Tag Archives: Ian Sample

July 2020 update on Dr. He Jiankui (the CRISPR twins) situation

This was going to be written for January 2020 but sometimes things happen (e.g., a two-part overview of science culture in Canada from 2010-19 morphed into five parts with an addendum and, then, a pandemic). By now (July 28, 2020), Dr. He’s sentencing to three years in jail announced by the Chinese government in January 2020 is old news.

Regardless, it seems a neat and tidy ending to an international scientific scandal concerned with germline-editing which resulted in at least one set of twins, Lulu and Nana. He claimed to have introduced a variant (“Delta 32” variation) of their CCR5 gene. This does occur naturally and scientists have noted that people with this mutation seem to be resistant to HIV and smallpox.

For those not familiar with the events surrounding the announcement, here’s a brief recap. News of the world’s first gene-edited twins’ birth was announced in November 2018 just days before an international meeting group of experts who had agreed on a moratorium in 2015 on exactly that kind of work. The scientist making the announcement about the twins was scheduled for at least one presentation at the meeting, which was to be held in Hong Kong. He did give his presentation but left the meeting shortly afterwards as shock was beginning to abate and fierce criticism was rising. My November 28, 2018 posting (First CRISPR gene-edited babies? Ethics and the science story) offers a timeline of sorts and my initial response.

I subsequently followed up with two mores posts as the story continued to develop. My May 17, 2019 posting (Genes, intelligence, Chinese CRISPR (clustered regularly interspaced short palindromic repeats) babies, and other children) featured news that Dr. He’s gene-editing may have resulted in the twins having improved cognitive skills. Then, more news broke. The title for my June 20, 2019 posting (Greater mortality for the CRISPR twins Lulu and Nana?) is self-explanatory.

I have roughly organized my sources for this posting into two narratives, which I’m contrasting with each other. First, there is one found in the mainstream media (English language), ‘The Popular Narrative’. Second, there is story where Dr. He is viewed more sympathetically and as part of a larger community where there isn’t nearly as much consensus over what should or shouldn’t be done as ‘the popular narrative’ insists.

The popular narrative: Dr. He was a rogue scientist

A December 30, 2019 article for Fast Company by Kristin Toussaint lays out the latest facts (Note: A link has been removed),

… Now, a court in China has sentenced He to three years in prison, according to Xinhua, China’s state-run press agency, for “illegal medical practices.”

The court in China’s southern city of Shenzhen says that He’s team, which included colleagues Zhang Renli and Qin Jinzhou from two medical institutes in Guangdong Province, falsified ethical approval documents and violated China’s “regulations and ethical principles” with their gene-editing work. Zhang was sentenced to two years in jail, and Qin to 18 months with a two-year reprieve, according to Xinhau.

Ian Sample’s December 31, 2020 article for the Guardian offers more detail (Note: Links have been removed),

The court in Shenzhen found He guilty of “illegal medical practices” and in addition to the prison sentence fined him 3m yuan (£327,360), according to the state news agency, Xinhua. Two others on He’s research team received lesser fines and sentences.

“The three accused did not have the proper certification to practise medicine, and in seeking fame and wealth, deliberately violated national regulations in scientific research and medical treatment,” the court said, according to Xinhua. “They’ve crossed the bottom line of ethics in scientific research and medical ethics.”

[…] the court found He had forged documents from an ethics review panel that were used to recruit couples for the research. The couples that enrolled had a man with HIV and a woman without and were offered IVF in return for taking part.

Zhang Renli, who worked with He, was sentenced to two years in prison and fined 1m yuan. Colleague Qin Jinzhou received an 18-month sentence, but with a two-year reprieve, and a 500,000 yuan fine.

He’s experiments, which were carried out on seven embryos in late 2018, sent shockwaves through the medical and scientific world. The work was swiftly condemned for deceiving vulnerable patients and using a risky, untested procedure with no medical justification. Earlier this month, MIT Technology Review released excerpts from an early manuscript of He’s work. It casts serious doubts on his claims to have made the children immune to HIV.

Even as the scientific community turned against He, the scientist defended his work and said he was proud of having created Lulu and Nana. A third child has since been born as a result of the experiments.

Robin Lovell-Badge at the Francis Crick Institute in London said it was “far too premature” for anyone to pursue genome editing on embryos that are intended to lead to pregnancies. “At this stage we do not know if the methods will ever be sufficiently safe and efficient, although the relevant science is progressing rapidly, and new methods can look promising. It is also important to have standards established, including detailed regulatory pathways, and appropriate means of governance.”

A December 30, 2019 article, by Carolyn Y. Johnson for the Washington Post, covers much the same ground although it does go on to suggest that there might be some blame to spread around (Note: Links have been removed),

The Chinese researcher who stunned and alarmed the international scientific community with the announcement that he had created the world’s first gene-edited babies has been sentenced to three years in prison by a court in China.

He Jiankui sparked a bioethical crisis last year when he claimed to have edited the DNA of human embryos, resulting in the birth of twins called Lulu and Nana as well as a possible third pregnancy. The gene editing, which was aimed at making the children immune to HIV, was excoriated by many scientists as a reckless experiment on human subjects that violated basic ethical principles.

The judicial proceedings were not public, and outside experts said it is hard to know what to make of the punishment without the release of the full investigative report or extensive knowledge of Chinese law and the conditions under which He will be incarcerated.

Jennifer Doudna, a biochemist at the University of California at Berkeley who co-invented CRISPR, the gene editing technology that He utilized, has been outspoken in condemning the experiments and has repeatedly said CRISPR is not ready to be used for reproductive purposes.

R. Alta Charo, a fellow at Stanford’s Center for Advanced Study in the Behavioral Sciences, was among a small group of experts who had dinner with He the night before he unveiled his controversial research in Hong Kong in November 2018.

“He Jiankui is an example of somebody who fundamentally didn’t understand, or didn’t want to recognize, what have become international norms around responsible research,” Charo said. “My impression is he allowed his personal ambition to completely cloud rational thinking and judgment.”

Scientists have been testing an array of powerful biotechnology tools to fix genetic diseases in adults. There is tremendous excitement about the possibility of fixing genes that cause serious disease, and the first U.S. patients were treated with CRISPR this year.

But scientists have long drawn a clear moral line between curing genetic diseases in adults and editing and implanting human embryos, which raises the specter of “designer babies.” Those changes and any unanticipated ones could be inherited by future generations — in essence altering the human species.

“The fact that the individual at the center of the story has been punished for his role in it should not distract us from examining what supporting roles were played by others, particularly in the international scientific community and also the environment that shaped and encouraged him to push the limits,” said Benjamin Hurlbut [emphasis mine], associate professor in the School of Life Sciences at Arizona State University.

Stanford University cleared its scientists, including He’s former postdoctoral adviser, Stephen Quake, finding that Quake and others did not participate in the research and had expressed “serious concerns to Dr. He about his work.” A Rice University spokesman said an investigation continues into bioengineering professor Michael Deem, He’s former academic adviser. Deem was listed as a co-author on a paper called “Birth of Twins After Genome Editing for HIV Resistance,” submitted to scientific journals, according to MIT Technology Review.

It’s interesting that it’s only the Chinese scientists who are seen to be punished, symbolically at least. Meanwhile, Stanford clears its scientists of any wrongdoing and Rice University continues to investigate.

Watch for the Hurlbut name (son, Benjamin and father, William) to come up again in the ‘complex narrative’ section.

Criticism of the ‘twins’ CRISPR editing’ research

Antonio Regalado’s December 3, 2020 article for the MIT (Massachusetts Institute of Technology) Technology Review features comments from various experts on an unpublished draft of Dr. He Jiankui’s research

Earlier this year a source sent us a copy of an unpublished manuscript describing the creation of the first gene-edited babies, born last year in China. Today, we are making excerpts of that manuscript public for the first time.

Titled “Birth of Twins After Genome Editing for HIV Resistance,” and 4,699 words long, the still unpublished paper was authored by He Jiankui, the Chinese biophysicist who created the edited twin girls. A second manuscript we also received discusses laboratory research on human and animal embryos.

The metadata in the files we were sent indicate that the two draft papers were edited by He in late November 2018 and appear to be what he initially submitted for publication. Other versions, including a combined manuscript, may also exist. After consideration by at least two prestigious journals, Nature and JAMA, his research remains unpublished.

The text of the twins paper is replete with expansive claims of a medical breakthrough that can “control the HIV epidemic.” It claims “success”—a word used more than once—in using a “novel therapy” to render the girls resistant to HIV. Yet surprisingly, it makes little attempt to prove that the twins really are resistant to the virus. And the text largely ignores data elsewhere in the paper suggesting that the editing went wrong.

We shared the unpublished manuscripts with four experts—a legal scholar, an IVF doctor, an embryologist, and a gene-editing specialist—and asked them for their reactions. Their views were damning. Among them: key claims that He and his team made are not supported by the data; the babies’ parents may have been under pressure to agree to join the experiment; the supposed medical benefits are dubious at best; and the researchers moved forward with creating living human beings before they fully understood the effects of the edits they had made.

1. Why aren’t the doctors among the paper’s authors?

The manuscript begins with a list of the authors—10 of them, mostly from He Jiankui’s lab at the Southern University of Science and Technology, but also including Hua Bai, director of an AIDS support network, who helped recruit couples, and Michael Deem, an American biophysicist whose role is under review by Rice University. (His attorney previously said Deem never agreed to submit the manuscript and sought to remove his name from it.)

It’s a small number of people for such a significant project, and one reason is that some names are missing—notably, the fertility doctors who treated the patients and the obstetrician who delivered the babies. Concealing them may be an attempt to obscure the identities of the patients. However, it also leaves unclear whether or not these doctors understood they were helping to create the first gene-edited babies.

To some, the question of whether the manuscript is trustworthy arises immediately.

Hank Greely, professor of law, Stanford University: We have no, or almost no, independent evidence for anything reported in this paper. Although I believe that the babies probably were DNA-edited and were born, there’s very little evidence for that. Given the circumstances of this case, I am not willing to grant He Jiankui the usual presumption of honesty. 

That last article by Regalado is the purest example I have of how fierce the criticism is and how almost all of it is focused on Dr. He and his Chinese colleagues.

A complex, measured narrative: multiple players in the game

The most sympathetic and, in many ways, the most comprehensive article is an August 1, 2019 piece by Jon Cohen for Science magazine (Note: Links have been removed),

On 10 June 2017, a sunny and hot Saturday in Shenzhen, China, two couples came to the Southern University of Science and Technology (SUSTech) to discuss whether they would participate in a medical experiment that no researcher had ever dared to conduct. The Chinese couples, who were having fertility problems, gathered around a conference table to meet with He Jiankui, a SUSTech biophysicist. Then 33, He (pronounced “HEH”) had a growing reputation in China as a scientist-entrepreneur but was little known outside the country. “We want to tell you some serious things that might be scary,” said He, who was trim from years of playing soccer and wore a gray collared shirt, his cuffs casually unbuttoned.

He simply meant the standard in vitro fertilization (IVF) procedures. But as the discussion progressed, He and his postdoc walked the couples through informed consent forms [emphasis mine] that described what many ethicists and scientists view as a far more frightening proposition. Seventeen months later, the experiment triggered an international controversy, and the worldwide scientific community rejected him. The scandal cost him his university position and the leadership of a biotech company he founded. Commentaries labeled He, who also goes by the nickname JK, a “rogue,” “China’s Frankenstein,” and “stupendously immoral.” [emphases mine]

But that day in the conference room, He’s reputation remained untarnished. As the couples listened and flipped through the forms, occasionally asking questions, two witnesses—one American, the other Chinese—observed [emphasis mine]. Another lab member shot video, which Science has seen [emphasis mine], of part of the 50-minute meeting. He had recruited those couples because the husbands were living with HIV infections kept under control by antiviral drugs. The IVF procedure would use a reliable process called sperm washing to remove the virus before insemination, so father-to-child transmission was not a concern. Rather, He sought couples who had endured HIV-related stigma and discrimination and wanted to spare their children that fate by dramatically reducing their risk of ever becoming infected. [emphasis mine]

He, who for much of his brief career had specialized in sequencing DNA, offered a potential solution: CRISPR, the genome-editing tool that was revolutionizing biology, could alter a gene in IVF embryos to cripple production of an immune cell surface protein, CCR5, that HIV uses to establish an infection. “This technique may be able to produce an IVF baby naturally immunized against AIDS,” one consent form read.[emphasis mine]

The couples’ children could also pass the protective mutation to future generations. The prospect of this irrevocable genetic change is why, since the advent of CRISPR as a genome editor 5 years earlier, the editing of human embryos, eggs, or sperm has been hotly debated. The core issue is whether such germline editing would cross an ethical red line because it could ultimately alter our species. Regulations, some with squishy language, arguably prohibited it in many countries, China included.

Yet opposition was not unanimous. A few months before He met the couples, a committee convened by the U.S. National Academies of Sciences, Engineering, and Medicine (NASEM) concluded in a well-publicized report that human trials of germline editing “might be permitted” if strict criteria were met. The group of scientists, lawyers, bioethicists, and patient advocates spelled out a regulatory framework but cautioned that “these criteria are necessarily vague” because various societies, caregivers, and patients would view them differently. The committee notably did not call for an international ban, arguing instead for governmental regulation as each country deemed appropriate and “voluntary self-regulation pursuant to professional guidelines.”

[…] He hid his plans and deceived his colleagues and superiors, as many people have asserted? A preliminary investigation in China stated that He had forged documents, “dodged supervision,” and misrepresented blood tests—even though no proof of those charges was released [emphasis mine], no outsiders were part of the inquiry, and He has not publicly admitted to any wrongdoing. (CRISPR scientists in China say the He fallout has affected their research.) Many scientists outside China also portrayed He as a rogue actor. “I think there has been a failure of self-regulation by the scientific community because of a lack of transparency,” virologist David Baltimore, a Nobel Prize–winning researcher at the California Institute of Technology (Caltech) in Pasadena and co-chair of the Hong Kong summit, thundered at He after the biophysicist’s only public talk on the experiment.

Because the Chinese government has revealed little and He is not talking, key questions about his actions are hard to answer. Many of his colleagues and confidants also ignored Science‘s requests for interviews. But Ryan Ferrell, a public relations specialist He hired, has cataloged five dozen people who were not part of the study but knew or suspected what He was doing before it became public. Ferrell calls it He’s circle of trust. [emphasis mine]

That circle included leading scientists—among them a Nobel laureate—in China and the United States, business executives, an entrepreneur connected to venture capitalists, authors of the NASEM report, a controversial U.S. IVF specialist [John Zhang] who discussed opening a gene-editing clinic with He [emphasis mine], and at least one Chinese politician. “He had an awful lot of company to be called a ‘rogue,’” says geneticist George Church [emphases mine], a CRISPR pioneer at Harvard University who was not in the circle of trust and is one of the few scientists to defend at least some aspects of He’s experiment.

Some people sharply criticized He when he brought them into the circle; others appear to have welcomed his plans or did nothing. Several went out of their way to distance themselves from He after the furor erupted. For example, the two onlookers in that informed consent meeting were Michael Deem, He’s Ph.D. adviser at Rice University in Houston, Texas, and Yu Jun, a member of the Chinese Academy of Sciences (CAS) and co-founder of the Beijing Genomics Institute, the famed DNA sequencing company in Shenzhen. Deem remains under investigation by Rice for his role in the experiment and would not speak with Science. In a carefully worded statement, Deem’s lawyers later said he “did not meet the parents of the reported CCR5-edited children, or anyone else whose embryos were edited.” But earlier, Deem cooperated with the Associated Press (AP) for its exclusive story revealing the birth of the babies, which reported that Deem was “present in China when potential participants gave their consent and that he ‘absolutely’ thinks they were able to understand the risks. [emphasis mine]”

Yu, who works at CAS’s Beijing Institute of Genomics, acknowledges attending the informed consent meeting with Deem, but he told Science he did not know that He planned to implant gene-edited embryos. “Deem and I were chatting about something else,” says Yu, who has sequenced the genomes of humans, rice, silkworms, and date palms. “What was happening in the room was not my business, and that’s my personality: If it’s not my business, I pay very little attention.”

Some people who know He and have spoken to Science contend it is time for a more open discussion of how the biophysicist formed his circle of confidants and how the larger circle of trust—the one between the scientific community and the public—broke down. Bioethicist William Hurlbut at Stanford University [emphasis mine] in Palo Alto, California, who knew He wanted to conduct the embryo-editing experiment and tried to dissuade him, says that He was “thrown under the bus” by many people who once supported him. “Everyone ran for the exits, in both the U.S. and China. I think everybody would do better if they would just openly admit what they knew and what they did, and then collectively say, ‘Well, people weren’t clear what to do. We should all admit this is an unfamiliar terrain.’”

Steve Lombardi, a former CEO of Helicos, reacted far more charitably. Lombardi, who runs a consulting business in Bridgewater, Connecticut, says Quake introduced him to He to help find investors for Direct Genomics. “He’s your classic, incredibly bright, naïve entrepreneur—I run into them all the time,” Lombardi says. “He had the right instincts for what to do in China and just didn’t know how to do it. So I put him in front of as many people as I could.” Lombardi says He told him about his embryo-editing ambitions in August 2017, asking whether Lombardi could find investors for a new company that focused on “genetic medical tourism” and was based in China or, because of a potentially friendlier regulatory climate, Thailand. “I kept saying to him, ‘You know, you’ve got to deal with the ethics of this and be really sure that you know what you’re doing.’”

In April 2018, He asked Ferrell to handle his media full time. Ferrell was a good fit—he had an undergraduate degree in neuroscience, had spent a year in Beijing studying Chinese, and had helped another company using a pre-CRISPR genome editor. Now that a woman in the trial was pregnant, Ferrell says, He’s “understanding of the gravity of what he had done increased.” Ferrell had misgivings about the experiment, but he quit HDMZ and that August moved to Shenzhen. With the pregnancy already underway, Ferrell reasoned, “It was going to be the biggest science story of that week or longer, no matter what I did.”

MIT Technology Review had broken a story early that morning China time, saying human embryos were being edited and implanted, after reporter Antonio Regalado discovered descriptions of the project that He had posted online, without Ferrell’s knowledge, in an official Chinese clinical trial registry. Now, He gave AP the green light to post a detailed account, which revealed that twin girls—whom He, to protect their identifies, named Lulu and Nana—had been born. Ferrell and He also posted five unfinished YouTube videos explaining and justifying the unprecedented experiment.

“He was fearful that he’d be unable to communicate to the press and the onslaught in a way that would be in any way manageable for him,” Ferrell says. One video tried to forestall eugenics accusations, with He rejecting goals such as enhancing intelligence, changing skin color, and increasing sports performance as “not love.” Still, the group knew it had lost control of the news. [emphasis mine]

… On 7 March 2017, 5 weeks after the California gathering, He submitted a medical ethics approval application to the Shenzhen HarMoniCare Women and Children’s Hospital that outlined the planned CCR5 edit of human embryos. The babies, it claimed, would be resistant to HIV as well as to smallpox and cholera. (The natural CCR5 mutation may have been selected for because it helps carriers survive smallpox and plague, some studies suggest—but they don’t mention cholera.) “This is going to be a great science and medicine achievement ever since the IVF technology which was awarded the Nobel Prize in 2010, and will also bring hope to numerous genetic disease patients,” the application says. Seven people on the ethics committee, chaired by Lin Zhitong—a one-time Direct Genomics director and a HarMoniCare administrator—signed the application, indicating they approved it.

[…] John Zhang, […] [emphasis mine] earned his medical degree in China and a Ph.D. in reproductive biology at the University of Cambridge in the United Kingdom. Zhang had made international headlines himself in September 2016, when New Scientist revealed that he had created the world’s first “three-parent baby” by using mitochondrial DNA from a donor egg to revitalize the egg of a woman with infertility and then inseminating the resulting egg. “This technology holds great hope for ladies with advanced maternal age to have their own children with their own eggs,” Zhang explains in the center’s promotional video, which alternates between Chinese and English. It does not mention that Zhang did the IVF experiment in Mexico because it is not now allowed in the United States. [emphasis mine]

When Science contacted Zhang, the physician initially said he barely knew He: [emphases mine] “I know him just like many people know him, in an academic meeting.”

After his talk [November 2018 at Hong Kong meeting], He immediately drove back to Shenzhen, and his circle of trust began to disintegrate. He has not spoken publicly since. “I don’t think he can recover himself through PR,” says Ferrell, who no longer works for He but recently started to do part-time work for He’s wife. “He has to do other service to the world.”

Calls for a moratorium on human germline editing have increased, although at the end of the Hong Kong summit, the organizing committee declined in its consensus to call for a ban. China has stiffened its regulations on work with human embryos, and Chinese bioethicists in a Nature editorial about the incident urged the country to confront “the eugenic thinking that has persisted among a small proportion of Chinese scholars.”

Church, who has many CRISPR collaborations in China, finds it inconceivable that He’s work surprised the Chinese government. China has “the best surveillance system in the world,” he says. “I conclude that they were totally aware of what he was doing at every step of the way, especially because he wasn’t particularly secretive about it.”

Benjamin Hurlbut, William’s son and a historian of biomedicine at Arizona State University in Tempe, says leaders in the scientific community should take a hard look at their actions, too. [emphases mine] He thinks the 2017 NASEM report helped give rise to He by following a well-established approach to guiding science: appointing an elite group to decide how scientists should be regulated. Benjamin Hurlbut, whose book Experiments in Democracy explores the governance of embryo research and bioethics, questions why small, scientist-led groups—à la the totemic Asilomar conference held in 1975 to discuss the future of recombinant DNA research—are seen as the best way to shape thinking about new technologies. Hurlbut has called for a “global observatory for gene editing” to convene meetings with diverse perspectives.

The prevailing notion that the scientific community simply “failed to see the rogue among the responsible,” Hurlbut says, is a convenient narrative for those scientific leaders and inhibits their ability to learn from such failures. [emphases mine] “It puts them on the right side of history,” he says. They failed to paint a bright enough red line, Hurlbut contends. “They are not on the right side of history because they contributed to this.”

If you have the time, I strongly recommend reading Cohen’s piece in its entirety. You’ll find links to the reports and more articles with in-depth reporting on this topic.

A little kindness and no regrets

William Hurlbut was interviewed in an As it happens (Canadian Broadcasting Corporation’ CBC) radio programme segment on December 30, 2020. This is an excerpt from the story transcript written by Sheena Goodyear (Note: A link has been removed),

Dr. William Hurlbut, a physician and professor of neural-biology at Stanford University, says he tried to warn He to slow down before it was too late. Here is part of his conversation with As It Happens guest host Helen Mann.

What was your reaction to the news that Dr. He had been sentenced to three years in prison?

My first reaction was one of sadness because I know Dr. He — who we call J.K., that’s his nickname.

I spent quite a few hours talking with him, and I’m just sad that this worked out this way. It didn’t work out well for him or for his country or for the world, in some sense.

Except the one good thing is it’s alerted us, it’s awakened the world, to the seriousness of the issues that are coming down toward us with biotechnology, especially in genetics.

How does he feel about [how] not just the Chinese government, but the world generally, responded to his experiment?

He was surprised, personally. But I had actually warned him that he was proceeding too fast, and I didn’t know he had implanted embryos.

We had several conversations before this was disclosed, and I warned him to go more slowly and to keep in conversation with the rest of the international scientific community, and more broadly the international perspectives on social and ethical matters.

He was doing that to some extent, but not deeply enough and not transparently enough.

It sounds like you were very thoughtful in the conversations you had with him and the advice you gave him. And I guess you operated with what you had. But do you have any regrets yourself?

I don’t have any regrets about the way I conducted myself. I regret that this happened this way for J.K., who is a very bright person, and a very nice person, a humble person.

He grew up in a poor urban farming village. He told me that at one point he wanted to ask out a certain girl that he thought was really pretty … but he was embarrassed to do so because her family owned the restaurant. And so you see how humble his origins were.

By the way, he did end up asking her out and he ended up marrying her, which is a happy story, except now they’re separated for years of crucial time, and they have little children. 

I know this is a bigger story than just J.K. and his family. But there’s a personal story to it too.

What happens He Jiankui? … Is his research career over?

It’s hard to imagine that a nation like China would not give him some some useful role in their society. A very intelligent and very well-educated young man. 

But on the other hand, he will be forever a sign of a very crucial and difficult moment for the human species. He’s not going outlive that.

It’s going to be interesting. I hope I get a chance to have good conversations with him again and hear his internal ruminations and perspectives on it all.

This (“I don’t have any regrets about the way I conducted myself”) is where Hurlbut lost me. I think he could have suggested that he’d reviewed and rethought everything and feels that he and others could have done better and maybe they need to rethink how scientists are trained and how we talk about science, genetics, and emerging technology. Interestingly, it’s his son who comes up with something closer to what I’m suggesting (this excerpt was quoted earlier in this posting from a December 30, 2019 article, by Carolyn Y. Johnson for the Washington Post),

“The fact that the individual at the center of the story has been punished for his role in it should not distract us from examining what supporting roles were played by others, particularly in the international scientific community and also the environment that shaped and encouraged him to push the limits,” said Benjamin Hurlbut [emphasis mine], associate professor in the School of Life Sciences at Arizona State University.

The man who CRISPRs himself approves

Josiah Zayner publicly injected himself with CRISPR in a demonstration (see my January 25, 2018 posting for details about Zayner, his demonstration, and his plans). As you might expect, his take on the He affair is quite individual. From a January 2, 2020 article for STAT, Zayner presents the case for Dr. He’s work (Note: Links have been removed),

When I saw the news that He Jiankui and colleagues had been sentenced to three years in prison for the first human embryo gene editing and implantation experiments, all I could think was, “How will we look back at what they had done in 100 years?”

When the scientist described his research and revealed the births of gene edited twin girls at the [Second] International Summit on Human Genome Editing in Hong Kong in late November 2018, I stayed up into the early hours of the morning in Oakland, Calif., watching it. Afterward, I couldn’t sleep for a few days and couldn’t stop thinking about his achievement.

This was the first time a viable human embryo was edited and allowed to live past 14 days, much less the first time such an embryo was implanted and the baby brought to term.

The majority of scientists were outraged at the ethics of what had taken place, despite having very little information on what had actually occurred.

To me, no matter how abhorrent one views [sic] the research, it represents a substantial step forward in human embryo editing. Now there is a clear path forward that anyone can follow when before it had been only a dream.

As long as the children He Jiankui engineered haven’t been harmed by the experiment, he is just a scientist who forged some documents to convince medical doctors to implant gene-edited embryos. The 4-minute mile of human genetic engineering has been broken. It will happen again.

The academic establishment and federal funding regulations have made it easy to control the number of heretical scientists. We rarely if ever hear of individuals pushing the ethical and legal boundaries of science.

The rise of the biohacker is changing that.

A biohacker is a scientist who exists outside academia or an institution. By this definition, He Jiankui is a biohacker. I’m also part of this community, and helped build an organization to support it.

Such individuals have much more freedom than “traditional” scientists because scientific regulation in the U.S. is very much institutionally enforced by the universities, research organizations, or grant-giving agencies. But if you are your own institution and don’t require federal grants, who can police you? If you don’t tell anyone what you are doing, there is no way to stop you — especially since there is no government agency actively trying to stop people from editing embryos.

… When a human embryo being edited and implanted is no longer interesting enough for a news story, will we still view He Jiankui as a villain?

I don’t think we will. But even if we do, He Jiankui will be remembered and talked about more than any scientist of our day. Although that may seriously aggravate many scientists and bioethicists, I think he deserves that honor.

Josiah Zayner is CEO of The ODIN, a company that teaches people how to do genetic engineering in their homes.

You can find The ODIN here.

Final comments

There can’t be any question that this was inevitable. One needs only to take a brief stroll through the history of science to know that scientists are going to push boundaries or, as in this case, press past an ill-defined grey zone.

The only scientists who are being publicly punished for hubris are Dr. He Jiankui and his two colleagues in China. Dr. Michael Deem is still working for Rice University as far as I can determine. Here’s how the Wikipedia entry for the He Jiankui Affair describes the investigation (Note: Links have been removed),

Michael W. Deem, an American bioengineering professor at Rice University and He’s doctoral advisor, was involved in the research, and was present when people involved in He’s study gave consent.[24] He was the only non-Chinese out of 10 authors listed in the manuscript submitted to Nature.[30] Deem came under investigation by Rice University after news of the work was made public.[58] As of 31 December 2019, the university had not released a decision.[59] [emphasis mine]

Meanwhile the scientists at Stanford are cleared. While there are comments about the Chinese government not being transparent, it seems to me that US universities are just as opaque.

What seems missing from all this discussion and opprobrium is that the CRISPR technology itself is problematic. My September 20, 2019 post features research into off-target results from CRISPR gene-editing and, prior, there was this July 17, 2018 posting (The CRISPR [clustered regularly interspaced short palindromic repeats]-CAS9 gene-editing technique may cause new genetic damage kerfuffle).

I’d like to see more discussion and, in line with Benjamin Hurlbut’s thinking, I’d like to see more than a small group of experts talking to each other as part of the process especially here in Canada and in light of efforts to remove our ban on germline-editing (see my April 26, 2019 posting for more about those efforts).

500-year history of robots exhibition at London’s (UK) Science Museum

Thanks to a Feb.7, 2017 article by Benjamin Wheelock for Salon.com for the heads up regarding the ‘Robots’ exhibit at the UK’s Science Museum in London.

Prior to the exhibition’s opening on Feb. 8, 2017, The Guardian has published a preview (more about that in a minute), a photo essay, and this video about the show,

I find the robot baby to be endlessly fascinating.

The Science Museum announced its then upcoming Feb. 8  – Sept. 3, 2017 exhibition on robots in a May ?, 2016 press release,

8 February – 3 September 2017, Science Museum, London
Admission: £15 adults, £13 concessions (Free entry for under 7s; family tickets available)
Tickets available in the Museum or via sciencemuseum.org.uk/robots
Supported by the Heritage Lottery Fund


Throughout history, artists and scientists have sought to understand what it means to be human. The Science Museum’s new Robots exhibition, opening in February 2017, will explore this very human obsession to recreate ourselves, revealing the remarkable 500-year story of humanoid robots.

Featuring a unique collection of over 100 robots, from a 16th-century mechanical monk to robots from science fiction and modern-day research labs, this exhibition will enable visitors to discover the cultural, historical and technological context of humanoid robots. Visitors will be able to interact with some of the 12 working robots on display. Among many other highlights will be an articulated iron manikin from the 1500s, Cygan, a 2.4m tall 1950s robot with a glamorous past, and one of the first walking bipedal robots.

Robots have been at the heart of popular culture since the word ‘robot’ was first used in 1920, but their fascinating story dates back many centuries. Set in five different periods and places, this exhibition will explore how robots and society have been shaped by religious belief, the industrial revolution, 20th century popular culture and dreams about the future.

The quest to build ever more complex robots has transformed our understanding of the human body, and today robots are becoming increasingly human, learning from mistakes and expressing emotions. In the exhibition, visitors will go behind the scenes to glimpse recent developments from robotics research, exploring how roboticists are building robots that resemble us and interact in human-like ways. The exhibition will end by asking visitors to imagine what a shared future with robots might be like. Robots has been generously supported by the Heritage Lottery Fund, with a £100,000 grant from the Collecting Cultures programme.

Ian Blatchford, Director of the Science Museum Group said: ‘This exhibition explores the uniquely human obsession of recreating ourselves, not through paint or marble but in metal. Seeing robots through the eyes of those who built or gazed in awe at them reveals much about humanity’s hopes, fears and dreams.’

‘The latest in our series of ambitious, blockbuster exhibitions, Robots explores the wondrously rich culture, history and technology of humanoid robotics. Last year we moved gigantic spacecraft from Moscow to the Museum, but this year we will bring a robot back to life.’

Today [May ?, 2016] the Science Museum launched a Kickstarter campaign to rebuild Eric, the UK’s first robot. Originally built in 1928 by Captain Richards & A.H. Reffell, Eric was one of the world’s first robots. Built less than a decade after the word robot was first used, he travelled the globe with his makers and amazed crowds in the UK, US and Europe, before disappearing forever.

[The campaign was successful.]

You can find out more about Eric on the museum’s ‘Eric: The UK’s first robot’ webpage,

Getting back to the exhibition, the Guardian’s Ian Sample has written up a Feb. 7, 2017 preview (Note: Links have been removed),

Eric the robot wowed the crowds. He stood and bowed and answered questions as blue sparks shot from his metallic teeth. The British creation was such a hit he went on tour around the world. When he arrived in New York, in 1929, a theatre nightwatchman was so alarmed he pulled out a gun and shot at him.

The curators at London’s Science Museum hope for a less extreme reaction when they open Robots, their latest exhibition, on Wednesday [Feb. 8, 2016]. The collection of more than 100 objects is a treasure trove of delights: a miniature iron man with moving joints; a robotic swan that enthralled Mark Twain; a tiny metal woman with a wager cup who is propelled by a mechanism hidden up her skirt.

The pieces are striking and must have dazzled in their day. Ben Russell, the lead curator, points out that most people would not have seen a clock when they first clapped eyes on one exhibit, a 16th century automaton of a monk [emphasis mine], who trundled along, moved his lips, and beat his chest in contrition. It was surely mesmerising to the audiences of 1560. “Arthur C Clarke once said that any sufficiently advanced technology is indistinguishable from magic,” Russell says. “Well, this is where it all started.”

In every chapter of the 500-year story, robots have held a mirror to human society. Some of the earliest devices brought the Bible to life. One model of Christ on the cross rolls his head and oozes wooden blood from his side as four figures reach up. The mechanisation of faith must have drawn the congregations as much as any sermon.

But faith was not the only focus. Through clockwork animals and human figurines, model makers explored whether humans were simply conscious machines. They brought order to the universe with orreries and astrolabes. The machines became more lighthearted in the enlightened 18th century, when automatons of a flute player, a writer, and a defecating duck all made an appearance. A century later, the style was downright rowdy, with drunken aristocrats, preening dandies and the disturbing life of a sausage from farm to mouth all being recreated as automata.

That reference to an automaton of a monk reminded me of a July 22, 2009 posting where I excerpted a passage (from another blog) about a robot priest and a robot monk,

Since 1993 Robo-Priest has been on call 24-hours a day at Yokohama Central Cemetery. The bearded robot is programmed to perform funerary rites for several Buddhist sects, as well as for Protestants and Catholics. Meanwhile, Robo-Monk chants sutras, beats a religious drum and welcomes the faithful to Hotoku-ji, a Buddhist temple in Kakogawa city, Hyogo Prefecture. More recently, in 2005, a robot dressed in full samurai armour received blessings at a Shinto shrine on the Japanese island of Kyushu. Kiyomori, named after a famous 12th-century military general, prayed for the souls of all robots in the world before walking quietly out of Munakata Shrine.

Sample’s preview takes the reader up to our own age and contemporary robots. And, there is another Guardian article which offering a behind-the-scenes look at the then upcoming exhibition, a Jan. 28, 2016 piece by Jonathan Jones, ,

An android toddler lies on a pallet, its doll-like face staring at the ceiling. On a shelf rests a much more grisly creation that mixes imitation human bones and muscles, with wires instead of arteries and microchips in place of organs. It has no lower body, and a single Cyclopean eye. This store room is an eerie place, then it gets more creepy, as I glimpse behind the anatomical robot a hulking thing staring at me with glowing red eyes. Its plastic skin has been burned off to reveal a metal skeleton with pistons and plates of merciless strength. It is the Terminator, sent back in time by the machines who will rule the future to ensure humanity’s doom.

Backstage at the Science Museum, London, where these real experiments and a full-scale model from the Terminator films are gathered to be installed in the exhibition Robots, it occurs to me that our fascination with mechanical replacements for ourselves is so intense that science struggles to match it. We think of robots as artificial humans that can not only walk and talk but possess digital personalities, even a moral code. In short we accord them agency. Today, the real age of robots is coming, and yet even as these machines promise to transform work or make it obsolete, few possess anything like the charisma of the androids of our dreams and nightmares.

That’s why, although the robotic toddler sleeping in the store room is an impressive piece of tech, my heart leaps in another way at the sight of the Terminator. For this is a bad robot, a scary robot, a robot of remorseless malevolence. It has character, in other words. Its programmed persona (which in later films becomes much more helpful and supportive) is just one of those frightening, funny or touching personalities that science fiction has imagined for robots.

Can the real life – well, real simulated life – robots in the Science Museum’s new exhibition live up to these characters? The most impressively interactive robot in the show will be RoboThespian, who acts as compere for its final gallery displaying the latest advances in robotics. He stands at human height, with a white plastic face and metal arms and legs, and can answer questions about the value of pi and the nature of free will. “I’m a very clever robot,” RoboThespian claims, plausibly, if a little obnoxiously.

Except not quite as clever as all that. A human operator at a computer screen connected with Robothespian by wifi is looking through its video camera eyes and speaking with its digital voice. The result is huge fun – the droid moves in very lifelike ways as it speaks, and its interactions don’t need a live operator as they can be preprogrammed. But a freethinking, free-acting robot with a mind and personality of its own, Robothespian is not.

Our fascination with synthetic humans goes back to the human urge to recreate life itself – to reproduce the mystery of our origins. Artists have aspired to simulate human life since ancient times. The ancient Greek myth of Pygmalion, who made a statue so beautiful he fell in love with it and prayed for it to come to life, is a mythic version of Greek artists such as Pheidias and Praxiteles whose statues, with their superb imitation of muscles and movement, seem vividly alive. The sculptures of centaurs carved for the Parthenon in Athens still possess that uncanny lifelike power.

Most of the finest Greek statues were bronze, and mythology tells of metal robots that sound very much like statues come to life, including the bronze giant Talos, who was to become one of cinema’s greatest robotic monsters thanks to the special effects genius of Ray Harryhausen in Jason and the Argonauts.

Renaissance art took the quest to simulate life to new heights, with awed admirers of Michelangelo’s David claiming it even seemed to breathe (as it really does almost appear to when soft daylight casts mobile shadow on superbly sculpted ribs). So it is oddly inevitable that one of the first recorded inventors of robots was Leonardo da Vinci, consummate artist and pioneering engineer. Leonardo apparently made, or at least designed, a robot knight to amuse the court of Milan. It worked with pulleys and was capable of simple movements. Documents of this invention are frustratingly sparse, but there is a reliable eyewitness account of another of Leonardo’s automata. In 1515 he delighted Francois I, king of France, with a robot lion that walked forward towards the monarch, then released a bunch of lilies, the royal flower, from a panel that opened in its back.

One of the most uncanny androids in the Science Museum show is from Japan, a freakily lifelike female robot called Kodomoroid, the world’s first robot newscaster. With her modest downcast gaze and fine artificial complexion, she has the same fetishised femininity you might see in a Manga comic and appears to reflect a specific social construction of gender. Whether you read that as vulnerability or subservience, presumably the idea is to make us feel we are encountering a robot with real personhood. Here is a robot that combines engineering and art just as Da Vinci dreamed – it has the mechanical genius of his knight and the synthetic humanity of his perfect portrait.

Here’s a link to the Science Museum’s ‘Robots’ exhibition webspace and a link to a Guardian ‘Robots’ photo essay.

All this makes me wish I had plans to visit London, UK in the next few months.

Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (part four of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

Brazil’s World Cup for soccer/football which opens on June 12, 2014 will be the first public viewing of someone with paraplegia demonstrating a mind-controlled exoskeleton (or a robotic suit as it’s sometimes called) by opening the 2014 games with the first kick-off.

I’ve been covering this story since 2011 and, even so, was late to the party as per this May 7, 2014 article by Alejandra Martins for BBC World news online,

The World Cup curtain-raiser will see the first public demonstration of a mind-controlled exoskeleton that will enable a person with paralysis to walk.

If all goes as planned, the robotic suit will spring to life in front of almost 70,000 spectators and a global audience of billions of people.

The exoskeleton was developed by an international team of scientists as part of the Walk Again Project and is the culmination of more than a decade of work for Dr Miguel Nicolelis, a Brazilian neuroscientist based at Duke University in North Carolina. [emphasis mine]

Since November [2013], Dr Nicolelis has been training eight patients at a lab in Sao Paulo, in the midst of huge media speculation that one of them will stand up from his or her wheelchair and deliver the first kick of this year’s World Cup.

“That was the original plan,” the Duke University researcher told the BBC. “But not even I could tell you the specifics of how the demonstration will take place. This is being discussed at the moment.”

Speaking in Portuguese from Sao Paulo, Miguel Nicolelis explained that all the patients are over 20 years of age, with the oldest about 35.

“We started the training in a virtual environment with a simulator. In the last few days, four patients have donned the exoskeleton to take their first steps and one of them has used mental control to kick a ball,” he explained.

The history of Nicolelis’ work is covered here in a series of a posts starting the with an Oct. 5, 2011 post (Advertising for the 21st Century: B-Reel, ‘storytelling’, and mind control; scroll down 2/3 of the way for a reference to Ed Yong’s article where I first learned of Nicolelis).

The work was explored in more depth in a March 16, 2012 posting (Monkeys, mind control, robots, prosthetics, and the 2014 World Cup (soccer/football) and then followed up a year later by two posts which link Nicoleliis’ work with the Brain Activity Map (now called, BRAIN [Brain Research through Advancing Innovative Neurotechnologies] initiative: a March 4, 2013 (Brain-to-brain communication, organic computers, and BAM [brain activity map], the connectome) and a March 8,  2013 post (Prosthetics and the human brain) directly linking exoskeleton work in Holland and the project at Duke with current brain research and the dawning of a new relationship to one’s prosthestics,

On the heels of research which suggests that humans tend to view their prostheses, including wheel chairs, as part of their bodies, researchers in Europe  have announced the development of a working exoskeleton powered by the wearer’s thoughts.

Getting back to Brazil and Nicolelis’ technology, Ian Sample offers an excellent description in an April 1, 2014 article for the Guardian (Note: Links have been removed),

The technology in question is a mind-controlled robotic exoskeleton. The complex and conspicuous robotic suit, built from lightweight alloys and powered by hydraulics, has a simple enough function. When a paraplegic person straps themselves in, the machine does the job that their leg muscles no longer can.

The exoskeleton is the culmination of years of work by an international team of scientists and engineers on the Walk Again project. The robotics work was coordinated by Gordon Cheng at the Technical University in Munich, and French researchers built the exoskeleton. Nicolelis’s team focused on ways to read people’s brain waves, and use those signals to control robotic limbs.

To operate the exoskeleton, the person is helped into the suit and given a cap to wear that is fitted with electrodes to pick up their brain waves. These signals are passed to a computer worn in a backpack, where they are decoded and used to move hydraulic drivers on the suit.

The exoskeleton is powered by a battery – also carried in the backpack – that allows for two hours of continuous use.

“The movements are very smooth,” Nicolelis told the Guardian. “They are human movements, not robotic movements.”

Nicolelis says that in trials so far, his patients seem have taken to the exoskeleton. “This thing was made for me,” one patient told him after being strapped into the suit.

The operator’s feet rest on plates which have sensors to detect when contact is made with the ground. With each footfall, a signal shoots up to a vibrating device sewn into the forearm of the wearer’s shirt. The device seems to fool the brain into thinking that the sensation came from their foot. In virtual reality simulations, patients felt that their legs were moving and touching something.

Sample’s article includes a good schematic of the ‘suit’ which I have not been able to find elsewhere (meaning the Guardian likely has a copyright for the schematic and is why you won’t see it here) and speculation about robotics and prosthetics in the future.

Nicolelis and his team have a Facebook page for the Walk Again Project where you can get some of the latest information with  both English and Portuguese language entries as they prepare for the June 12, 2014 kickoff.

One final thought, this kickoff project represents an unlikely confluence of events. After all, what are the odds

    • that a Brazil-born researcher (Nicolelis) would be working on a project to give paraplegics the ability to walk again? and
    • that Brazil would host the World Cup in 2014 (the first time since 1950)? and
    • that the timing would coincide so a public demonstration at one of the world’s largest athletic events (of a sport particularly loved in Brazil) could be planned?

It becomes even more extraordinary when one considers that Brazil had isolated itself somewhat in the 1980s with a policy of nationalism vis à vis the computer industry (from the Brazil Science and Technology webpage on the ITA website),

In the early 1980s, the policy of technological nationalism and self-sufficiency had narrowed to the computer sector, where protective legislation tried to shield the Brazilian mini- and microcomputer industries from foreign competition. Here again, the policy allowed for the growth of local industry and a few well-qualified firms, but the effect on the productive capabilities of the economy as a whole was negative; and the inability to follow the international market in price and quality forced the policy to be discontinued.

For those who may have forgotten, the growth of the computer industry (specifically personal computers) in the 1980s figured hugely in a country’s economic health and, in this case,with  a big negative impact in Brazil.

Returning to 2014, the kickoff in Brazil (if successful) symbolizes more than an international athletic competition or a technical/medical achievement, this kick-off symbolizes a technological future for Brazil and its place on the world stage (despite the protests and social unrest) .

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

ETA June 16, 2014: The kickoff seems to have been a disappointment (June 15, 2014 news item on phys.org) and for those who might be interested in some of the reasons for the World Cup unrest and protests in Brazil, John Oliver provides an excoriating overview of the organization which organizes the World Cup games while professing his great love of the games, http://www.youtube.com/watch?v=DlJEt2KU33I

Erasing time to create a temporal invisibility cloak

The idea of taking an eraser and just rubbing out embarrassing (or worse) incidents in one’s life is tempting but not yet possible despite efforts by researchers at Purdue University (Indiana, US). From a June 5, 2013 news item on ScienceDaily,

Researchers have demonstrated a method for “temporal cloaking” of optical communications, representing a potential tool to thwart would-be eavesdroppers and improve security for telecommunications.

“More work has to be done before this approach finds practical application, but it does use technology that could integrate smoothly into the existing telecommunications infrastructure,” said Purdue University graduate student Joseph Lukens, working with Andrew Weiner, the Scifres Family Distinguished Professor of Electrical and Computer Engineering.

Other researchers in 2012 invented temporal cloaking, but it cloaked only a tiny fraction — about a 10,000th of a percent — of the time available for sending data in optical communications. Now the Purdue researchers have increased that to about 46 percent, potentially making the concept practical for commercial applications.

The Purdue University June 5, 2013 news release, which originated the news item, describes the new technique,

The technique works by manipulating the phase, or timing, of light pulses. The propagation of light can be likened to waves in the ocean. If one wave is going up and interacts with another wave that’s going down, they cancel each other and the light has zero intensity. The phase determines the level of interference between these waves.

“By letting them interfere with each other you are able to make them add up to a one or a zero,” Lukens said. “The zero is a hole where there is nothing.”

Any data in regions where the signal is zero would be cloaked.

Controlling phase allows the transmission of signals in ones and zeros to send data over optical fibers. A critical piece of hardware is a component called a phase modulator, which is commonly found in optical communications to modify signals.

In temporal cloaking, two phase modulators are used to first create the holes and two more to  cover them up, making it look as though nothing was done to the signal.

“It’s a potentially higher level of security because it doesn’t even look like you are communicating,” Lukens said. “Eavesdroppers won’t realize the signal is cloaked because it looks like no signal is being sent.”

Such a technology also could find uses in the military, homeland security or law enforcement.

“It might be used to prevent communication between people, to corrupt their communication links without them knowing,” he said. “And you can turn it on and off, so if they suspected something strange was going on you could return it to normal communication.”

The technique could be improved to increase its operational bandwidth and the percentage of cloaking beyond 46 percent, he said.

In a July 14, 2011 posting I wrote about some of the research that laid the groundwork for this breakthrough at Purdue University,

Ian Sample in his July 13, 2011 posting on The Guardian Science blogs describes an entirely different approach, one that focusses on cloaking events rather than objects. From Samples’s posting,

The theoretical prospect of a “space-time” cloak – or “history editor” – was raised by Martin McCall and Paul Kinsler at Imperial College in a paper published earlier this year. The physicists explained that when light passes through a material, such as a lens, the light waves slow down. But it is possible to make a lens that splits the light in two, so that half – say the shorter wavelengths – speed up, while the other half, the longer wavelengths, slow down. This opens a gap in the light in which an event can be hidden, because half the light arrives before it has happened, and the other half arrives after the event.

In their paper, McCall and Kinsler outline a scenario whereby a video camera would be unable to record a crime being committed because there was a means of splitting the light such that 1/2 of it reached the camera before the crime occurred and the other 1/2  reached the camera afterwards. Fascinating, non?

It seems researchers at Cornell University have developed a device that can in a rudimentary fashion cloak events (from Samples’s posting),

The latest device, which has been shown to work for the first time by Moti Fridman and Alexander Gaeta at Cornell University, goes beyond the more familiar invisibility cloak, which aims to hide objects from view, by making entire events invisible.

Zeeya Merali in her extensive June 5, 2013 article (Temporal cloak erases data from history) for Nature provides an in depth explanation of the Purdue research,

To speed up the cloaking rate, Lukens and his colleagues exploited a wave phenomenon that was first discovered by British inventor Henry Fox Talbot in 1836. When a light wave passes through a series of parallel slits called a diffraction grating, it splits apart. The rays emanating from the slits combine on the other side to create an intricate interference pattern of peaks and troughs. Talbot discovered that this pattern repeats at regular intervals, creating what is now known as a Talbot carpet. There is also a temporal version of this effect in which you manipulate light over time to generate regular periods with zero light intensity, says Lukens. Data can be then be hidden in these holes in time.

Lukens’ team created its Talbot carpet in time by passing laser light through a ‘phase modulator’, a waveguide that also had an oscillating electrical voltage applied to it. As the voltage varied, the speed at which the light travelled through the waveguide was altered, splitting the light into its constituent frequencies and knocking these out of step. As predicted, at regular time intervals, the separate frequencies recombined destructively to generate time holes. Lukens’ team then used a second round of phase modulation to compress the energy further, expanding the duration of the time windows to 36 picoseconds (or 36 trillionths of a second).

The researchers tested the cloak to see if it was operating correctly by inserting a separate encoded data stream into the fibre during the time windows. They then applied two more rounds of phase modulation — to “undo the damage of the first two rounds”, says Lukens — decompressing the energy again and then combining the separated frequencies back into one. They confirmed that a user downstream would pick up the original laser signal alone, as though it had never been disturbed. The cloak successfully hid data added at a rate of 12.7 gigabits per second.

Unfortunately, the researchers were a little too successful and managed to erase the event entirely, which seems to answer a question I posed facetiously in my July 14, 2011 posting,

If you can’t see the object (light bending cloak), and you never saw the event (temporal cloak), did it exist and did it happen?

In addition to the military applications that Lukens imagines for temporal invisibility cloaks, Merali notes a another possibility in her Nature article,

Ironically, the first application of temporal cloaks may not be to hide data, but to help them to be read more accurately. The team has shown that splitting and recombining light waves in time creates increased periods in which the main data stream can be made immune to corruption by inserted data. “This could be useful to cut down crosstalk when multiple data streams share the same fibre,” says Lukens.

Gaeta agrees that the primary use for cloaking will probably be for innocent, mundane purposes. “People always imagine doing something illicit when they hear ‘cloaking’,” he says. “But these ways for manipulating light will probably be used to make current non-secret communication techniques more sophisticated.”

The research paper can be found here,

A temporal cloak at telecommunication data rate by Joseph M. Lukens, Daniel E. Leaird & Andrew M. Weiner. Nature (2013) doi:10.1038/nature12224 Published online 05 June 2013

This paper is behind a paywall. Fortunately, anyone can access my June 5, 2013 posting (Memories, science, archiving, and authenticity) which seems relevant here for two reasons. First, there’s a mention of a new open access initiative in the US which would make this research more freely available in the future with a proposal (there may be others as this initiative develops) called the Clearinghouse for the Open Research of the United States (CHORUS).  I imagine there would be some caveats and I notice that Nature magazine has signed up for this proposal. I think the second reason for mentioning yesterday’s post is pretty obvious, memory/erasing, etc.

Tears of joy as physicists announce they’re pretty sure they found the Higgs Boson

Physicists are jubilant over the announcement from CERN (European Particle Physics Laboratory) that (from the CERN website),

The ATLAS and CMS experiments at CERN today presented their latest results in the search for the long-sought Higgs boson. Both experiments see strong indications for the presence of a new particle, which could be the Higgs boson, in the mass region around 126 gigaelectronvolts (GeV). [emphases mine]

The depth of feeling is extraordinary given the announcement  is cautious. When you consider that this pursuit of the Higgs boson is international in scope (approximately 150 scientists from Canada and I assume much larger contingents from elsewhere) and the effort has spanned several years, it’s fascinating and instructive to observe the jubilance.

Here’s a sampling from the July 4, 2012 live blog Lizzy Davies of the UK’s Guardian newspaper (with tweets from Guardian science correspondent Ian Sample and others) wrote during the announcement,

7:17 am … The elusive “God particle” has become the most sought-after particle in modern science. Its discovery would be proof of an invisible energy field that fills the vacuum of space, and excitement in the scientific community is at fever pitch.

8.02am: And we’re off. First up is Joe Incandela, the leader of the team using the CMS detector to search for new particles. He’ll be followed by Fabiola Gianotti from the other team using the Atlas detector.

He says the results are “very strong, very solid”.

8.13am: As Incandela speaks, the brilliant Ian Sample is live-tweeting from Cern.

Ian Sample @iansample

I’ve been told that anyone who thinks they haven’t found a new particle after this has lost touch with reality. #cern #lhc #higgs #ichep2012

Ian Sample @iansample

Incandela “Many people went many days without sleep.” #ichep2012 #lhc #cern #higgs

And we’re keeping our observations extremely serious in keeping with the potentially historic nature of the day.

Ian Sample @iansample

Does Joe Incandela (cms spokesman) not look a little like George Clooney? #ichep2012 #lhc #higgs #lhc

8.39am: Big applause.

Anil Ananthaswamy @edgeofphysics

Combined significance of all results 5 standard deviations. Room breaks into applause, whistles #Higgs #LHC

9.44am: Rolf Heuer, Director General of CERN, offers this verdict:

As a layman I would say: I think we have it. You agree?

The audience claps. I think that’s a yes.

9.46am: Heuer flashes up on screen a slide that says Cern have discovered “a particle consistent with the Higgs boson- but which one?”

So, while this is undoubtedly a milestone with “global implications”, he says, it is also the beginning of a lot more research and investigation. But, he adds, “I think we can be very, very optimistic”.

9.49am: Peter Higgs, who first proposed the idea of this boson in 1964 and is now 83, may have shed a tear or two there- a sight which seems to have got everyone else going too.

Manlio De Domenico @manlius84

Peter #Higgs is crying… it’s a great day for physics. I am proud of being a physician :°)

I definitely wanted to get that “George Clooney” comment in here so you can have a sense of just how giddy people can get (if you didn’t already know) in the midst of an important announcement.

Jeff Forshaw, particle physics professor at the University of Manchester, provides some perspective about the importance of this announcement in his July 4, 2012 posting for the Guardian,

Fundamental science like this is thrilling, not least because of the way that years of hard work, experimentation and mathematical analysis have led us to a worldview of astonishing simplicity and beauty.

We have learned that the universe is made up of particles and that those particles dance around in a crazy quantum way. But the rules of the game are simple – they can be codified (almost) on the back of an envelope and they express the fact that, at its most elemental level, the universe is governed by symmetry. Symmetry and simplicity go hand in hand – half a snowflake is enough information to anticipate what the other half looks like – and so it is with those dancing particles. The discovery that nature is beautifully symmetric means we have very little choice in how the elementary particles do their dance – the rules simply “come for free”. Why the universe should be built in such an elegant fashion is not understood yet, but it leaves us with a sense of awe and wonder that we should be privileged to live in such a place.

Now, physicists will begin again as they try to better our understanding of the universe. But for today they will celebrate and I have some quotes from the Canadian contingent about this latest announcement (from the July 4, 2012 TRIUMF news release),

Likening the quest for the Higgs to Christopher Columbus’s voyage of
discovery to the New World, Nigel S. Lockyer, director of TRIUMF [based at the University of British Columbia in Vancouver, Canada], said,”With ATLAS and the LHC, we set sail in the direction toward what we thought was the land of the Higgs. Last December, we saw a smudge on the horizon and knew we could be getting close to land. With these latest results, we’ve
seen the shoreline! We know we’ll make it to dry land, but the ship is not
in to shore just yet.”

The results presented today are labeled preliminary. They are based on data
collected in 2011 and 2012, with the 2012 data still under analysis.
Publication of the analyses shown today is expected around the end of July.
A more complete picture of today’s observations will emerge later this year
after the LHC provides the experiments with more data.

“The observation of a new particle at about 125 GeV, or 130 times the mass
of the proton, by both the ATLAS and CMS groups is already a tremendous
achievement,” said Rob McPherson, spokesperson of the ATLAS Canada
collaboration, a professor of physics at the University of Victoria and
Institute of Particle Physics scientist. “While our preliminary measurements
show this new particle is consistent with the Higgs boson, we need more data
to be sure that it is definitely the Higgs.”

The next step will be to determine the precise nature of the particle and
its significance for our understanding of the universe. Are its properties
as expected for the long-sought Higgs boson, the final\ missing ingredient
in the Standard Model of particle physics? Or is it something more exotic?
The Standard Model describes the fundamental particles from which we, and
every visible thing in the universe, are made, and the forces acting between
them. All the matter that we can see, however, appears to be no more than
about 4% of the total. A more exotic version of the Higgs particle could be
a bridge to understanding the 96% of the universe that remains obscure.

Don’t forget there’s an open house from 9 am to 11 am today at TRIUMF where you can find out more about the Higgs boson and the latest announcement.

ETA July 4, 2012 1:30 pm PST: You can still attend a live Q&A being held by the journal Nature tomorrow (July 5, 2012) at 2 pm BST or 6 am PST: Live Q&A: Higgs found, so what’s next?

Dancing the Higgs boson?

Sometimes known as the ‘god’ particle, there’s talk that a major announcement is about to be made about the Higgs boson next week at CERN (European Laboratory for Particle Physics). From the Dec. 6, 2011 posting by Ian Sample on the Guardian science blogs,

Soon after Rolf-Dieter Heuer, the director general at Cern, emailed staff about next Tuesday’s seminar [Dec. 13, 2011] on the most sought-after particle in modern times, rumours hit the physics blogs that the lab might finally have caught sight of the Higgs boson.

I wrote last week that the heads of the two groups that work on the Atlas and CMS detectors at the Large Hadron Collider (LHC) will give the talks. That in itself is telling – usually more junior researchers present updates on the search for the missing particle. [emphasis mine]

Sample provides an explanation of the Higgs boson and why it and its mechanism has such importance,

…  The Higgs mechanism describes an invisible field that, it is argued, split one force into two soon after the birth of the universe. Specifically, it divided an ancient “electroweak” force into the electromagnetic and weak forces we see at work today. The latter is seen in some radioactive decay processes, and is involved in creating sunshine. [emphasis mine]

This is an excerpt from the full explanation, which precedes answers from a number of physicists around the world to a question Sample asked about what gives mass to fundamental particles. Here are a few randomly chosen answers Sample received to his question,

Shelly Glashow, Boston University. Nobel prize in physics, 1979

“They said when the collider goes on
Soon they’d see that elusive boson
Very soon we shall hear
Whether Cern finds it this year
But it’s something I won’t bet very much on.”

Frank Wilczek, MIT. Nobel prize in physics, 2004

“The Higgs mechanism for generating masses is extremely attractive and has no real competition. Beyond that there’s little certainty. A near-minimal implementation of supersymmetry, perhaps augmented with ultra-weakly interacting particles, is the prettiest possibility. So I’d like several Higgs particles, Higgisinos, some ghostly stuff, and a pony.”
[Note: A Higgsino is a supersymmetric partner of a Higgs boson].

Martinus Veltman, Universities of Michigan and Utrecht. Nobel prize in physics, 1999

“You are mistaken about the Higgs search at Cern. The machine runs at half energy so far, and no one expects relevant (for the Higgs particle) results. After the shutdown [in 2013] the machine will gradually go up in energy, and if all goes well (this is non-trivial) then in about half a year the machine energy might reach design value and there might be Higgs-relevant results. So if you are thinking next week then you are mistaken. Of course, we never know what surprises nature has in store for us … It is my opinion that there is no Higgs.”

Philip Anderson, Princeton University. Nobel prize in physics, 1977

“I doubt if the opinions of one who thinks about these problems perhaps every 30 years or so will carry much weight. I’ve been busy. But the last time I thought, I realised a) that the Higgs (-A) mechanism fits the facts too beautifully not to be true, but b) it must be incomplete, because there’s no proper accounting of the vacuum energy.”
[Note: Anderson essentially described the Higgs mechanism in 1962, two years before Higgs and five other physicists published the theory.]

There are more answers in Sample’s posting.

While it’s fascinating to see how widely divergent opinions are about Higgs, I have to confess my understanding of all this is rudimentary. Perhaps the dancers and performers (my Nov. 28, 2011 posting about a dance/performance residency at CERN) will help clarify the matter for me.

Splitting light to make events invisible

It’s always about bending light so that an object becomes invisible when you hear about scientists working on invisibility cloaks. Dexter Johnson (Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website) recently featured some of the newest work in this area in his July 7, 2011 posting about a graphene cloaking device (based on the concept of ‘mantle cloaking’) proposed by researchers at the University of Texas at Austin.

Ian Sample in his July 13, 2011 posting on The Guardian Science blogs describes an entirely different approach, one that focusses on cloaking events rather than objects. From Samples’s posting,

The theoretical prospect of a “space-time” cloak – or “history editor” – was raised by Martin McCall and Paul Kinsler at Imperial College in a paper published earlier this year. The physicists explained that when light passes through a material, such as a lens, the light waves slow down. But it is possible to make a lens that splits the light in two, so that half – say the shorter wavelengths – speed up, while the other half, the longer wavelengths, slow down. This opens a gap in the light in which an event can be hidden, because half the light arrives before it has happened, and the other half arrives after the event.

In their paper, McCall and Kinsler outline a scenario whereby a video camera would be unable to record a crime being committed because there was a means of splitting the light such that 1/2 of it reached the camera before the crime occurred and the other 1/2  reached the camera afterwards. Fascinating, non?

It seems researchers at Cornell University have developed a device that can in a rudimentary fashion cloak events (from Samples’s posting),

The latest device, which has been shown to work for the first time by Moti Fridman and Alexander Gaeta at Cornell University, goes beyond the more familiar invisibility cloak, which aims to hide objects from view, by making entire events invisible.

Fridman’s and Gaeta’s research is to be published in Nature magazine at some time in the future and I look forward to hearing more about how this ‘space/time invisibility cloak’ works and whether or not other scientists can replicate the effect.

One final comment, Samples mentioned a special July 2011 issue (freeish download)  of Physics World devoted to invisibility. Excerpted from Matin Durrani’s July 8, 2011 posting on the Physics World blog,

It is perhaps a little-known fact that Griffin – the main character in H G Wells’ classic novel The Invisible Man – was a physicist. In the 1897 book, Griffin explains how he quit medicine for physics and developed a technique that made himself invisible by reducing his body’s refractive index to match that of air.

While Wells’ novel is obviously a work of fiction, the quest for invisibility has made real progress in recent years – and is the inspiration for this month’s special issue of Physics World, which you can download for free via this link [they do  want your contact details].

Kicking off the issue is Sidney Perkowitz, who takes us on a whistle-stop tour of invisibility through the ages – from its appearance in Greek mythology to camouflaging tanks on the battlefield – before bringing us up to date with recent scientific developments.

While it’s not yet possible to hear more Fridman’s and Gaeta’s device until Nature publishes their research, Sample offers more details based on materials, Demonstration of temporal cloaking, the researchers submitted to the arvix database on Monday, July 11, 2011.

I wonder what would happen if you had both kinds of invisibility cloaks at work. It brings to mind a Zen koan (I’ve paraphrased it), If a tree falls in the forest and no one is there, does it make a sound?

Or in this case: If you can’t see the object (light bending cloak), and you never saw the event (temporal cloak), did it exist and did it happen?

http://physicsworld.com/cws/download/jul2011

Canada goes on a science spending spree (of sorts)

The Canada Excellence Research Chairs (CERC) programme (part of the 2008 Canadian federal budget) has announced 19 new researchers are coming to Canada. According to the CERC FAQs (frequently asked questions) page, each researcher in this programme will receive,

$1.4 million annual award paid to the chairholders for seven years [which] will allow researchers to build the teams and acquire the tools they need to conduct world-class research.

Having your funding guaranteed for seven years is a highly attractive proposition, especially with the current economic situation. (Idle thought: I am curious as to the inside story about why only 19 of 20 grants were awarded.)

I understand we have achieved quite a coup and some extraordinary and accomplished scientists will be setting up shop in this country. Kudos to the government for the establishment of guaranteed funding for these scientific endeavours. Here’s Tony Clement (Minister for Industry Canada) offering an enthusiastic endorsement and back pat for his programme, first from the news release on the Industry website,

“The Government of Canada recognizes the importance of supporting leading-edge research and world-class researchers,” said Minister Clement. “The CERC program confirms Canada’s standing as a global centre of excellence in research and higher learning. [emphasis mine]This program supports our government’s commitment to ensuring Canada’s future economic growth by investing in innovation and research capacity in priority areas.”

then (from the article in Globe and Mail by Elizabeth Church and accessed through the Canadian Science Policy Research Centre),

“Canada has to become more than ever a magnet for talent,” said Industry Minister Tony Clement, in Toronto to name the successful applicants. The announcement, he said, builds on other federal initiatives, such investments in campus building projects as part of its stimulus spending and the Vanier scholarships for graduate students. All are central, he said, to the government’s innovation agenda.

“Talk is cheap. We are actually doing,” Mr. Clement said later in an interview, referring to critics in the science community who say the Harper government has not committed to research in the same way as U.S. President Barack Obama and other foreign leaders.

So let’s review, this programme has attracted 19 stellar scientists. That’s very nice but what about all the other scientists in Canada? Are they going to get guaranteed funding? Then there’s this, Where is the money for this CERC programme coming from? I found an answer of sorts in the UK’s Guardian Newspaper (Fears of brain drain as renowned British scientists move to Canada by Ian Sample),

Britain is to lose several of its foremost scientists next year following a recruitment drive to attract top brains to Canada.

The four researchers will leave their posts at UK universities for better-funded positions in institutions across the country.

The British researchers won four C$20m (£13m) awards created by the Canadian government, the most by any country outside the US, which is to lose nine scientists to the scheme. The C$20m is awarded over seven years and comprises C$10m from the scheme and $C10m from the university. [emphasis mine]

So, 19 x $20M = $180M/year x 7 years = $1.26B with 1/2 from the federal budget and the other 1/2 (or more?) from university budgets (much of it federal money).

ETA (May 21, 2010): Rob Annan (Don’t leave Canada behind) kindly corrected my arithmetic as per this (ps. quick note on the math re. funding. It’s 19 researchers x $1.7M annually ($3.4 accounting for matching funds). The $20M is the total commitment over seven years.) The rest of what Rob had to say is in the Comment section.

In another Globe and Mail article (accessed through the Canadian Science Policy Centre) by Steven Chase and Elizabeth Church,

For Ottawa, it was one of the biggest bets on scientific research in a generation. But for the man at the centre of Canada’s worldwide drive to recruit top scientists, it was a “ballsy” play that at times resembled a bidding war for NHL free agents.

Derek Burney said in some cases foreign universities and employers counter-bid furiously to keep star researchers during the just-completed global talent scout for Canada Excellence Research Chairs. The effort cost Ottawa $190-million in grants and netted 19 renowned scientists who are moving to Canada.

“It [was] almost like a hockey negotiation where you are trying to entice a player from another team. And the other team wants to hang on to them, and so they offer more money,” said Mr. Burney, who heads the selection board of the Canada Excellence Research Chair program set up by the Harper government.

During a global recession when deficit pressures would appear to demand restraint on all fronts, Canada instead travelled the world with a chequebook – looking to bulk up on the scientific innovation it hopes will strengthen economic foundations here at home. [emphases mine]

I’m glad to see that they are keeping tight control of the purse strings (where’s a sarcasm symbol when you need one?). Meanwhile in the UK, Sample goes on to note a possible reason for the British losses,

The moves come after several senior scientists in Britain warned that a brain drain was imminent as the new government prepares to make swingeing cuts in public spending that are likely to have a heavy impact on research funding.

At least one of the other researchers comes to us from California, a US state which is in such dire financial straits that there’s been talk of bankruptcy.

Two observations. First, I notice that none of these recruits are from Canada. I guess there’s an assumption that research excellence exists only outside of the country.

Second, “Talk is cheap” (Clement’s comment) is something that’s said when there has been too much talk and no (or not enough) action. I don’t think it fits a situation where there has been no talk.

In case it got missed, I have mixed feelings about this latest development. I hope it works out well and that the government doesn’t rest on this accomplishment but goes on to address Canada’s need for science policy, science education, science literacy, science communication, public engagement, encouragement for business support of science, and support for the academic science which is practiced in this country.

ETA (May 21, 2010): For another take on the matter, read Sumitra Rajagopalan’s opinion piece in the May 21, 2010 online edition of the Globe and Mail, When science gets political, long-term knowledge is lost. From the article,

Since Canada has lagged behind its Western counterparts in the manufacture and sale of high-tech products, this focus has been welcomed by industry. But this government’s interest isn’t really “applied science” but a more short-sighted “utilitarian science” – technologies that can quickly solve immediate, narrowly defined problems, rather than long-term investments in building knowledge. Worse, we are beginning to see an intertwining of scientific priorities with politics.

These trends are very apparent in some of the CERC choices. The biomedical and computing research chairs are beyond reproach, but some of the other choices reflect a narrow, utilitarian focus.

She goes on to thoughtfully support her point. I would highly recommend reading this, if you are interested in the issue.