Tag Archives: Adele Peters

Pulling water from the air

Adele Peters’ May 27, 2022 article for Fast Company describes some research into harvesting water from the air (Note: Links have been removed),

In Ethiopia, where an ongoing drought is the worst in 40 years, getting drinking water for the day can involve walking for eight hours. Some wells are drying up. As climate change progresses, water scarcity keeps getting worse. But new technology in development at the University of Texas at Austin could help: Using simple, low-cost materials, it harvests water from the air, even in the driest climates.

“The advantage of taking water moisture from the air is that it’s not limited geographically,” says Youhong “Nancy” Guo, lead author of a new study in Nature Communications that describes the technology.

It’s a little surprising that Peters doesn’t mention the megadrought in the US Southwest, which has made quite a splash in the news, from a February 15, 2022 article by Denise Chow for NBC [{US} National Broadcasting Corporation] news online, Note: Links have been removed,

The megadrought that has gripped the southwestern United States for the past 22 years is the worst since at least 800 A.D., according to a new study that examined shifts in water availability and soil moisture over the past 12 centuries.

The research, which suggests that the past two decades in the American Southwest have been the driest period in 1,200 years, pointed to human-caused climate change as a major reason for the current drought’s severity. The findings were published Monday in the journal Nature Climate Change.

Jason Smerdon, one of the study’s authors and a climate scientist at Columbia University’s Lamont-Doherty Earth Observatory, said global warming has made the megadrought more extreme because it creates a “thirstier” atmosphere that is better able to pull moisture out of forests, vegetation and soil.

Over the past two decades, temperatures in the Southwest were around 1.64 degrees Fahrenheit higher than the average from 1950 to 1999, according to the researchers. Globally, the world has warmed by about 2 degrees Fahrenheit since the late 1800s.

It’s getting drier even here in the Pacific Northwest. Maybe it’s time to start looking at drought and water shortages as a global issue rather than as a regional issue.

Caption: An example of a different shape the water-capturing film can take. Credit: The University of Texas at Austin / Cockrell School of Engineering

Getting back to the topic, a May 23, 2022 University of Texas at Austin news release (also on EurkeAlert), which originated the Peters’ article, announces the work,

More than a third of the world’s population lives in drylands, areas that experience significant water shortages. Scientists and engineers at The University of Texas at Austin have developed a solution that could help people in these areas access clean drinking water.

The team developed a low-cost gel film made of abundant materials that can pull water from the air in even the driest climates. The materials that facilitate this reaction cost a mere $2 per kilogram, and a single kilogram can produce more than 6 liters of water per day in areas with less than 15% relative humidity and 13 liters in areas with up to 30% relative humidity.

The research builds on previous breakthroughs from the team, including the ability to pull water out of the atmosphere and the application of that technology to create self-watering soil. However, these technologies were designed for relatively high-humidity environments.

“This new work is about practical solutions that people can use to get water in the hottest, driest places on Earth,” said Guihua Yu, professor of materials science and mechanical engineering in the Cockrell School of Engineering’s Walker Department of Mechanical Engineering. “This could allow millions of people without consistent access to drinking water to have simple, water generating devices at home that they can easily operate.”

The researchers used renewable cellulose and a common kitchen ingredient, konjac gum, as a main hydrophilic (attracted to water) skeleton. The open-pore structure of gum speeds the moisture-capturing process. Another designed component, thermo-responsive cellulose with hydrophobic (resistant to water) interaction when heated, helps release the collected water immediately so that overall energy input to produce water is minimized.

Other attempts at pulling water from desert air are typically energy-intensive and do not produce much. And although 6 liters does not sound like much, the researchers say that creating thicker films or absorbent beds or arrays with optimization could drastically increase the amount of water they yield.

The reaction itself is a simple one, the researchers said, which reduces the challenges of scaling it up and achieving mass usage.

“This is not something you need an advanced degree to use,” said Youhong “Nancy” Guo, the lead author on the paper and a former doctoral student in Yu’s lab, now a postdoctoral researcher at the Massachusetts Institute of Technology. “It’s straightforward enough that anyone can make it at home if they have the materials.”

The film is flexible and can be molded into a variety of shapes and sizes, depending on the need of the user. Making the film requires only the gel precursor, which includes all the relevant ingredients poured into a mold.

“The gel takes 2 minutes to set simply. Then, it just needs to be freeze-dried, and it can be peeled off the mold and used immediately after that,” said Weixin Guan, a doctoral student on Yu’s team and a lead researcher of the work.

The research was funded by the U.S. Department of Defense’s Defense Advanced Research Projects Agency (DARPA), and drinking water for soldiers in arid climates is a big part of the project. However, the researchers also envision this as something that people could someday buy at a hardware store and use in their homes because of the simplicity.

Yu directed the project. Guo and Guan co-led experimental efforts on synthesis, characterization of the samples and device demonstration. Other team members are Chuxin Lei, Hengyi Lu and Wen Shi.

Here’s a link to and a citation for the paper,

Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments by Youhong Guo, Weixin Guan, Chuxin Lei, Hengyi Lu, Wen Shi & Guihua Yu. Nature Communications volume 13, Article number: 2761 (2022) DOI: https://doi.org/10.1038/s41467-022-30505-2 Published: 19 May 2022

This paper is open access.

Technology for mopping up oil spills

It’s a little disheartening to write about technology for mopping up oils spills as there doesn’t to be much improvement in the situation as Adele Peters notes in her June 4, 2021 article (A decade after Deepwater Horizon, we’re still cleaning up oil spills the same way) for Fast Company (Note: Links have been removed),

Off the coastline of Sri Lanka, where a burning cargo ship has been spilling toxic chemicals and plastic pellets over the past two weeks, the government is preparing for the next possible stage of the disaster: As the ship sinks, it may also spill some of the hundreds of tons of oil in its fuel tanks.

The government is readying oil dispersants, booms, and oil skimmers, all tools that were used in the massive Deepwater Horizon oil spill in the Gulf of Mexico in 2010. They didn’t work perfectly then—more than 1,000 miles of shoreline were polluted—and more than a decade later, they’re still commonly used. But solutions that might work better are under development, including reusable sponges that can suck up oil both on the surface and underwater.

Dispersants, one common tool now, are chemicals designed to break up the oil into tiny droplets so that, in theory, microorganisms in the water can break down the oil more easily. But at least one study found that dispersant could harm those organisms. Deep-sea coral also appears to suffer more from the mix of dispersant and oil than oil alone. Booms are designed to contain oil on the surface so it can be scraped off with a skimmer, but that only works if the water’s relatively calm, and it doesn’t deal with oil below the surface. The oil on the surface can also be burned, but it creates a plume of thick black smoke. “That does get rid of the oil from the water, but then it turns a water pollution problem into an air pollution problem,” says Seth Darling, a senior scientist at Argonne National Laboratory who developed an alternative called the Oleo Sponge [emphasis mine].

… a team from two German universities that developed a system of wood chips that can be dropped in the water to collect oil even in rough weather, when current tools don’t work well. The system is ready for deployment if a spill happens in the Baltic Sea. Another earlier-stage solution proposes using a robot to detect and capture oil.

I’m glad to see at least one new oil spill cleanup technology being readied for deployment in Peters’ June 4, 2021 article, we should be preparing for more spills as the Arctic melts and plans are made to develop new shipping routes.

Amongst other oil spill cleanup technologies, Peters mentions the ‘Oleo Sponge’, which was featured here in a March 30, 2017 posting when researchers were looking for investors to commercialize the product. According to Peters the oleo sponge hasn’t yet made it to market; it’s a fate many of these technologies are destined to meet. Meanwhile, scientists continue to develop new methods and techniques for mopping up oil spills as safely as possible. For example, there’s an oil spill sucking robot mentioned in my October 30, 2020 posting, which features yet another article by Peters.

In the summer of 2020 there were two major oil spills, one in the Russian Arctic and one in an ecologically sensitive area near Mauritius. For more about those events, there’s an August 14, 2020 posting, which starts with news of an oil spill technology featuring dog fur and then focuses primarily on the oil spill in the Russian Arctic with a brief mention of the spill near Mauritius in June 2020 (scroll down to the ‘Exceptionally warm weather’ subhead and see the paragraph above it for the mention and a link to a story).

Sunlight makes transparent wood even lighter and stronger

Researchers at the University of Maryland (US) have found a way to make their wood transparent by using sunlight. From a February 2, 2021 news article by Bob Yirka on phys.org (Note: Links have been removed),

A team of researchers at the University of Maryland, has found a new way to make wood transparent. In their paper published in the journal Science Advances, the group describes their process and why they believe it is better than the old process.

The conventional method for making wood transparent involves using chemicals to remove the lignin—a process that takes a long time, produces a lot of liquid waste and results in weaker wood. In this new effort, the researchers have found a way to make wood transparent without having to remove the lignin.

The process involved changing the lignin rather than removing it. The researchers removed lignin molecules that are involved in producing wood color. First, they applied hydrogen peroxide to the wood surface and then exposed the treated wood to UV light (or natural sunlight). The wood was then soaked in ethanol to further clean it. Next, they filled in the pores with clear epoxy to make the wood smooth.

Caption: Solar-assisted large-scale fabrication of transparent wood. (A) Schematic showing the potential large-scale fabrication of transparent wood based on the rotary wood cutting method and the solar-assisted chemical brushing process. (B) The outdoor fabrication of lignin-modified wood with a length of 1 m [9 August 2019 (the summer months) at 13:00 p.m. (solar noon), the Global Solar UV Index (UVI): 7 to 8]. (C) Digital photo of a piece of large transparent wood (400 mm by 110 mm by 1 mm). (D) The energy consumption, chemical cost, and waste emission for the solar-assisted chemical brushing process and NaClO2 solution–based delignification process. (E) A radar plot showing a comparison of the fabrication process for transparent wood. Photo credit: Qinqin Xia, University of Maryland, College Park. [downloaded from https://advances.sciencemag.org/content/7/5/eabd7342]

Bob McDonald in a February 5, 2021 posting on his Canadian Broadcasting Corporation (CBC) Quirks & Quarks blog provides a more detailed description of the new ‘solar-based transparency process’,

Early attempts to make transparent wood involved removing the lignin, but this involved hazardous chemicals, high temperatures and a lot of time, making the product expensive and somewhat brittle. The new technique is so cheap and easy it could literally be done in a backyard.

Starting with planks of wood a metre long and one millimetre thick, the scientists simply brushed on a solution of hydrogen peroxide using an ordinary paint brush. When left in the sun, or under a UV lamp for an hour or so, the peroxide bleached out the brown chromophores but left the lignin intact, so the wood turned white.

Next, they infused the wood with a tough transparent epoxy designed for marine use, which filled in the spaces and pores in the wood and then hardened. This made the white wood transparent.

As window material, it would be much more resistant to accidental breakage. The clear wood is lighter than glass, with better insulating properties, which is important because windows are a major source of heat loss in buildings. It also might take less energy to manufacture clear wood because there are no high temperatures involved.

Many different types of wood, from balsa to oak, can be made transparent, and it doesn’t matter if it is cut along the grain or against it. If the transparent wood is made a little thicker, it would be strong enough to become part of the structure of a building, so there could be entire transparent wooden walls.

Adele Peters in her February 2, 2021 article for Fast Company describes the work in Maryland and includes some information about other innovative and possibly sustainable uses of wood (Note: Links have been removed),

It’s [transparent wood] just one of a number of ways scientists and engineers are rethinking how we can use this renewable resource in construction. Skyscrapers made entirely out of wood are gaining popularity in cities around the world. And scientists recently discovered a technique to grow wood in a lab, opening up the possibility of using wood without having to chop down a forest.

There were three previous posts here about this work at the University of Maryland,

University of Maryland looks into transparent wood May 11, 2016 posting

Transparent wood more efficient than glass in windows? Sept, 8, 2016 posting

Glass-like wood windows protect against UV rays and insulate heat October 21, 2020 posting

I have this posting, which is also from 2016 but features work in Sweden,

Transparent wood instead of glass for window panes? April 1, 2016 posting

Getting back to the latest work from the University of Maryland, here’s a link to and a citation for the paper,

Solar-assisted fabrication of large-scale, patternable transparent wood by Qinqin Xia, Chaoji Chen, Tian Li, Shuaiming He, Jinlong Gao, Xizheng Wang and Liangbing Hu. Science Advances Vol. 7, no. 5, eabd7342 DOI: 10.1126/sciadv.abd7342 Published: 27 Jan 2021

This paper is open access.

One last item, Liangbing Hu has founded a company InventWood for commercializing the work he and his colleagues have done at the University of Maryland.

A Vancouver (Canada) connection to the Pfizer COVID-19 vaccine

Canada’s NanoMedicines Innovation Network (NMIN) must have been excited over the COVID-19 vaccine news (Pfizer Nov. 9, 2020 news release) since it’s a Canadian company (Acuitas Therapeutics) that is providing the means of delivering the vaccine once it enters the body.

Here’s the company’s president and CEO [chief executive officer], Dr. Thomas Madden explaining his company’s delivery system (from Acuitas’ news and events webpage),

For anyone who might find a textual description about the vaccine helpful, I have a Nov. 9, 2020 article by Adele Peters for Fast Company,

… a handful of small biotech companies began scrambling to develop vaccines using an as-yet-unproven technology platform that relies on something called messenger RNA [ribonucleic acid], usually shortened to mRNA …

Like other vaccines, mRNA vaccines work by training the immune system to recognize a threat like a virus and begin producing antibodies to protect itself. But while traditional vaccines often use inactivated doses of the organisms that cause disease, mRNA vaccines are designed to make the body produce those proteins itself. Messenger RNA—a molecule that contains instructions for cells to make DNA—is injected into cells. In the case of COVID-19, mRNA vaccines provide instructions for cells to start producing the “spike” protein of the new coronavirus, the protein that helps the virus get into cells. On its own, the spike protein isn’t harmful. But it triggers the immune system to begin a defensive response. As Bill Gates, who has supported companies like Moderna and BioNTech through the Gates Foundation, has described it, “you essentially turn your body into its own manufacturing unit.”

Amy Judd’s Nov. 9, 2020 article for Global news online explains (or you can just take another look at the video to refresh your memory) how the Acuitas technology fits into the vaccine picture,

Vancouver-based Acuitas Therapeutics, a biotechnology company, is playing a key role through a technology known as lipid nanoparticles, which deliver messenger RNA into cells.

“The technology we provide to our partners is lipid nanoparticles and BioNTech and Pfizer are developing a vaccine that’s using a messenger RNA that tells our cells how to make a protein that’s actually found in the COVID-19 virus,” Dr. Thomas Madden, president and CEO of Acuitas Therapeutics, told Global News Monday [Nov. 9, 2020].

“But the messenger RNA can’t work by itself, it needs a delivery technology to protect this after it’s administered and then to carry it into the cells where it can be expressed and give rise to an immune response.”

Madden said they like to think of the lipid nanoparticles as protective wrapping around a fragile glass ornament [emphasis mine] being shipped to your house online. That protective wrapping would then make sure the ornament made it to your house, through your front door, then unwrap itself and leave in your hallway, ready for you to come and grab it when you came home.

Acuitas Therapeutics employs 29 people and Madden said he believes everyone is feeling very proud of their work.

“Not many people are aware of the history of this technology and the fact that it originated in Vancouver,” he added.

“Dr. Pieter Cullis was one of the key scientists who brought together a team to develop this technology many, many years ago. UBC and Vancouver and companies associated with those scientists have been at the global centre of this technology for many years now.

“I think we’ve been looking for a light at the end of the tunnel for quite some time. I think everybody has been hoping that a vaccine would be able to provide the protection we need to move out of our current situation and I think this is now a confirmation that this hope wasn’t misplaced.”

Nanomedicine in Vancouver

For anyone who’s curious about the Canadian nanomedicine scene, you can find out more about it on Canada’s NanoMedicines Innovation Network (NMIN) website. They recently held a virtual event (Vancouver Nanomedicine Day) on Sept. 17, 2020 (see my Sept. 11, 2020 posting for details), which featured a presentation about Aquitas’ technology.

Happily, the organizers have posted videos for most of the sessions. Dr. Ying Tam of Acuitas made this presentation (about 22 mins. running time) “A Novel Vaccine Approach Using Messenger RNA‐Lipid Nanoparticles: Preclinical and Clinical Perspectives.” If you’re interested in that video or any of the others go to the NanoMedicines Innovation Network’s Nanomedicine Day 2020 webpage.

Acuitas Therapeutics can be found here.

A robot that sucks up oil spills

I was surprised to find out that between 1989 when the Exxon Valdez oil spill fouled the coastline along Alaska and northern British Columbia and 2010 when the BP (British Petroleum) oil spill fouled the Gulf of Mexico and a number of US states, which border it, and Mexico’s state coastlines, there had been virtually no improvement in the environmental remediation technologies for oil spills (see my June 4, 2010 posting).

This summer we’ve had two major oil spills, one in the Russian Arctic (as noted in my August 14, 2020 posting; scroll down to the subhead ‘As for the Russian Arctic oil spill‘) and in the Indian Ocean near Mauritius and near a coral reef and marine protected areas (see this August 13, 2020 news item on the Canadian Broadcasting Corporation [CBC] news online website).

No word yet on whether or not remediation techniques have improved but this August 6, 2020 article by Adele Peters for Fast Company highlights a new robotic approach to cleaning marine oil spills,

A decade after a BP drilling rig exploded in the Gulf of Mexico, sending an estimated 168 million gallons of oil gushing into the water over the course of months, local wildlife are still struggling to recover. Many of the people who worked to clean up the spill are still experiencing health effects. At the time, the “cleanup” strategy involved setting oil slicks on fire and spraying mass quantities of a chemical meant to disperse it, both of which helped get rid of the oil, but also worsened pollution [emphasis mine].

A new robot designed to clean oil spills, now in development, demonstrates how future spills could be handled differently. The robot navigates autonomously on the ocean surface, running on solar power. When oil sensors on the device detect a spill, it triggers a pump that pushes oil and water inside, where a custom nanomaterial sucks up the oil and releases clean water.

Kabra [Tejas Sanjay Kabra, a graduate student at North Carolina State University] 3D-printed a small prototype of the robot, which he tested in a lab, a swimming pool, and then the open ocean. (The small version, about two feet across, can collect 20 gallons of oil at a time; the same device can be scaled up to much larger sizes). He now hopes to bring the product to market as quickly as possible, as major oil spills continue to occur—such as the spill in Russia in June that sent more than 20,000 metric tons of diesel into a pristine part of the Arctic.

Peters’s article provides more details and features an embedded video.

Kabra calls his technology, SoilioS (Spilled OIL recovery by Isis & Oleophilic Sponge) and he entered it in the 2020 James Dyson Awards. The undated James Dyson Award news release announcing the 2020 national winners does not include Kabra’s entry. Mind you, over 1700 inventors entered the 2020 competition.

I hope Kabra perseveres as his robot project looks quite interesting for a number of reasons as can be seen in his entry submission (from the James Dyson Award website),

Initially, I started with a literature review on various Nanomaterials made from tree leaves with specific properties of Hydrophobicity and oleophilicity. Then I narrowed down my research on four different types of leaves i.e., Holy basil, betel, subabul, and mango. Nanoparticles from these leaves were made by green synthesis method and SEM, EDX and XRD tests were conducted. From these tests, I found that the efficiency of material made from the subabul tree was max (82.5%). In order to carry out surface cleaning at sea, different robot designs were studied. Initially, the robot was built in a box structure with arms. The arms contained Nano-capillary; however, the prototype was bulky and inefficient. A new model was devised to reduce the weight as well as increase the efficiency of absorbing the oil spill. The new robot was designed to be in a meta-stable state. The curves of the robot are designed in such a way that it gives stability as well as hold all the components. The top part of the robot is a hollow dome to improve the stability in water. The robot is 3D printed to reduce weight. The 3D printed robot was tested in a pool. Further, work is going on to build a 222 feet robot to test with hardware suitable for sea.

Here’s what SoilioS looks like,

[downloaded from https://www.jamesdysonaward.org/en-US/2020/project/soilios/]

Kabra described what makes his technology from what is currently the state-of-the-art and his future plans (from the James Dyson Award website),

The current technology uses carbon Nano-particle, and some other uses plastic PVC with a chemical adhesive, which is harmful to the environment. On the other hand, SoilioS uses Nano-material made from tree leaves. The invented technology absorbs the oil and stores inside the container with a recovery rate of 80%. The recovered oil can be used for further application; however, on the other hand, the current products burn the oil [emphasis mine] at the cleaning site itself without any recovery rate, thereby increasing pollution. The durability of the invented technology is 8-10 years, and the Nanomaterial used for cleaning the oil spill is reusable for 180 cycles. On the other hand, the durability of the current technology is up to 3-5 years, and the material used is non-reusable. The cost of the invented product is only $5 and on the other hand, the existing technology costs up to $750.

I aim to develop, manufacture, and practically test the robot prototype in the sea so that it can be used to solve oil spill issues and can save billions of dollars. I hope this device will help the environment in a lot of ways and eventually decrease the side effects caused due to oil spills such as leukemia and dying marine life. Currently, I am testing the product on different grades of oil to improve its efficiency further and improving its scope of the application so that it can also be used in industries and household purposes.

I wish Kabra good luck as he works to bring his technology to market.

Winter jacket made with ‘brewed protein’ and enabled by synthetic biology

It’s called a ‘Moon Parka’,

[downloaded from https://sp.spiber.jp/en/tnfsp/mp/]

Adele Peters in her October 31, 2019 article for Fast Company describes the technology used to make this jacket,

A typical waterproof winter jacket is made with nylon—a material that, like other plastics, is made from petroleum. But a new limited-edition jacket from The North Face Japan uses something called “brewed protein” instead. It’s a material inspired by spider silk that is fermented in giant vats, the same way that breweries make beer.

It’s one of the first uses of a material produced by the Japanese startup Spiber, a company that has spent more than a decade developing a new process to make high-performance textiles and other products that don’t rely on fossil fuels, animals, or natural fibers like cotton, all of which have environmental issues. …

The company designs genes that code for a specific protein—the first was an exact replica of natural spider silk, known for its extreme strength—and then introduces the genes into microorganisms that can produce the protein efficiently. Inside giant tanks, the microorganisms are fed sugar, grow and multiply, and produce the protein through fermentation. …

Spiber first started collaborating with Goldwin, a Japanese outdoor brand that owns the Japanese rights to The North Face, in 2015, and created an early prototype of a jacket then. But it quickly realized that an exact replica of spider silk wouldn’t work well for the application; the material sucks up water, and the jacket needed to be waterproof.

“We spent the last four years going back to the drawing board, redesigning our protein molecule—the very order of the amino acids in the molecule,” says Meyer [Daniel Meyer, Spiber’s head of corporate global marketing]. “And we created our own hydrophobic [water repellent] version of spider silk. It’s inspired by natural spider silk, but we have made our own design changes such that it would be more hydrophobic and meet the performance requirements of The North Face Japan.”

The jacket is available for purchase but only by a lottery, which has now closed. According to Peters, a large, commercial production facility is being built in Thailand so that at some point a Moon Parka will be affordable. For reference, the lottery jackets were priced at ¥150,000 (about $1,377 US).

You can find Spiber here in mid-March [2020] according to the homepage.

Why not monetize your DNA for 2019?

I’m not a big fan of DNA (deoxyribonucleic acid) companies that promise to tell you about your ancestors and, depending on the kit, predisposition to certain health issues as per their reports about your genetic code. (I regularly pray no one in my family has decided to pay one of these companies to analyze their spit.)

During Christmas season 2018, the DNA companies (23andMe and Ancestry) advertised special prices so you could gift someone in your family with a kit. All this corporate largesse may not be wholly in service of the Christmas spirit. After all, there’s money to be made once they’ve gotten your sample.

Monetizing your DNA in 2016

I don’t know when 23andMe started selling DNA information or if any similar company predated their efforts but this June 21, 2016 article by Antonio Regalado for MIT (Massachusetts Institute of Technology) Review offers the earliest information I found,

“Welcome to You.” So says the genetic test kit that 23andMe will send to your home. Pay $199, spit in a tube, and several weeks later you’ll get a peek into your DNA. Have you got the gene for blond hair? Which of 36 disease risks could you pass to a child?

Run by entrepreneur Anne Wojcicki, the ex-wife of Google founder Sergey Brin, and until last year housed alongside the Googleplex, the company created a test that has been attacked by regulators and embraced by a curious public. It remains, nine years after its introduction, the only one of its kind sold directly to consumers. 23andMe has managed to amass a collection of DNA information about 1.2 million people, which last year began to prove its value when the company revealed it had sold access to the data to more than 13 drug companies. One, Genentech, anted up $10 million for a look at the genes of people with Parkinson’s disease.

That means 23andMe is monetizing DNA rather the way Facebook makes money from our “likes.” What’s more, it gets its customers to pay for the privilege. That idea so appeals to investors that they have valued the still-unprofitable company at over $1 billion. “Money follows data,” says Barbara Evans, a legal scholar at the University of Houston, who studies personal genetics. “It takes a lot of labor and capital to get that information in a form that is useful.”

Monetizing your DNA in 2018 and privacy concerns

Starting with Adele Peters’ December 13, 2018 article for Fast Company (Note: A link has been removed),

When 23andMe made a $300 million deal with GlaxoSmithKline [GSK] in July[2018]–so the pharmaceutical giant could access a vast store of genetic data as it works on new drugs–the consumers who actually provided that data didn’t get a cut of the proceeds. A new health platform is taking a different approach: If you choose to share your own DNA data or other health records, you’ll get company shares that will later pay you dividends if that data is sold.

Before getting to the start-up that would allow you rather than a company to profit or at least somewhat monetize your DNA, I’m including a general overview of the July 2018 GSK/23andMe deal in Jamie Ducharme’s July 26, 2018 article for TIME (Note: Links have been removed),

Consumer genetic testing company 23andMe announced on Wednesday [July 25, 2018] that GlaxoSmithKline purchased a $300 million stake in the company, allowing the pharmaceutical giant to use 23andMe’s trove of genetic data to develop new drugs — and raising new privacy concerns for consumers

The “collaboration” is a way to make “novel treatments and cures a reality,” 23andMe CEO Anne Wojcicki said in a company blog post. But, though it isn’t 23andMe’s first foray into drug discovery, the deal doesn’t seem quite so simple to some medical experts — or some of the roughly 5 million 23andMe customers who have sent off tubes of their spit in exchange for ancestry and health insights

Perhaps the most obvious issue is privacy, says Peter Pitts, president of the Center for Medicine in the Public Interest, a non-partisan non-profit that aims to promote patient-centered health care.

“If people are concerned about their social security numbers being stolen, they should be concerned about their genetic information being misused,” Pitts says. “This information is never 100% safe. The risk is magnified when one organization shares it with a second organization. When information moves from one place to another, there’s always a chance for it to be intercepted by unintended third parties.

That risk is real, agrees Dr. Arthur Caplan, head of the division of medical ethics at the New York University School of Medicine. Caplan says that any genetic privacy concerns also extend to your blood relatives, who likely did not consent to having their DNA tested — echoing some of the questions that arose after law enforcement officials used a genealogy website to find and arrest the suspected Golden State Killer in April [2018].

“A lot of people paid money to 23andMe to get their ancestry determined — fun, recreational stuff,” Caplan says. “Even though they may have signed a thing saying, ‘I’m okay if you use this information for medical research,’ I’m not sure they understood what that really meant. I’m not sure they understood that it meant, ‘Yes, we’ll go to Glaxo, and that’s where we’re really going to make a lot of money off of you.’”

A 23andMe spokesperson told TIME that data privacy is a “top priority” for the company, emphasizing that customer data isn’t used in research without consent, and that GlaxoSmithKline will only receive “summary statistics from analyses 23andMe conducts so that no single individual can be identified.”

Yes the data is supposed to be stripped of identifying information but given how many times similar claims about geolocation data have been disproved, I am skeptical. DJ Pangburn’s September 26, 2017 article (Even This Data Guru Is Creeped Out By What Anonymous Location Data Reveals About Us) for Fast Company illustrate the fragility of ‘anonymized data’,

… as a number of studies have shown, even when it’s “anonymous,” stripped of so-called personally identifiable information, geographic data can help create a detailed portrait of a person and, with enough ancillary data, identify them by name

Curious to see this kind of data mining in action, I emailed Gilad Lotan, now vice president of BuzzFeed’s data science team. He agreed to look at a month’s worth of two different users’ anonymized location data, and to come up with individual profiles that were as accurate as possible

The results, produced in just a few days’ time, range from the expected to the surprisingly revealing, and demonstrate just how “anonymous” data can identify individuals.

Last fall Lotan taught a class at New York University on surveillance that kicked off with an assignment like the one I’d given him: link anonymous location data with other data sets–from LinkedIn, Facebook, home registration and mortgage records, and other online data.
“It’s not hard to figure out who this [unnamed] person is,” says Lotan. In class, students found that tracking location data around holidays proved to be the easiest way to determine who, exactly, the data belonged to. “Basically,” he says, “visits to private homes that are owned and publicly registered.”

In 2013, researchers at MIT and the Université Catholique de Louvain in Belgium published a paper reporting on 15 months of study of human mobility data for over 1.5 million individuals. What they found is that only four spatio-temporal points are required to “uniquely identify 95% of the individuals.” The researchers concluded that there was very little privacy even in raw location data. Four years later, their calls for policies rectifying concerns about location tracking have fallen largely on deaf ears.

Getting back to DNA, there was also some concern at Fox News,

Other than warnings, I haven’t seen much about any possible legislation regarding DNA and privacy in either Canada or the US.

Now, let’s get to how you can monetize your self.

Me making money off me

I’ve found two possibilities for an individual who wants to consider monetizing their own DNA.

Health shares

Adele Peters’ December 13, 2018 article describes a start-up company and the model they’re proposing to allow you profit from your own DNA (Note: Links have been removed),

“You can’t say data is valuable and then take that data away from everybody,” says Dawn Barry, president and cofounder of LunaPBC, the public benefit corporation that manages the community-owned platform, called LunaDNA, which recently got SEC approval to recognize health data as currency. “What we’re finding is that [our early adopters are] very excited about the transparency of this model–that when we all come together and create value, that value flows down to the individuals who shared their data.

The platform shares some anonymized data with nonprofits, such as foundations that study rare diseases. In that case, money wouldn’t initially change hands, but “there could be intellectual property that at some point in time is monetized, and the community would share in that,” says Bob Kain, CEO and cofounder of LunaPBC. “When we have enough data in the near future, then we’ll work with pharmaceutical companies, for instance, to drive discovery for those companies. And they will pay market rates.

The company doesn’t offer DNA analysis itself, but chose to focus on data management. If you’ve sent a tube of spit to 23andMe, AncestryDNA, MyHeritage, or FamilyTree DNA, you can contribute that data to LunaDNA and get shares. (If you’d rather not let the original testing company keep your data, you can also separately take the steps to delete it.

“We looked at a number of different models to enable people to have ownership, including cryptocurrency, which is a proxy for ownership, too,” says Kain. “Cryptocurrency is hard to understand for most people, and right now, the regulatory landscape is blurry. So we thought, to move forward, we’d go with something much more traditional and easy to understand, and that is stock shares, basically.

For sharing targeted genes, you get 10 shares. For sharing your whole genome, you get 300 shares. At the moment, that’s not worth very much–the valuation takes into account the risk that the data might not be monetized, and the fact that the startup isn’t the exclusive owner of your data. The SEC filing says that the estimated fair market value of a whole genome is only $21. Some other health information is worth far less; 20 days of data from a fitness tracker garners two shares, valued at 14¢. But as more people contribute data, the research value of the whole database (and dividends) will increase. If the shareholders ever decided to sell the company itself, they would also make money that way.

Luna’s is a very interesting approach and I encourage you to read the December 13, 2018 article in its entirety.

Blockchain and crypto me

At least one effort to introduce blockchain/cryptocurrency technology to the process for monetizing your DNA garnered a lot of attention in February 2018.

A February 8, 2018 article by Eric Rosenbaum for CNBC (a US cable tv channel) explores an effort by George Church (Note: Links have been removed),

It’s probably wise to be skeptical of anyone who says they have a new idea for a blockchain-based company, or worse still, a company changing its business model to focus on the crypto world. That ice tea company that shifted its model to the blockchain, or Kodak saying its road back to riches was managing photo rights using a blockchain system. Raise eyebrow, or move directly onto outright shake of head

However, when a world renown Harvard geneticist announces he’s launching a blockchain-based start-up, it merits some attention. And it’s not the crypto-angle itself that might make you do a double-take, but the assets that will be managed, and exchanged, using digital currency: your DNA

Harvard University genetics guru George Church — one of the scientists at the forefront of the CRISPR genetic engineering revolution — announced on Wednesday a start-up, Nebula Genomics, that will use the blockchain to not only allow individuals to share their personal genome for research purposes, but retain ownership and monetize their DNA through trading of a custom digital currency.

The genomics revolution has been exponentially advanced by drastic reductions in cost. As Nebula noted in a white paper explaining its business model, the first human genome was sequenced in 2001 at a cost of $3 billion. Today, human genome sequencing costs less than $1,000, and in a few years the price will drop below $100

In fact, some big Silicon Valley start-ups, led by 23andMe, have capitalized on this rapid advance and already offer personal DNA testing kits for around $100 (sometimes with discounts even less)

Nebula took direct aim at 23andMe in its white paper, and one reason why it can offer genetic testing for less

“Today, 23andMe (23andme.com) and Ancestry (ancestry.com) are the two leading personal genomics companies. Both use DNA microarray-based genotyping for their genetic tests. It is an outdated and significantly less powerful alternative to DNA sequencing. Instead of sequencing continuous stretches of DNA, genotyping identifies single letters spaced at approximately regular intervals across the genome. …

Outdated genetic tests? Interesting, eh? Zoë Corbyn provides more information about Church’s plans in her February 18, 2018 article for the Guardian,

“Under the current system, personal genomics companies effectively own your personal genomics data, and you don’t see any benefit at all,” says Grishin [Dennis Grishin, Nebula co-founder]. “We want to eliminate the middleman.

Although the aim isn’t to provide a get-rich-quick scheme, the company believes there is potential for substantial returns. Though speculative, its modelling suggests that someone in the US could earn up to 50 times the cost of sequencing their genome – about $50,000 at current rates – taking into account both what could be made from a lifetime of renting out their genetic data, and reductions in medical bills if the results throw up a potentially preventable disease

The startup also thinks it can solve the problem of the dearth of genetic data researchers have to draw on, due to individuals – put off by cost or privacy concerns – not getting sequenced.

Payouts when you grant access to your genome would come in the form of Nebula tokens, the company’s cryptocurrency, and companies would need to buy tokens from the startup to pay people whose data they wanted to access. Though the value of a token is yet to be set and the number of tokens defined, it might, for example, take one Nebula token to get your genome sequenced. An individual new to the system could begin to earn fractions of a token by taking part in surveys about their heath posted by prospective data buyers. When someone had earned enough, they could get sequenced and begin renting out their data and amassing tokens. Alternatively, if an individual wasn’t yet sequenced they may find data buyers willing to pay for or subsidise their genome sequencing in exchange for access to it. “Potentially you wouldn’t have to pay out of pocket for the sequencing of your genome,” says Grishin.

In all cases, stress Grishin and Obbad [Kamal Obbad, Nebula co-founder], the sequence would belong to the individual, so they could rent it out over and over, including to multiple companies simultaneously. And the data buyer would never take ownership or possession of it – rather, it would be stored by the individual (for example in their computer or on their Dropbox account) with Nebula then providing a secure computation platform on which the data buyer could compute on the data. “You stay in control of your data and you can share it securely with who you want to,” explains Obbad. Nebula makes money not by taking any transaction fee but by being a participant providing computing and storage services. The cryptocurrency would be able to be cashed out for real money via existing cryptocurrency exchanges.

Hopefully, Luna and Nebula, as well as, any competitors in this race to allow individuals to monetize their own DNA will have excellent security.

For the curious, you can find Luna here and Nebula here.Note: I am not endorsing either company or any others mentioned here. This posting is strictly informational.

Smart paint that ‘talks’ to canes for better safety crossing the street

It would be nice if they had some video of people navigating with the help of this ‘smart’ paint. Perhaps one day. Meanwhile, Adele Peters in her March 7, 2018 article for Fast Company provides a vivid description of how a sight-impaired or blind person could navigate more safely and easily,

The crosswalk on a road in front of the Ohio State School for the Blind looks like one that might be found at any intersection. But the white stripes at the edges are made with “smart paint”–and if a student who is visually impaired crosses while using a cane with a new smart tip, the cane will vibrate when it touches the lines.

The paint uses rare-earth nanocrystals that can emit a unique light signature, which a sensor added to the tip of a cane can activate and then read. “If you pulse a laser or LED into these materials, they’ll pulse back at you at a very specific frequency,” says Josh Collins, chief technology officer at Intelligent Materials [sic], the company that manufacturers the oxides that can be added to paint.

While digging down for more information, this February 12, 2018 article by Ben Levine for Government Technology Magazine was unearthed (Note: Links have been removed),

In this installment of the Innovation of the Month series (read last month’s story here), we explore the use of smart technologies to help blind and visually impaired people better navigate the world around them. A team at Ohio State University has been working on a “smart paint” application to do just that.

MetroLab’s Executive Director Ben Levine sat down with John Lannutti, professor of materials science engineering at Ohio State University; Mary Ball-Swartwout, orientation and mobility specialist at the Ohio State School for the Blind; and Josh Collins, chief technology officer at Intelligent Material to learn more.

John Lannutti (OSU): The goal of “smart paint for networked smart cities” is to assist people who are blind and visually impaired by implementing a “smart paint” technology that provides accurate location services. You might think, “Can’t GPS do that?” But, surprisingly, current GPS-based solutions actually cannot tell whether somebody is walking on the sidewalk or down the middle of the street. Meanwhile, modern urban intersections are becoming increasingly complex. That means that finding a crosswalk, aligning to cross and maintaining a consistent crossing direction while in motion can be challenging for people who are visually impaired.

And of course, crosswalks aren’t the only challenge. For example, our current mapping technologies are unable to provide the exact location of a building’s entrance. We have a technology solution to those challenges. Smart paint is created by adding exotic light-converting oxides to standard road paints. The paint is detected using a “smart cane,” a modified white cane that detects the smart paint and enables portal-to-portal guidance. The smart cane can also be used to notify vehicles — including autonomous vehicles — of a user’s presence in a crosswalk.

As part of this project, we have a whole team of educational, city and industrial partners, including:

Educational partners: 

  • Ohio State School for the Blind — testing and implementation of smart paint technology in Columbus involving both students and adults
  • Western Michigan University — implementation of smart paint technology with travelers who are blind and visually impaired to maximize orientation and mobility
  • Mississippi State University — the impacts of smart paint technology on mobility and employment for people who are blind and visually impaired

City partners:  

  • Columbus Smart Cities Initiative — rollout of smart paint within Columbus and the paint’s interaction with the Integrated Data Exchange (IDE), a cloud-based platform that dynamically collects user data to show technological impact
  • The city of Tampa, Fla. — rollout of smart paint at the Lighthouse for the Blind
  • The Hillsborough Area Transit Regional Authority, Hillsborough County, Fla. — integration of smart paint with existing bus lines to enable precise location determination
  • The American Council of the Blind — implementation of smart paint with the annual American Council of the Blind convention
  • MetroLab Network — smart paint implementation in city-university partnerships

Industrial collaborators:  

  • Intelligent Material — manufactures and supplies the unique light-converting oxides that make the paint “smart”
  • Crown Technology — paint manufacturing, product evaluation and technical support
  • SRI International — design and manufacturing of the “smart” white cane hardware

Levine: Can you describe what this project focused on and what motivated you to address this particular challenge?

Lannutti: We have been working with Intelligent Material in integrating light-converting oxides into polymeric matrices for specific applications for several years. Intelligent Material supplies these oxides for highly specialized applications across a variety of industries, and has deep experience in filtering and processing the resulting optical outputs. They were already looking at using this technology for automotive applications when the idea to develop applications for people who are blind was introduced. We were extremely fortunate to have the Ohio State School for the Blind (OSSB) right here in Columbus and even more fortunate to have interested collaborators there who have helped us at every step of the way. They even have a room filled with previous white cane technologies; we used those to better understand what works and what doesn’t, helping refine our own product. At about this same time, the National Science Foundation released a call for Smart and Connected Communities proposals, which gave us both a goal and a “home” for this idea.

Levine: How will the tools developed in this project impact planning and the built environment?

Ball-Swartwout: One of the great things about smart paint is that it can be added to the built environment easily at little extra cost. We expect that once smart paint is widely adopted, most sighted users will not notice much difference as smart paint is not visually different from regular road paint. Some intersections might need to have more paint features that enable smart white cane-guided entry from the sidewalk into the crosswalk. Paint that tells users that they have reached their destination may become visible as horizontal stripes along modern sidewalks. These paints could be either gray or black or even invisible to sighted pedestrians, but would still be detectable by “smart” white canes to tell users that they have arrived at their destination.

Levine: Can you tell us about the new technologies that are associated with this project? Can you talk about the status quo versus your vision for the future?

Collins: Beyond converting ceramics in paint, placing a highly sensitive excitation source and detector package at the tip of a moving white cane is truly novel. Also challenging is powering this package using minimal battery weight to decrease the likelihood of wrist and upper neck fatigue.

The status quo is that the travel of citizens who are blind and visually impaired can be unpredictable. They need better technologies for routine travel and especially for travel to any new destinations. In addition, we anticipate that this technology could assist in the travel of people who have a variety of physical and cognitive impairments.

Our vision for the future of this technology is that it will be widespread and utilized constantly. Outside the U.S., Japan and Europe have integrated relatively expensive technologies into streets and sidewalks, and we see smart paint replacing that very quickly. Because the “pain” of installing smart paint is very small, we believe that grass-roots pressure will enable rapid introduction of this technology.

Levine: What was the most surprising thing you learned during this process?

Lannutti: In my mind, the most surprising thing was discovering that sound was not necessarily the best means of guiding users who are blind. This is a bias on the part of sighted individuals as we are used to beeping and buzzing noises that guide or inform us throughout our day. Pedestrians who are blind, on the other hand, need to constantly listen to aspects of their environment to successfully navigate it. For example, listening to traffic noise is extremely important to them as a means of avoiding danger. People who are blind or visually impaired cannot see but need to hear their environment. So we had to dial back our expectations regarding the utility of sound. Instead, we now focus on vibration along the white cane as a means of alerting the user.

If those interested, Levine’s article is well worth reading in its entirety.

Thankfully they’ve added some information to the website for Intelligent Material (Solutions) since I first viewed it.

There’s a bit more information on the Intelligent Material (Solutions’) YouTube video webpage,

Intelligent Material Solutions, Inc. is a privately held business headquartered in Princeton, NJ in the SRI/Sarnoff Campus, formerly RCA Labs. Our technology can be traced through scientific discoveries dating back over 50 years. We are dedicated to solving the worlds’ most challenging problems and in doing so have assembled an innovative, multi-discipliary team of leading scientists from industry and academia to ensure rapid transition from our labs to the world.

The video was published on December 6, 2017. You can find even more details at the company’s LinkedIn page.

Why don’t you CRISPR yourself?

It must have been quite the conference. Josiah Zayner plunged a needle into himself and claimed to have changed his DNA (deoxyribonucleic acid) while giving his talk. (*Segue: There is some Canadian content if you keep reading.*) From an Oct. 10, 2017 article by Adele Peters for Fast Company (Note: A link has been removed),

“What we’ve got here is some DNA, and this is a syringe,” Josiah Zayner tells a room full of synthetic biologists and other researchers. He fills the needle and plunges it into his skin. “This will modify my muscle genes and give me bigger muscles.”

Zayner, a biohacker–basically meaning he experiments with biology in a DIY lab rather than a traditional one–was giving a talk called “A Step-by-Step Guide to Genetically Modifying Yourself With CRISPR” at the SynBioBeta conference in San Francisco, where other presentations featured academics in suits and the young CEOs of typical biotech startups. Unlike the others, he started his workshop by handing out shots of scotch and a booklet explaining the basics of DIY [do-it-yourwelf] genome engineering.

If you want to genetically modify yourself, it turns out, it’s not necessarily complicated. As he offered samples in small baggies to the crowd, Zayner explained that it took him about five minutes to make the DNA that he brought to the presentation. The vial held Cas9, an enzyme that snips DNA at a particular location targeted by guide RNA, in the gene-editing system known as CRISPR. In this case, it was designed to knock out the myostatin gene, which produces a hormone that limits muscle growth and lets muscles atrophy. In a study in China, dogs with the edited gene had double the muscle mass of normal dogs. If anyone in the audience wanted to try it, they could take a vial home and inject it later. Even rubbing it on skin, Zayner said, would have some effect on cells, albeit limited.

Peters goes on to note that Zayner has a PhD in molecular biology and biophysics and worked for NASA (US National Aeronautics and Space Administration). Zayner’s Wikipedia entry fills in a few more details (Note: Links have been removed),

Zayner graduated from the University of Chicago with a Ph.D. in biophysics in 2013. He then spent two years as a researcher at NASA’s Ames Research Center,[2] where he worked on Martian colony habitat design. While at the agency, Zayner also analyzed speech patterns in online chat, Twitter, and books, and found that language on Twitter and online chat is closer to how people talk than to how they write.[3] Zayner found NASA’s scientific work less innovative than he expected, and upon leaving in January 2016, he launched a crowdfunding campaign to provide CRISPR kits to let the general public experiment with editing bacterial DNA. He also continued his grad school business, The ODIN, which sells kits to let the general public experiment at home. As of May 2016, The ODIN had four employees and operates out of Zayner’s garage.[2]

He refers to himself as a biohacker and believes in the importance in letting the general public participate in scientific experimentation, rather than leaving it segregated to labs.[2][4][1] Zayner found the biohacking community exclusive and hierarchical, particularly in the types of people who decide what is “safe”. He hopes that his projects can let even more people experiment in their homes. Other scientists responded that biohacking is inherently privileged, as it requires leisure time and money, and that deviance from the safety rules of concern would lead to even harsher regulations for all.[5] Zayner’s public CRISPR kit campaign coincided with wider scrutiny over genetic modification. Zayner maintained that these fears were based on misunderstandings of the product, as genetic experiments on yeast and bacteria cannot produce a viral epidemic.[6][7] In April 2015, Zayner ran a hoax on Craigslist to raise awareness about the future potential of forgery in forensics genetics testing.[8]

In February 2016, Zayner performed a full body microbiome transplant on himself, including a fecal transplant, to experiment with microbiome engineering and see if he could cure himself from gastrointestinal and other health issues. The microbiome from the donors feces successfully transplanted in Zayner’s gut according to DNA sequencing done on samples.[2] This experiment was documented by filmmakers Kate McLean and Mario Furloni and turned into the short documentary film Gut Hack.[9]

In December 2016, Zayner created a fluorescent beer by engineering yeast to contain the green fluorescent protein from jellyfish. Zayner’s company, The ODIN, released kits to allow people to create their own engineered fluorescent yeast and this was met with some controversy as the FDA declared the green fluorescent protein can be seen as a color additive.[10] Zayner, views the kit as a way that individual can use genetic engineering to create things in their everyday life.[11]

I found the video for Zayner’s now completed crowdfunding campaign,

I also found The ODIN website (mentioned in the Wikipedia essay) where they claim to be selling various gene editing and gene engineering kits including the CRISPR editing kits mentioned in Peters’ article,

In 2016, he [Zayner] sold $200,000 worth of products, including a kit for yeast that can be used to brew glowing bioluminescent beer, a kit to discover antibiotics at home, and a full home lab that’s roughly the cost of a MacBook Pro. In 2017, he expects to double sales. Many kits are simple, and most buyers probably aren’t using the supplies to attempt to engineer themselves (many kits go to classrooms). But Zayner also hopes that as people using the kits gain genetic literacy, they experiment in wilder ways.

Zayner sells a full home biohacking lab that’s roughly the cost of a MacBook Pro. [Photo: The ODIN]

He questions whether traditional research methods, like randomized controlled trials, are the only way to make discoveries, pointing out that in newer personalized medicine (such as immunotherapy for cancer, which is personalized for each patient), a sample size of one person makes sense. At his workshop, he argued that people should have the choice to self-experiment if they want to; we also change our DNA when we drink alcohol or smoke cigarettes or breathe in dirty city air. Other society-sanctioned activities are more dangerous. “We sacrifice maybe a million people a year to the car gods,” he said. “If you ask someone, ‘Would you get rid of cars?’–no.” …

US researchers both conventional and DIY types such as Zayner are not the only ones who are editing genes. The Chinese study mentioned in Peters’ article was written up in an Oct. 19, 2015 article by Antonio Regalado for the MIT [Massachusetts Institute of Technology] Technology Review (Note: Links have been removed),

Scientists in China say they are the first to use gene editing to produce customized dogs. They created a beagle with double the amount of muscle mass by deleting a gene called myostatin.

The dogs have “more muscles and are expected to have stronger running ability, which is good for hunting, police (military) applications,” Liangxue Lai, a researcher with the Key Laboratory of Regenerative Biology at the Guangzhou Institutes of Biomedicine and Health, said in an e-mail.

Lai and 28 colleagues reported their results last week in the Journal of Molecular Cell Biology, saying they intend to create dogs with other DNA mutations, including ones that mimic human diseases such as Parkinson’s and muscular dystrophy. “The goal of the research is to explore an approach to the generation of new disease dog models for biomedical research,” says Lai. “Dogs are very close to humans in terms of metabolic, physiological, and anatomical characteristics.”

Lai said his group had no plans breed to breed the extra-muscular beagles as pets. Other teams, however, could move quickly to commercialize gene-altered dogs, potentially editing their DNA to change their size, enhance their intelligence, or correct genetic illnesses. A different Chinese Institute, BGI, said in September it had begun selling miniature pigs, created via gene editing, for $1,600 each as novelty pets.

People have been influencing the genetics of dogs for millennia. By at least 36,000 years ago, early humans had already started to tame wolves and shape the companions we have today. Charles Darwin frequently cited dog breeding in The Origin of Species to demonstrate how evolution gradually occurs by a process of selection. With CRISPR, however, evolution is no longer gradual or subject to chance. It is immediate and under human control.

It is precisely that power that is stirring wide debate and concern over CRISPR. Yet at least some researchers think that gene-edited dogs could put a furry, friendly face on the technology. In an interview this month, George Church, a professor at Harvard University who leads a large effort to employ CRISPR editing, said he thinks it will be possible to augment dogs by using DNA edits to make them live longer or simply make them smarter.

Church said he also believed the alteration of dogs and other large animals could open a path to eventual gene editing of people. “Germline editing of pigs or dogs offers a line into it,” he said. “People might say, ‘Hey, it works.’ ”

In the meantime, Zayner’s ideas are certainly thought provoking. I’m not endorsing either his products or his ideas but it should be noted that early science pioneers such as Humphrey Davy and others experimented on themselves. For anyone unfamiliar with Davy, (from the Humphrey Davy Wikipedia entry; Note: Links have been removed),

Sir Humphry Davy, 1st Baronet PRS MRIA FGS (17 December 1778 – 29 May 1829) was a Cornish chemist and inventor,[1] who is best remembered today for isolating a series of substances for the first time: potassium and sodium in 1807 and calcium, strontium, barium, magnesium and boron the following year, as well as discovering the elemental nature of chlorine and iodine. He also studied the forces involved in these separations, inventing the new field of electrochemistry. Berzelius called Davy’s 1806 Bakerian Lecture On Some Chemical Agencies of Electricity[2] “one of the best memoirs which has ever enriched the theory of chemistry.”[3] He was a Baronet, President of the Royal Society (PRS), Member of the Royal Irish Academy (MRIA), and Fellow of the Geological Society (FGS). He also invented the Davy lamp and a very early form of incandescent light bulb.

Canadian content*

A Nov. 11, 2017 posting on the Canadian Broadcasting Corporation’s (CBC) Quirks and Quarks blog notes that self-experimentation has a long history and goes on to describe Zayner’s and others biohacking exploits before describing the legality of biohacking in Canada,

With biohackers entering into the space traditionally held by scientists and clinicians, it begs questions. Professor Timothy Caulfield, a Canada research chair in health, law and policy at the University of Alberta, says when he hears of somebody giving themselves biohacked gene therapy, he wonders: “Is this legal? Is this safe? And if it’s not safe, is there anything that we can do about regulating it? And to be honest with you that’s a tough question and I think it’s an open question.”

In Canada, Caulfield says, Health Canada focuses on products. “You have to have something that you are going to regulate or you have to have something that’s making health claims. So if there is a product that is saying I can cure X, Y, or Z, Health Canada can say, ‘Well let’s make sure the science really backs up that claim.’ The problem with these do-it-yourself approaches is there isn’t really a product. You know these people are experimenting on themselves with something that may or may not be designed for health purposes.”

According to Caufield, if you could buy a gene therapy kit that was being marketed to you to biohack yourself, that would be different. “Health Canada could jump in. But right here that’s not the case,” he says.

There are places in the world that do regulate biohacking, says Caulfield. “Germany, for example, they have specific laws for it. And here in Canada we do have a regulatory framework that says that you cannot do gene therapy that will alter the germ line. In other words, you can’t do gene therapy or any kind of genetic editing that will create a change that you will pass on to your offspring. So that would be illegal, but that’s not what’s happening here. And I don’t think there’s a regulatory framework that adequately captures it.”

Infectious disease and policy experts aren’t that concerned yet about the possibility of a biohacker unleashing a genetically modified super germ into the population.

“I think in the future that could be a problem,”says Caulfield, “but this isn’t something that would be easy to do in your garage. I think it’s complicated science. But having said that, the science is moving quickly. We need to think about how we are going to control the potential harms.”

You can find out more about the ‘wild’ people (mostly men) of early science in Richard Holmes’ 2008 book, The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science.

Finally, should you be interested in connecting with synthetic biology enthusiasts, entrepreneurs, and others, SynBioBeta is more than a conference; it’s also an activity hub.

ETA January 25, 2018 (five minutes later): There are some CRISPR/CAS9 events taking place in Toronto, Canada on January 24 and 25, 2018. One is a workshop with Portuguese artist, Marta de Menezes, and the other is a panel discussion. See my January 10, 2018 posting for more details.

*’Segue: There is some Canadian content if you keep reading.’ and ‘Canadian content’ added January 25, 2018 six minutes after first publication.

ETA February 20, 2018: Sarah Zhang’s Feb. 20, 2018 article for The Atlantic revisits Josiah Zayner’s decision to inject himself with CRISPR,

When Josiah Zayner watched a biotech CEO drop his pants at a biohacking conference and inject himself with an untested herpes treatment, he realized things had gone off the rails.

Zayner is no stranger to stunts in biohacking—loosely defined as experiments, often on the self, that take place outside of traditional lab spaces. You might say he invented their latest incarnation: He’s sterilized his body to “transplant” his entire microbiome in front of a reporter. He’s squabbled with the FDA about selling a kit to make glow-in-the-dark beer. He’s extensively documented attempts to genetically engineer the color of his skin. And most notoriously, he injected his arm with DNA encoding for CRISPR that could theoretically enhance his muscles—in between taking swigs of Scotch at a live-streamed event during an October conference. (Experts say—and even Zayner himself in the live-stream conceded—it’s unlikely to work.)

So when Zayner saw Ascendance Biomedical’s CEO injecting himself on a live-stream earlier this month, you might say there was an uneasy flicker of recognition.

“Honestly, I kind of blame myself,” Zayner told me recently. He’s been in a soul-searching mood; he recently had a kid and the backlash to the CRISPR stunt in October [2017] had been getting to him. “There’s no doubt in my mind that somebody is going to end up hurt eventually,” he said.

Yup, it’s one of the reasons for rules; people take things too far. The trick is figuring out how to achieve balance between risk taking and recklessness.

Edible water bottles by Ooho!

Courtesy: Skipping Rocks Lab

As far as I’m concerned, that looks more like a breast implant than a water bottle, which, from a psycho-social perspective, could lead to some interesting research papers. It is, in fact a new type of water bottle.  From an April 10, 2017 article by Adele Peters for Fast Company (Note: Links have been removed),

If you run in a race in London in the near future and pass a hydration station, you may be handed a small, bubble-like sphere of water instead of a bottle. The gelatinous packaging, called the Ooho, is compostable–or even edible, if you want to swallow it. And after two years of development, its designers are ready to bring it to market.

Three London-based design students first created a prototype of the edible bottle in 2014 as an alternative to plastic bottles. The idea gained internet hype (though also some scorn for a hilarious video that made the early prototypes look fairly impossible to use without soaking yourself).
The problem it was designed to solve–the number of disposable bottles in landfills–keeps growing. In the U.K. alone, around 16 million are trashed each day; another 19 million are recycled, but still have the environmental footprint of a product made from oil. In the U.S., recycling rates are even lower. …

The new packaging is based on the culinary technique of spherification, which is also used to make fake caviar and the tiny juice balls added to boba tea [bubble tea?]. Dip a ball of ice in calcium chloride and brown algae extract, and you can form a spherical membrane that keeps holding the ice as it melts and returns to room temperature.

An April 25, 2014 article by Kashmira Gander for Independent.co.uk describes the technology and some of the problems that had to be solved before bringing this product to market,

To make the bottle [Ooho!], students at the Imperial College London gave a frozen ball of water a gelatinous layer by dipping it into a calcium chloride solution.

They then soaked the ball in another solution made from brown algae extract to encapsulate the ice in a second membrane, and reinforce the structure.

However, Ooho still has teething problems, as the membrane is only as thick as a fruit skin, and therefore makes transporting the object more difficult than a regular bottle of water.

“This is a problem we’re trying to address with a double container,” Rodrigo García González, who created Ooho with fellow students Pierre Paslier and Guillaume Couche, explained to the Smithsonian. “The idea is that we can pack several individual edible Oohos into a bigger Ooho container [to make] a thicker and more resistant membrane.”

According to Peters’ Fast Company article, the issues have been resolved,

Because the membrane is made from food ingredients, you can eat it instead of throwing it away. The Jell-O-like packaging doesn’t have a natural taste, but it’s possible to add flavors to make it more appetizing.

The package doesn’t have to be eaten every time, since it’s also compostable. “When people try it for the first time, they want to eat it because it’s part of the experience,” says Pierre Paslier, cofounder of Skipping Rocks Lab, the startup developing the packaging. “Then it will be just like the peel of a fruit. You’re not expected to eat the peel of your orange or banana. We are trying to follow the example set by nature for packaging.”

The outer layer of the package is always meant to be peeled like fruit–one thin outer layer of the membrane peels away to keep the inner layer clean and can then be composted. (While compostable cups are an alternative solution, many can only be composted in industrial facilities; the Ooho can be tossed on a simple home compost pile, where it will decompose within weeks).

The company is targeting both outdoor events and cafes. “Where we see a lot of potential for Ooho is outdoor events–festivals, marathons, places where basically there are a lot of people consuming packaging over a very short amount of time,” says Paslier.

I encourage you to read Peters’ article in its entirety if you have the time. You can also find more information on the Skipping Rocks Lab website and on the company’s crowdfunding campaign on CrowdCube.