a March 16, 2012 posting (Monkeys, mind control, robots, prosthetics, and the 2014 World Cup (soccer/football) and then followed up a year later by two posts which link Nicoleliis’ work with the Brain Activity Map (now called, BRAIN [Brain Research through Advancing Innovative Neurotechnologies] initiative: a March 4, 2013 (Brain-to-brain communication, organic computers, and BAM [brain activity map], the connectome) and a March 8,  2013 post (Prosthetics and the human brain) directly linking exoskeleton work in Holland and the project at Duke with current brain research and the dawning of a new relationship to one’s prosthestics,

On the heels of research which suggests that humans tend to view their prostheses, including wheel chairs, as part of their bodies, researchers in Europe  have announced the development of a working exoskeleton powered by the wearer’s thoughts.

Getting back to Brazil and Nicolelis’ technology, Ian Sample offers an excellent description in an April 1, 2014 article for the Guardian (Note: Links have been removed),

The technology in question is a mind-controlled robotic exoskeleton. The complex and conspicuous robotic suit, built from lightweight alloys and powered by hydraulics, has a simple enough function. When a paraplegic person straps themselves in, the machine does the job that their leg muscles no longer can.

The exoskeleton is the culmination of years of work by an international team of scientists and engineers on the Walk Again project. The robotics work was coordinated by Gordon Cheng at the Technical University in Munich, and French researchers built the exoskeleton. Nicolelis’s team focused on ways to read people’s brain waves, and use those signals to control robotic limbs.

To operate the exoskeleton, the person is helped into the suit and given a cap to wear that is fitted with electrodes to pick up their brain waves. These signals are passed to a computer worn in a backpack, where they are decoded and used to move hydraulic drivers on the suit.

The exoskeleton is powered by a battery – also carried in the backpack – that allows for two hours of continuous use.

“The movements are very smooth,” Nicolelis told the Guardian. “They are human movements, not robotic movements.”

Nicolelis says that in trials so far, his patients seem have taken to the exoskeleton. “This thing was made for me,” one patient told him after being strapped into the suit.

The operator’s feet rest on plates which have sensors to detect when contact is made with the ground. With each footfall, a signal shoots up to a vibrating device sewn into the forearm of the wearer’s shirt. The device seems to fool the brain into thinking that the sensation came from their foot. In virtual reality simulations, patients felt that their legs were moving and touching something.

Sample’s article includes a good schematic of the ‘suit’ which I have not been able to find elsewhere (meaning the Guardian likely has a copyright for the schematic and is why you won’t see it here) and speculation about robotics and prosthetics in the future.

Nicolelis and his team have a Facebook page for the Walk Again Project where you can get some of the latest information with  both English and Portuguese language entries as they prepare for the June 12, 2014 kickoff.

One final thought, this kickoff project represents an unlikely confluence of events. After all, what are the odds

    • that a Brazil-born researcher (Nicolelis) would be working on a project to give paraplegics the ability to walk again? and
    • that Brazil would host the World Cup in 2014 (the first time since 1950)? and
    • that the timing would coincide so a public demonstration at one of the world’s largest athletic events (of a sport particularly loved in Brazil) could be planned?

It becomes even more extraordinary when one considers that Brazil had isolated itself somewhat in the 1980s with a policy of nationalism vis à vis the computer industry (from the Brazil Science and Technology webpage on the ITA website),

In the early 1980s, the policy of technological nationalism and self-sufficiency had narrowed to the computer sector, where protective legislation tried to shield the Brazilian mini- and microcomputer industries from foreign competition. Here again, the policy allowed for the growth of local industry and a few well-qualified firms, but the effect on the productive capabilities of the economy as a whole was negative; and the inability to follow the international market in price and quality forced the policy to be discontinued.

For those who may have forgotten, the growth of the computer industry (specifically personal computers) in the 1980s figured hugely in a country’s economic health and, in this case,with  a big negative impact in Brazil.

Returning to 2014, the kickoff in Brazil (if successful) symbolizes more than an international athletic competition or a technical/medical achievement, this kick-off symbolizes a technological future for Brazil and its place on the world stage (despite the protests and social unrest) .

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

ETA June 16, 2014: The kickoff seems to have been a disappointment (June 15, 2014 news item on phys.org) and for those who might be interested in some of the reasons for the World Cup unrest and protests in Brazil, John Oliver provides an excoriating overview of the organization which organizes the World Cup games while professing his great love of the games, http://www.youtube.com/watch?v=DlJEt2KU33I

Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (part three of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

A May 14, 2014 news release on EurekAlert announced the release of volume 1 (in a projected 2-volume series) from the US Presidential Commission for the Study of Bioethical Issues in response to a request from President Barack Obama regarding the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative,

Bioethics commission plays early role in BRAIN Initiative
Calls for integrating ethics explicitly throughout neuroscience research ‘Everyone benefits when the emphasis is on integration, not intervention’

Washington, DC— Calling for the integration of ethics across the life of neuroscientific research endeavors, the Presidential Commission for the Study of Bioethical Issues (Bioethics Commission) released volume one of its two-part response to President Obama’s request related to the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. The report, Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society, includes four recommendations for institutions and individuals engaged in neuroscience research including government agencies and other funders.

You can find volume one: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society here. For those who prefer the short story, here’s more from the news release,

“Neurological conditions—which include addiction, chronic pain, dementia, depression, epilepsy, multiple sclerosis, Parkinson’s disease, schizophrenia, stroke, and traumatic brain injury, among other conditions—affect more than one billion people globally. Neuroscience has begun to make important breakthroughs, but given the complexity of the brain, we must better understand it in order to make desired progress,” said Amy Gutmann, Ph.D., Bioethics Commission Chair. “But because research on our brains strikes at the very core of who we are, the ethical stakes of neuroscience research could not be higher. Ethicists and scientists should be together at the table in the earliest stages of research planning fostering a fluent two-way conversation. Too often in our nation’s past, ethical lapses in research have had tragic consequences and derailed scientific progress.”

President Obama asked the Bioethics Commission to play a critical role in ensuring that neuroscientific investigational methods and protocols are consistent with sound ethical principles and practices. Specifically the President asked the Bioethics Commission to “identify proactively a set of core ethical standards – both to guide neuroscience research and to address some of the ethical dilemmas that may be raised by the application of neuroscience research findings.”

“Our rapidly advancing knowledge of the nervous system – and ability to detect disease sometimes even before symptoms begin – has not yet led to much needed breakthroughs in treatment, repair, and prevention; the BRAIN initiative will hopefully accelerate the trajectory of discoveries against terrible neurologic maladies,” Commission Member and neuroimmunologist Stephen Hauser, M.D., said.

In its report the Bioethics Commission noted that when facing the promise of neuroscience, we are compelled to consider carefully scientific advances that have the potential to alter our conception of the very private and autonomous nature of self. Our understanding of the mind, our private thoughts, and our volition necessitates careful reflection about the scientific, societal, and ethical aspects of neuroscience endeavors. Integrating ethics explicitly and systematically into the relatively new field of contemporary neuroscience allows us to incorporate ethical insights into the scientific process and to consider societal implications of neuroscience research from the start. Early ethics integration can prevent the need for corrective interventions resulting from ethical mishaps that erode public trust in science.

“In short, everyone benefits when the emphasis is on integration, not intervention,” Gutmann said. “Ethics in science must not come to the fore for the first time after something has gone wrong. An essential step is to include expert ethicists in the BRAIN Initiative advisory and review bodies.”

Recommendations

In its report the Bioethics Commission noted that although ethics is already integrated into science in various ways, more explicit and systematic integration serves to elucidate implicit ethical judgments and allows their merits to be assessed more thoughtfully. The Commission offered four recommendations.

  1. Integrate ethics early and explicitly throughout research: Institutions and individuals engaged in neuroscience research should integrate ethics across the life of a research endeavor, identifying the key ethical questions associated with their research and taking immediate steps to make explicit their systems for addressing those questions. Sufficient resources should be dedicated to support ethics integration. Approaches to ethics integration discussed by the Bioethics Commission include:a. Implementing ethics education at all levels
    b. Developing institutional infrastructure to facilitate integration
    c. Researching the ethical, legal, and social implications of scientific research
    d. Providing research ethics consultation services
    e. Engaging with stakeholders
    f. Including an ethics perspective on the research team
  2. Evaluate existing and innovative approaches to ethics integration: Government agencies and other research funders should initiate and support research that evaluates existing as well as innovative approaches to ethics integration. Institutions and individuals engaged in neuroscience research should take into account the best available evidence for what works when implementing, modifying, or improving systems for ethics integration.
  3. Integrate ethics and science through education at all levels: Government agencies and other research funders should initiate and support research that develops innovative models and evaluates existing and new models for integrating ethics and science through education at all levels.
  4. Explicitly include ethical perspectives on advisory and review bodies: BRAIN Initiative-related scientific advisory and funding review bodies should include substantive participation by persons with relevant expertise in the ethical and societal implications of the neuroscience research under consideration.

Next the Bioethics Commission will consider the ethical and societal implications of neuroscience research and its applications more broadly – ethical implications that a strongly integrated research and ethics infrastructure will be well equipped to address, and that myriad stakeholders, including scientists, ethicists, educators, public and private funders, advocacy organizations, and the public should be prepared to handle.

Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society is the Bioethics Commission’s seventh report. The Commission seeks to identify and promote policies and practices that ensure that scientific research, health care delivery, and technological innovation are conducted by the United States in a socially and ethically responsible manner. The Commission is an independent, deliberative panel of thoughtful experts that advises the President and the Administration, and, in so doing, educates the nation on bioethical issues. To date the Commission has:

  • Advised the White House on the benefits and risks of synthetic biology;
  • Completed an independent historical overview and ethical analysis of the U.S. Public Health Service STD experiments in Guatemala in the 1940s;
  • Assessed the rules that currently protect human participants in research;
  • Examined the pressing privacy concerns raised by the emergence and increasing use of whole genome sequencing;
  • Conducted a thorough review of the ethical considerations of conducting clinical trials of medical countermeasures with children, including the ethical considerations involved in conducting a pre-and post-event study of anthrax vaccine adsorbed for post-exposure prophylaxis with children; and
  • Offered ethical analysis and recommendations for clinicians, researchers, and direct-to-consumer testing companies on how to manage the increasingly common issue of incidental and secondary findings.

David Bruggeman offers a few thoughts on this volume of the series in a May 14, 2014 posting on his Pasco Phronesis blog,

Of specific application to the BRAIN Initiative is the need to include professionals with expertise in ethics in advisory boards and similar entities conducting research in this area.

Volume Two will focus more on the social and ethical implications of neuroscience research,  …

While it’s not mentioned in the news release, human enhancement is part of the discussion as per the hearing in February 2014. Perhaps it will be mentioned in volume two? Here’s an early post (July 27, 2009) I wrote in 2009 on human enhancement which provides some information about a then recent European Parliament report on the subject. The post was part of a series.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

BRAIN and ethics in the US with some Canucks (not the hockey team) participating (part two of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience*, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

Before further discussing the US Presidential Commission for the Study of Bioethical Issues ‘brain’ meetings mentioned in part one, I have some background information.

The US launched its self-explanatory BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative (originally called BAM; Brain Activity Map) in 2013. (You can find more about the history and details in this Wikipedia entry.)

From the beginning there has been discussion about how nanotechnology will be of fundamental use in the US BRAIN initiative and the European Union’s 10 year Human Brain Project (there’s more about that in my Jan. 28, 2013 posting). There’s also a 2013 book (Nanotechnology, the Brain, and the Future) from Springer, which, according to the table of contents, presents an exciting (to me) range of ideas about nanotechnology and brain research,

I. Introduction and key resources

1. Nanotechnology, the brain, and the future: Anticipatory governance via end-to-end real-time technology assessment by Jason Scott Robert, Ira Bennett, and Clark A. Miller
2. The complex cognitive systems manifesto by Richard P. W. Loosemore
3. Analysis of bibliometric data for research at the intersection of nanotechnology and neuroscience by Christina Nulle, Clark A. Miller, Harmeet Singh, and Alan Porter
4. Public attitudes toward nanotechnology-enabled human enhancement in the United States by Sean Hays, Michael Cobb, and Clark A. Miller
5. U.S. news coverage of neuroscience nanotechnology: How U.S. newspapers have covered neuroscience nanotechnology during the last decade by Doo-Hun Choi, Anthony Dudo, and Dietram Scheufele
6. Nanoethics and the brain by Valerye Milleson
7. Nanotechnology and religion: A dialogue by Tobie Milford

II. Brain repair

8. The age of neuroelectronics by Adam Keiper
9. Cochlear implants and Deaf culture by Derrick Anderson
10. Healing the blind: Attitudes of blind people toward technologies to cure blindness by Arielle Silverman
11. Ethical, legal and social aspects of brain-implants using nano-scale materials and techniques by Francois Berger et al.
12. Nanotechnology, the brain, and personal identity by Stephanie Naufel

III. Brain enhancement

13. Narratives of intelligence: the sociotechnical context of cognitive enhancement by Sean Hays
14. Towards responsible use of cognitive-enhancing drugs by the healthy by Henry T. Greeley et al.
15. The opposite of human enhancement: Nanotechnology and the blind chicken debate by Paul B. Thompson
16. Anticipatory governance of human enhancement: The National Citizens’ Technology Forum by Patrick Hamlett, Michael Cobb, and David Guston
a. Arizona site report
b. California site report
c. Colorado site reportd. Georgia site report
e. New Hampshire site report
f. Wisconsin site report

IV. Brain damage

17. A review of nanoparticle functionality and toxicity on the central nervous system by Yang et al.
18. Recommendations for a municipal health and safety policy for nanomaterials: A Report to the City of Cambridge City Manager by Sam Lipson
19. Museum of Science Nanotechnology Forum lets participants be the judge by Mark Griffin
20. Nanotechnology policy and citizen engagement in Cambridge, Massachusetts: Local reflexive governance by Shannon Conley

Thanks to David Bruggeman’s May 13, 2014 posting on his Pasco Phronesis blog, I stumbled across both a future meeting notice and documentation of the  Feb. 2014 meeting of the Presidential Commission for the Study of Bioethical Issues (Note: Links have been removed),

Continuing from its last meeting (in February 2014), the Presidential Commission for the Study of Bioethical Issues will continue working on the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative in its June 9-10 meeting in Atlanta, Georgia.  An agenda is still forthcoming, …

In other developments, Commission staff are apparently going to examine some efforts to engage bioethical issues through plays.  I’d be very excited to see some of this happen during a Commission meeting, but any little bit is interesting.  The authors of these plays, Karen H. Rothenburg and Lynn W. Bush, have published excerpts in their book The Drama of DNA: Narrative Genomics.  …

The Commission also has a YouTube channel …

Integrating a theatrical experience into the reams of public engagement exercises that technologies such as stem cell, GMO (genetically modified organisms), nanotechnology, etc. tend to spawn seems a delightful idea.

Interestingly, the meeting in June 2014 will coincide with the book’s release date. I dug further and found these snippets of information. The book is being published by Oxford University Press and is available in both paperback and e-book formats. The authors are not playwrights, as one might assume. From the Author Information page,

Lynn Bush, PhD, MS, MA is on the faculty of Pediatric Clinical Genetics at Columbia University Medical Center, a faculty associate at their Center for Bioethics, and serves as an ethicist on pediatric and genomic advisory committees for numerous academic medical centers and professional organizations. Dr. Bush has an interdisciplinary graduate background in clinical and developmental psychology, bioethics, genomics, public health, and neuroscience that informs her research, writing, and teaching on the ethical, psychological, and policy challenges of genomic medicine and clinical research with children, and prenatal-newborn screening and sequencing.

Karen H. Rothenberg, JD, MPA serves as Senior Advisor on Genomics and Society to the Director, National Human Genome Research Institute and Visiting Scholar, Department of Bioethics, Clinical Center, National Institutes of Health. She is the Marjorie Cook Professor of Law, Founding Director, Law & Health Care Program and former Dean at the University of Maryland Francis King Carey School of Law and Visiting Professor, Johns Hopkins Berman Institute of Bioethics. Professor Rothenberg has served as Chair of the Maryland Stem Cell Research Commission, President of the American Society of Law, Medicine and Ethics, and has been on many NIH expert committees, including the NIH Recombinant DNA Advisory Committee.

It is possible to get a table of contents for the book but I notice not a single playwright is mentioned in any of the promotional material for the book. While I like the idea in principle, it seems a bit odd and suggests that these are purpose-written plays. I have not had good experiences with purpose-written plays which tend to be didactic and dull, especially when they’re not devised by a professional storyteller.

You can find out more about the upcoming ‘bioethics’ June 9 – 10, 2014 meeting here.  As for the Feb. 10 – 11, 2014 meeting, the Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post featured Barbara Herr Harthorn’s (director of the Center for Nanotechnology in Society at the University of California at Santa Barbara) participation only.

It turns out, there are some Canadian tidbits. From the Meeting Sixteen: Feb. 10-11, 2014 webcasts page, (each presenter is featured in their own webcast of approximately 11 mins.)

Timothy Caulfield, LL.M., F.R.S.C., F.C.A.H.S.

Canada Research Chair in Health Law and Policy
Professor in the Faculty of Law
and the School of Public Health
University of Alberta

Eric Racine, Ph.D.

Director, Neuroethics Research Unit
Associate Research Professor
Institut de Recherches Cliniques de Montréal
Associate Research Professor,
Department of Medicine
Université de Montréal
Adjunct Professor, Department of Medicine and Department of Neurology and Neurosurgery,
McGill University

It was a surprise to see a couple of Canucks listed as presenters and I’m grateful that the Presidential Commission for the Study of Bioethical Issues is so generous with information. in addition to the webcasts, there is the Federal Register Notice of the meeting, an agenda, transcripts, and presentation materials. By the way, Caulfield discussed hype and Racine discussed public understanding of science with regard to neuroscience both fitting into the overall theme of communication. I’ll have to look more thoroughly but it seems to me there’s no mention of pop culture as a means of communicating about science and technology.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series:

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

* ‘neursocience’ corrected to ‘neuroscience’ on May 20, 2014.

The 2013 US government shutdown and its eventual impact on Canadian science and elewhere

While there’s a growing list of commentaries and editorials, notably, the Oct. 1, 2013 American Association for the Advancement of Science (AAAS) news release, about the impact that the 2013 US government shutdown is having on US Science, I haven’t yet come across anything specific about the potential impact on science in Canada (and elsewhere). From the AAAS news release (Note: A link has been removed),,

“If the Government shutdown continues for a week or more, it is going to make the United States less desirable as an international research collaborator,” said Joanne Carney, director of the AAAS Office of Government Relations. [emphasis mine] “When funding is no longer reliable, many of our research partners may be unable to continue collaborating with us. That could eventually have longer-term impacts on American innovation and competitiveness.”

Furloughs will impact the vast majority of staff at the National Science Foundation (NSF), for example, except for those directly responsible for the protection of life and property, which likely would include support for the agency’s Antarctic research facilities and personnel. “NSF will be sending notices to research grant awardees, informing them that payments won’t be made during the disruption, although research that doesn’t require federal employee intervention may proceed,” said Matthew Hourihan, director of the AAAS R&D Budget and Policy Program.

Within the U.S. Department of Health and Human Services, 40,512 employees, or 52 percent of all staff are expected to be furloughed. At the National Institutes of Health (NIH) in particular, the furloughs will send 73 percent of employees home. Remaining NIH employees will continue to provide both in-patient and out-patient care, but the NIH Clinical Center will not be able to accept new patients.

The Food and Drug Administration (FDA) “will be unable to support the majority of its food safety, nutrition, and cosmetics activities,” according to an agency statement. “The FDA will also have to cease safety activities such as routine establishment inspections, some compliance and enforcement activities, monitoring of imports, notification programs, and the majority of the laboratory research necessary to inform public health decision-making.”

Most of the 13,814 employees of the U.S. Department of Energy will be furloughed, leaving only a few hundred staff at the National Nuclear Security Administration. “Literally a handful of regular DOE staff would remain on the job within the Office of Science and programs for efficiency, renewables, nuclear power, and fossil energy, including ARPA-E, but as contractor entities the labs will be shielded for a time,” Hourihan said. The Advanced Research Projects Agency-Energy is responsible for identifying “out-of-the-box” energy solutions not supported by industry research.

NASA’s shutdown contingency plan ensures support for the International Space Station and its astronauts as well as other satellite missions now underway. No new contracts or grants will be issued by NASA, however, and most pre-launch development work will end.

The Canadian Broadcasting Corporation (CBC) offers a listing which breaks down the percentages of staff being furloughed in an Oct. 1, 2013 news item. Here are the numbers for some of the departments and agencies which are considered part of the US science establishment:

  • Department of Defense 50% on furlough
  • Department of Energy 69% on furlough
  • Environmental Protection Agency (EPA) 93% on furlough
  • Department of Health and Human Services 52% on furlough
  • Department of the Interior 81% on furlough
  • National Aeronautics and Space Administration (NASA) 97% on furlough
  • National Science Foundation 99% on furlough
  • The Smithsonian 83% on furlough

Neither the list on the CBC website nor the AAAS news release offers furlough numbers, if any, for the Centers for Disease Control (CDC).

Given the importance of collaboration on the Canadian science scene this shutdown doesn’t bode well. I don’t have numbers but I’m assuming that the US is Canada’s largest single country source for collaborative research. On a related note,, I had someone tell me (at the 2012 Canadian Science Policy Conference) that the US National Institutes of Health fund a significant portion of the medical and health research performed in Canada. (If someone knows the numbers, please add a comment or contact me at nano@frogheart.ca).

Closer to my home, I wonder how *MDA (headquartered in Richmond, BC, Canada; *I mentioned the company and its space robotics programme in a May 1, 2013 posting concerning the than new Canadian $5 bill) which has US Department of Defense contracts and NASA contracts is going to fare? As well, Nigel Lockyer, the executive director for TRIUMF, Canada’s particle and nuclear physics laboratory, who announced his Fall 2013 departure for the US Fermi Lab (my June 21, 2013 posting) is walking into a rather thorny situation.

On a personal note, I received a travel stipend last year (to present at the Society for the Study of Nanoscience and Emerging Technologies 2012 conference) from US National Science Foundation (NSF) funds disbursed by the University of California at Santa Barbara. Something tells me the NSF may not be offering that type of funding for a long time to come.

Canadians talk a lot about ‘punching above our weight’ with regard to our research but that ability has been aided immeasurably by US funding and collaboration. We ride, to some extent, on our neighbour’s coattails. (I am aware that simultaneously while ‘punching above our weight’ we have also complained our international standing in science research is deteriorating,, which makes for a lively, if at times confusing discourse.)

Canada will not be the only country to experience an impact from the shutdown as the US science community has enthusiastically embraced the notion of international collaboration.

As this shutdown continues another financial deadline will be reached on Oct. 17, 2013 when Treasury Secretary, Jacob Lew, ceases to have money in the US Treasury to pay bills unless Congress passes a motion to raise the limit on government borrowing (CBC, via *Associated Press, Oct. 2, 2013 news item).

One final thought, I can’t help but wonder what impact this financial instability will have on US scientists and their desire to pursue their research interests. It is possible the US will lose some of its best and its brightest, not necessarily the established researchers but those who have yet to fully establish their careers.

* Links to MDA website, mention and link to May 1, 2013 added and ‘Association’ changed to ‘Associated’ on Oct. 3, 2013.

Global Futures (GF) 2045 International Congress and transhumanism at the June 2013 meeting

Stuart Mason Dambrot has written a special article (part 1 only, part 2 has yet to be published) about the recent Global Futures 2045 Congress held June 15-16, 2013 (program) in New York City. Dambrot’s piece draws together contemporary research and frames it within the context of transhumanism. From the Aug. 1, 2013 feature on phys.org (Note: Links have been removed),

Futurists, visionaries, scientists, technologists, philosophers, and others who take this view to heart convened on June 15-16, 2013 in New York City at Global Futures 2045 International Congress: Towards a New Strategy for Human Evolution. GF2045 was organized by the 2045 Strategic Social Initiative founded by Russian entrepreneur Dmitry Itskov in February 2011 with the main goals of creating and realizing a new strategy for the development of humanity – one based upon our unique emerging capability to effect self-directed evolution. The initiative’s two main science projects are focused largely on Transhumanism – a multidisciplinary approach to analyzing the dynamic interplay between humanity and the acceleration of technology. Specifically, the 2045 Initiative’s projects seek to (1) enable an individual’s personality to be transferred to a more advanced non-biological substrate, and (2) extend life to the point of immortality …

Attendees were given a very dire view of the future followed by glimpses of another possible future provided we put our faith in science and technology. From Dambrot’s article (Note: Link has been removed),

… the late Dr. James Martin, who tragically passed away on June 24, 2013, gave a sweeping, engaging talk on The Transformation of Humankind—Extreme Paradigm Shifts Are Ahead of Us. An incredibly prolific author of books on computing and related technology, Dr. Martin founded the Oxford Martin School at Oxford University – an interdisciplinary research community comprising over 30 institutes and projects addressing the most pressing global challenges and opportunities of the 21st century. Dr. Martin – in the highly engaging manner for which he was renowned – presented a remarkably accessible survey of the interdependent trends that will increasingly threaten humanity over the coming decades. Dr. Martin made it disturbingly clear that population growth, resource consumption, water depletion, desertification, deforestation, ocean pollution and fish depopulation, atmospheric carbon dioxide, what he termed gigafamine (the death of more than a billion people as a consequence of food shortage by mid-century), and other factors are ominously close to their tipping points – after which their effects will be irreversible. (For example, he points out that in 20 years we’ll be consuming an obviously unsustainable 200 percent of then-available resources.) Taken together, he cautioned, these developments will constitute a “perfect storm” that will cause a Darwinian survival of the fittest in which “the Earth could be like a lifeboat that’s too small to save everyone.”

However, Dr. Martin also emphasized that there are solutions discussing the trends and technologies that – even as he acknowledged the resistance to implementing or even understanding them – could have a positive impact on our future:

The Singularity and an emerging technocracy

Genetic engineering and Transhumanism, in particular, a synthetic 24th human   chromosome that would contain non-inheritable genetic modifications and synthetic DNA sequences

Artificial Intelligence and nanorobotics

Yottascale computers capable of executing 1024 operations per second

 Quantum computing

Graphene – a one-atom thick layer of graphite with an ever-expanding portfolio of electronic, optical, excitonic, thermal, mechanical, and quantum properties, and an even longer list of potential applications

Autonomous automobiles

Nuclear batteries in the form of small, ultra-safe and maintenance-free underground Tokamak nuclear fusion reactors

Photovoltaics that make electricity more cheaply than coal Capturing rainwater and floodwater to increase water supply

Eco-influence – Dr. Martin’s term for a rich, enjoyable and sometimes complex way of life that does no ecological harm

Dambrot goes on to cover day one (I think that’s how he has this organized) of the event at length and provides a number of video panels and discussions. I was hoping he’d have part two posted by now but given how much work he’s put into part 1 it’s understandable that part 2 might take a while. So, I’ll keep an eye open for it and add a link here when it’s posted.

I did check Dambrot’s website and found this on the ‘Critical Thought’ bio webpage,

Stuart Mason Dambrot is an interdisciplinary science synthesist and communicator. He analyzes deep-structure conceptual and neural connections between multiple areas of knowledge and creativity, and monitors and extrapolates convergent and emergent trends in a wide range of research activities. Stuart is also the creator and host of Critical Thought | TV, an online discussion channel examining convergent and emergent trends in the sciences, arts and humanities. As an invited speaker, he has given talks on Exocortical Cognition, Emergent Technologies, Synthetic Biology, Transhumanism, Philosophy of Mind, Sociopolitical Futures, and other topics at New York Academy of Sciences, Cooper-Union, Science House, New York Future Salon, and other venues.

Stuart has a diverse background in Physiological Psychology, integrating Neuroscience, Cognitive Psychology, Artificial Intelligence, Neural Networks, Complexity Theory, Epistemology, Ethics, and Philosophy of Science. His memberships and affiliations include American Association for the Advancement of Science, New York Academy of Sciences, Lifeboat Foundation Advisory Board, Center for Inquiry, New York Futurist Society, Linnaean Society National Association of Science Writers, Science Writers in New York, and Foreign Correspondents Club of Japan.

I have yet to find any written material by Dambrot which challenges transhumanism in any way despite the fact that his website is called Critical Thought.  This reservation aside, his pieces cover an interesting range of topics and I will try to get back to read more.

As for the GF 2045 initiative, I found this on their About us webpage,

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity’s development, and in so doing, create a more productive, fulfilling, and satisfying future.

The “2045” team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress “The Global Future 2045” is organized by the Initiative to give platform for discussing mankind’s evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.

Future prospects of “2045” Initiative for society

2015-2020

The emergence and widespread use of affordable android “avatars” controlled by a “brain-computer” interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.

Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.

2020-2025

Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.

2030-2035

Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.

2045

This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.

It all seems a bit grandiose to me and, frankly, I’ve never found the prospect of being downloaded onto a nonbiological substrate particularly appealing. As well, how are they going to tackle the incredibly complex process of downloading or is it duplicating a brain? There’s still a lot of debate as to how a brain works (any brain: a rat brain, a dog brain, etc.).

It all gets more complicated the more you think about it. Is a duplicate/downloaded brain exactly the same as the original? Digitized print materials are relatively simple compared to a brain and yet archivists are still trying to determine how one establishes authenticity with print materials that have been digitized and downloaded/uploaded.

As well, I wonder if these grand dreamers have ever come across ‘the law of unintended consequences’. E.g. cane toads in Australia or DDT and other pesticides, which were intended as solutions and are now problems themselves.

Canadian government withdraws from UN treaty, recycles old news, and undergoes a ‘muzzled’ science probe

Every once in a while, there’s a slew of announcements that seem to reveal a pattern of sorts with regard to political doings. In this case, I’m looking at three announcements about recent moves by the  Canadian Conservative government and which seem, to me, curiously interlinked.

First there was the announcement (CBC Mar. 27, 2013 news item) that Canada is withdrawing from the United Nations Convention to Combat Desertification, in those Countries Experiencing Severe Drought and/or Desertification (to become the only country in the world not party to it) and its annual commitment of $350,000. The CBC Mar. 28, 2013 news item provided more detail,

Prime Minister Stephen Harper said less than one-fifth of the $350,000 Canada contributes to the UN Convention to Combat Desertification goes to programming.

“This particular organization spends less than 20 per cent — 18 per cent — of the funds that we send it are actually spent on programming, the rest goes to various bureaucratic measures.That’s not an effective way to spend taxpayers’ money,” Harper told MPs during question period Thursday.

The Canadian Press reported Wednesday [Mar. 27, 2013?] the UN secretariat that administers the program was unaware of Canada’s decision until contacted by its reporter.

A spokesperson for the Canadian International Development Agency (CIDA) [emphasis mine] told CBC News the head of the secretariat was informed of the decision on Monday [Mar. 25, 2013?], and written confirmation was delivered to the UN Secretary General’s office in New York the same day.

But a UN official in Bonn told CBC News that Canada notified the UN about its withdrawal “informally last week by telephone” and “this is not considered proper notification… or protocol.”

The proper protocol is to formally write to the UN Secretary General Ban Ki-moon in New York and formally provide a notice that Canada is withdrawing from the treaty.

Paul Heinbecker, a former Canadian ambassador to the UN and chief foreign policy advisor to Prime Minister Brian Mulroney, wrote an Apr. 1, 2013 essay for the Globe and Mail about some recent history between Canada and the UN, this latest withdrawal, and its implications (Note: A link has been removed),

Following the Harper government’s failure in 2010 to win a Canadian seat on the UN Security Council, its disregard of the UN gave way to disdain. Ottawa’s rare appearances at the UN have tended to stress what it regards as Canada’s uniquely “principled” foreign policy, bringing to mind U.S. Secretary of State Dean Acheson’s characterization of Canadian foreign policy in the fifties as “the stern voice of the daughter of God,” and cementing Canada’s long-standing reputation as global mother-in-law.

Because of the links between drought, land degradation, desertification and climate change, withdrawal from the Desertification Convention comes with potentially significant costs. …

Heinbecker develops this line of thought by noting that the withdrawal makes it seem that Canada does not care about climate change (let’s not forget the withdrawal from Kyoto protocol, the UN Convention on Climate Change, a UN initiative from which the Canadian Conservative government withdrew in 2011) and noting this,

Given that the government of Alberta as well as ministers and departments in Ottawa have been going to considerable effort and expense to argue in the U.S. that Canada does care, it is self-harming to hand America’s Keystone opponents a stick to beat the pipeline with.

Also, because the locus of most of the devastation arising from desertification is in Africa, walking away from a treaty whose creation was led by the Mulroney and Chrétien governments reinforces the impression that Ottawa no longer cares about Africa. It is an impression that this government also went to some trouble and expense to try to reverse. Further, because the worst destruction from desertification is happening in the Sahara region, abandoning the treaty sends a mixed signal about the security issues at stake in Mali and the Sahel, and about Canadian mining interests there as well.

Thankfully, Prime Minister Stephen Harper and the conservative government are ensuring that our annual $350,000 contribution, after 2014, will no be longer wasted on what they termed a ‘talkfest’. To combat this negative impression being made on the rest of the world, there’s been an announcement (Azonano Apr. 6, 2013 news item) recycling some old government news about monies for the second phase of the Canadian International Food Security Research Fund (CIFSRF),

 “The Harper Government is committed to increasing food security to those most in need as part of Canada’s effective international assistance through investing in scientific research and innovation,” said Parliamentary Secretary Brown [Lois Brown]. “Canadian universities, businesses, and NGOs [nongovernmental organizations]  have expertise that they can share with the world. Together, we can use innovation to put an end to global hunger.”

The Canadian International Food Security Research Fund is a joint initiative between the Canadian International Development Agency (CIDA) and the International Development Research Centre (IDRC). [emphases mine] It supports innovative research partnerships between Canadian and developing-country researchers to respond to immediate food needs while increasing access to quality, nutritious food over the long term. Phase 2 will focus on connecting promising research results to public and private sector organizations that can get them to end users on a larger scale.

“IDRC and CIDA have a long history of supporting Canada’s leadership in agricultural research and innovation for development,” said Jean Lebel, Acting President of IDRC. “CIFSRF demonstrates our mutual commitment to achieving sustainable results that put Canada’s considerable experience in agricultural and nutrition science to work globally to ensure farmers have access to new technologies and specialized expertise to keep pace with the growing demand for food.  Through CIFSRF, we are also expanding Canada’s scientific base and contributing to the country’s science and technology strategy.”

The Canadian International Food Security Research Fund, first launched in 2009, currently supports 19 projects, bringing together some of the best researchers from 11 Canadian and 26 developing-country organizations, as well as partners from scientific, private sector and civil society organizations, to develop innovative solutions to improve global food security.

The part where it got really interesting for me was the April 4, 2013 article by Rick Westhead for  star.com about the funds some of which are bound for the University of Guelph as per its Apr. 5, 2013 news release about the matter. Not to be too confusing but the following excerpt is from the April 4, 2013 Westhead article,

Manish Raizada, a University of Guelph agriculture professor, is changing lives in India, Nepal and Sri Lanka by showing farmers how to boost crop yields with weeding and planting techniques and by adding new crops.

Other Canadian researchers are bolstering Ethiopia’s agriculture sector, introducing farmers to rhizobia, a bacteria that naturally adds nitrogen to the soil and helped Saskatchewan, nearly a century ago, become a leading soybean exporter.

Then there are Canadian-led efforts in India that use nanotechnology to improve the lifespan of mangoes, efforts that should help improve livelihoods in a country where half of children under five are malnourished. [In fact, this an India, Sri Lanka, and Canada effort which I mentioned in a June 21, 2012 posting and again in a Nov. 1, 2012 posting.]

For instance, McGurk [Dr. Stephen McGurk, IDRC director of agriculture programmes] said one government-funded project is helping lengthen the shelf life of mangoes by as much as two weeks by introducing a nanoparticle-based coating that prevents them from ripening as fast.

“That way they’re attractive when they get to market, not looking like pulp,” McGurk said. “That science, once it has been tried in India can be equally applied to fruits here like plums or raspberries.”

Interestingly, McGurk gives this quote to Westhead,

“In no way would Canadian scientists in the agriculture sector say they are muzzled,” said Stephen McGurk, director of IDRC’s agriculture programs. [emphasis mine] “We’re engaged outside our borders and doing research now that’s valuable to Canadians but has to prove its salt somewhere else first.”

What makes McGurk an interesting spokesperson regarding ‘muzzles and Canadian scientists’ is that he  is an economist and a sinologist who prior to his latest appointment as IDRC director of agriculture programmes seems to have lived in Asia for the last 12 years and given this career description is likely from the US originally (from the Oct. 9, 2012 IDRC announcement of McGurk’s appointment),

Stephen McGurk is a Sinologist and economist who has spent more than two decades studying Asia’s rural development.Since 2006, he has been Director of IDRC’s Regional Office for South Asia and China in New Delhi (now the Asia Regional Office). From 2000 to 2006, he led IDRC’s office in Singapore.

Before joining IDRC, McGurk worked with the Ford Foundation in Beijing, where he was responsible for its economic security program in China. He has also taught at the University of California and worked with the World Bank on investments in China’s rural development. McGurk has a PhD from Stanford University’s [California] Food Research Institute.

I am curious as to how Dr. McGurk comes by his information about Canadian government agricultural scientists and their views on muzzles or lack thereof.

In looking at all of these bits of information, the desertification treaty withdrawal seems odd, almost as if it were designed to divert attention from something else the Conservative government is doing. Or, perhaps it’s an example of meanspirited shortsightedness something this government has been accused of before.

The recycled news item seems like it might not be as helpful as one would hope, although governments of all stripes are known to announce monies for projects that have been previously announced making it seem that a great deal more money is being dispersed than is the case. These announcements are always excellent for distraction but one would think the government would be eager to emphasize funding for projects in African countries rather than Asian countries given the conservatives’ current public relations problems in that region, as noted by Heinbecker.

As for McGurk’s quote about muzzles and agricultural scientists, while it does seem a bit ‘facey’ of him, he, at least, is not afraid to say something (although it’s not clear why he was asked about the muzzle since the news release was strictly about funding). For more about the ‘muzzles’,  there’s this excerpt from the Apr. 2, 2013 Canadian Press news item found at macleans.ca on campus,

Federal policies that restrict what government scientists can say publicly about their work are about to be put under the microscope.

Federal Information Commissioner Suzanne Legault has agreed to investigate how government communications rules on taxpayer-funded science impact public access to information.

Legault is responding to a detailed complaint lodged by the Environmental Law Centre at the University of Victoria and the ethics advocacy group Democracy Watch.

Their lengthy report — “Muzzling Civil Servants: A Threat to Democracy?” — laid out repeated examples of taxpayer-funded science being suppressed or limited to pre-packaged media lines across six different government departments and agencies.

Chris Tollefson, the executive director of UVic’s law centre, said their research into suppressed science revealed both the wide scope of the practice and that it “represents a significant departure” in government practice over the last five to seven years.

…Gary Goodyear, the minister of state for science and technology, was not available Monday to defend Conservative practices. His office provided an email stating government scientists “are readily available to share their research with the media and the public.”

“Last year, Environment Canada participated in more than 1,300 media interviews, Agriculture and Agri-Food Canada issued nearly 1,000 scientific publications, and Natural Resources Canada published nearly 500 studies,” said the statement.

It came the same day that the Globe and Mail reported that the National Research Council declined to make available its lead engineer for a front page story on research into truck safety. [emphases mine]

“Great spin — but missing the point,” Democracy Watch’s Duff Conacher said of the government response.

“It’s not the number of documents, it’s what percentage of documents are being released.”

Truck safety? That seems an odd topic for which to suppress or restrict any discussion with the lead engineer. But then, why withdraw from a treaty to save $350,000? As for the recycled announcement about funding for food and agriculture projects in Asia when you have substantive perception issues regarding  Africa and having someone who hasn’t lived in the country for 12 years defending your policies, the whole thing seems rather inept.

Nanotechnology and the US mega science project: BAM (Brain Activity Map) and more

The Brain Activity Map (BAM) project received budgetary approval as of this morning, Apr. 2, 2013 (I first mentioned BAM in my Mar. 4, 2013 posting when approval seemed imminent). From the news item, Obama Announces Huge Brain-Mapping Project, written by Stephanie Pappas for Yahoo News (Note: Links have been removed),

 President Barack Obama announced a new research initiative this morning (April 2) to map the human brain, a project that will launch with $100 million in funding in 2014.

The Brain Activity Map (BAM) project, as it is called, has been in the planning stages for some time. In the June 2012 issue of the journal Neuron, six scientists outlined broad proposals for developing non-invasive sensors and methods to experiment on single cells in neural networks. This February, President Obama made a vague reference to the project in his State of the Union address, mentioning that it could “unlock the answers to Alzheimer’s.”

In March, the project’s visionaries outlined their final goals in the journal Science. They call for an extended effort, lasting several years, to develop tools for monitoring up to a million neurons at a time. The end goal is to understand how brain networks function.

“It could enable neuroscience to really get to the nitty-gritty of brain circuits, which is the piece that’s been missing from the puzzle,” Rafael Yuste, the co-director of the Kavli Institute for Brain Circuits at Columbia University, who is part of the group spearheading the project, told LiveScience in March. “The reason it’s been missing is because we haven’t had the techniques, the tools.” [Inside the Brain: A Journey Through Time]

Not all neuroscientists support the project, however, with some arguing that it lacks clear goals and may cannibalize funds for other brain research.

….

I believe the $100M mentioned for 2014 would one installment in a series totaling up to $1B or more. In any event, it seems like a timely moment to comment on the communications campaign that has been waged on behalf of the BAM. It reminds me a little of the campaign for graphene, which was waged in the build up to the decision as to which two projects (in a field of six semi-finalists, then narrowed to a field of four finalists) should receive a FET (European Union’s Future and Emerging Technology) 1 billion euro research prize each. It seemed to me even a year or so before the decision that graphene’s win was a foregone conclusion but the organizers left nothing to chance and were relentless in their pursuit of attention and media coverage in the buildup to the final decision.

The most recent salvo in the BAM campaign was an attempt to link it with nanotechnology. A shrewd move given that the US has spent well over $1B since the US National Nanotechnology Initiative (NNI) was first approved in 2000. Linking the two projects means the NNI can lend a little authority to the new project (subtext: we’ve supported a mega-project before and that was successful) while the new project BAM can imbue the ageing NNI with some excitement.

Here’s more about nanotechnology and BAM from a Mar. 27, 2013 Spotlight article by Michael Berger on Nanowerk,

A comprehensive understanding of the brain remains an elusive, distant frontier. To arrive at a general theory of brain function would be an historic event, comparable to inferring quantum theory from huge sets of complex spectra and inferring evolutionary theory from vast biological field work. You might have heard about the proposed Brain Activity Map – a project that, like the Human Genome Project, will tap the hive mind of experts to make headway in the understanding of the field. Engineers and nanotechnologists will be needed to help build ever smaller devices for measuring the activity of individual neurons and, later, to control how those neurons function. Computer scientists will be called upon to develop methods for storing and analyzing the vast quantities of imaging and physiological data, and for creating virtual models for studying brain function. Neuroscientists will provide critical biological expertise to guide the research and interpret the results.

Berger goes on to highlight some of the ways nanotechnology-enabled devices could contribute to the effort. He draws heavily on a study published Mar. 20, 2013 online in ACS (American Chemical Society)Nano. Shockingly, the article is open access. Given that this is the first time I’ve come across an open access article in any of the American Chemical Society’s journals, I suspect that there was payment of some kind involved to make this information freely available. (The practice of allowing researchers to pay more in order to guarantee open access to their research in journals that also have articles behind paywalls seems to be in the process of becoming more common.)

Here’s a citation and a link to the article about nanotechnology and BAM,

Nanotools for Neuroscience and Brain Activity Mapping by A. Paul Alivisatos, Anne M. Andrews, Edward S. Boyden, Miyoung Chun, George M. Church, Karl Deisseroth, John P. Donoghue, Scott E. Fraser, Jennifer Lippincott-Schwartz, Loren L. Looger, Sotiris Masmanidis, Paul L. McEuen, Arto V. Nurmikko, Hongkun Park, Darcy S. Peterka, Clay Reid, Michael L. Roukes, Axel Scherer, Mark Schnitzer, Terrence J. Sejnowski, Kenneth L. Shepard, Doris Tsao, Gina Turrigiano, Paul S. Weiss, Chris Xu, Rafael Yuste, and Xiaowei Zhuang. ACS Nano, 2013, 7 (3), pp 1850–1866 DOI: 10.1021/nn4012847 Publication Date (Web): March 20, 2013
Copyright © 2013 American Chemical Society

As these things go, it’s a readable article for people without a neuroscience education provided they don’t mind feeling a little confused from time to time. From Nanotools for Neuroscience and Brain Activity Mapping (Note: Footnotes and links removed),

The Brain Activity Mapping (BAM) Project (…) has three goals in terms of building tools for neuroscience capable of (…) measuring the activity of large sets of neurons in complex brain circuits, (…) computationally analyzing and modeling these brain circuits, and (…) testing these models by manipulating the activities of chosen sets of neurons in these brain circuits.

As described below, many different approaches can, and likely will, be taken to achieve these goals as neural circuits of increasing size and complexity are studied and probed.

The BAM project will focus both on dynamic voltage activity and on chemical neurotransmission. With an estimated 85 billion neurons, 100 trillion synapses, and 100 chemical neurotransmitters in the human brain,(…) this is a daunting task. Thus, the BAM project will start with model organisms, neural circuits (vide infra), and small subsets of specific neural circuits in humans.

Among the approaches that show promise for the required dynamic, parallel measurements are optical and electro-optical methods that can be used to sense neural cell activity such as Ca2+,(7) voltage,(…) and (already some) neurotransmitters;(…) electrophysiological approaches that sense voltages and some electrochemically active neurotransmitters;(…) next-generation photonics-based probes with multifunctional capabilities;(18) synthetic biology approaches for recording histories of function;(…) and nanoelectronic measurements of voltage and local brain chemistry.(…) We anticipate that tools developed will also be applied to glia and more broadly to nanoscale and microscale monitoring of metabolic processes.

Entirely new tools will ultimately be required both to study neurons and neural circuits with minimal perturbation and to study the human brain. These tools might include “smart”, active nanoscale devices embedded within the brain that report on neural circuit activity wirelessly and/or entirely new modalities of remote sensing of neural circuit dynamics from outside the body. Remarkable advances in nanoscience and nanotechnology thus have key roles to play in transduction, reporting, power, and communications.

One of the ultimate goals of the BAM project is that the knowledge acquired and tools developed will prove useful in the intervention and treatment of a wide variety of diseases of the brain, including depression, epilepsy, Parkinson’s, schizophrenia, and others. We note that tens of thousands of patients have already been treated with invasive (i.e., through the skull) treatments. [emphases mine] While we hope to reduce the need for such measures, greatly improved and more robust interfaces to the brain would impact effectiveness and longevity where such treatments remain necessary.

Perhaps not so coincidentally, there was this Mar. 29, 2013 news item on Nanowerk,

Some human cells forget to empty their trash bins, and when the garbage piles up, it can lead to Parkinson’s disease and other genetic and age-related disorders. Scientists don’t yet understand why this happens, and Rice University engineering researcher Laura Segatori is hoping to change that, thanks to a prestigious five-year CAREER Award from the National Science Foundation (NSF).

Segatori, Rice’s T.N. Law Assistant Professor of Chemical and Biomolecular Engineering and assistant professor of bioengineering and of biochemistry and cell biology, will use her CAREER grant to create a toolkit for probing the workings of the cellular processes that lead to accumulation of waste material and development of diseases, such as Parkinson’s and lysosomal storage disorders. Each tool in the kit will be a nanoparticle — a speck of matter about the size of a virus — with a specific shape, size and charge.  [emphases mine] By tailoring each of these properties, Segatori’s team will create a series of specialized probes that can undercover the workings of a cellular process called autophagy.

“Eventually, once we understand how to design a nanoparticle to activate autophagy, we will use it as a tool to learn more about the autophagic process itself because there are still many question marks in biology regarding how this pathway works,” Segatori said. “It’s not completely clear how it is regulated. It seems that excessive autophagy may activate cell death, but it’s not yet clear. In short, we are looking for more than therapeutic applications. We are also hoping to use these nanoparticles as tools to study the basic science of autophagy.”

There is no direct reference to BAM but there are some intriguing correspondences.

Finally, there is no mention of nanotechnology in this radio broadcast/podcast and transcript but it does provide more information about BAM (for many folks this was first time they’d heard about the project) and the hopes and concerns this project raises while linking it to the Human Genome Project. From the Mar. 31, 2013 posting of a transcript and radio (Kera News; a National Public Radio station) podcast titled, Somewhere Over the Rainbow: The Journey to Map the Human Brain,

During the State of the Union, President Obama said the nation is about to embark on an ambitious project: to examine the human brain and create a road map to the trillions of connections that make it work.

“Every dollar we invested to map the human genome returned $140 to our economy — every dollar,” the president said. “Today, our scientists are mapping the human brain to unlock the answers to Alzheimer’s.”

Details of the project have slowly been leaking out: $3 billion, 10 years of research and hundreds of scientists. The National Institutes of Health is calling it the Brain Activity Map.

Obama isn’t the first to tout the benefits of a huge government science project. But can these projects really deliver? And what is mapping the human brain really going to get us?

Whether one wants to call it a public relations campaign or a marketing campaign is irrelevant. Science does not take place in an environment where data and projects are considered dispassionately. Enormous amounts of money are spent to sway public opinion and policymakers’ decisions.

ETA Ap. 3, 2013: Here are more stories about BAM and the announcement:

BRAIN Initiative Launched to Unlock Mysteries of Human Mind

Obama’s BRAIN Only 1/13 The Size Of Europe’s

BRAIN Initiative Builds on Efforts of Leading Neuroscientists and Nanotechnologists

Reading media

It’s been a while since I’ve attempted an analysis of media coverage but the appearance of these two articles at roughly the same time inspired me.  Nature has a Mar. 22, 2013 article by Brian Owens titled, Canada puts commercialization ahead of blue-sky research; Federal budget boosts clean-energy research and university infrastructure. It’s not an unusual response to the 2013 budget and there has been a great deal of discussion about the trend towards commercialization (e.g. Ivan Semeniuk’s Mar. 25, 2013 Globe and Mail article, Federal budget ignites debate over what science is for).

Particularly striking with regard to the Nature article about the Canadian federal budget is the picture which accompanies it, the least flattering image I have ever seen of Canada’s Finance Minister, Jim Flaherty. Shot from the side and below, it emphasizes his girth and receding hairline. Interestingly, this shot is used in a British publication which is taking the Canadian government to task. I have not seen any comparable images in Canadian media pieces where Flaherty is usually shown full face and from mid-chest up.

The second piece I’m highlighting is about a technology application (thanks to @BoraZ for the tweet link) which features fascinating insight into the politics of selling technology, from an Open note to tech press/bloggers (Note: Links have been removed),

We just did a great rollout, the product is fantastic. This is going to move tech in a new direction. It’ll create new standards. I’m absolutely sure of it.

Yet, even with my track record as one who leads change in technology, the release of this software has gotten almost no note from leading tech bloggers and reporters.

That’s okay, because it’ll happen without them. Last time I pushed something through, it didn’t get support from the press either. And the time before that. We can make it happen without their help.

I think they’re comfortable with big software ideas coming from big companies. But I can’t make change happen within the context of a big corporation. Too much second-guessing, too many strategy taxes, too many phony business models. So I choose to do it as an independent.

These are early days, the product is very simple, and well-documented. We went to great lengths to make it easy to understand.

Helping users understand new relevant technology is what you do, after all.

PS: I did not include comments on this post because this is the kind of thing that attracts a lot of trolls.

PPS: To users, this is why you haven’t heard much about Little Outliner in the tech press. There’s nothing wrong with the product.

Curious yet? The product is called Little Outliner, from the home page (Note: A link has been removed),

Little Outliner is a powerful and easy editor that automatically saves text locally, a new feature in HTML5.

Here’s more information from the Little Outliner press guide,

You do not have to register or create an account. Just visit the site, and start typing.

It stores text in local storage on your own computer.

The user’s outline is not transmitted to our servers.

There is no charge to use Little Outliner. Use it to become familiar with outliners. For some people the features of Little Outliner will be exactly what they need.

Little Outliner is our entry-level product.

It’s where we start. We will release deeper, more specialized, technical and sophisticated products built on outlining. Little Outliner will remain simple, general, easy and approachable. It’s where we expect new users to start.

All of our products will be focused on outliners and communication.

As for who is behind Little Outliner, the company is called Small Picture (from the press guide),

Small Picture, Inc is a Delaware corporation, founded on December 19, 2012 by Dave Winer and Kyle Shank.

Dave Winer, 57, has a long history in the tech industry. He is the founder of Living Videotext, founded in 1981, created the first personal computer outliners, ThinkTank, Ready and MORE. UserLand Software, founded in 1988, created Frontier, integrated development tools and web content management software for desktop computers. UserLand developed the first blogging software, Manila and Radio, and pioneered the development of RSS aggregator and interapplication protocols. Winer was the first blogger, and pioneered the development of podcasting, in 1994 and 2001 respectively. He has been a researcher at Harvard and NYU and has a MS in Computer Science from the University of Wisconsin, and a BA in Mathematics from Tulane University.

Kyle Shank, 28, has worked as a consultant to Silicon Valley tech companies. He has worked within the software group at IBM in Massachusetts, North Carolina and Zurich, Switzerland. In 2005 he co-founded the first open source Ruby on Rails specific IDE RadRails based on Eclipse. Kyle graduated from the Rochester Institute of Technology in 2007 with a BS in Software Engineering.

Dave works in New York City, Kyle in the Boston area and collaborate via Instant Outline and Skype.

I think these two stories demonstrate the political nature of choosing images (in this case, presenting an image that suggests Flaherty is big [an upward angle tends to make someone seem big and threatening] while emphasizing his weight and aging) and choosing stories (in this case, determining what technology consumers will hear about). We tend to think of our information flow as being free and unencumbered when it is not. There are any number of gatekeepers and choosers who decide what we will and won’t see.

There is a kind of paradox at work. In order to blog or write or communicate one needs to make choices but that means one is inevitably put in the position of becoming a gatekeeper/editor/censor.

I don’t believe there is a magic way to escape the paradox and the best we can hope for is that we be  vigilant about our own biases and that our readers or audiences remind us when we fail in our attempts.