Tag Archives: George Church

Colossal Biosciences (a de-extinction company), creates induced pluripotent stem cells (iPSC) from elephant skin cells for Woolly Mammoth Project

De-extinction (also known as resurrection biology) has been mentioned here before (my January 18, 2019 posting). It’s essentially a ‘Jurassic Park’ fantasy that some people want to turn into reality and it seems they are now one step closer where woolly mammoths are concerned.

The breakthrough has to do with Asian elephant stem cells,

Asian elephant iPSC colonies
Caption: Asian elephant iPSC colonies stained for pluripotency factors OCT4 (Magenta) and SOX2(green), nuclear DNA Hoechst (blue) and cytoskeletal protein actin (red) Credit: Colossal Biosciences

Bob Yirka’s March 7, 2024 article for phys.org offers a succinct summary, Note: Links have been removed,

A team of bioengineers at de-extinction company Colossal Biosciences has announced that they created induced pluripotent stem cells (iPSC) from elephant skin cells. In speaking with the press, officials with the team reported that they are still in the process of writing a paper describing their efforts and plan to post it on the bioRxiv preprint server. Ewen Callaway has published a News article in Nature about the announcement.

Aside: Colossal Biosciences was co-founded by George Church (Colossal profile) mentioned here many times in regard to gene editing and in the January 18, 2019 posting about de-extinction.

A March 6, 2024 Colossal Biosciences news release on EurekAlert provides more detail about the latest research,

Colossal Biosciences(“Colossal”), the world’s first de-extinction company, announces today that their Woolly Mammoth team has achieved a global-first iPSC (induced pluripotent stem cells) breakthrough. This milestone advancement was one of the primary early goals of the mammoth project, and supports the feasibility of future multiplex ex utero mammoth gestation.

iPSC cells represent a single cell source that can propagate indefinitely and give rise to every other type of cell in a body. As such, the progress with elephant iPSCs extends far beyond this de-extinction project holding tremendous potential for studying cell development, cell therapy, drug screening, synthetic embryos, in vitro gametogenesis, and the use of iPSCs for nuclear transfer across all species. Invaluable for Colossal’s Woolly Mammoths, these cells can be multiplex-edited and differentiated to study cold adaptation traits like woolly hair growth and fat storage in cellular and organoid models.  

“In the past, a multitude of attempts to generate elephant iPSCs have not been fruitful. Elephants are a very special species, and we have only just begun to scratch the surface of their fundamental biology,” shared Eriona Hysolli, Head of Biological Sciences at Colossal Biosciences. “My early work in Dr. George Church’s laboratory had been partially successful with iPSC-like cells that led to the foundation of the cells we have currently developed. And now, using a multi-pronged approach to reprogramming we have the most successful efforts to date. The Colossal mammoth team persisted quite successfully as this progress is invaluable for the future of elephant assisted reproductive technologies, as well as advanced cellular modeling of mammoth phenotypes.”

The derivation of mouse iPSCs pioneered by Shinya Yamanaka in 2006 paved the way for using a  4-factor protocol to derive human, horse, pig, cattle, rabbit, monkey, ape, big cats, rhino and even avian species iPSCs among many more. While the medium where the cells grew required some tweaking depending on the species, it was surprising to observe how close to universal the reprogramming protocol was across species. Yet, elephant iPSCs still remained elusive.

“Elephants might get the “hardest to reprogram” prize, but learning how to do it anyway will help many other studies, especially on endangered species. This milestone gives us insights into developmental biology and the balance between senescence and cancer. It opens the door for obtaining gametes and other cell types without surgery on precious animals. It opens the door to establishing connections between genes and traits for both modern and extinct relatives – including resistance to environmental extremes and pathogens.  This collaboration has been a true pleasure and a colossal accelerant for our challenging project,” shared Colossal co-founder and renowned Harvard geneticist Dr. George Church [emphasis mine].

Using chemical-based induction media first, followed by addition of transcription factors  Oct4, Sox2, Klf4, Myc +/- Nanog and Lin28, and p53 pathway suppression, the team has achieved the most successful reprogramming of elephant iPSCs yet. The approach differs from other more standard reprogramming protocols for other species due in part  to the complexities of the TP53 pathway in elephants as their genome contains up to 19 copies of TP53 retrogenes. TP53 is a core gene utilized by the cell to carefully regulate its growth so as not to become cancerous. Additionally, reprogramming, which in itself is quite long and inefficient for higher mammal species, takes longer for elephants. But, the successful iPSC cells now express multiple core pluripotency factors and are able to differentiate into the three germ layers that have the potential to give rise to each cell type in the body.

These newly reprogrammed iPSC cells have been validated through immunostaining, PCR of pluripotency and differentiation markers, transcriptomics analysis, embryoid bodies and teratoma formation. This work will be published in Bioarxiv with a peer-reviewed article in a scientific journal in progress. It is not the end of the elephant reprogramming journey, but this announcement marks the first successful steps. The mammoth stem cell team with team lead Evan Appleton are now focused on further maturing these cells, and pursuing additional iPSC generation strategies that have so far also been successful. This work will be shared in follow-up publications.

“We are most excited to use the cells we have developed to grow elephant gametes in a dish. While elephants have been a challenging species, this has been an incredibly unique opportunity with so much to learn and share now and in the near future,” shared team lead Evan Appleton.

“We knew when we set out on the Woolly Mammoth de-extinction project that it would be challenging but we’ve always had the best team on the planet focused on the task at hand,” stated co-founder and CEO of Colossal, Ben Lamm. “This is a momentous step, with numerous applications, that we are proud to share with the scientific community. Each step brings us closer to our long term goals of bringing back this iconic species.”

The team is also working to establish a mechanism that can explain why elephant cell reprogramming has been challenging. Doing so is critical to deriving iPSCs faster, achieving more advanced tri-lineage differentiation, particularly in vitro gametogenesis, which is crucial to test the full potential of the iPSCs. Once the iPSCs can be used to establish a model for synthetic elephant embryos, it will also be integral to understanding the long and complex elephant (and by association mammoth) development and gestation cycle.  This will be critical to Colossals’ re-wilding efforts which rely heavily on leveraging ex utero development for species preservation and restoration. All of these scientific developments hold extension possibilities across the field of developmental biology which have ramifications far beyond the current Colossal projects.

ABOUT COLOSSAL

Colossal was founded by emerging technology and software entrepreneur Ben Lamm and world-renowned geneticist and serial biotech entrepreneur George Church, Ph.D., and is the first to apply CRISPR technology for the purposes of species de-extinction. Colossal creates innovative technologies for species restoration, critically endangered species protection and the repopulation of critical ecosystems that support the continuation of life on Earth. Colossal is accepting humanity’s duty to restore Earth to a healthier state, while also solving for the future economies and biological necessities of the human condition through cutting-edge science and technologies.

In trying to find out why someone would want to bring back an animal adapted to the cold to a planet that is warming up, I found a couple of articles. There’s this ebullient Nicholas St. Fleur April 4, 2024 article “What ‘de-extinction’ of woolly mammoths can teach us: a Q&A with evolutionary biologist Beth Shapiro” for Stat News. The article was occasioned when Shapiro was named chief scientific officer for Colossal Biosciences. For a more critical analysis of de-extinction, there’s this September 15, 2021 article “Don’t count on resurrected woolly mammoths to combat climate change” by Justine Calma for The Verge.

Use Gene Editing to Make Better Babies (a February 17, 2022 livestreamed debate from 05:00 PM − 06:30 PM EST)

I have high hopes for this debate on gene edited babies. Intelligence Squared US convenes good debates. (I watched their ‘de-extinction’ debate back in 2019, which coincidentally, featured George Church, one of the debaters in this event.) Not ‘good’ in that I necessarily agree or am interested in the topics but good as in thoughtful. Here’s more from the organization’s mission on their What is IQ2US? webpage,

A nonpartisan, nonprofit organization, Intelligence Squared U.S. addresses a fundamental problem in America: the extreme polarization of our nation and our politics.

Our mission is to restore critical thinking, facts, reason, and civility to American public discourse.

More about the upcoming debate can be found on the Use Gene Editing to Make Better Babies event page,

Use Gene Editing to Make Better Babies
Hosted By John Donvan

Thursday, February 17, 2022
05:00 PM − 06:30 PM EST

A genetic disease runs in your family. Your doctor tells you that, should you wish to have a child, that child is likely to also carry the disease. But a new gene-editing technology could change your fate. It could ensure that your baby is — and remains — healthy. Even more, it could potentially make sure your grandchildren are also free of the disease. What do you do? Now, imagine it’s not a rare genetic disorder, but general illness, or eye color, or cognitive ability, or athleticism. Do you opt into this new world of genetically edited humans? And what if it’s not just you. What your friends, neighbors, and colleagues are also embracing this genetic revolution? Right now, science doesn’t give you that choice. But huge advancements in CRISPR [clustered regularly interspaced short palindromic repeats] technology are making human gene editing a reality. In fact, in 2018, a Chinese scientist announced the first genetically modified babies; twin girls made to resist HIV, smallpox, and malaria. The promise of this technology is clear. But gene editing is not without its perils. Its critics say the technology is destined to exacerbate inequality, pressure all parents (and nations) into editing their children to stay competitive, and meddling with the most basic aspect of our humanity. In this context, we ask the question: Should we use gene editing to make better babies?

Main Points

The use of gene editing allows for couples to have children when they might otherwise have that option unavailable for them. It also allows for less to be left to chance during the pregnancy.

Gene editing will allow for babies to be born with reduced or eliminated chances of inheriting and passing on genes linked to diseases. We have a moral imperative to use technology that will improve the quality of life.

It is only a matter of time before gene editing becomes a widespread technology, potentially used by competitors and rivals on the international stage. If we have the technology, we should use it to our advantage to remain competitive.

The use of gene editing to create “better” outcomes in children will inherently create social stratification based on any gene editing, likely reflecting existing socioeconomic status. Additionally, the term ‘better’ is arbitrary and potentially short-sighted and dangerous.

Currently, there exist reasonable alternatives to gene editing for every condition for which gene editing can be used. 

The technology is still developing, and the long-term effects of any gene-editing could be potentially dangerous with consequences echoing throughout the gene environment. 

A February 8, 2022 Intelligence Squared U.S. news release about the upcoming debate (received via email) provides details about the debaters,

FOR THE MOTION – BIOS

* George Church, Geneticist & Founder, Personal Genome Project 
George Church is one of the nation’s leading geneticists and scholars. He is a professor of genetics at Harvard Medical School and MIT. In 1984, he developed the first direct genomic sequencing method, which resulted in the first genome sequence. He also helped initiate the Human Genome Project in 1984 and the Personal Genome Project in 2005. Church also serves as the director of the National Institutes of Health Center of Excellence in Genomic Science.  

* Amy Webb, Futurist & Author, “The Genesis Machine”  
Amy Webb is an award-winning author and futurist. She is the founder and CEO of the Future Today Institute and was named one of five women changing the world by Forbes. Her new book, “The Genesis Machine,” explores the future of synthetic biology, including human gene editing. Webb is a professor of strategic foresight at New York University’s Stern School of Business and has been elected a life member of the Council on Foreign Relations.  

AGAINST THE MOTION – BIOS

* Marcy Darnovsky, Policy Advocate & Executive Director, Center for Genetics and Society 
Marcy Darnovsky is a policy advocate and one of the most prominent voices on the politics of human biotechnology. As executive director of the Center for Genetics and Society, Darnovsky is focused on the social justice and public interest implications of gene editing. This work is informed by her background as an organizer and advocate in a range of environmental and progressive political movements.    

* Françoise Baylis, Philosopher & Author, “Altered Inheritance”  
Françoise Baylis is a philosopher whose innovative work in bioethics, at the intersection of policy and practice, has stretched the very boundaries of the field. She is the author of “Altered Inheritance: CRISPR and the Ethics of Human Genome Editing,” which explores the scientific, ethical, and political implications of human genome editing. Baylis is a research professor at Dalhousie University and a fellow of the Canadian Academy of Health Sciences. In 2017, she was awarded the Canadian Bioethics Society Lifetime Achievement Award. 

Getting back to the Use Gene Editing to Make Better Babies event page, there are a few options,

Request a Ticket

Have a question? Ask us

There’s also an option to Vote For or Against the Motion but you’ll have to go to the Use Gene Editing to Make Better Babies event page.

Two of the debaters have been mentioned on this blog before, George Church and Françoise Baylis. There are several references to Church including this mention with regard to Dr. He Jiankui and his CRISPR twins (July 28, 2020 posting). Françoise Baylis features in four 2019 postings with the most recent being this October 17, 2019 piece.

For anyone curious about the ‘de-extinction’ debate, it was described here in a January 18, 2019 posting prior to the event.

Reading a virus like a book

Teaching grammar and syntax to artificial intelligence (AI) algorithms (specifically natural language processing (NLP) algorithms) has helped researchers understand and predict viral mutations more speedily. This facility is especially useful at a time when the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus seems to be mutating into more easily transmissible variants.

Will Douglas Heaven’s Jan. 14, 2021 article for the Massachusetts Institute of Technology’s MIT Technology Review describes the work that links AI, grammar, and mutating viruses (Note: Links have been removed),

Galileo once observed that nature is written in math. Biology might be written in words. Natural-language processing (NLP) algorithms are now able to generate protein sequences and predict virus mutations, including key changes that help the coronavirus evade the immune system.

The key insight making this possible is that many properties of biological systems can be interpreted in terms of words and sentences. “We’re learning the language of evolution,” says Bonnie Berger, a computational biologist at the Massachusetts Institute of Technology [MIT].

In the last few years, a handful of researchers—including teams from geneticist George Church’s [Professor of Health Sciences and Technology at Harvard University and MIT, etc.] lab and Salesforce [emphasis mine]—have shown that protein sequences and genetic codes can be modeled using NLP techniques.

In a study published in Science today, Berger and her colleagues pull several of these strands together and use NLP to predict mutations that allow viruses to avoid being detected by antibodies in the human immune system, a process known as viral immune escape. The basic idea is that the interpretation of a virus by an immune system is analogous to the interpretation of a sentence by a human.

Berger’s team uses two different linguistic concepts: grammar and semantics (or meaning). The genetic or evolutionary fitness of a virus—characteristics such as how good it is at infecting a host—can be interpreted in terms of grammatical correctness. A successful, infectious virus is grammatically correct; an unsuccessful one is not.

Similarly, mutations of a virus can be interpreted in terms of semantics. Mutations that make a virus appear different to things in its environment—such as changes in its surface proteins that make it invisible to certain antibodies—have altered its meaning. Viruses with different mutations can have different meanings, and a virus with a different meaning may need different antibodies to read it.

Instead of millions of sentences, they trained the NLP model on thousands of genetic sequences taken from three different viruses: 45,000 unique sequences for a strain of influenza, 60,000 for a strain of HIV, and between 3,000 and 4,000 for a strain of Sars-Cov-2, the virus that causes covid-19. “There’s less data for the coronavirus because there’s been less surveillance,” says Brian Hie, a graduate student at MIT, who built the models.

The overall aim of the approach is to identify mutations that might let a virus escape an immune system without making it less infectious—that is, mutations that change a virus’s meaning without making it grammatically incorrect.

But it’s also just the beginning. Treating genetic mutations as changes in meaning could be applied in different ways across biology. “A good analogy can go a long way,” says Bryson [Bryan Bryson, a biologist at MIT].

If you have time, I recommend reading Heaven’s Jan. 14, 2021 article in its entirety as it’s well written with clear explanations. As for the article’s mentions of George Church and Salesforce, the former could be expected while the latter is not (by me, I speak for no one else).

I find it fascinating that a company which describes itself (from What is Salesforce?) as providing “… customer relationship management, or CRM. It gives all your departments — including marketing, sales, commerce, and service — a shared view of your customers … ” seems to be conducting investigations into one (or more?) areas of biology.

For those who’d like to dive into the science as described in Heaven’s article, here’s a link to and a citation for the paper,

Learning the language of viral evolution and escape by Brian Hie, Ellen D. Zhong, Bonnie Berger, Bryan Bryson. Science 15 Jan 2021: Vol. 371, Issue 6526, pp. 284-288 DOI: 10.1126/science.abd7331

This paper appears to be open access (or it is, at least for now).

There is also a preprint version available on bioRxiv, which is an open access repository.

July 2020 update on Dr. He Jiankui (the CRISPR twins) situation

This was going to be written for January 2020 but sometimes things happen (e.g., a two-part overview of science culture in Canada from 2010-19 morphed into five parts with an addendum and, then, a pandemic). By now (July 28, 2020), Dr. He’s sentencing to three years in jail announced by the Chinese government in January 2020 is old news.

Regardless, it seems a neat and tidy ending to an international scientific scandal concerned with germline-editing which resulted in at least one set of twins, Lulu and Nana. He claimed to have introduced a variant (“Delta 32” variation) of their CCR5 gene. This does occur naturally and scientists have noted that people with this mutation seem to be resistant to HIV and smallpox.

For those not familiar with the events surrounding the announcement, here’s a brief recap. News of the world’s first gene-edited twins’ birth was announced in November 2018 just days before an international meeting group of experts who had agreed on a moratorium in 2015 on exactly that kind of work. The scientist making the announcement about the twins was scheduled for at least one presentation at the meeting, which was to be held in Hong Kong. He did give his presentation but left the meeting shortly afterwards as shock was beginning to abate and fierce criticism was rising. My November 28, 2018 posting (First CRISPR gene-edited babies? Ethics and the science story) offers a timeline of sorts and my initial response.

I subsequently followed up with two mores posts as the story continued to develop. My May 17, 2019 posting (Genes, intelligence, Chinese CRISPR (clustered regularly interspaced short palindromic repeats) babies, and other children) featured news that Dr. He’s gene-editing may have resulted in the twins having improved cognitive skills. Then, more news broke. The title for my June 20, 2019 posting (Greater mortality for the CRISPR twins Lulu and Nana?) is self-explanatory.

I have roughly organized my sources for this posting into two narratives, which I’m contrasting with each other. First, there is one found in the mainstream media (English language), ‘The Popular Narrative’. Second, there is story where Dr. He is viewed more sympathetically and as part of a larger community where there isn’t nearly as much consensus over what should or shouldn’t be done as ‘the popular narrative’ insists.

The popular narrative: Dr. He was a rogue scientist

A December 30, 2019 article for Fast Company by Kristin Toussaint lays out the latest facts (Note: A link has been removed),

… Now, a court in China has sentenced He to three years in prison, according to Xinhua, China’s state-run press agency, for “illegal medical practices.”

The court in China’s southern city of Shenzhen says that He’s team, which included colleagues Zhang Renli and Qin Jinzhou from two medical institutes in Guangdong Province, falsified ethical approval documents and violated China’s “regulations and ethical principles” with their gene-editing work. Zhang was sentenced to two years in jail, and Qin to 18 months with a two-year reprieve, according to Xinhau.

Ian Sample’s December 31, 2020 article for the Guardian offers more detail (Note: Links have been removed),

The court in Shenzhen found He guilty of “illegal medical practices” and in addition to the prison sentence fined him 3m yuan (£327,360), according to the state news agency, Xinhua. Two others on He’s research team received lesser fines and sentences.

“The three accused did not have the proper certification to practise medicine, and in seeking fame and wealth, deliberately violated national regulations in scientific research and medical treatment,” the court said, according to Xinhua. “They’ve crossed the bottom line of ethics in scientific research and medical ethics.”

[…] the court found He had forged documents from an ethics review panel that were used to recruit couples for the research. The couples that enrolled had a man with HIV and a woman without and were offered IVF in return for taking part.

Zhang Renli, who worked with He, was sentenced to two years in prison and fined 1m yuan. Colleague Qin Jinzhou received an 18-month sentence, but with a two-year reprieve, and a 500,000 yuan fine.

He’s experiments, which were carried out on seven embryos in late 2018, sent shockwaves through the medical and scientific world. The work was swiftly condemned for deceiving vulnerable patients and using a risky, untested procedure with no medical justification. Earlier this month, MIT Technology Review released excerpts from an early manuscript of He’s work. It casts serious doubts on his claims to have made the children immune to HIV.

Even as the scientific community turned against He, the scientist defended his work and said he was proud of having created Lulu and Nana. A third child has since been born as a result of the experiments.

Robin Lovell-Badge at the Francis Crick Institute in London said it was “far too premature” for anyone to pursue genome editing on embryos that are intended to lead to pregnancies. “At this stage we do not know if the methods will ever be sufficiently safe and efficient, although the relevant science is progressing rapidly, and new methods can look promising. It is also important to have standards established, including detailed regulatory pathways, and appropriate means of governance.”

A December 30, 2019 article, by Carolyn Y. Johnson for the Washington Post, covers much the same ground although it does go on to suggest that there might be some blame to spread around (Note: Links have been removed),

The Chinese researcher who stunned and alarmed the international scientific community with the announcement that he had created the world’s first gene-edited babies has been sentenced to three years in prison by a court in China.

He Jiankui sparked a bioethical crisis last year when he claimed to have edited the DNA of human embryos, resulting in the birth of twins called Lulu and Nana as well as a possible third pregnancy. The gene editing, which was aimed at making the children immune to HIV, was excoriated by many scientists as a reckless experiment on human subjects that violated basic ethical principles.

The judicial proceedings were not public, and outside experts said it is hard to know what to make of the punishment without the release of the full investigative report or extensive knowledge of Chinese law and the conditions under which He will be incarcerated.

Jennifer Doudna, a biochemist at the University of California at Berkeley who co-invented CRISPR, the gene editing technology that He utilized, has been outspoken in condemning the experiments and has repeatedly said CRISPR is not ready to be used for reproductive purposes.

R. Alta Charo, a fellow at Stanford’s Center for Advanced Study in the Behavioral Sciences, was among a small group of experts who had dinner with He the night before he unveiled his controversial research in Hong Kong in November 2018.

“He Jiankui is an example of somebody who fundamentally didn’t understand, or didn’t want to recognize, what have become international norms around responsible research,” Charo said. “My impression is he allowed his personal ambition to completely cloud rational thinking and judgment.”

Scientists have been testing an array of powerful biotechnology tools to fix genetic diseases in adults. There is tremendous excitement about the possibility of fixing genes that cause serious disease, and the first U.S. patients were treated with CRISPR this year.

But scientists have long drawn a clear moral line between curing genetic diseases in adults and editing and implanting human embryos, which raises the specter of “designer babies.” Those changes and any unanticipated ones could be inherited by future generations — in essence altering the human species.

“The fact that the individual at the center of the story has been punished for his role in it should not distract us from examining what supporting roles were played by others, particularly in the international scientific community and also the environment that shaped and encouraged him to push the limits,” said Benjamin Hurlbut [emphasis mine], associate professor in the School of Life Sciences at Arizona State University.

Stanford University cleared its scientists, including He’s former postdoctoral adviser, Stephen Quake, finding that Quake and others did not participate in the research and had expressed “serious concerns to Dr. He about his work.” A Rice University spokesman said an investigation continues into bioengineering professor Michael Deem, He’s former academic adviser. Deem was listed as a co-author on a paper called “Birth of Twins After Genome Editing for HIV Resistance,” submitted to scientific journals, according to MIT Technology Review.

It’s interesting that it’s only the Chinese scientists who are seen to be punished, symbolically at least. Meanwhile, Stanford clears its scientists of any wrongdoing and Rice University continues to investigate.

Watch for the Hurlbut name (son, Benjamin and father, William) to come up again in the ‘complex narrative’ section.

Criticism of the ‘twins’ CRISPR editing’ research

Antonio Regalado’s December 3, 2020 article for the MIT (Massachusetts Institute of Technology) Technology Review features comments from various experts on an unpublished draft of Dr. He Jiankui’s research

Earlier this year a source sent us a copy of an unpublished manuscript describing the creation of the first gene-edited babies, born last year in China. Today, we are making excerpts of that manuscript public for the first time.

Titled “Birth of Twins After Genome Editing for HIV Resistance,” and 4,699 words long, the still unpublished paper was authored by He Jiankui, the Chinese biophysicist who created the edited twin girls. A second manuscript we also received discusses laboratory research on human and animal embryos.

The metadata in the files we were sent indicate that the two draft papers were edited by He in late November 2018 and appear to be what he initially submitted for publication. Other versions, including a combined manuscript, may also exist. After consideration by at least two prestigious journals, Nature and JAMA, his research remains unpublished.

The text of the twins paper is replete with expansive claims of a medical breakthrough that can “control the HIV epidemic.” It claims “success”—a word used more than once—in using a “novel therapy” to render the girls resistant to HIV. Yet surprisingly, it makes little attempt to prove that the twins really are resistant to the virus. And the text largely ignores data elsewhere in the paper suggesting that the editing went wrong.

We shared the unpublished manuscripts with four experts—a legal scholar, an IVF doctor, an embryologist, and a gene-editing specialist—and asked them for their reactions. Their views were damning. Among them: key claims that He and his team made are not supported by the data; the babies’ parents may have been under pressure to agree to join the experiment; the supposed medical benefits are dubious at best; and the researchers moved forward with creating living human beings before they fully understood the effects of the edits they had made.

1. Why aren’t the doctors among the paper’s authors?

The manuscript begins with a list of the authors—10 of them, mostly from He Jiankui’s lab at the Southern University of Science and Technology, but also including Hua Bai, director of an AIDS support network, who helped recruit couples, and Michael Deem, an American biophysicist whose role is under review by Rice University. (His attorney previously said Deem never agreed to submit the manuscript and sought to remove his name from it.)

It’s a small number of people for such a significant project, and one reason is that some names are missing—notably, the fertility doctors who treated the patients and the obstetrician who delivered the babies. Concealing them may be an attempt to obscure the identities of the patients. However, it also leaves unclear whether or not these doctors understood they were helping to create the first gene-edited babies.

To some, the question of whether the manuscript is trustworthy arises immediately.

Hank Greely, professor of law, Stanford University: We have no, or almost no, independent evidence for anything reported in this paper. Although I believe that the babies probably were DNA-edited and were born, there’s very little evidence for that. Given the circumstances of this case, I am not willing to grant He Jiankui the usual presumption of honesty. 

That last article by Regalado is the purest example I have of how fierce the criticism is and how almost all of it is focused on Dr. He and his Chinese colleagues.

A complex, measured narrative: multiple players in the game

The most sympathetic and, in many ways, the most comprehensive article is an August 1, 2019 piece by Jon Cohen for Science magazine (Note: Links have been removed),

On 10 June 2017, a sunny and hot Saturday in Shenzhen, China, two couples came to the Southern University of Science and Technology (SUSTech) to discuss whether they would participate in a medical experiment that no researcher had ever dared to conduct. The Chinese couples, who were having fertility problems, gathered around a conference table to meet with He Jiankui, a SUSTech biophysicist. Then 33, He (pronounced “HEH”) had a growing reputation in China as a scientist-entrepreneur but was little known outside the country. “We want to tell you some serious things that might be scary,” said He, who was trim from years of playing soccer and wore a gray collared shirt, his cuffs casually unbuttoned.

He simply meant the standard in vitro fertilization (IVF) procedures. But as the discussion progressed, He and his postdoc walked the couples through informed consent forms [emphasis mine] that described what many ethicists and scientists view as a far more frightening proposition. Seventeen months later, the experiment triggered an international controversy, and the worldwide scientific community rejected him. The scandal cost him his university position and the leadership of a biotech company he founded. Commentaries labeled He, who also goes by the nickname JK, a “rogue,” “China’s Frankenstein,” and “stupendously immoral.” [emphases mine]

But that day in the conference room, He’s reputation remained untarnished. As the couples listened and flipped through the forms, occasionally asking questions, two witnesses—one American, the other Chinese—observed [emphasis mine]. Another lab member shot video, which Science has seen [emphasis mine], of part of the 50-minute meeting. He had recruited those couples because the husbands were living with HIV infections kept under control by antiviral drugs. The IVF procedure would use a reliable process called sperm washing to remove the virus before insemination, so father-to-child transmission was not a concern. Rather, He sought couples who had endured HIV-related stigma and discrimination and wanted to spare their children that fate by dramatically reducing their risk of ever becoming infected. [emphasis mine]

He, who for much of his brief career had specialized in sequencing DNA, offered a potential solution: CRISPR, the genome-editing tool that was revolutionizing biology, could alter a gene in IVF embryos to cripple production of an immune cell surface protein, CCR5, that HIV uses to establish an infection. “This technique may be able to produce an IVF baby naturally immunized against AIDS,” one consent form read.[emphasis mine]

The couples’ children could also pass the protective mutation to future generations. The prospect of this irrevocable genetic change is why, since the advent of CRISPR as a genome editor 5 years earlier, the editing of human embryos, eggs, or sperm has been hotly debated. The core issue is whether such germline editing would cross an ethical red line because it could ultimately alter our species. Regulations, some with squishy language, arguably prohibited it in many countries, China included.

Yet opposition was not unanimous. A few months before He met the couples, a committee convened by the U.S. National Academies of Sciences, Engineering, and Medicine (NASEM) concluded in a well-publicized report that human trials of germline editing “might be permitted” if strict criteria were met. The group of scientists, lawyers, bioethicists, and patient advocates spelled out a regulatory framework but cautioned that “these criteria are necessarily vague” because various societies, caregivers, and patients would view them differently. The committee notably did not call for an international ban, arguing instead for governmental regulation as each country deemed appropriate and “voluntary self-regulation pursuant to professional guidelines.”

[…] He hid his plans and deceived his colleagues and superiors, as many people have asserted? A preliminary investigation in China stated that He had forged documents, “dodged supervision,” and misrepresented blood tests—even though no proof of those charges was released [emphasis mine], no outsiders were part of the inquiry, and He has not publicly admitted to any wrongdoing. (CRISPR scientists in China say the He fallout has affected their research.) Many scientists outside China also portrayed He as a rogue actor. “I think there has been a failure of self-regulation by the scientific community because of a lack of transparency,” virologist David Baltimore, a Nobel Prize–winning researcher at the California Institute of Technology (Caltech) in Pasadena and co-chair of the Hong Kong summit, thundered at He after the biophysicist’s only public talk on the experiment.

Because the Chinese government has revealed little and He is not talking, key questions about his actions are hard to answer. Many of his colleagues and confidants also ignored Science‘s requests for interviews. But Ryan Ferrell, a public relations specialist He hired, has cataloged five dozen people who were not part of the study but knew or suspected what He was doing before it became public. Ferrell calls it He’s circle of trust. [emphasis mine]

That circle included leading scientists—among them a Nobel laureate—in China and the United States, business executives, an entrepreneur connected to venture capitalists, authors of the NASEM report, a controversial U.S. IVF specialist [John Zhang] who discussed opening a gene-editing clinic with He [emphasis mine], and at least one Chinese politician. “He had an awful lot of company to be called a ‘rogue,’” says geneticist George Church [emphases mine], a CRISPR pioneer at Harvard University who was not in the circle of trust and is one of the few scientists to defend at least some aspects of He’s experiment.

Some people sharply criticized He when he brought them into the circle; others appear to have welcomed his plans or did nothing. Several went out of their way to distance themselves from He after the furor erupted. For example, the two onlookers in that informed consent meeting were Michael Deem, He’s Ph.D. adviser at Rice University in Houston, Texas, and Yu Jun, a member of the Chinese Academy of Sciences (CAS) and co-founder of the Beijing Genomics Institute, the famed DNA sequencing company in Shenzhen. Deem remains under investigation by Rice for his role in the experiment and would not speak with Science. In a carefully worded statement, Deem’s lawyers later said he “did not meet the parents of the reported CCR5-edited children, or anyone else whose embryos were edited.” But earlier, Deem cooperated with the Associated Press (AP) for its exclusive story revealing the birth of the babies, which reported that Deem was “present in China when potential participants gave their consent and that he ‘absolutely’ thinks they were able to understand the risks. [emphasis mine]”

Yu, who works at CAS’s Beijing Institute of Genomics, acknowledges attending the informed consent meeting with Deem, but he told Science he did not know that He planned to implant gene-edited embryos. “Deem and I were chatting about something else,” says Yu, who has sequenced the genomes of humans, rice, silkworms, and date palms. “What was happening in the room was not my business, and that’s my personality: If it’s not my business, I pay very little attention.”

Some people who know He and have spoken to Science contend it is time for a more open discussion of how the biophysicist formed his circle of confidants and how the larger circle of trust—the one between the scientific community and the public—broke down. Bioethicist William Hurlbut at Stanford University [emphasis mine] in Palo Alto, California, who knew He wanted to conduct the embryo-editing experiment and tried to dissuade him, says that He was “thrown under the bus” by many people who once supported him. “Everyone ran for the exits, in both the U.S. and China. I think everybody would do better if they would just openly admit what they knew and what they did, and then collectively say, ‘Well, people weren’t clear what to do. We should all admit this is an unfamiliar terrain.’”

Steve Lombardi, a former CEO of Helicos, reacted far more charitably. Lombardi, who runs a consulting business in Bridgewater, Connecticut, says Quake introduced him to He to help find investors for Direct Genomics. “He’s your classic, incredibly bright, naïve entrepreneur—I run into them all the time,” Lombardi says. “He had the right instincts for what to do in China and just didn’t know how to do it. So I put him in front of as many people as I could.” Lombardi says He told him about his embryo-editing ambitions in August 2017, asking whether Lombardi could find investors for a new company that focused on “genetic medical tourism” and was based in China or, because of a potentially friendlier regulatory climate, Thailand. “I kept saying to him, ‘You know, you’ve got to deal with the ethics of this and be really sure that you know what you’re doing.’”

In April 2018, He asked Ferrell to handle his media full time. Ferrell was a good fit—he had an undergraduate degree in neuroscience, had spent a year in Beijing studying Chinese, and had helped another company using a pre-CRISPR genome editor. Now that a woman in the trial was pregnant, Ferrell says, He’s “understanding of the gravity of what he had done increased.” Ferrell had misgivings about the experiment, but he quit HDMZ and that August moved to Shenzhen. With the pregnancy already underway, Ferrell reasoned, “It was going to be the biggest science story of that week or longer, no matter what I did.”

MIT Technology Review had broken a story early that morning China time, saying human embryos were being edited and implanted, after reporter Antonio Regalado discovered descriptions of the project that He had posted online, without Ferrell’s knowledge, in an official Chinese clinical trial registry. Now, He gave AP the green light to post a detailed account, which revealed that twin girls—whom He, to protect their identifies, named Lulu and Nana—had been born. Ferrell and He also posted five unfinished YouTube videos explaining and justifying the unprecedented experiment.

“He was fearful that he’d be unable to communicate to the press and the onslaught in a way that would be in any way manageable for him,” Ferrell says. One video tried to forestall eugenics accusations, with He rejecting goals such as enhancing intelligence, changing skin color, and increasing sports performance as “not love.” Still, the group knew it had lost control of the news. [emphasis mine]

… On 7 March 2017, 5 weeks after the California gathering, He submitted a medical ethics approval application to the Shenzhen HarMoniCare Women and Children’s Hospital that outlined the planned CCR5 edit of human embryos. The babies, it claimed, would be resistant to HIV as well as to smallpox and cholera. (The natural CCR5 mutation may have been selected for because it helps carriers survive smallpox and plague, some studies suggest—but they don’t mention cholera.) “This is going to be a great science and medicine achievement ever since the IVF technology which was awarded the Nobel Prize in 2010, and will also bring hope to numerous genetic disease patients,” the application says. Seven people on the ethics committee, chaired by Lin Zhitong—a one-time Direct Genomics director and a HarMoniCare administrator—signed the application, indicating they approved it.

[…] John Zhang, […] [emphasis mine] earned his medical degree in China and a Ph.D. in reproductive biology at the University of Cambridge in the United Kingdom. Zhang had made international headlines himself in September 2016, when New Scientist revealed that he had created the world’s first “three-parent baby” by using mitochondrial DNA from a donor egg to revitalize the egg of a woman with infertility and then inseminating the resulting egg. “This technology holds great hope for ladies with advanced maternal age to have their own children with their own eggs,” Zhang explains in the center’s promotional video, which alternates between Chinese and English. It does not mention that Zhang did the IVF experiment in Mexico because it is not now allowed in the United States. [emphasis mine]

When Science contacted Zhang, the physician initially said he barely knew He: [emphases mine] “I know him just like many people know him, in an academic meeting.”

After his talk [November 2018 at Hong Kong meeting], He immediately drove back to Shenzhen, and his circle of trust began to disintegrate. He has not spoken publicly since. “I don’t think he can recover himself through PR,” says Ferrell, who no longer works for He but recently started to do part-time work for He’s wife. “He has to do other service to the world.”

Calls for a moratorium on human germline editing have increased, although at the end of the Hong Kong summit, the organizing committee declined in its consensus to call for a ban. China has stiffened its regulations on work with human embryos, and Chinese bioethicists in a Nature editorial about the incident urged the country to confront “the eugenic thinking that has persisted among a small proportion of Chinese scholars.”

Church, who has many CRISPR collaborations in China, finds it inconceivable that He’s work surprised the Chinese government. China has “the best surveillance system in the world,” he says. “I conclude that they were totally aware of what he was doing at every step of the way, especially because he wasn’t particularly secretive about it.”

Benjamin Hurlbut, William’s son and a historian of biomedicine at Arizona State University in Tempe, says leaders in the scientific community should take a hard look at their actions, too. [emphases mine] He thinks the 2017 NASEM report helped give rise to He by following a well-established approach to guiding science: appointing an elite group to decide how scientists should be regulated. Benjamin Hurlbut, whose book Experiments in Democracy explores the governance of embryo research and bioethics, questions why small, scientist-led groups—à la the totemic Asilomar conference held in 1975 to discuss the future of recombinant DNA research—are seen as the best way to shape thinking about new technologies. Hurlbut has called for a “global observatory for gene editing” to convene meetings with diverse perspectives.

The prevailing notion that the scientific community simply “failed to see the rogue among the responsible,” Hurlbut says, is a convenient narrative for those scientific leaders and inhibits their ability to learn from such failures. [emphases mine] “It puts them on the right side of history,” he says. They failed to paint a bright enough red line, Hurlbut contends. “They are not on the right side of history because they contributed to this.”

If you have the time, I strongly recommend reading Cohen’s piece in its entirety. You’ll find links to the reports and more articles with in-depth reporting on this topic.

A little kindness and no regrets

William Hurlbut was interviewed in an As it happens (Canadian Broadcasting Corporation’ CBC) radio programme segment on December 30, 2020. This is an excerpt from the story transcript written by Sheena Goodyear (Note: A link has been removed),

Dr. William Hurlbut, a physician and professor of neural-biology at Stanford University, says he tried to warn He to slow down before it was too late. Here is part of his conversation with As It Happens guest host Helen Mann.

What was your reaction to the news that Dr. He had been sentenced to three years in prison?

My first reaction was one of sadness because I know Dr. He — who we call J.K., that’s his nickname.

I spent quite a few hours talking with him, and I’m just sad that this worked out this way. It didn’t work out well for him or for his country or for the world, in some sense.

Except the one good thing is it’s alerted us, it’s awakened the world, to the seriousness of the issues that are coming down toward us with biotechnology, especially in genetics.

How does he feel about [how] not just the Chinese government, but the world generally, responded to his experiment?

He was surprised, personally. But I had actually warned him that he was proceeding too fast, and I didn’t know he had implanted embryos.

We had several conversations before this was disclosed, and I warned him to go more slowly and to keep in conversation with the rest of the international scientific community, and more broadly the international perspectives on social and ethical matters.

He was doing that to some extent, but not deeply enough and not transparently enough.

It sounds like you were very thoughtful in the conversations you had with him and the advice you gave him. And I guess you operated with what you had. But do you have any regrets yourself?

I don’t have any regrets about the way I conducted myself. I regret that this happened this way for J.K., who is a very bright person, and a very nice person, a humble person.

He grew up in a poor urban farming village. He told me that at one point he wanted to ask out a certain girl that he thought was really pretty … but he was embarrassed to do so because her family owned the restaurant. And so you see how humble his origins were.

By the way, he did end up asking her out and he ended up marrying her, which is a happy story, except now they’re separated for years of crucial time, and they have little children. 

I know this is a bigger story than just J.K. and his family. But there’s a personal story to it too.

What happens He Jiankui? … Is his research career over?

It’s hard to imagine that a nation like China would not give him some some useful role in their society. A very intelligent and very well-educated young man. 

But on the other hand, he will be forever a sign of a very crucial and difficult moment for the human species. He’s not going outlive that.

It’s going to be interesting. I hope I get a chance to have good conversations with him again and hear his internal ruminations and perspectives on it all.

This (“I don’t have any regrets about the way I conducted myself”) is where Hurlbut lost me. I think he could have suggested that he’d reviewed and rethought everything and feels that he and others could have done better and maybe they need to rethink how scientists are trained and how we talk about science, genetics, and emerging technology. Interestingly, it’s his son who comes up with something closer to what I’m suggesting (this excerpt was quoted earlier in this posting from a December 30, 2019 article, by Carolyn Y. Johnson for the Washington Post),

“The fact that the individual at the center of the story has been punished for his role in it should not distract us from examining what supporting roles were played by others, particularly in the international scientific community and also the environment that shaped and encouraged him to push the limits,” said Benjamin Hurlbut [emphasis mine], associate professor in the School of Life Sciences at Arizona State University.

The man who CRISPRs himself approves

Josiah Zayner publicly injected himself with CRISPR in a demonstration (see my January 25, 2018 posting for details about Zayner, his demonstration, and his plans). As you might expect, his take on the He affair is quite individual. From a January 2, 2020 article for STAT, Zayner presents the case for Dr. He’s work (Note: Links have been removed),

When I saw the news that He Jiankui and colleagues had been sentenced to three years in prison for the first human embryo gene editing and implantation experiments, all I could think was, “How will we look back at what they had done in 100 years?”

When the scientist described his research and revealed the births of gene edited twin girls at the [Second] International Summit on Human Genome Editing in Hong Kong in late November 2018, I stayed up into the early hours of the morning in Oakland, Calif., watching it. Afterward, I couldn’t sleep for a few days and couldn’t stop thinking about his achievement.

This was the first time a viable human embryo was edited and allowed to live past 14 days, much less the first time such an embryo was implanted and the baby brought to term.

The majority of scientists were outraged at the ethics of what had taken place, despite having very little information on what had actually occurred.

To me, no matter how abhorrent one views [sic] the research, it represents a substantial step forward in human embryo editing. Now there is a clear path forward that anyone can follow when before it had been only a dream.

As long as the children He Jiankui engineered haven’t been harmed by the experiment, he is just a scientist who forged some documents to convince medical doctors to implant gene-edited embryos. The 4-minute mile of human genetic engineering has been broken. It will happen again.

The academic establishment and federal funding regulations have made it easy to control the number of heretical scientists. We rarely if ever hear of individuals pushing the ethical and legal boundaries of science.

The rise of the biohacker is changing that.

A biohacker is a scientist who exists outside academia or an institution. By this definition, He Jiankui is a biohacker. I’m also part of this community, and helped build an organization to support it.

Such individuals have much more freedom than “traditional” scientists because scientific regulation in the U.S. is very much institutionally enforced by the universities, research organizations, or grant-giving agencies. But if you are your own institution and don’t require federal grants, who can police you? If you don’t tell anyone what you are doing, there is no way to stop you — especially since there is no government agency actively trying to stop people from editing embryos.

… When a human embryo being edited and implanted is no longer interesting enough for a news story, will we still view He Jiankui as a villain?

I don’t think we will. But even if we do, He Jiankui will be remembered and talked about more than any scientist of our day. Although that may seriously aggravate many scientists and bioethicists, I think he deserves that honor.

Josiah Zayner is CEO of The ODIN, a company that teaches people how to do genetic engineering in their homes.

You can find The ODIN here.

Final comments

There can’t be any question that this was inevitable. One needs only to take a brief stroll through the history of science to know that scientists are going to push boundaries or, as in this case, press past an ill-defined grey zone.

The only scientists who are being publicly punished for hubris are Dr. He Jiankui and his two colleagues in China. Dr. Michael Deem is still working for Rice University as far as I can determine. Here’s how the Wikipedia entry for the He Jiankui Affair describes the investigation (Note: Links have been removed),

Michael W. Deem, an American bioengineering professor at Rice University and He’s doctoral advisor, was involved in the research, and was present when people involved in He’s study gave consent.[24] He was the only non-Chinese out of 10 authors listed in the manuscript submitted to Nature.[30] Deem came under investigation by Rice University after news of the work was made public.[58] As of 31 December 2019, the university had not released a decision.[59] [emphasis mine]

Meanwhile the scientists at Stanford are cleared. While there are comments about the Chinese government not being transparent, it seems to me that US universities are just as opaque.

What seems missing from all this discussion and opprobrium is that the CRISPR technology itself is problematic. My September 20, 2019 post features research into off-target results from CRISPR gene-editing and, prior, there was this July 17, 2018 posting (The CRISPR [clustered regularly interspaced short palindromic repeats]-CAS9 gene-editing technique may cause new genetic damage kerfuffle).

I’d like to see more discussion and, in line with Benjamin Hurlbut’s thinking, I’d like to see more than a small group of experts talking to each other as part of the process especially here in Canada and in light of efforts to remove our ban on germline-editing (see my April 26, 2019 posting for more about those efforts).

Online Link to Intelligence Squared’s De-Extinction Debate in NYC on January 31, 2919 at 7 pm ET (or 4 pm PT)

Click https://www.youtube.com/embed/N-1iqmKlTs8 at 7 pm ET (or 4 pm PT) to listen on the De-Extinction debate.

The proposition for the debate is: “Don’t bring extinct creatures back to life” and arguing against are George Church, Professor of Genetics at Harvard and MIT & Founder, Personal Genome Project, and Stewart Brand, Co-Founder of Revive & Restore & Founder of Whole Earth Catalog and arguing for are Dr. Ross MacPhee: Curator, Department of Mammalogy, Division of Vertebrate Zoology at the American Museum of Natural History and Dr. Lynn J. Rothschild: Evolutionary Biologist & Astrobiologist. For more about the debate and the participants check my January 18, 2019 posting.

Why not monetize your DNA for 2019?

I’m not a big fan of DNA (deoxyribonucleic acid) companies that promise to tell you about your ancestors and, depending on the kit, predisposition to certain health issues as per their reports about your genetic code. (I regularly pray no one in my family has decided to pay one of these companies to analyze their spit.)

During Christmas season 2018, the DNA companies (23andMe and Ancestry) advertised special prices so you could gift someone in your family with a kit. All this corporate largesse may not be wholly in service of the Christmas spirit. After all, there’s money to be made once they’ve gotten your sample.

Monetizing your DNA in 2016

I don’t know when 23andMe started selling DNA information or if any similar company predated their efforts but this June 21, 2016 article by Antonio Regalado for MIT (Massachusetts Institute of Technology) Review offers the earliest information I found,

“Welcome to You.” So says the genetic test kit that 23andMe will send to your home. Pay $199, spit in a tube, and several weeks later you’ll get a peek into your DNA. Have you got the gene for blond hair? Which of 36 disease risks could you pass to a child?

Run by entrepreneur Anne Wojcicki, the ex-wife of Google founder Sergey Brin, and until last year housed alongside the Googleplex, the company created a test that has been attacked by regulators and embraced by a curious public. It remains, nine years after its introduction, the only one of its kind sold directly to consumers. 23andMe has managed to amass a collection of DNA information about 1.2 million people, which last year began to prove its value when the company revealed it had sold access to the data to more than 13 drug companies. One, Genentech, anted up $10 million for a look at the genes of people with Parkinson’s disease.

That means 23andMe is monetizing DNA rather the way Facebook makes money from our “likes.” What’s more, it gets its customers to pay for the privilege. That idea so appeals to investors that they have valued the still-unprofitable company at over $1 billion. “Money follows data,” says Barbara Evans, a legal scholar at the University of Houston, who studies personal genetics. “It takes a lot of labor and capital to get that information in a form that is useful.”

Monetizing your DNA in 2018 and privacy concerns

Starting with Adele Peters’ December 13, 2018 article for Fast Company (Note: A link has been removed),

When 23andMe made a $300 million deal with GlaxoSmithKline [GSK] in July[2018]–so the pharmaceutical giant could access a vast store of genetic data as it works on new drugs–the consumers who actually provided that data didn’t get a cut of the proceeds. A new health platform is taking a different approach: If you choose to share your own DNA data or other health records, you’ll get company shares that will later pay you dividends if that data is sold.

Before getting to the start-up that would allow you rather than a company to profit or at least somewhat monetize your DNA, I’m including a general overview of the July 2018 GSK/23andMe deal in Jamie Ducharme’s July 26, 2018 article for TIME (Note: Links have been removed),

Consumer genetic testing company 23andMe announced on Wednesday [July 25, 2018] that GlaxoSmithKline purchased a $300 million stake in the company, allowing the pharmaceutical giant to use 23andMe’s trove of genetic data to develop new drugs — and raising new privacy concerns for consumers

The “collaboration” is a way to make “novel treatments and cures a reality,” 23andMe CEO Anne Wojcicki said in a company blog post. But, though it isn’t 23andMe’s first foray into drug discovery, the deal doesn’t seem quite so simple to some medical experts — or some of the roughly 5 million 23andMe customers who have sent off tubes of their spit in exchange for ancestry and health insights

Perhaps the most obvious issue is privacy, says Peter Pitts, president of the Center for Medicine in the Public Interest, a non-partisan non-profit that aims to promote patient-centered health care.

“If people are concerned about their social security numbers being stolen, they should be concerned about their genetic information being misused,” Pitts says. “This information is never 100% safe. The risk is magnified when one organization shares it with a second organization. When information moves from one place to another, there’s always a chance for it to be intercepted by unintended third parties.

That risk is real, agrees Dr. Arthur Caplan, head of the division of medical ethics at the New York University School of Medicine. Caplan says that any genetic privacy concerns also extend to your blood relatives, who likely did not consent to having their DNA tested — echoing some of the questions that arose after law enforcement officials used a genealogy website to find and arrest the suspected Golden State Killer in April [2018].

“A lot of people paid money to 23andMe to get their ancestry determined — fun, recreational stuff,” Caplan says. “Even though they may have signed a thing saying, ‘I’m okay if you use this information for medical research,’ I’m not sure they understood what that really meant. I’m not sure they understood that it meant, ‘Yes, we’ll go to Glaxo, and that’s where we’re really going to make a lot of money off of you.’”

A 23andMe spokesperson told TIME that data privacy is a “top priority” for the company, emphasizing that customer data isn’t used in research without consent, and that GlaxoSmithKline will only receive “summary statistics from analyses 23andMe conducts so that no single individual can be identified.”

Yes the data is supposed to be stripped of identifying information but given how many times similar claims about geolocation data have been disproved, I am skeptical. DJ Pangburn’s September 26, 2017 article (Even This Data Guru Is Creeped Out By What Anonymous Location Data Reveals About Us) for Fast Company illustrate the fragility of ‘anonymized data’,

… as a number of studies have shown, even when it’s “anonymous,” stripped of so-called personally identifiable information, geographic data can help create a detailed portrait of a person and, with enough ancillary data, identify them by name

Curious to see this kind of data mining in action, I emailed Gilad Lotan, now vice president of BuzzFeed’s data science team. He agreed to look at a month’s worth of two different users’ anonymized location data, and to come up with individual profiles that were as accurate as possible

The results, produced in just a few days’ time, range from the expected to the surprisingly revealing, and demonstrate just how “anonymous” data can identify individuals.

Last fall Lotan taught a class at New York University on surveillance that kicked off with an assignment like the one I’d given him: link anonymous location data with other data sets–from LinkedIn, Facebook, home registration and mortgage records, and other online data.
“It’s not hard to figure out who this [unnamed] person is,” says Lotan. In class, students found that tracking location data around holidays proved to be the easiest way to determine who, exactly, the data belonged to. “Basically,” he says, “visits to private homes that are owned and publicly registered.”

In 2013, researchers at MIT and the Université Catholique de Louvain in Belgium published a paper reporting on 15 months of study of human mobility data for over 1.5 million individuals. What they found is that only four spatio-temporal points are required to “uniquely identify 95% of the individuals.” The researchers concluded that there was very little privacy even in raw location data. Four years later, their calls for policies rectifying concerns about location tracking have fallen largely on deaf ears.

Getting back to DNA, there was also some concern at Fox News,

Other than warnings, I haven’t seen much about any possible legislation regarding DNA and privacy in either Canada or the US.

Now, let’s get to how you can monetize your self.

Me making money off me

I’ve found two possibilities for an individual who wants to consider monetizing their own DNA.

Health shares

Adele Peters’ December 13, 2018 article describes a start-up company and the model they’re proposing to allow you profit from your own DNA (Note: Links have been removed),

“You can’t say data is valuable and then take that data away from everybody,” says Dawn Barry, president and cofounder of LunaPBC, the public benefit corporation that manages the community-owned platform, called LunaDNA, which recently got SEC approval to recognize health data as currency. “What we’re finding is that [our early adopters are] very excited about the transparency of this model–that when we all come together and create value, that value flows down to the individuals who shared their data.

The platform shares some anonymized data with nonprofits, such as foundations that study rare diseases. In that case, money wouldn’t initially change hands, but “there could be intellectual property that at some point in time is monetized, and the community would share in that,” says Bob Kain, CEO and cofounder of LunaPBC. “When we have enough data in the near future, then we’ll work with pharmaceutical companies, for instance, to drive discovery for those companies. And they will pay market rates.

The company doesn’t offer DNA analysis itself, but chose to focus on data management. If you’ve sent a tube of spit to 23andMe, AncestryDNA, MyHeritage, or FamilyTree DNA, you can contribute that data to LunaDNA and get shares. (If you’d rather not let the original testing company keep your data, you can also separately take the steps to delete it.

“We looked at a number of different models to enable people to have ownership, including cryptocurrency, which is a proxy for ownership, too,” says Kain. “Cryptocurrency is hard to understand for most people, and right now, the regulatory landscape is blurry. So we thought, to move forward, we’d go with something much more traditional and easy to understand, and that is stock shares, basically.

For sharing targeted genes, you get 10 shares. For sharing your whole genome, you get 300 shares. At the moment, that’s not worth very much–the valuation takes into account the risk that the data might not be monetized, and the fact that the startup isn’t the exclusive owner of your data. The SEC filing says that the estimated fair market value of a whole genome is only $21. Some other health information is worth far less; 20 days of data from a fitness tracker garners two shares, valued at 14¢. But as more people contribute data, the research value of the whole database (and dividends) will increase. If the shareholders ever decided to sell the company itself, they would also make money that way.

Luna’s is a very interesting approach and I encourage you to read the December 13, 2018 article in its entirety.

Blockchain and crypto me

At least one effort to introduce blockchain/cryptocurrency technology to the process for monetizing your DNA garnered a lot of attention in February 2018.

A February 8, 2018 article by Eric Rosenbaum for CNBC (a US cable tv channel) explores an effort by George Church (Note: Links have been removed),

It’s probably wise to be skeptical of anyone who says they have a new idea for a blockchain-based company, or worse still, a company changing its business model to focus on the crypto world. That ice tea company that shifted its model to the blockchain, or Kodak saying its road back to riches was managing photo rights using a blockchain system. Raise eyebrow, or move directly onto outright shake of head

However, when a world renown Harvard geneticist announces he’s launching a blockchain-based start-up, it merits some attention. And it’s not the crypto-angle itself that might make you do a double-take, but the assets that will be managed, and exchanged, using digital currency: your DNA

Harvard University genetics guru George Church — one of the scientists at the forefront of the CRISPR genetic engineering revolution — announced on Wednesday a start-up, Nebula Genomics, that will use the blockchain to not only allow individuals to share their personal genome for research purposes, but retain ownership and monetize their DNA through trading of a custom digital currency.

The genomics revolution has been exponentially advanced by drastic reductions in cost. As Nebula noted in a white paper explaining its business model, the first human genome was sequenced in 2001 at a cost of $3 billion. Today, human genome sequencing costs less than $1,000, and in a few years the price will drop below $100

In fact, some big Silicon Valley start-ups, led by 23andMe, have capitalized on this rapid advance and already offer personal DNA testing kits for around $100 (sometimes with discounts even less)

Nebula took direct aim at 23andMe in its white paper, and one reason why it can offer genetic testing for less

“Today, 23andMe (23andme.com) and Ancestry (ancestry.com) are the two leading personal genomics companies. Both use DNA microarray-based genotyping for their genetic tests. It is an outdated and significantly less powerful alternative to DNA sequencing. Instead of sequencing continuous stretches of DNA, genotyping identifies single letters spaced at approximately regular intervals across the genome. …

Outdated genetic tests? Interesting, eh? Zoë Corbyn provides more information about Church’s plans in her February 18, 2018 article for the Guardian,

“Under the current system, personal genomics companies effectively own your personal genomics data, and you don’t see any benefit at all,” says Grishin [Dennis Grishin, Nebula co-founder]. “We want to eliminate the middleman.

Although the aim isn’t to provide a get-rich-quick scheme, the company believes there is potential for substantial returns. Though speculative, its modelling suggests that someone in the US could earn up to 50 times the cost of sequencing their genome – about $50,000 at current rates – taking into account both what could be made from a lifetime of renting out their genetic data, and reductions in medical bills if the results throw up a potentially preventable disease

The startup also thinks it can solve the problem of the dearth of genetic data researchers have to draw on, due to individuals – put off by cost or privacy concerns – not getting sequenced.

Payouts when you grant access to your genome would come in the form of Nebula tokens, the company’s cryptocurrency, and companies would need to buy tokens from the startup to pay people whose data they wanted to access. Though the value of a token is yet to be set and the number of tokens defined, it might, for example, take one Nebula token to get your genome sequenced. An individual new to the system could begin to earn fractions of a token by taking part in surveys about their heath posted by prospective data buyers. When someone had earned enough, they could get sequenced and begin renting out their data and amassing tokens. Alternatively, if an individual wasn’t yet sequenced they may find data buyers willing to pay for or subsidise their genome sequencing in exchange for access to it. “Potentially you wouldn’t have to pay out of pocket for the sequencing of your genome,” says Grishin.

In all cases, stress Grishin and Obbad [Kamal Obbad, Nebula co-founder], the sequence would belong to the individual, so they could rent it out over and over, including to multiple companies simultaneously. And the data buyer would never take ownership or possession of it – rather, it would be stored by the individual (for example in their computer or on their Dropbox account) with Nebula then providing a secure computation platform on which the data buyer could compute on the data. “You stay in control of your data and you can share it securely with who you want to,” explains Obbad. Nebula makes money not by taking any transaction fee but by being a participant providing computing and storage services. The cryptocurrency would be able to be cashed out for real money via existing cryptocurrency exchanges.

Hopefully, Luna and Nebula, as well as, any competitors in this race to allow individuals to monetize their own DNA will have excellent security.

For the curious, you can find Luna here and Nebula here.Note: I am not endorsing either company or any others mentioned here. This posting is strictly informational.

First CRISPR gene-edited babies? Ethics and the science story

Scientists, He Jiankui and Michael Deem, may have created the first human babies born after being subjected to CRISPR (clustered regularly interspaced short palindromic repeats) gene editing.  At this point, no one is entirely certain that these babies  as described actually exist since the information was made public in a rather unusual (for scientists) fashion.

The news broke on Sunday, November 25, 2018 through a number of media outlets none of which included journals associated with gene editing or high impact journals such as Cell, Nature, or Science.The news broke in MIT Technology Review and in Associated Press. Plus, this all happened just before the Second International Summit on Human Genome Editing (Nov. 27 – 29, 2018) in Hong Kong. He Jiankui was scheduled to speak today, Nov. 27, 2018.

Predictably, this news has caused quite a tizzy.

Breaking news

Antonio Regalado broke the news in a November 25, 2018  article for MIT [Massachusetts Institute of Technology] Technology Review (Note: Links have been removed),

According to Chinese medical documents posted online this month (here and here), a team at the Southern University of Science and Technology, in Shenzhen, has been recruiting couples in an effort to create the first gene-edited babies. They planned to eliminate a gene called CCR5 in hopes of rendering the offspring resistant to HIV, smallpox, and cholera.

The clinical trial documents describe a study in which CRISPR is employed to modify human embryos before they are transferred into women’s uteruses.

The scientist behind the effort, He Jiankui, did not reply to a list of questions about whether the undertaking had produced a live birth. Reached by telephone, he declined to comment.

However, data submitted as part of the trial listing shows that genetic tests have been carried out on fetuses as late as 24 weeks, or six months. It’s not known if those pregnancies were terminated, carried to term, or are ongoing.

Apparently He changed his mind because Marilynn Marchione in a November 26, 2018 article for the Associated Press confirms the news,

A Chinese researcher claims that he helped make the world’s first genetically edited babies — twin girls born this month whose DNA he said he altered with a powerful new tool capable of rewriting the very blueprint of life.

If true, it would be a profound leap of science and ethics.

A U.S. scientist [Dr. Michael Deem] said he took part in the work in China, but this kind of gene editing is banned in the United States because the DNA changes can pass to future generations and it risks harming other genes.

Many mainstream scientists think it’s too unsafe to try, and some denounced the Chinese report as human experimentation.

There is no independent confirmation of He’s claim, and it has not been published in a journal, where it would be vetted by other experts. He revealed it Monday [November 26, 2018] in Hong Kong to one of the organizers of an international conference on gene editing that is set to begin Tuesday [November 27, 2018], and earlier in exclusive interviews with The Associated Press.

“I feel a strong responsibility that it’s not just to make a first, but also make it an example,” He told the AP. “Society will decide what to do next” in terms of allowing or forbidding such science.

Some scientists were astounded to hear of the claim and strongly condemned it.

It’s “unconscionable … an experiment on human beings that is not morally or ethically defensible,” said Dr. Kiran Musunuru, a University of Pennsylvania gene editing expert and editor of a genetics journal.

“This is far too premature,” said Dr. Eric Topol, who heads the Scripps Research Translational Institute in California. “We’re dealing with the operating instructions of a human being. It’s a big deal.”

However, one famed geneticist, Harvard University’s George Church, defended attempting gene editing for HIV, which he called “a major and growing public health threat.”

“I think this is justifiable,” Church said of that goal.

h/t Cale Guthrie Weissman’s Nov. 26, 2018 article for Fast Company.

Diving into more detail

Ed Yong in a November 26, 2018 article for The Atlantic provides more details about the claims (Note: Links have been removed),

… “Two beautiful little Chinese girls, Lulu and Nana, came crying into the world as healthy as any other babies a few weeks ago,” He said in the first of five videos, posted yesterday {Nov. 25, 2018] to YouTube [link provided at the end of this section of the post]. “The girls are home now with their mom, Grace, and dad, Mark.” The claim has yet to be formally verified, but if true, it represents a landmark in the continuing ethical and scientific debate around gene editing.

Late last year, He reportedly enrolled seven couples in a clinical trial, and used their eggs and sperm to create embryos through in vitro fertilization. His team then used CRISPR to deactivate a single gene called CCR5 in the embryos, six of which they then implanted into mothers. CCR5 is a protein that the HIV virus uses to gain entry into human cells; by deactivating it, the team could theoretically reduce the risk of infection. Indeed, the fathers in all eight couples were HIV-positive.

Whether the experiment was successful or not, it’s intensely controversial. Scientists have already begun using CRISPR and other gene-editing technologies to alter human cells, in attempts to treat cancers, genetic disorders, and more. But in these cases, the affected cells stay within a person’s body. Editing an embryo [it’s often called, germline editing] is very different: It changes every cell in the body of the resulting person, including the sperm or eggs that would pass those changes to future generations. Such work is banned in many European countries, and prohibited in the United States. “I understand my work will be controversial, but I believe families need this technology and I’m willing to take the criticism for them,” He said.

“Was this a reasonable thing to do? I would say emphatically no,” says Paula Cannon of the University of Southern California. She and others have worked on gene editing, and particularly on trials that knock out CCR5 as a way to treat HIV. But those were attempts to treat people who were definitively sick and had run out of other options. That wasn’t the case with Nana and Lulu.

“The idea that being born HIV-susceptible, which is what the vast majority of humans are, is somehow a disease state that requires the extraordinary intervention of gene editing blows my mind,” says Cannon. “I feel like he’s appropriating this potentially valuable therapy as a shortcut to doing something in the sphere of gene editing. He’s either very naive or very cynical.”

“I want someone to make sure that it has happened,” says Hank Greely, an ethicist at Stanford University. If it hasn’t, that “would be a pretty bald-faced fraud,” but such deceptions have happened in the past. “If it is true, I’m disappointed. It’s reckless on safety grounds, and imprudent and stupid on social grounds.” He notes that a landmark summit in 2015 (which included Chinese researchers) and a subsequent major report from the National Academies of Science, Engineering, and Medicine both argued that “public participation should precede any heritable germ-line editing.” That is: Society needs to work out how it feels about making gene-edited babies before any babies are edited. Absent that consensus, He’s work is “waving a red flag in front of a bull,” says Greely. “It provokes not just the regular bio-Luddites, but also reasonable people who just wanted to talk it out.”

Societally, the creation of CRISPR-edited babies is a binary moment—a Rubicon that has been crossed. But scientifically, the devil is in the details, and most of those are still unknown.

CRISPR is still inefficient. [emphasis mine] The Chinese teams who first used it to edit human embryos only did so successfully in a small proportion of cases, and even then, they found worrying levels of “off-target mutations,” where they had erroneously cut parts of the genome outside their targeted gene. He, in his video, claimed that his team had thoroughly sequenced Nana and Lulu’s genomes and found no changes in genes other than CCR5.

That claim is impossible to verify in the absence of a peer-reviewed paper, or even published data of any kind. “The paper is where we see whether the CCR5 gene was properly edited, what effect it had at the cellular level, and whether [there were] any off-target effects,” said Eric Topol of the Scripps Research Institute. “It’s not just ‘it worked’ as a binary declaration.”

In the video, He said that using CRISPR for human enhancement, such as enhancing IQ or selecting eye color, “should be banned.” Speaking about Nana and Lulu’s parents, he said that they “don’t want a designer baby, just a child who won’t suffer from a disease that medicine can now prevent.”

But his rationale is questionable. Huang [Junjiu Huang of Sun Yat-sen University ], the first Chinese researcher to use CRISPR on human embryos, targeted the faulty gene behind an inherited disease called beta thalassemia. Mitalipov, likewise, tried to edit a gene called MYBPC3, whose faulty versions cause another inherited disease called hypertrophic cardiomyopathy (HCM). Such uses are still controversial, but they rank among the more acceptable applications for embryonic gene editing as ways of treating inherited disorders for which treatments are either difficult or nonexistent.

In contrast, He’s team disableda normal gene in an attempt to reduce the risk of a disease that neither child had—and one that can be controlled. There are already ways of preventing fathers from passing HIV to their children. There are antiviral drugs that prevent infections. There’s safe-sex education. “This is not a plague for which we have no tools,” says Cannon.

As Marilynn Marchione of the AP reports, early tests suggest that He’s editing was incomplete [emphasis mine], and at least one of the twins is a mosaic, where some cells have silenced copies of CCR5 and others do not. If that’s true, it’s unlikely that they would be significantly protected from HIV. And in any case, deactivating CCR5 doesn’t confer complete immunity, because some HIV strains can still enter cells via a different protein called CXCR4.

Nana and Lulu might have other vulnerabilities. …

It is also unclear if the participants in He’s trial were fully aware of what they were signing up for. [emphasis mine] The team’s informed-consent document describes their work as an “AIDS vaccine development project,” and while it describes CRISPR gene editing, it does so in heavily technical language. It doesn’t mention any of the risks of disabling CCR5, and while it does note the possibility of off-target effects, it also says that the “project team is not responsible for the risk.”

He owns two genetics companies, and his collaborator, Michael Deem of Rice University,  [emphasis mine] holds a small stake in, and sits on the advisory board of, both of them. The AP’s Marchione reports, “Both men are physics experts with no experience running human clinical trials.” [emphasis mine]

Yong’s article is well worth reading in its entirety. As for YouTube, here’s The He Lab’s webpage with relevant videos.

Reactions

Gina Kolata, Sui-Lee Wee, and Pam Belluck writing in a Nov. 26, 2018 article for the New York Times chronicle some of the response to He’s announcement,

It is highly unusual for a scientist to announce a groundbreaking development without at least providing data that academic peers can review. Dr. He said he had gotten permission to do the work from the ethics board of the hospital Shenzhen Harmonicare, but the hospital, in interviews with Chinese media, denied being involved. Cheng Zhen, the general manager of Shenzhen Harmonicare, has asked the police to investigate what they suspect are “fraudulent ethical review materials,” according to the Beijing News.

The university that Dr. He is attached to, the Southern University of Science and Technology, said Dr. He has been on no-pay leave since February and that the school of biology believed that his project “is a serious violation of academic ethics and academic norms,” according to the state-run Beijing News.

In a statement late on Monday, China’s national health commission said it has asked the health commission in southern Guangdong province to investigate Mr. He’s claims.

“I think that’s completely insane,” said Shoukhrat Mitalipov, director of the Center for Embryonic Cell and Gene Therapy at Oregon Health and Science University. Dr. Mitalipov broke new ground last year by using gene editing to successfully remove a dangerous mutation from human embryos in a laboratory dish. [I wrote a three-part series about CRISPR, which included what was then the latest US news, Mitalipov’s announcement, along with a roundup of previous work in China. Links are at the end of this section.’

Dr. Mitalipov said that unlike his own work, which focuses on editing out mutations that cause serious diseases that cannot be prevented any other way, Dr. He did not do anything medically necessary. There are other ways to prevent H.I.V. infection in newborns.

Just three months ago, at a conference in late August on genome engineering at Cold Spring Harbor Laboratory in New York, Dr. He presented work on editing the CCR₅ gene in the embryos of nine couples.

At the conference, whose organizers included Jennifer Doudna, one of the inventors of Crispr technology, Dr. He gave a careful talk about something that fellow attendees considered squarely within the realm of ethically approved research. But he did not mention that some of those embryos had been implanted in a woman and could result in genetically engineered babies.

“What we now know is that as he was talking, there was a woman in China carrying twins,” said Fyodor Urnov, deputy director of the Altius Institute for Biomedical Sciences and a visiting researcher at the Innovative Genomics Institute at the University of California. “He had the opportunity to say ‘Oh and by the way, I’m just going to come out and say it, people, there’s a woman carrying twins.’”

“I would never play poker against Dr. He,” Dr. Urnov quipped.

Richard Hynes, a cancer researcher at the Massachusetts Institute of Technology, who co-led an advisory group on human gene editing for the National Academy of Sciences and the National Academy of Medicine, said that group and a similar organization in Britain had determined that if human genes were to be edited, the procedure should only be done to address “serious unmet needs in medical treatment, it had to be well monitored, it had to be well followed up, full consent has to be in place.”

It is not clear why altering genes to make people resistant to H.I.V. is “a serious unmet need.” Men with H.I.V. do not infect embryos. …

Dr. He got his Ph.D., from Rice University, in physics and his postdoctoral training, at Stanford, was with Stephen Quake, a professor of bioengineering and applied physics who works on sequencing DNA, not editing it.

Experts said that using Crispr would actually be quite easy for someone like Dr. He.

After coming to Shenzhen in 2012, Dr. He, at age 28, established a DNA sequencing company, Direct Genomics, and listed Dr. Quake on its advisory board. But, in a telephone interview on Monday, Dr. Quake said he was never associated with the company.

Deem, the US scientist who worked in China with He is currently being investigated (from a Nov. 26, 2018 article by Andrew Joseph in STAT),

Rice University said Monday that it had opened a “full investigation” into the involvement of one of its faculty members in a study that purportedly resulted in the creation of the world’s first babies born with edited DNA.

Michael Deem, a bioengineering professor at Rice, told the Associated Press in a story published Sunday that he helped work on the research in China.

Deem told the AP that he was in China when participants in the study consented to join the research. Deem also said that he had “a small stake” in and is on the scientific advisory boards of He’s two companies.

Megan Molteni in a Nov. 27, 2018 article for Wired admits she and her colleagues at the magazine may have dismissed CRISPR concerns about designer babies prematurely while shedding more light on this  latest development (Note: Links have been removed),

We said “don’t freak out,” when scientists first used Crispr to edit DNA in non-viable human embryos. When they tried it in embryos that could theoretically produce babies, we said “don’t panic.” Many years and years of boring bench science remain before anyone could even think about putting it near a woman’s uterus. Well, we might have been wrong. Permission to push the panic button granted.

Late Sunday night, a Chinese researcher stunned the world by claiming to have created the first human babies, a set of twins, with Crispr-edited DNA….

What’s perhaps most strange is not that He ignored global recommendations on conducting responsible Crispr research in humans. He also ignored his own advice to the world—guidelines that were published within hours of his transgression becoming public.

On Monday, He and his colleagues at Southern University of Science and Technology, in Shenzhen, published a set of draft ethical principles “to frame, guide, and restrict clinical applications that communities around the world can share and localize based on religious beliefs, culture, and public-health challenges.” Those principles included transparency and only performing the procedure when the risks are outweighed by serious medical need.

The piece appeared in the The Crispr Journal, a young publication dedicated to Crispr research, commentary, and debate. Rodolphe Barrangou, the journal’s editor in chief, where the peer-reviewed perspective appeared, says that the article was one of two that it had published recently addressing the ethical concerns of human germline editing, the other by a bioethicist at the University of North Carolina. Both papers’ authors had requested that their writing come out ahead of a major gene editing summit taking place this week in Hong Kong. When half-rumors of He’s covert work reached Barrangou over the weekend, his team discussed pulling the paper, but ultimately decided that there was nothing too solid to discredit it, based on the information available at the time.

Now Barrangou and his team are rethinking that decision. For one thing, He did not disclose any conflicts of interest, which is standard practice among respectable journals. It’s since become clear that not only is He at the helm of several genetics companies in China, He was actively pursuing controversial human research long before writing up a scientific and moral code to guide it.“We’re currently assessing whether the omission was a matter of ill-management or ill-intent,” says Barrangou, who added that the journal is now conducting an audit to see if a retraction might be warranted. …

“There are all sorts of questions these issues raise, but the most fundamental is the risk-benefit ratio for the babies who are going to be born,” says Hank Greely, an ethicist at Stanford University. “And the risk-benefit ratio on this stinks. Any institutional review board that approved it should be disbanded if not jailed.”

Reporting by Stat indicates that He may have just gotten in over his head and tried to cram a self-guided ethics education into a few short months. The young scientist—records indicate He is just 34—has a background in biophysics, with stints studying in the US at Rice University and in bioengineer Stephen Quake’s lab at Stanford. His resume doesn’t read like someone steeped deeply in the nuances and ethics of human research. Barrangou says that came across in the many rounds of edits He’s framework went through.

… China’s central government in Beijing has yet to come down one way or another. Condemnation would make He a rogue and a scientific outcast. Anything else opens the door for a Crispr IVF cottage industry to emerge in China and potentially elsewhere. “It’s hard to imagine this was the only group in the world doing this,” says Paul Knoepfler, a stem cell researcher at UC Davis who wrote a book on the future of designer babies called GMO Sapiens. “Some might say this broke the ice. Will others forge ahead and go public with their results or stop what they’re doing and see how this plays out?”

Here’s some of the very latest information with the researcher attempting to explain himself.

What does He have to say?

After He’s appearance at the Second International Summit on Human Genome Editing today, Nov. 27, 2018, David Cyranoski produced this article for Nature,

He Jiankui, the Chinese scientist who claims to have helped produce the first people born with edited genomes — twin girls — appeared today at a gene-editing summit in Hong Kong to explain his experiment. He gave his talk amid threats of legal action and mounting questions, from the scientific community and beyond, about the ethics of his work and the way in which he released the results.

He had never before presented his work publicly outside of a handful of videos he posted on YouTube. Scientists welcomed the fact that he appeared at all — but his talk left many hungry for more answers, and still not completely certain that He has achieved what he claims.

“There’s no reason not to believe him,” says Robin Lovell-Badge, a developmental biologist at the Francis Crick Institute in London. “I’m just not completely convinced.”

Lovell-Badge, like others at the conference, says that an independent body should confirm the test results by performing an in-depth comparison of the parents’ and childrens’ genes.

Many scientists faulted He for a lack of transparency and the seemingly cavalier nature in which he embarked on such a landmark, and potentially risky, project.

“I’m happy he came but I was really horrified and stunned when he described the process he used,” says Jennifer Doudna, a biochemist at the University of California, Berkeley and a pioneer of the CRISPR/Cas-9 gene-editing technique that He used. “It was so inappropriate on so many levels.”

He seemed shaky approaching the stage and nervous during the talk. “I think he was scared,” says Matthew Porteus, who researches genome-editing at Stanford University in California and co-hosted a question-and-answer session with He after his presentation. Porteus attributes this either to the legal pressures that He faces or the mounting criticism from the scientists and media he was about to address.

He’s talk leaves a host of other questions unanswered, including whether the prospective parents were properly informed of the risks; why He selected CCR5 when there are other, proven ways to prevent HIV; why he chose to do the experiment with couples in which the fathers have HIV, rather than mothers who have a higher chance of passing the virus on to their children; and whether the risks of knocking out CCR5 — a gene normally present in people, which could have necessary but still unknown functions — outweighed the benefits in this case.

In the discussion following He’s talk, one scientist asked why He proceeded with the experiments despite the clear consensus among scientists worldwide that such research shouldn’t be done. He didn’t answer the question.

He’s attempts to justify his actions mainly fell flat. In response to questions about why the science community had not been informed of the experiments before the first women were impregnated, he cited presentations that he gave last year at meetings at the University of California, Berkeley, and at the Cold Spring Harbor Laboratory in New York. But Doudna, who organized the Berkeley meeting, says He did not present anything that showed he was ready to experiment in people. She called his defence “disingenuous at best”.

He also said he discussed the human experiment with unnamed scientists in the United States. But Porteus says that’s not enough for such an extraordinary experiment: “You need feedback not from your two closest friends but from the whole community.” …

Pressure was mounting on He ahead of the presentation. On 27 November, the Chinese national health commission ordered the Guangdong health commission, in the province where He’s university is located, to investigate.

On the same day, the Chinese Academy of Sciences issued a statement condemning his work, and the Genetics Society of China and the Chinese Society for Stem Cell Research jointly issued a statement saying the experiment “violates internationally accepted ethical principles regulating human experimentation and human rights law”.

The hospital cited in China’s clinical-trial registry as the that gave ethical approval for He’s work posted a press release on 27 November saying it did not give any approval. It questioned the signatures on the approval form and said that the hospital’s medical-ethics committee never held a meeting related to He’s research. The hospital, which itself is under investigation by the Shenzhen health authorities following He’s revelations, wrote: “The Company does not condone the means of the Claimed Project, and has reservations as to the accuracy, reliability and truthfulness of its contents and results.”

He has not yet responded to requests for comment on these statements and investigations, nor on why the hospital was listed in the registry and the claim of apparent forged signatures.

Alice Park’s Nov. 26, 2018 article for Time magazine includes an embedded video of He’s Nov. 27, 2018 presentation at the summit meeting.

What about the politics?

Mara Hvistendahl’s Nov. 27, 2018 article about this research for Slate.com poses some geopolitical questions (Note: Links have been removed),

The informed consent agreement for He Jiankui’s experiment describes it as an “AIDS vaccine development project” and used highly technical language to describe the procedure that patients would undergo. If the reality for some Chinese patients is that such agreements are glossed over, densely written, or never read, the reality for some researchers working in the country is that the appeal of cutting-edge trials is too great to resist. It is not just Chinese scientists who can be blinded by the lure of quick breakthroughs. Several of the most notable breaches of informed consent on the mainland have involved Western researchers or co-authors. … When people say that the usual rules don’t apply in China, they are really referring to authoritarian science, not some alternative communitarian ethics.

For the many scientists in China who adhere to recognized international standards, the incident comes as a disgrace. He Jiankui now faces an ethics investigation from provincial health authorities, and his institution, Southern University of Science and Technology, was quick to issue a statement noting that He was on unpaid leave. …

It would seem that US [and from elsewhere]* scientists wanting to avoid pesky ethics requirements in the US have found that going to China could be the answer to their problems. I gather it’s not just big business that prefers deregulated environments.

Guillaume Levrier’s  (he’ studying for a PhD at the Universté Sorbonne Paris Cité) November 16, 2018 essay for The Conversation sheds some light on political will and its impact on science (Note: Links have been removed),

… China has entered a “genome editing” race among great scientific nations and its progress didn’t come out of nowhere. China has invested heavily in the natural-sciences sector over the past 20 years. The Ninth Five-Year Plan (1996-2001) mentioned the crucial importance of biotechnologies. The current Thirteenth Five-Year Plan is even more explicit. It contains a section dedicated to “developing efficient and advanced biotechnologies” and lists key sectors such as “genome-editing technologies” intended to “put China at the bleeding edge of biotechnology innovation and become the leader in the international competition in this sector”.

Chinese embryo research is regulated by a legal framework, the “technical norms on human-assisted reproductive technologies”, published by the Science and Health Ministries. The guidelines theoretically forbid using sperm or eggs whose genome have been manipulated for procreative purposes. However, it’s hard to know how much value is actually placed on this rule in practice, especially in China’s intricate institutional and political context.

In theory, three major actors have authority on biomedical research in China: the Science and Technology Ministry, the Health Ministry, and the Chinese Food and Drug Administration. In reality, other agents also play a significant role. Local governments interpret and enforce the ministries’ “recommendations”, and their own interpretations can lead to significant variations in what researchers can and cannot do on the ground. The Chinese National Academy of Medicine is also a powerful institution that has its own network of hospitals, universities and laboratories.

Another prime actor is involved: the health section of the People’s Liberation Army (PLA), which has its own biomedical faculties, hospitals and research labs. The PLA makes its own interpretations of the recommendations and has proven its ability to work with the private sector on gene editing projects. …

One other thing from Levrier’s essay,

… And the media timing is just a bit too perfect, …

Do read the essay; there’s a twist at the end.

Final thoughts and some links

If I read this material rightly, there are suspicions there may be more of this work being done in China and elsewhere. In short, we likely don’t have the whole story.

As for the ethical issues, this is a discussion among experts only, so far. The great unwashed (thee and me) are being left at the wayside. Sure, we’ll be invited to public consultations, one day,  after the big decisions have been made.

Anyone who’s read up on the history of science will tell you this kind of breach is very common at the beginning. Richard Holmes’  2008 book, ‘The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science’ recounts stories of early scientists (European science) who did crazy things. Some died, some shortened their life spans; and, some irreversibly damaged their health.  They also experimented on other people. Informed consent had not yet been dreamed up.

In fact, I remember reading somewhere that the largest human clinical trial in history was held in Canada. The small pox vaccine was highly contested in the US but the Canadian government thought it was a good idea so they offered US scientists the option of coming here to vaccinate Canadian babies. This was in the 1950s and the vaccine seems to have been administered almost universally. That was a lot of Canadian babies. Thankfully, it seems to have worked out but it does seem mind-boggling today.

For all the indignation and shock we’re seeing, this is not the first time nor will it be the last time someone steps over a line in order to conduct scientific research. And, that is the eternal problem.

Meanwhile I think some of the real action regarding CRISPR and germline editing is taking place in the field (pun!) of agriculture:

My Nov. 27, 2018 posting titled: ‘Designer groundcherries by CRISPR (clustered regularly interspaced short palindromic repeats)‘ and a more disturbing Nov. 27, 2018 post titled: ‘Agriculture and gene editing … shades of the AquAdvantage salmon‘. That second posting features a company which is trying to sell its gene-editing services to farmers who would like cows that  never grow horns and pigs that never reach puberty.

Then there’s this ,

The Genetic Revolution‘, a documentary that offers relatively up-to-date information about gene editing, which was broadcast on Nov. 11, 2018 as part of The Nature of Things series on CBC (Canadian Broadcasting Corporation).

My July 17, 2018 posting about research suggesting that scientists hadn’t done enough research on possible effects of CRISPR editing titled: ‘The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle’.

My 2017 three-part series on CRISPR and germline editing:

CRISPR and editing the germline in the US (part 1 of 3): In the beginning

CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?

CRISPR and editing the germline in the US (part 3 of 3): public discussions and pop culture

There you have it.

Added on November 30, 2018: David Cyanowski has written one final article (Nov. 30, 2018 for Nature) about He and the Second International Summit on Human Genome Editing. He did not make his second scheduled appearance at the summit, returning to China before the summit concluded. He was rebuked in a statement produced by the Summit’s organizing committee at the end of the three-day meeting. The situation with regard to his professional status in China is ambiguous. Cyanowski ends his piece with the information that the third summit will take place in London (likely in the UK) in 2021. I encourage you to read Cyanowski’s Nov. 30, 2018 article in its entirety; it’s not long.

Added on Dec. 3, 2018: The story continues. Ed Yong has written a summary of the issues to date in a Dec. 3, 2018 article for The Atlantic (even if you know the story ift’s eyeopening to see all the parts put together.

J. Benjamin Hurlbut, Associate Professor of Life Sciences at Arizona State University (ASU) and Jason Scott Robert, Director of the Lincoln Center for Applied Ethics at Arizona State University have written a provocative (and true) Dec. 3, 2018 essay titled, CRISPR babies raise an uncomfortable reality – abiding by scientific standards doesn’t guarantee ethical research, for The Conversation. h/t phys.org

*[and from elsewhere] added January 17, 2019.

Added on January 23, 2019: He has been fired by his university (Southern University of Science and Technology in Shenzhen) as announced on January 21, 2019.  David Cyranoski provides a details accounting in his January 22, 2019 article for Nature.

I found it at the movies: a commentary on/review of “Films from the Future”

Kudos to anyone who recognized the reference to Pauline Kael (she changed film criticism forever) and her book “I Lost it at the Movies.” Of course, her book title was a bit of sexual innuendo, quite risqué for an important film critic in 1965 but appropriate for a period (the 1960s) associated with a sexual revolution. (There’s more about the 1960’s sexual revolution in the US along with mention of a prior sexual revolution in the 1920s in this Wikipedia entry.)

The title for this commentary is based on an anecdote from Dr. Andrew Maynard’s (director of the Arizona State University [ASU] Risk Innovation Lab) popular science and technology book, “Films from the Future: The Technology and Morality of Sci-Fi Movies.”

The ‘title-inspiring’ anecdote concerns Maynard’s first viewing of ‘2001: A Space Odyssey, when as a rather “bratty” 16-year-old who preferred to read science fiction, he discovered new ways of seeing and imaging the world. Maynard isn’t explicit about when he became a ‘techno nerd’ or how movies gave him an experience books couldn’t but presumably at 16 he was already gearing up for a career in the sciences. That ‘movie’ revelation received in front of a black and white television on January 1,1982 eventually led him to write, “Films from the Future.” (He has a PhD in physics which he is now applying to the field of risk innovation. For a more detailed description of Dr. Maynard and his work, there’s his ASU profile webpage and, of course, the introduction to his book.)

The book is quite timely. I don’t know how many people have noticed but science and scientific innovation is being covered more frequently in the media than it has been in many years. Science fairs and festivals are being founded on what seems to be a daily basis and you can now find science in art galleries. (Not to mention the movies and television where science topics are covered in comic book adaptations, in comedy, and in standard science fiction style.) Much of this activity is centered on what’s called ’emerging technologies’. These technologies are why people argue for what’s known as ‘blue sky’ or ‘basic’ or ‘fundamental’ science for without that science there would be no emerging technology.

Films from the Future

Isn’t reading the Table of Contents (ToC) the best way to approach a book? (From Films from the Future; Note: The formatting has been altered),

Table of Contents
Chapter One
In the Beginning 14
Beginnings 14
Welcome to the Future 16
The Power of Convergence 18
Socially Responsible Innovation 21
A Common Point of Focus 25
Spoiler Alert 26
Chapter Two
Jurassic Park: The Rise of Resurrection Biology 27
When Dinosaurs Ruled the World 27
De-Extinction 31
Could We, Should We? 36
The Butterfly Effect 39
Visions of Power 43
Chapter Three
Never Let Me Go: A Cautionary Tale of Human Cloning 46
Sins of Futures Past 46
Cloning 51
Genuinely Human? 56
Too Valuable to Fail? 62
Chapter Four
Minority Report: Predicting Criminal Intent 64
Criminal Intent 64
The “Science” of Predicting Bad Behavior 69
Criminal Brain Scans 74
Machine Learning-Based Precognition 77
Big Brother, Meet Big Data 79
Chapter Five
Limitless: Pharmaceutically-enhanced Intelligence 86
A Pill for Everything 86
The Seduction of Self-Enhancement 89
Nootropics 91
If You Could, Would You? 97
Privileged Technology 101
Our Obsession with Intelligence 105
Chapter Six
Elysium: Social Inequity in an Age of Technological
Extremes 110
The Poor Shall Inherit the Earth 110
Bioprinting Our Future Bodies 115
The Disposable Workforce 119
Living in an Automated Future 124
Chapter Seven
Ghost in the Shell: Being Human in an
Augmented Future 129
Through a Glass Darkly 129
Body Hacking 135
More than “Human”? 137
Plugged In, Hacked Out 142
Your Corporate Body 147
Chapter Eight
Ex Machina: AI and the Art of Manipulation 154
Plato’s Cave 154
The Lure of Permissionless Innovation 160
Technologies of Hubris 164
Superintelligence 169
Defining Artificial Intelligence 172
Artificial Manipulation 175
Chapter Nine
Transcendence: Welcome to the Singularity 180
Visions of the Future 180
Technological Convergence 184
Enter the Neo-Luddites 190
Techno-Terrorism 194
Exponential Extrapolation 200
Make-Believe in the Age of the Singularity 203
Chapter Ten
The Man in the White Suit: Living in a Material World 208
There’s Plenty of Room at the Bottom 208
Mastering the Material World 213
Myopically Benevolent Science 220
Never Underestimate the Status Quo 224
It’s Good to Talk 227
Chapter Eleven
Inferno: Immoral Logic in an Age of
Genetic Manipulation 231
Decoding Make-Believe 231
Weaponizing the Genome 234
Immoral Logic? 238
The Honest Broker 242
Dictating the Future 248
Chapter Twelve
The Day After Tomorrow: Riding the Wave of
Climate Change 251
Our Changing Climate 251
Fragile States 255
A Planetary “Microbiome” 258
The Rise of the Anthropocene 260
Building Resiliency 262
Geoengineering the Future 266
Chapter Thirteen
Contact: Living by More than Science Alone 272
An Awful Waste of Space 272
More than Science Alone 277
Occam’s Razor 280
What If We’re Not Alone? 283
Chapter Fourteen
Looking to the Future 288
Acknowledgments 293

The ToC gives the reader a pretty clue as to where the author is going with their book and Maynard explains how he chose his movies in his introductory chapter (from Films from the Future),

“There are some quite wonderful science fiction movies that didn’t make the cut because they didn’t fit the overarching narrative (Blade Runner and its sequel Blade Runner 2049, for instance, and the first of the Matrix trilogy). There are also movies that bombed with the critics, but were included because they ably fill a gap in the bigger story around emerging and converging technologies. Ultimately, the movies that made the cut were chosen because, together, they create an overarching narrative around emerging trends in biotechnologies, cybertechnologies, and materials-based technologies, and they illuminate a broader landscape around our evolving relationship with science and technology. And, to be honest, they are all movies that I get a kick out of watching.” (p. 17)

Jurassic Park (Chapter Two)

Dinosaurs do not interest me—they never have. Despite my profound indifference I did see the movie, Jurassic Park, when it was first released (someone talked me into going). And, I am still profoundly indifferent. Thankfully, Dr. Maynard finds meaning and a connection to current trends in biotechnology,

Jurassic Park is unabashedly a movie about dinosaurs. But it’s also a movie about greed, ambition, genetic engineering, and human folly—all rich pickings for thinking about the future, and what could possibly go wrong. (p. 28)

What really stands out with Jurassic Park, over twenty-five years later, is how it reveals a very human side of science and technology. This comes out in questions around when we should tinker with technology and when we should leave well enough alone. But there is also a narrative here that appears time and time again with the movies in this book, and that is how we get our heads around the sometimes oversized roles mega-entrepreneurs play in dictating how new tech is used, and possibly abused. These are all issues that are just as relevant now as they were in 1993, and are front and center of ensuring that the technologyenabled future we’re building is one where we want to live, and not one where we’re constantly fighting for our lives.  (pp. 30-1)

He also describes a connection to current trends in biotechnology,

De-Extinction

In a far corner of Siberia, two Russians—Sergey Zimov and his son Nikita—are attempting to recreate the Ice Age. More precisely, their vision is to reconstruct the landscape and ecosystem of northern Siberia in the Pleistocene, a period in Earth’s history that stretches from around two and a half million years ago to eleven thousand years ago. This was a time when the environment was much colder than now, with huge glaciers and ice sheets flowing over much of the Earth’s northern hemisphere. It was also a time when humans
coexisted with animals that are long extinct, including saber-tooth cats, giant ground sloths, and woolly mammoths.

The Zimovs’ ambitions are an extreme example of “Pleistocene rewilding,” a movement to reintroduce relatively recently extinct large animals, or their close modern-day equivalents, to regions where they were once common. In the case of the Zimovs, the
father-and-son team believe that, by reconstructing the Pleistocene ecosystem in the Siberian steppes and elsewhere, they can slow down the impacts of climate change on these regions. These areas are dominated by permafrost, ground that never thaws through
the year. Permafrost ecosystems have developed and survived over millennia, but a warming global climate (a theme we’ll come back to in chapter twelve and the movie The Day After Tomorrow) threatens to catastrophically disrupt them, and as this happens, the impacts
on biodiversity could be devastating. But what gets climate scientists even more worried is potentially massive releases of trapped methane as the permafrost disappears.

Methane is a powerful greenhouse gas—some eighty times more effective at exacerbating global warming than carbon dioxide— and large-scale releases from warming permafrost could trigger catastrophic changes in climate. As a result, finding ways to keep it in the ground is important. And here the Zimovs came up with a rather unusual idea: maintaining the stability of the environment by reintroducing long-extinct species that could help prevent its destruction, even in a warmer world. It’s a wild idea, but one that has some merit.8 As a proof of concept, though, the Zimovs needed somewhere to start. And so they set out to create a park for deextinct Siberian animals: Pleistocene Park.9

Pleistocene Park is by no stretch of the imagination a modern-day Jurassic Park. The dinosaurs in Hammond’s park date back to the Mesozoic period, from around 250 million years ago to sixty-five million years ago. By comparison, the Pleistocene is relatively modern history, ending a mere eleven and a half thousand years ago. And the vision behind Pleistocene Park is not thrills, spills, and profit, but the serious use of science and technology to stabilize an increasingly unstable environment. Yet there is one thread that ties them together, and that’s using genetic engineering to reintroduce extinct species. In this case, the species in question is warm-blooded and furry: the woolly mammoth.

The idea of de-extinction, or bringing back species from extinction (it’s even called “resurrection biology” in some circles), has been around for a while. It’s a controversial idea, and it raises a lot of tough ethical questions. But proponents of de-extinction argue
that we’re losing species and ecosystems at such a rate that we can’t afford not to explore technological interventions to help stem the flow.

Early approaches to bringing species back from the dead have involved selective breeding. The idea was simple—if you have modern ancestors of a recently extinct species, selectively breeding specimens that have a higher genetic similarity to their forebears can potentially help reconstruct their genome in living animals. This approach is being used in attempts to bring back the aurochs, an ancestor of modern cattle.10 But it’s slow, and it depends on
the fragmented genome of the extinct species still surviving in its modern-day equivalents.

An alternative to selective breeding is cloning. This involves finding a viable cell, or cell nucleus, in an extinct but well-preserved animal and growing a new living clone from it. It’s definitely a more appealing route for impatient resurrection biologists, but it does mean getting your hands on intact cells from long-dead animals and devising ways to “resurrect” these, which is no mean feat. Cloning has potential when it comes to recently extinct species whose cells have been well preserved—for instance, where the whole animal has become frozen in ice. But it’s still a slow and extremely limited option.

Which is where advances in genetic engineering come in.

The technological premise of Jurassic Park is that scientists can reconstruct the genome of long-dead animals from preserved DNA fragments. It’s a compelling idea, if you think of DNA as a massively long and complex instruction set that tells a group of biological molecules how to build an animal. In principle, if we could reconstruct the genome of an extinct species, we would have the basic instruction set—the biological software—to reconstruct
individual members of it.

The bad news is that DNA-reconstruction-based de-extinction is far more complex than this. First you need intact fragments of DNA, which is not easy, as DNA degrades easily (and is pretty much impossible to obtain, as far as we know, for dinosaurs). Then you
need to be able to stitch all of your fragments together, which is akin to completing a billion-piece jigsaw puzzle without knowing what the final picture looks like. This is a Herculean task, although with breakthroughs in data manipulation and machine learning,
scientists are getting better at it. But even when you have your reconstructed genome, you need the biological “wetware”—all the stuff that’s needed to create, incubate, and nurture a new living thing, like eggs, nutrients, a safe space to grow and mature, and so on. Within all this complexity, it turns out that getting your DNA sequence right is just the beginning of translating that genetic code into a living, breathing entity. But in some cases, it might be possible.

In 2013, Sergey Zimov was introduced to the geneticist George Church at a conference on de-extinction. Church is an accomplished scientist in the field of DNA analysis and reconstruction, and a thought leader in the field of synthetic biology (which we’ll come
back to in chapter nine). It was a match made in resurrection biology heaven. Zimov wanted to populate his Pleistocene Park with mammoths, and Church thought he could see a way of
achieving this.

What resulted was an ambitious project to de-extinct the woolly mammoth. Church and others who are working on this have faced plenty of hurdles. But the technology has been advancing so fast that, as of 2017, scientists were predicting they would be able to reproduce the woolly mammoth within the next two years.

One of those hurdles was the lack of solid DNA sequences to work from. Frustratingly, although there are many instances of well preserved woolly mammoths, their DNA rarely survives being frozen for tens of thousands of years. To overcome this, Church and others
have taken a different tack: Take a modern, living relative of the mammoth, and engineer into it traits that would allow it to live on the Siberian tundra, just like its woolly ancestors.

Church’s team’s starting point has been the Asian elephant. This is their source of base DNA for their “woolly mammoth 2.0”—their starting source code, if you like. So far, they’ve identified fifty plus gene sequences they think they can play with to give their modern-day woolly mammoth the traits it would need to thrive in Pleistocene Park, including a coat of hair, smaller ears, and a constitution adapted to cold.

The next hurdle they face is how to translate the code embedded in their new woolly mammoth genome into a living, breathing animal. The most obvious route would be to impregnate a female Asian elephant with a fertilized egg containing the new code. But Asian elephants are endangered, and no one’s likely to allow such cutting edge experimentation on the precious few that are still around, so scientists are working on an artificial womb for their reinvented woolly mammoth. They’re making progress with mice and hope to crack the motherless mammoth challenge relatively soon.

It’s perhaps a stretch to call this creative approach to recreating a species (or “reanimation” as Church refers to it) “de-extinction,” as what is being formed is a new species. … (pp. 31-4)

This selection illustrates what Maynard does so very well throughout the book where he uses each film as a launching pad for a clear, readable description of relevant bits of science so you understand why the premise was likely, unlikely, or pure fantasy while linking it to contemporary practices, efforts, and issues. In the context of Jurassic Park, Maynard goes on to raise some fascinating questions such as: Should we revive animals rendered extinct (due to obsolescence or inability to adapt to new conditions) when we could develop new animals?

General thoughts

‘Films for the Future’ offers readable (to non-scientific types) science, lively writing, and the occasional ‘memorish’ anecdote. As well, Dr. Maynard raises the curtain on aspects of the scientific enterprise that most of us do not get to see.  For example, the meeting  between Sergey Zimov and George Church and how it led to new ‘de-extinction’ work’. He also describes the problems that the scientists encountered and are encountering. This is in direct contrast to how scientific work is usually presented in the news media as one glorious breakthrough after the next.

Maynard does discuss the issues of social inequality and power and ownership. For example, who owns your transplant or data? Puzzlingly, he doesn’t touch on the current environment where scientists in the US and elsewhere are encouraged/pressured to start up companies commercializing their work.

Nor is there any mention of how universities are participating in this grand business experiment often called ‘innovation’. (My March 15, 2017 posting describes an outcome for the CRISPR [gene editing system] patent fight taking place between Harvard University’s & MIT’s [Massachusetts Institute of Technology] Broad Institute vs the University of California at Berkeley and my Sept. 11, 2018 posting about an art/science exhibit in Vancouver [Canada] provides an update for round 2 of the Broad Institute vs. UC Berkeley patent fight [scroll down about 65% of the way.) *To read about how my ‘cultural blindness’ shows up here scroll down to the single asterisk at the end.*

There’s a foray through machine-learning and big data as applied to predictive policing in Maynard’s ‘Minority Report’ chapter (my November 23, 2017 posting describes Vancouver’s predictive policing initiative [no psychics involved], the first such in Canada). There’s no mention of surveillance technology, which if I recall properly was part of the future environment, both by the state and by corporations. (Mia Armstrong’s November 15, 2018 article for Slate on Chinese surveillance being exported to Venezuela provides interesting insight.)

The gaps are interesting and various. This of course points to a problem all science writers have when attempting an overview of science. (Carl Zimmer’s latest, ‘She Has Her Mother’s Laugh: The Powers, Perversions, and Potential of Heredity’] a doorstopping 574 pages, also has some gaps despite his focus on heredity,)

Maynard has worked hard to give an comprehensive overview in a remarkably compact 279 pages while developing his theme about science and the human element. In other words, science is not monolithic; it’s created by human beings and subject to all the flaws and benefits that humanity’s efforts are always subject to—scientists are people too.

The readership for ‘Films from the Future’ spans from the mildly interested science reader to someone like me who’s been writing/blogging about these topics (more or less) for about 10 years. I learned a lot reading this book.

Next time, I’m hopeful there’ll be a next time, Maynard might want to describe the parameters he’s set for his book in more detail that is possible in his chapter headings. He could have mentioned that he’s not a cinéaste so his descriptions of the movies are very much focused on the story as conveyed through words. He doesn’t mention colour palates, camera angles, or, even, cultural lenses.

Take for example, his chapter on ‘Ghost in the Shell’. Focused on the Japanese animation film and not the live action Hollywood version he talks about human enhancement and cyborgs. The Japanese have a different take on robots, inanimate objects, and, I assume, cyborgs than is found in Canada or the US or Great Britain, for that matter (according to a colleague of mine, an Englishwoman who lived in Japan for ten or more years). There’s also the chapter on the Ealing comedy, The Man in The White Suit, an English film from the 1950’s. That too has a cultural (as well as, historical) flavour but since Maynard is from England, he may take that cultural flavour for granted. ‘Never let me go’ in Chapter Two was also a UK production, albeit far more recent than the Ealing comedy and it’s interesting to consider how a UK production about cloning might differ from a US or Chinese or … production on the topic. I am hearkening back to Maynard’s anecdote about movies giving him new ways of seeing and imagining the world.

There’s a corrective. A couple of sentences in Maynard’s introductory chapter cautioning that in depth exploration of ‘cultural lenses’ was not possible without expanding the book to an unreadable size followed by a sentence in each of the two chapters that there are cultural differences.

One area where I had a significant problem was with regard to being “programmed” and having  “instinctual” behaviour,

As a species, we are embarrassingly programmed to see “different” as “threatening,” and to take instinctive action against it. It’s a trait that’s exploited in many science fiction novels and movies, including those in this book. If we want to see the rise of increasingly augmented individuals, we need to be prepared for some social strife. (p. 136)

These concepts are much debated in the social sciences and there are arguments for and against ‘instincts regarding strangers and their possible differences’. I gather Dr. Maynard hies to the ‘instinct to defend/attack’ school of thought.

One final quandary, there was no sex and I was expecting it in the Ex Machina chapter, especially now that sexbots are about to take over the world (I exaggerate). Certainly, if you’re talking about “social strife,” then sexbots would seem to be fruitful line of inquiry, especially when there’s talk of how they could benefit families (my August 29, 2018 posting). Again, there could have been a sentence explaining why Maynard focused almost exclusively in this chapter on the discussions about artificial intelligence and superintelligence.

Taken in the context of the book, these are trifling issues and shouldn’t stop you from reading Films from the Future. What Maynard has accomplished here is impressive and I hope it’s just the beginning.

Final note

Bravo Andrew! (Note: We’ve been ‘internet acquaintances/friends since the first year I started blogging. When I’m referring to him in his professional capacity, he’s Dr. Maynard and when it’s not strictly in his professional capacity, it’s Andrew. For this commentary/review I wanted to emphasize his professional status.)

If you need to see a few more samples of Andrew’s writing, there’s a Nov. 15, 2018 essay on The Conversation, Sci-fi movies are the secret weapon that could help Silicon Valley grow up and a Nov. 21, 2018 article on slate.com, The True Cost of Stain-Resistant Pants; The 1951 British comedy The Man in the White Suit anticipated our fears about nanotechnology. Enjoy.

****Added at 1700 hours on Nov. 22, 2018: You can purchase Films from the Future here.

*Nov. 23, 2018: I should have been more specific and said ‘academic scientists’. In Canada, the great percentage of scientists are academic. It’s to the point where the OECD (Organization for Economic Cooperation and Development) has noted that amongst industrialized countries, Canada has very few industrial scientists in comparison to the others.

Xenotransplantation—organs for transplantation in human patients—it’s a business and a science

The last time (June 18, 2018 post) I mentioned xenotransplantation (transplanting organs from one species into another species; see more here), it was in the context of an art/sci (or sciart) event coming to Vancouver (Canada).,

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

(The show opens on Sept. 14, 2018.)

At the time, I had yet to stumble across Ingfei Chen’s thoughtful dive into the topic in her May 9, 2018 article for Slate.com,

In the United States, the clock is ticking for more than 114,700 adults and children waiting for a donated kidney or other lifesaving organ, and each day, nearly 20 of them die. Researchers are devising a new way to grow human organs inside other animals, but the method raises potentially thorny ethical issues. Other conceivable futuristic techniques sound like dystopian science fiction. As we envision an era of regenerative medicine decades from now, how far is society willing to go to solve the organ shortage crisis?

I found myself pondering this question after a discussion about the promises of stem cell technologies veered from the intriguing into the bizarre. I was interviewing bioengineer Zev Gartner, co-director and research coordinator of the Center for Cellular Construction at the University of California, San Francisco, about so-called organoids, tiny clumps of organlike tissue that can self-assemble from human stem cells in a Petri dish. These tissue bits are lending new insights into how our organs form and diseases take root. Some researchers even hope they can nurture organoids into full-size human kidneys, pancreases, and other organs for transplantation.

Certain organoid experiments have recently set off alarm bells, but when I asked Gartner about it, his radar for moral concerns was focused elsewhere. For him, the “really, really thought-provoking” scenarios involve other emerging stem cell–based techniques for engineering replacement organs for people, he told me. “Like blastocyst complementation,” he said.

Never heard of it? Neither had I. Turns out it’s a powerful new genetic engineering trick that researchers hope to use for growing human organs inside pigs or sheep—organs that could be genetically personalized for transplant patients, in theory avoiding immune-system rejection problems. The science still has many years to go, but if it pans out, it could be one solution to the organ shortage crisis. However, the prospect of creating hybrid animals with human parts and killing them to harvest organs has already raised a slew of ethical questions. In 2015, the National Institutes of Health placed a moratorium on federal funding of this nascent research area while it evaluated and discussed the issues.

As Gartner sees it, the debate over blastocyst complementation research—work that he finds promising—is just one of many conversations that society needs to have about the ethical and social costs and benefits of future technologies for making lifesaving transplant organs. “There’s all these weird ways that we could go about doing this,” he said, with a spectrum of imaginable approaches that includes organoids, interspecies organ farming, and building organs from scratch using 3D bioprinters. But even if it turns out we can produce human organs in these novel ways, the bigger issue, in each technological instance, may be whether we should.

Gartner crystallized things with a downright creepy example: “We know that the best bioreactor for tissues and organs for humans are human beings,” he said. Hypothetically, “the best way to get you a new heart would be to clone you, grow up a copy of yourself, and take the heart out.” [emphasis mine] Scientists could probably produce a cloned person with the technologies we already have, if money and ethics were of no concern. “But we don’t want to go there, right?” he added in the next breath. “The ethics involved in doing it are not compatible with who we want to be as a society.”

This sounds like Gartner may have been reading some science fiction, specifically, Lois McMaster Bujold and her Barrayar series where she often explored the ethics and possibilities of bioengineering. At this point, some of her work seems eerily prescient.

As for Chen’s article, I strongly encourage you to read it in its entirety if you have the time.

Medicine, healing, and big money

At about the same time, there was a May 31, 2018 news item on phys.org offering a perspective from some of the leaders in the science and the business (Note: Links have been removed),

Over the past few years, researchers led by George Church have made important strides toward engineering the genomes of pigs to make their cells compatible with the human body. So many think that it’s possible that, with the help of CRISPR technology, a healthy heart for a patient in desperate need might one day come from a pig.

“It’s relatively feasible to change one gene in a pig, but to change many dozens—which is quite clear is the minimum here—benefits from CRISPR,” an acronym for clustered regularly interspaced short palindromic repeats, said Church, the Robert Winthrop Professor of Genetics at Harvard Medical School (HMS) and a core faculty member of Harvard’s Wyss Institute for Biologically Inspired Engineering. Xenotransplantation is “one of few” big challenges (along with gene drives and de-extinction, he said) “that really requires the ‘oomph’ of CRISPR.”

To facilitate the development of safe and effective cells, tissues, and organs for future medical transplantation into human patients, Harvard’s Office of Technology Development has granted a technology license to the Cambridge biotech startup eGenesis.

Co-founded by Church and former HMS doctoral student Luhan Yang in 2015, eGenesis announced last year that it had raised $38 million to advance its research and development work. At least eight former members of the Church lab—interns, doctoral students, postdocs, and visiting researchers—have continued their scientific careers as employees there.

“The Church Lab is well known for its relentless pursuit of scientific achievements so ambitious they seem improbable—and, indeed, [for] its track record of success,” said Isaac Kohlberg, Harvard’s chief technology development officer and senior associate provost. “George deserves recognition too for his ability to inspire passion and cultivate a strong entrepreneurial drive among his talented research team.”

The license from Harvard OTD covers a powerful set of genome-engineering technologies developed at HMS and the Wyss Institute, including access to foundational intellectual property relating to the Church Lab’s 2012 breakthrough use of CRISPR, led by Yang and Prashant Mali, to edit the genome of human cells. Subsequent innovations that enabled efficient and accurate editing of numerous genes simultaneously are also included. The license is exclusive to eGenesis but limited to the field of xenotransplantation.

A May 30, 2018 Harvard University news release by Caroline Petty, which originated the news item, explores some of the issues associated with incubating humans organs in other species,

The prospect of using living, nonhuman organs, and concerns over the infectiousness of pathogens either present in the tissues or possibly formed in combination with human genetic material, have prompted the Food and Drug Administration to issue detailed guidance on xenotransplantation research and development since the mid-1990s. In pigs, a primary concern has been that porcine endogenous retroviruses (PERVs), strands of potentially pathogenic DNA in the animals’ genomes, might infect human patients and eventually cause disease. [emphases mine]

That’s where the Church lab’s CRISPR expertise has enabled significant advances. In 2015, the lab published important results in the journal Science, successfully demonstrating the use of genome engineering to eliminate all 62 PERVs in porcine cells. Science later called it “the most widespread CRISPR editing feat to date.”

In 2017, with collaborators at Harvard, other universities, and eGenesis, Church and Yang went further. Publishing again in Science, they first confirmed earlier researchers’ fears: Porcine cells can, in fact, transmit PERVs into human cells, and those human cells can pass them on to other, unexposed human cells. (It is still unknown under what circumstances those PERVs might cause disease.) In the same paper, they corrected the problem, announcing the embryogenesis and birth of 37 PERV-free pigs. [Note: My July 17, 2018 post features research which suggests CRISPR-Cas9 gene editing may cause greater genetic damage than had been thought.]

“Taken together, those innovations were stunning,” said Vivian Berlin, director of business development in OTD, who manages the commercialization strategy for much of Harvard’s intellectual property in the life sciences. “That was the foundation they needed, to convince both the scientific community and the investment community that xenotransplantation might become a reality.”

“After hundreds of tests, this was a critical milestone for eGenesis — and the entire field — and represented a key step toward safe organ transplantation from pigs,” said Julie Sunderland, interim CEO of eGenesis. “Building on this study, we hope to continue to advance the science and potential of making xenotransplantation a safe and routine medical procedure.”

Genetic engineering may undercut human diseases, but also could help restore extinct species, researcher says. [Shades of the Jurassic Park movies!]

It’s not, however, the end of the story: An immunological challenge remains, which eGenesis will need to address. The potential for a patient’s body to outright reject transplanted tissue has stymied many previous attempts at xenotransplantation. Church said numerous genetic changes must be achieved to make porcine organs fully compatible with human patients. Among these are edits to several immune functions, coagulation functions, complements, and sugars, as well as the PERVs.

“Trying the straight transplant failed almost immediately, within hours, because there’s a huge mismatch in the carbohydrates on the surface of the cells, in particular alpha-1-3-galactose, and so that was a showstopper,” Church explained. “When you delete that gene, which you can do with conventional methods, you still get pretty fast rejection, because there are a lot of other aspects that are incompatible. You have to take care of each of them, and not all of them are just about removing things — some of them you have to humanize. There’s a great deal of subtlety involved so that you get normal pig embryogenesis but not rejection.

“Putting it all together into one package is challenging,” he concluded.

In short, it’s the next big challenge for CRISPR.

Not unexpectedly, there is no mention of the CRISPR patent fight between Harvard/MIT’s (Massachusetts Institute of Technology) Broad Institute and the University of California at Berkeley (UC Berkeley). My March 15, 2017 posting featured an outcome where the Broad Institute won the first round of the fight. As I recall, it was a decision based on the principles associated with King Solomon, i.e., the US Patent Office, divided the baby and UCBerkeley got the less important part of the baby. As you might expect the decision has been appealed. In an April 30, 2018 piece, Scientific American reprinted an article about the latest round in the fight written by Sharon Begley for STAT (Note: Links have been removed),

All You Need to Know for Round 2 of the CRISPR Patent Fight

It’s baaaaack, that reputation-shredding, stock-moving fight to the death over key CRISPR patents. On Monday morning in Washington, D.C., the U.S. Court of Appeals for the Federal Circuit will hear oral arguments in University of California v. Broad Institute. Questions?

How did we get here? The patent office ruled in February 2017 that the Broad’s 2014 CRISPR patent on using CRISPR-Cas9 to edit genomes, based on discoveries by Feng Zhang, did not “interfere” with a patent application by UC based on the work of UC Berkeley’s Jennifer Doudna. In plain English, that meant the Broad’s patent, on using CRISPR-Cas9 to edit genomes in eukaryotic cells (all animals and plants, but not bacteria), was different from UC’s, which described Doudna’s experiments using CRISPR-Cas9 to edit DNA in a test tube—and it was therefore valid. The Patent Trial and Appeal Board concluded that when Zhang got CRISPR-Cas9 to work in human and mouse cells in 2012, it was not an obvious extension of Doudna’s earlier research, and that he had no “reasonable expectation of success.” UC appealed, and here we are.

For anyone who may not realize what the stakes are for these institutions, Linda Williams in a March 16, 1999 article for the LA Times had this to say about universities, patents, and money,

The University of Florida made about $2 million last year in royalties on a patent for Gatorade Thirst Quencher, a sports drink that generates some $500 million to $600 million a year in revenue for Quaker Oats Co.

The payments place the university among the top five in the nation in income from patent royalties.

Oh, but if some people on the Gainesville, Fla., campus could just turn back the clock. “If we had done Gatorade right, we would be getting $5 or $6 million (a year),” laments Donald Price, director of the university’s office of corporate programs. “It is a classic example of how not to handle a patent idea,” he added.

Gatorade was developed in 1965 when many universities were ill equipped to judge the commercial potential of ideas emerging from their research labs. Officials blew the university’s chance to control the Gatorade royalties when they declined to develop a professor’s idea.

The Gatorade story does not stop there and, even though it’s almost 20 years old, this article stands the test of time. I strongly encourage you to read it if the business end of patents and academia interest you or if you would like to develop more insight into the Broad Institute/UC Berkeley situation.

Getting back to the science, there is that pesky matter of diseases crossing over from one species to another. While, Harvard and eGenesis claim a victory in this area, it seems more work needs to be done.

Infections from pigs

An August 29, 2018 University of Alabama at Birmingham news release (also on EurekAlert) by Jeff Hansen, describes the latest chapter in the quest to provide more organs for transplantion,

A shortage of organs for transplantation — including kidneys and hearts — means that many patients die while still on waiting lists. So, research at the University of Alabama at Birmingham and other sites has turned to pig organs as an alternative. [emphasis mine]

Using gene-editing, researchers have modified such organs to prevent rejection, and research with primates shows the modified pig organs are well-tolerated.

An added step is needed to ensure the safety of these inter-species transplants — sensitive, quantitative assays for viruses and other infectious microorganisms in donor pigs that potentially could gain access to humans during transplantation.

The U.S. Food and Drug Administration requires such testing, prior to implantation, of tissues used for xenotransplantation from animals to humans. It is possible — though very unlikely — that an infectious agent in transplanted tissues could become an emerging infectious disease in humans.

In a paper published in Xenotransplantation, Mark Prichard, Ph.D., and colleagues at UAB have described the development and testing of 30 quantitative assays for pig infectious agents. These assays had sensitivities similar to clinical lab assays for viral loads in human patients. After validation, the UAB team also used the assays on nine sows and 22 piglets delivered from the sows through caesarian section.

“Going forward, ensuring the safety of these organs is of paramount importance,” Prichard said. “The use of highly sensitive techniques to detect potential pathogens will help to minimize adverse events in xenotransplantation.”

“The assays hold promise as part of the screening program to identify suitable donor animals, validate and release transplantable organs for research purposes, and monitor transplant recipients,” said Prichard, a professor in the UAB Department of Pediatrics and director of the Department of Pediatrics Molecular Diagnostics Laboratory.

The UAB researchers developed quantitative polymerase chain reaction, or qPCR, assays for 28 viruses sometimes found in pigs and two groups of mycoplasmas. They established reproducibility, sensitivity, specificity and lower limit of detection for each assay. All but three showed features of good quantitative assays, and the lower limit of detection values ranged between one and 16 copies of the viral or bacterial genetic material.

Also, the pig virus assays did not give false positives for some closely related human viruses.

As a start to understanding the infectious disease load in normal healthy animals and ensuring the safety of pig tissues used in xenotransplantation research, the researchers then screened blood, nasal swab and stool specimens from nine adult sows and 22 of their piglets delivered by caesarian section.

Mycoplasma species and two distinct herpesviruses were the most commonly detected microorganisms. Yet 14 piglets that were delivered from three sows infected with either or both herpesviruses were not infected with the herpesviruses, showing that transmission of these viruses from sow to the caesarian-delivery piglet was inefficient.

Prichard says the assays promise to enhance the safety of pig tissues for xenotransplantation, and they will also aid evaluation of human specimens after xenotransplantation.

The UAB researchers say they subsequently have evaluated more than 300 additional specimens, and that resulted in the detection of most of the targets. “The detection of these targets in pig specimens provides reassurance that the analytical methods are functioning as designed,” said Prichard, “and there is no a priori reason some targets might be more difficult to detect than others with the methods described here.”

As is my custom, here’s a link to and a citation for the paper,

Xenotransplantation panel for the detection of infectious agents in pigs by Caroll B. Hartline, Ra’Shun L. Conner, Scott H. James, Jennifer Potter, Edward Gray, Jose Estrada, Mathew Tector, A. Joseph Tector, Mark N. Prichard. Xenotransplantaion Volume 25, Issue 4 July/August 2018 e12427 DOI: https://doi.org/10.1111/xen.12427 First published: 18 August 2018

This paper is open access.

All this leads to questions about chimeras. If a pig is incubating organs with human cells it’s a chimera but then means the human receiving the organ becomes a chimera too. (For an example, see my Dec. 22, 2013 posting where there’s mention of a woman who received a trachea from a pig. Scroll down about 30% of the way.)

What is it to be human?

A question much beloved of philosophers and others, the question seems particularly timely with xenotransplantion and other developments such neuroprosthetics (cyborgs) and neuromorphic computing (brainlike computing).

As I’ve noted before, although not recently, popular culture offers a discourse on these issues. Take a look at the superhero movies and the way in which enhanced humans and aliens are presented. For example, X-Men comics and movies present mutants (humans with enhanced abilities) as despised and rejected. Video games (not really my thing but there is the Deus Ex series which has as its hero, a cyborg also offer insight into these issues.

Other than popular culture and in the ‘bleeding edge’ arts community, I can’t recall any public discussion on these matters arising from the extraordinary set of technologies which are being deployed or prepared for deployment in the foreseeable future.

(If you’re in Vancouver (Canada) from September 14 – December 15, 2018, you may want to check out Piccinini’s work. Also, there’s ” NCSU [North Carolina State University] Libraries, NC State’s Genetic Engineering and Society (GES) Center, and the Gregg Museum of Art & Design have issued a public call for art for the upcoming exhibition Art’s Work in the Age of Biotechnology: Shaping our Genetic Futures.” from my Sept. 6, 2018 posting. Deadline: Oct. 1, 2018.)

At a guess, there will be pushback from people who have no interest in debating what it is to be human as they already know, and will find these developments, when they learn about them, to be horrifying and unnatural.