Tag Archives: CRISPR-Cas9

Controlling agricultural pests with CRISPR-based technology

CRISPR (clustered regularly interspaced short palindromic repeats) technology is often touted as being ‘precise’, which as far as I can tell, is not exactly the case (see my Nov. 28, 2018 posting about the CRISPR babies [scroll down about 30% of the way for the first hint that CRISPR isn’t]). So, it’s a bit odd to see the word ‘precise’ used as part of a new CRISPR-based technology’s name (from a January 8, 2019 news item on ScienceDaily,

Using the CRISPR gene editing tool, Nikolay Kandul, Omar Akbari and their colleagues at UC San Diego [UC is University of California] and UC Berkeley devised a method of altering key genes that control insect sex determination and fertility.

A description of the new “precision-guided sterile insect technique,” [emphasis mine] or pgSIT, is published Jan. 8 [2019] in the journal Nature Communications.

A January 8, 209 UCSD press release (also on EurekAlert) by Mario Aguilera, which originated the news item, delves further into the research,

When pgSIT-derived eggs are introduced into targeted populations, the researchers report, only adult sterile males emerge, resulting in a novel, environmentally friendly and relatively low-cost method of controlling pest populations in the future.

“CRISPR technology has empowered our team to innovate a new, effective, species-specific, self-limiting, safe and scalable genetic population control technology with remarkable potential to be developed and utilized in a plethora of insect pests and disease vectors,” said Akbari, an assistant professor in UC San Diego’s Division of Biological Sciences. “In the future, we strongly believe this technology will be safely used in the field to suppress and even eradicate target species locally, thereby revolutionizing how insects are managed and controlled going forward.”

Since the 1930s, agricultural researchers have used select methods to release sterile male insects into the wild to control and eradicate pest populations. In the 1950s, a method using irradiated males was implemented in the United States to eliminate the pest species known as the New World Screwworm fly, which consumes animal flesh and causes extensive damage to livestock. Such radiation-based methods were later used in Mexico and parts of Central America and continue today.

Instead of radiation, the new pgSIT (precision-guided sterile insect technique), developed over the past year-and-a-half by Kandul and Akbari in the fruit fly Drosophila, uses CRISPR to simultaneously disrupt key genes that control female viability and male fertility in pest species. pgSIT, the researchers say, results in sterile male progeny with 100 percent efficiency. Because the targeted genes are common to a vast cross-section of insects, the researchers are confident the technology can be applied to a range of insects, including disease-spreading mosquitoes.

The researchers envision a system in which scientists genetically alter and produce eggs of a targeted pest species. The eggs are then shipped to a pest location virtually anywhere in the world, circumventing the need for a production facility on-site. Once the eggs are deployed at the pest location, the researchers say, the newly born sterile males will mate with females in the wild and be incapable of producing offspring, driving down the population.

“This is a novel twist of a very old technology,” said Kandul, an assistant project scientist in UC San Diego’s Division of Biological Sciences. “That novel twist makes it extremely portable from one species to another species to suppress populations of mosquitoes or agricultural pests, for example those that feed on valuable wine grapes.”

The new technology is distinct from continuously self-propagating “gene drive” systems that propagate genetic alterations from generation to generation. Instead, pgSIT is considered a “dead end” since male sterility effectively closes the door on future generations.

“The sterile insect technique is an environmentally safe and proven technology,” [emphasis mine] the researchers note in the paper. “We aimed to develop a novel, safe, controllable, non-invasive genetic CRISPR-based technology that could be transferred across species and implemented worldwide in the short-term to combat wild populations.”

With pgSIT proven in fruit flies, the scientists are hoping to develop the technology in Aedes aegypti, the mosquito species responsible for transmitting dengue fever, Zika, yellow fever and other diseases to millions of people.

“The extension of this work to other insect pests could prove to be a general and very useful strategy to deal with many vector-borne diseases that plague humanity and wreak havoc an agriculture globally,” said Suresh Subramani, global director of the Tata Institute for Genetics and Society.

I have one comment about the ‘safety’ of the sterile insect technique. It’s been safe up until now but, assuming this technique works as described: What happens as this new and more powerful technique is more widely deployed possibly eliminating whole species of insects? Might these ‘pests’ have a heretofore unknown beneficial effect somewhere in the food chain or in an ecosystem? Or, there may be other unintended consequences.

Moving on, here’s a link to and a citation for the paper,

Transforming insect population control with precision guided sterile males with demonstration in flies by Nikolay P. Kandul, Junru Liu, Hector M. Sanchez C., Sean L. Wu, John M. Marshall, & Omar S. Akbari. Nature Communications volume 10, Article number: 84 (2019) DOI: https://doi.org/10.1038/s41467-018-07964-7 Published 08 January 2019

This paper is open access.

The researchers have made this illustrative image available,

Caption: This is a schematic of the new precision-guided sterile insect technique (pgSIT), which uses components of the CRISPR/Cas9 system to disrupt key genes that control female viability and male fertility, resulting in sterile male progeny. Credit: Nikolay Kandul, Akbari Lab, UC San Diego

Lifesaving moths and nanomagnets

Rice University bioengineers use a magnetic field to activate nanoparticle-attached baculoviruses in a tissue. The viruses, which normally infect alfalfa looper moths, are modified to deliver gene-editing DNA code only to cells that are targeted with magnetic field-induced local transduction. Courtesy of the Laboratory of Biomolecular Engineering and Nanomedicine

Kudos to whomever put that diagram together! That’s a lot of well conveyed information.

Now for the details about how this technology might save lives. From a November 13, 2018 news item on Nanowerk,

A new technology that relies on a moth-infecting virus and nanomagnets could be used to edit defective genes that give rise to diseases like sickle cell, muscular dystrophy and cystic fibrosis.

Rice University bioengineer Gang Bao has combined magnetic nanoparticles with a viral container drawn from a particular species of moth to deliver CRISPR/Cas9 payloads that modify genes in a specific tissue or organ with spatial control.

A November 12, 2018 Rice University news release (also on EurekAlert published on November 13, 2018), which originated the news item, provides detail,

Because magnetic fields are simple to manipulate and, unlike light, pass easily through tissue, Bao and his colleagues want to use them to control the expression of viral payloads in target tissues by activating the virus that is otherwise inactivated in blood.

The research appears in Nature Biomedical Engineering. In nature, CRISPR/Cas9 bolsters microbes’ immune systems by recording the DNA of invaders. That gives microbes the ability to recognize and attack returning invaders, but scientists have been racing to adapt CRISPR/Cas9 to repair mutations that cause genetic diseases and to manipulate DNA in laboratory experiments.

CRISPR/Cas9 has the potential to halt hereditary disease – if scientists can get the genome-editing machinery to the right cells inside the body. But roadblocks remain, especially in delivering the gene-editing payloads with high efficiency.

Bao said it will be necessary to edit cells in the body to treat many diseases. “But efficiently delivering genome-editing machinery into target tissue in the body with spatial control remains a major challenge,” Bao said. “Even if you inject the viral vector locally, it can leak to other tissues and organs, and that could be dangerous.”

The delivery vehicle developed by Bao’s group is based on a virus that infects Autographa californica, aka the alfalfa looper, a moth native to North America. The cylindrical baculovirus vector (BV), the payload-carrying part of the virus, is considered large at up to 60 nanometers in diameter and 200-300 nanometers in length. That’s big enough to transport more than 38,000 base pairs of DNA, which is enough to supply multiple gene-editing units to a target cell, Bao said.

He said the inspiration to combine BV and magnetic nanoparticles came from discussions with Rice postdoctoral researcher and co-lead author Haibao Zhu, who learned about the virus during a postdoctoral stint in Singapore but knew nothing about magnetic nanoparticles until he joined the Bao lab. The Rice team had previous experience using iron oxide nanoparticles and an applied magnetic field to open blood vessel walls just enough to let large-molecule drugs pass through.

“We really didn’t know if this would work for gene editing or not, but we thought, ‘worth a shot,'” Bao said.

The researchers use the magnetic nanoparticles to activate BV and deliver gene-editing payloads only where they’re needed. To do this, they take advantage of an immune-system protein called C3 that normally inactivates baculoviruses.

“If we combine BV with magnetic nanoparticles, we can overcome this deactivation by applying the magnetic field,” Bao said. “The beauty is that when we deliver it, gene editing occurs only at the tissue, or the part of the tissue, where we apply the magnetic field.”

Application of the magnetic field allows BV transduction, the payload-delivery process that introduces gene-editing cargo into the target cell. The payload is also DNA, which encodes both a reporter gene and the CRISPR/Cas9 system.

In tests, the BV was loaded with green fluorescent proteins or firefly luciferase. Cells with the protein glowed brightly under a microscope, and experiments showed the magnets were highly effective at targeted delivery of BV cargoes in both cell cultures and lab animals.

Bao noted his and other labs are working on the delivery of CRISPR/Cas9 with adeno-associated viruses (AAV), but he said BV’s capacity for therapeutic cargo is roughly eight times larger. “However, it is necessary to make BV transduction into target cells more efficient,” he said.

Here’s a link to and a citation for the paper,

Spatial control of in vivo CRISPR–Cas9 genome editing via nanomagnets by Haibao Zhu, Linlin Zhang, Sheng Tong, Ciaran M. Lee, Harshavardhan Deshmukh, & Gang Bao. Nature Biomedical Engineering (2018) DOI: https://doi.org/10.1038/s41551-018-0318-7 Published: 12 November 2018

This paper is behind a paywall.

World Science Festival in New York City, May 22 – June 2, 2019

It’s time for the World Science Fair in New York City, which has been around since 2008 according to their About webpage,

The annual live, week-long Festivals, which launched in New York in 2008, have collectively drawn over 2.9 million visitors worldwide, with millions more viewing the programs online. The World Science Festival’s original musical and theatrical works tour nationally and internationally, and March 2016 marked the launch of World Science Festival Brisbane. World Science U is the Foundation’s online education arm where students and lifelong learners can dive more deeply through artfully produced digital education content presented by world-renowned scientists.

I’ve arbitrarily selected three events but there are many more. I notice that several sessions have sold out. From the World Science Festival 2019 events page,

Light Falls: Space, Time, and an Obsession of Einstein

Wednesday, May 22, 2019
7:00 pm – 8:30 pm

Jazz at Lincoln Center’s Frederick P. Rose Hall
May 2019 marks a pivotal milestone in human intellectual history: the 100th anniversary of astronomical observations that confirmed Albert Einstein’s new conception of space, time and gravity–his General Theory of Relativity. In celebration of this momentous achievement, join Brian Greene and an ensemble Broadway cast for Light Falls, an original work for the stage featuring wondrous, fully immersive projections and an original orchestral score, tracing the breakthrough moments, agonizing frustrations, and final emergence into the light as the world’s most intrepid scientific mind took on the universe. And won.
Written by Brian Greene
Music by Jeff Beal
Design by 59 Productions
Directed by Scott Faris
Executive Producer Tracy Day
Sponsored by the Alfred P. Sloan Foundation with additional support from the John Templeton Foundation.
NEW TICKETS JUST RELEASED!
Learn More

Buy Tickets

CRISPR in Context: The New World of Human Genetic Engineering

Tuesday, May 28, 2019
8:00 pm – 9:30 pm

Gerald D. Fischbach Auditorium, Simons Foundation
It’s happened. The first children genetically engineered with the powerful DNA-editing tool called CRISPR-Cas9 have been born to a woman in China. Their altered genes will be passed to their children, and their children’s children. Join CRISPR’s co-discoverer, microbiologist Jennifer Doudna, as we explore the perils and the promise of this powerful technology. It is not the first time human ingenuity has created something capable of doing us great good and great harm. Are we up to the challenge of guiding how CRISPR will shape the future?
Seats are limited and will be made available to registered guests on a first-come, first-served basis. REGISTER NOW!

The Kavli Prize recognizes scientists for their seminal advances in astrophysics, nanoscience, and neuroscience. The series, “The Big, the Small, and the Complex,” is sponsored by The Kavli Foundation.
Learn More

Register Now

….

The Technology that Transforms Us

Thursday, May 30, 2019
7:00 pm – 8:30 pm

NYU Global Center, Grand Hall
We make tools. It defines us. But since the first proto-human tied a stick to a stone, tools have also been making us. Join our panel of philosophers, anthropologists, and futurists as we examine our journey from the stone age to the computer age—seeking clues about who we are, and what we are becoming. Our smartphones have become veritable appendages. How long before we literally merge with our technology? Wearables, implantables, ingestible sensors, digital telepathy, and brain-computer interfaces are all on the horizon. Join us for a fascinating glimpse of a future that is closer than you think.

The Big Ideas Series is supported in part by the John Templeton Foundation.
Learn More

This program is sold out. A small number of tickets will be available at the venue 30 minutes prior to the event on a first-come-first-served basis. CLICK HERE to join the waitlist and you’ll be alerted if tickets become available sooner. 
Sold Out

….


The Great Fish Count

Saturday, June 1, 2019
10:00 am – 6:00 pm

Great Fish Count Sites
From Lemon Creek in Staten Island to the shores of the Bronx River, New York’s waterways are teeming with life — and it’s up to you to find it! Led by top marine scientists and biologists in 18 sites across New York’s five boroughs, Westchester, and New Jersey, the Great Fish Count gives attendees of all ages the chance to strap on a pair of waders, cast a net, and discover the underwater world in their own backyard.

This event is FREE and open to the public. RSVP not required, but encouraged. RSVP HERE!

Produced in partnership with the Lamont–Doherty Earth Observatory and the New York State Department of Environmental Conservation

Supported by the Bezos Family Foundation.

Learn More

Free Admission

….

Should you be in New York City during these dates, I hope you’ll get a chance to participate if not the festival or one of its associated events.

Gene editing and personalized medicine: Canada

Back in the fall of 2018 I came across one of those overexcited pieces about personalized medicine and gene editing tha are out there. This one came from an unexpected source, an author who is a “PhD Scientist in Medical Science (Blood and Vasculature” (from Rick Gierczak’s LinkedIn profile).

It starts our promisingly enough although I’m beginning to dread the use of the word ‘precise’  where medicine is concerned, (from a September 17, 2018 posting on the Science Borealis blog by Rick Gierczak (Note: Links have been removed),

CRISPR-Cas9 technology was accidentally discovered in the 1980s when scientists were researching how bacteria defend themselves against viral infection. While studying bacterial DNA called clustered regularly interspaced short palindromic repeats (CRISPR), they identified additional CRISPR-associated (Cas) protein molecules. Together, CRISPR and one of those protein molecules, termed Cas9, can locate and cut precise regions of bacterial DNA. By 2012, researchers understood that the technology could be modified and used more generally to edit the DNA of any plant or animal. In 2015, the American Association for the Advancement of Science chose CRISPR-Cas9 as science’s “Breakthrough of the Year”.

Today, CRISPR-Cas9 is a powerful and precise gene-editing tool [emphasis mine] made of two molecules: a protein that cuts DNA (Cas9) and a custom-made length of RNA that works like a GPS for locating the exact spot that needs to be edited (CRISPR). Once inside the target cell nucleus, these two molecules begin editing the DNA. After the desired changes are made, they use a repair mechanism to stitch the new DNA into place. Cas9 never changes, but the CRISPR molecule must be tailored for each new target — a relatively easy process in the lab. However, it’s not perfect, and occasionally the wrong DNA is altered [emphasis mine].

Note that Gierczak makes a point of mentioning that CRISPR/Cas9 is “not perfect.” And then, he gets excited (Note: Links have been removed),

CRISPR-Cas9 has the potential to treat serious human diseases, many of which are caused by a single “letter” mutation in the genetic code (A, C, T, or G) that could be corrected by precise editing. [emphasis mine] Some companies are taking notice of the technology. A case in point is CRISPR Therapeutics, which recently developed a treatment for sickle cell disease, a blood disorder that causes a decrease in oxygen transport in the body. The therapy targets a special gene called fetal hemoglobin that’s switched off a few months after birth. Treatment involves removing stem cells from the patient’s bone marrow and editing the gene to turn it back on using CRISPR-Cas9. These new stem cells are returned to the patient ready to produce normal red blood cells. In this case, the risk of error is eliminated because the new cells are screened for the correct edit before use.

The breakthroughs shown by companies like CRISPR Therapeutics are evidence that personalized medicine has arrived. [emphasis mine] However, these discoveries will require government regulatory approval from the countries where the treatment is going to be used. In the US, the Food and Drug Administration (FDA) has developed new regulations allowing somatic (i.e., non-germ) cell editing and clinical trials to proceed. [emphasis mine]

The potential treatment for sickle cell disease is exciting but Gierczak offers no evidence that this treatment or any unnamed others constitute proof that “personalized medicine has arrived.” In fact, Goldman Sachs, a US-based investment bank, makes the case that it never will .

Cost/benefit analysis

Edward Abrahams, president of the Personalized Medicine Coalition (US-based), advocates for personalized medicine while noting in passing, market forces as represented by Goldman Sachs in his May 23, 2018 piece for statnews.com (Note: A link has been removed),

One of every four new drugs approved by the Food and Drug Administration over the last four years was designed to become a personalized (or “targeted”) therapy that zeros in on the subset of patients likely to respond positively to it. That’s a sea change from the way drugs were developed and marketed 10 years ago.

Some of these new treatments have extraordinarily high list prices. But focusing solely on the cost of these therapies rather than on the value they provide threatens the future of personalized medicine.

… most policymakers are not asking the right questions about the benefits of these treatments for patients and society. Influenced by cost concerns, they assume that prices for personalized tests and treatments cannot be justified even if they make the health system more efficient and effective by delivering superior, longer-lasting clinical outcomes and increasing the percentage of patients who benefit from prescribed treatments.

Goldman Sachs, for example, issued a report titled “The Genome Revolution.” It argues that while “genome medicine” offers “tremendous value for patients and society,” curing patients may not be “a sustainable business model.” [emphasis mine] The analysis underlines that the health system is not set up to reap the benefits of new scientific discoveries and technologies. Just as we are on the precipice of an era in which gene therapies, gene-editing, and immunotherapies promise to address the root causes of disease, Goldman Sachs says that these therapies have a “very different outlook with regard to recurring revenue versus chronic therapies.”

Let’s just chew on this one (contemplate)  for a minute”curing patients may not be ‘sustainable business model’!”

Coming down to earth: policy

While I find Gierczak to be over-enthused, he, like Abrahams, emphasizes the importance of new policy, in his case, the focus is Canadian policy. From Gierczak’s September 17, 2018 posting (Note: Links have been removed),

In Canada, companies need approval from Health Canada. But a 2004 law called the Assisted Human Reproduction Act (AHR Act) states that it’s a criminal offence “to alter the genome of a human cell, or in vitroembryo, that is capable of being transmitted to descendants”. The Actis so broadly written that Canadian scientists are prohibited from using the CRISPR-Cas9 technology on even somatic cells. Today, Canada is one of the few countries in the world where treating a disease with CRISPR-Cas9 is a crime.

On the other hand, some countries provide little regulatory oversight for editing either germ or somatic cells. In China, a company often only needs to satisfy the requirements of the local hospital where the treatment is being performed. And, if germ-cell editing goes wrong, there is little recourse for the future generations affected.

The AHR Act was introduced to regulate the use of reproductive technologies like in vitrofertilization and research related to cloning human embryos during the 1980s and 1990s. Today, we live in a time when medical science, and its role in Canadian society, is rapidly changing. CRISPR-Cas9 is a powerful tool, and there are aspects of the technology that aren’t well understood and could potentially put patients at risk if we move ahead too quickly. But the potential benefits are significant. Updated legislation that acknowledges both the risks and current realities of genomic engineering [emphasis mine] would relieve the current obstacles and support a path toward the introduction of safe new therapies.

Criminal ban on human gene-editing of inheritable cells (in Canada)

I had no idea there was a criminal ban on the practice until reading this January 2017 editorial by Bartha Maria Knoppers, Rosario Isasi, Timothy Caulfield, Erika Kleiderman, Patrick Bedford, Judy Illes, Ubaka Ogbogu, Vardit Ravitsky, & Michael Rudnicki for (Nature) npj Regenerative Medicine (Note: Links have been removed),

Driven by the rapid evolution of gene editing technologies, international policy is examining which regulatory models can address the ensuing scientific, socio-ethical and legal challenges for regenerative and personalised medicine.1 Emerging gene editing technologies, including the CRISPR/Cas9 2015 scientific breakthrough,2 are powerful, relatively inexpensive, accurate, and broadly accessible research tools.3 Moreover, they are being utilised throughout the world in a wide range of research initiatives with a clear eye on potential clinical applications. Considering the implications of human gene editing for selection, modification and enhancement, it is time to re-examine policy in Canada relevant to these important advances in the history of medicine and science, and the legislative and regulatory frameworks that govern them. Given the potential human reproductive applications of these technologies, careful consideration of these possibilities, as well as ethical and regulatory scrutiny must be a priority.4

With the advent of human embryonic stem cell research in 1978, the birth of Dolly (the cloned sheep) in 1996 and the Raelian cloning hoax in 2003, the environment surrounding the enactment of Canada’s 2004 Assisted Human Reproduction Act (AHRA) was the result of a decade of polarised debate,5 fuelled by dystopian and utopian visions for future applications. Rightly or not, this led to the AHRA prohibition on a wide range of activities, including the creation of embryos (s. 5(1)(b)) or chimeras (s. 5(1)(i)) for research and in vitro and in vivo germ line alterations (s. 5(1)(f)). Sanctions range from a fine (up to $500,000) to imprisonment (up to 10 years) (s. 60 AHRA).

In Canada, the criminal ban on gene editing appears clear, the Act states that “No person shall knowingly […] alter the genome of a cell of a human being or in vitro embryo such that the alteration is capable of being transmitted to descendants;” [emphases mine] (s. 5(1)(f) AHRA). This approach is not shared worldwide as other countries such as the United Kingdom, take a more regulatory approach to gene editing research.1 Indeed, as noted by the Law Reform Commission of Canada in 1982, criminal law should be ‘an instrument of last resort’ used solely for “conduct which is culpable, seriously harmful, and generally conceived of as deserving of punishment”.6 A criminal ban is a suboptimal policy tool for science as it is inflexible, stifles public debate, and hinders responsiveness to the evolving nature of science and societal attitudes.7 In contrast, a moratorium such as the self-imposed research moratorium on human germ line editing called for by scientists in December 20158 can at least allow for a time limited pause. But like bans, they may offer the illusion of finality and safety while halting research required to move forward and validate innovation.

On October 1st, 2016, Health Canada issued a Notice of Intent to develop regulations under the AHRA but this effort is limited to safety and payment issues (i.e. gamete donation). Today, there is a need for Canada to revisit the laws and policies that address the ethical, legal and social implications of human gene editing. The goal of such a critical move in Canada’s scientific and legal history would be a discussion of the right of Canadians to benefit from the advancement of science and its applications as promulgated in article 27 of the Universal Declaration of Human Rights9 and article 15(b) of the International Covenant on Economic, Social and Cultural Rights,10 which Canada has signed and ratified. Such an approach would further ensure the freedom of scientific endeavour both as a principle of a liberal democracy and as a social good, while allowing Canada to be engaged with the international scientific community.

Even though it’s a bit old, I still recommend reading the open access editorial in full, if you have the time.

One last thing abut the paper, the acknowledgements,

Sponsored by Canada’s Stem Cell Network, the Centre of Genomics and Policy of McGill University convened a ‘think tank’ on the future of human gene editing in Canada with legal and ethics experts as well as representatives and observers from government in Ottawa (August 31, 2016). The experts were Patrick Bedford, Janetta Bijl, Timothy Caulfield, Judy Illes, Rosario Isasi, Jonathan Kimmelman, Erika Kleiderman, Bartha Maria Knoppers, Eric Meslin, Cate Murray, Ubaka Ogbogu, Vardit Ravitsky, Michael Rudnicki, Stephen Strauss, Philip Welford, and Susan Zimmerman. The observers were Geneviève Dubois-Flynn, Danika Goosney, Peter Monette, Kyle Norrie, and Anthony Ridgway.

Competing interests

The authors declare no competing interests.

Both McGill and the Stem Cell Network pop up again. A November 8, 2017 article about the need for new Canadian gene-editing policies by Tom Blackwell for the National Post features some familiar names (Did someone have a budget for public relations and promotion?),

It’s one of the most exciting, and controversial, areas of health science today: new technology that can alter the genetic content of cells, potentially preventing inherited disease — or creating genetically enhanced humans.

But Canada is among the few countries in the world where working with the CRISPR gene-editing system on cells whose DNA can be passed down to future generations is a criminal offence, with penalties of up to 10 years in jail.

This week, one major science group announced it wants that changed, calling on the federal government to lift the prohibition and allow researchers to alter the genome of inheritable “germ” cells and embryos.

The potential of the technology is huge and the theoretical risks like eugenics or cloning are overplayed, argued a panel of the Stem Cell Network.

The step would be a “game-changer,” said Bartha Knoppers, a health-policy expert at McGill University, in a presentation to the annual Till & McCulloch Meetings of stem-cell and regenerative-medicine researchers [These meetings were originally known as the Stem Cell Network’s Annual General Meeting {AGM}]. [emphases mine]

“I’m completely against any modification of the human genome,” said the unidentified meeting attendee. “If you open this door, you won’t ever be able to close it again.”

If the ban is kept in place, however, Canadian scientists will fall further behind colleagues in other countries, say the experts behind the statement say; they argue possible abuses can be prevented with good ethical oversight.

“It’s a human-reproduction law, it was never meant to ban and slow down and restrict research,” said Vardit Ravitsky, a University of Montreal bioethicist who was part of the panel. “It’s a sort of historical accident … and now our hands are tied.”

There are fears, as well, that CRISPR could be used to create improved humans who are genetically programmed to have certain facial or other features, or that the editing could have harmful side effects. Regardless, none of it is happening in Canada, good or bad.

In fact, the Stem Cell Network panel is arguably skirting around the most contentious applications of the technology. It says it is asking the government merely to legalize research for its own sake on embryos and germ cells — those in eggs and sperm — not genetic editing of embryos used to actually get women pregnant.

The highlighted portions in the last two paragraphs of the excerpt were written one year prior to the claims by a Chinese scientist that he had run a clinical trial resulting in gene-edited twins, Lulu and Nana. (See my my November 28, 2018 posting for a comprehensive overview of the original furor). I have yet to publish a followup posting featuring the news that the CRISPR twins may have been ‘improved’ more extensively than originally realized. The initial reports about the twins focused on an illness-related reason (making them HIV ‘immune’) but made no mention of enhanced cognitive skills a side effect of eliminating the gene that would make them HIV ‘immune’. To date, the researcher has not made the bulk of his data available for an in-depth analysis to support his claim that he successfully gene-edited the twins. As well, there were apparently seven other pregnancies coming to term as part of the researcher’s clinical trial and there has been no news about those births.

Risk analysis innovation

Before moving onto the innovation of risk analysis, I want to focus a little more on at least one of the risks that gene-editing might present. Gierczak noted that CRISPR/Cas9 is “not perfect,” which acknowledges the truth but doesn’t convey all that much information.

While the terms ‘precision’ and ‘scissors’ are used frequently when describing the CRISPR technique, scientists actually mean that the technique is significantly ‘more precise’ than other techniques but they are not referencing an engineering level of precision. As for the ‘scissors’, it’s an analogy scientists like to use but in fact CRISPR is not as efficient and precise as a pair of scissors.

Michael Le Page in a July 16, 2018 article for New Scientist lays out some of the issues (Note: A link has been removed),

A study of CRIPSR suggests we shouldn’t rush into trying out CRISPR genome editing inside people’s bodies just yet. The technique can cause big deletions or rearrangements of DNA [emphasis mine], says Allan Bradley of the Wellcome Sanger Institute in the UK, meaning some therapies based on CRISPR may not be quite as safe as we thought.

The CRISPR genome editing technique is revolutionising biology, enabling us to create new varieties of plants and animals and develop treatments for a wide range of diseases.

The CRISPR Cas9 protein works by cutting the DNA of a cell in a specific place. When the cell repairs the damage, a few DNA letters get changed at this spot – an effect that can be exploited to disable genes.

At least, that’s how it is supposed to work. But in studies of mice and human cells, Bradley’s team has found that in around a fifth of cells, CRISPR causes deletions or rearrangements more than 100 DNA letters long. These surprising changes are sometimes thousands of letters long.

“I do believe the findings are robust,” says Gaetan Burgio of the Australian National University, an expert on CRISPR who has debunked previous studies questioning the method’s safety. “This is a well-performed study and fairly significant.”

I covered the Bradley paper and the concerns in a July 17, 2018 posting ‘The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle‘. (The ‘kerfufle’ was in reference to a report that the CRISPR market was affected by the publication of Bradley’s paper.)

Despite Health Canada not moving swiftly enough for some researchers, they have nonetheless managed to release an ‘outcome’ report about a consultation/analysis started in October 2016. Before getting to the consultation’s outcome, it’s interesting to look at how the consultation’s call for response was described (from Health Canada’s Toward a strengthened Assisted Human Reproduction Act ; A Consultation with Canadians on Key Policy Proposals webpage),

In October 2016, recognizing the need to strengthen the regulatory framework governing assisted human reproduction in Canada, Health Canada announced its intention to bring into force the dormant sections of the Assisted Human Reproduction Act  and to develop the necessary supporting regulations.

This consultation document provides an overview of the key policy proposals that will help inform the development of regulations to support bringing into force Section 10, Section 12 and Sections 45-58 of the Act. Specifically, the policy proposals describe the Department’s position on the following:

Section 10: Safety of Donor Sperm and Ova

  • Scope and application
  • Regulated parties and their regulatory obligations
  • Processing requirements, including donor suitability assessment
  • Record-keeping and traceability

Section 12: Reimbursement

  • Expenditures that may be reimbursed
  • Process for reimbursement
  • Creation and maintenance of records

Sections 45-58: Administration and Enforcement

  • Scope of the administration and enforcement framework
  • Role of inspectors designated under the Act

The purpose of the document is to provide Canadians with an opportunity to review the policy proposals and to provide feedback [emphasis mine] prior to the Department finalizing policy decisions and developing the regulations. In addition to requesting stakeholders’ general feedback on the policy proposals, the Department is also seeking input on specific questions, which are included throughout the document.

It took me a while to find the relevant section (in particular, take note of ‘Federal Regulatory Oversight’),

3.2. AHR in Canada Today

Today, an increasing number of Canadians are turning to AHR technologies to grow or build their families. A 2012 Canadian studyFootnote 1 found that infertility is on the rise in Canada, with roughly 16% of heterosexual couples experiencing infertility. In addition to rising infertility, the trend of delaying marriage and parenthood, scientific advances in cryopreserving ova, and the increasing use of AHR by LGBTQ2 couples and single parents to build a family are all contributing to an increase in the use of AHR technologies.

The growing use of reproductive technologies by Canadians to help build their families underscores the need to strengthen the AHR Act. While the approach to regulating AHR varies from country to country, Health Canada has considered international best practices and the need for regulatory alignment when developing the proposed policies set out in this document. …

3.2.1 Federal Regulatory Oversight

Although the scope of the AHR Act was significantly reduced in 2012 and some of the remaining sections have not yet been brought into force, there are many important sections of the Act that are currently administered and enforced by Health Canada, as summarized generally below:

Section 5: Prohibited Scientific and Research Procedures
Section 5 prohibits certain types of scientific research and clinical procedures that are deemed unacceptable, including: human cloning, the creation of an embryo for non-reproductive purposes, maintaining an embryo outside the human body beyond the fourteenth day, sex selection for non-medical reasons, altering the genome in a way that could be transmitted to descendants, and creating a chimera or a hybrid. [emphasis mine]

….

It almost seems as if the they were hiding the section that broached the human gene-editing question. It doesn’t seem to have worked as it appears, there are some very motivated parties determined to reframe the discussion. Health Canada’s ‘outocme’ report, published March 2019, What we heard: A summary of scanning and consultations on what’s next for health product regulation reflects the success of those efforts,

1.0 Introduction and Context

Scientific and technological advances are accelerating the pace of innovation. These advances are increasingly leading to the development of health products that are better able to predict, define, treat, and even cure human diseases. Globally, many factors are driving regulators to think about how to enable health innovation. To this end, Health Canada has been expanding beyond existing partnerships and engaging both domestically and internationally. This expanding landscape of products and services comes with a range of new challenges and opportunities.

In keeping up to date with emerging technologies and working collaboratively through strategic partnerships, Health Canada seeks to position itself as a regulator at the forefront of health innovation. Following the targeted sectoral review of the Health and Biosciences Sector Regulatory Review consultation by the Treasury Board Secretariat, Health Canada held a number of targeted meetings with a broad range of stakeholders.

This report outlines the methodologies used to look ahead at the emerging health technology environment, [emphasis mine] the potential areas of focus that resulted, and the key findings from consultations.

… the Department identified the following key drivers that are expected to shape the future of health innovation:

  1. The use of “big data” to inform decision-making: Health systems are generating more data, and becoming reliant on this data. The increasing accuracy, types, and volume of data available in real time enable automation and machine learning that can forecast activity, behaviour, or trends to support decision-making.
  2. Greater demand for citizen agency: Canadians increasingly want and have access to more information, resources, options, and platforms to manage their own health (e.g., mobile apps, direct-to-consumer services, decentralization of care).
  3. Increased precision and personalization in health care delivery: Diagnostic tools and therapies are increasingly able to target individual patients with customized therapies (e.g., individual gene therapy).
  4. Increased product complexity: Increasingly complex products do not fit well within conventional product classifications and standards (e.g., 3D printing).
  5. Evolving methods for production and distribution: In some cases, manufacturers and supply chains are becoming more distributed, challenging the current framework governing production and distribution of health products.
  6. The ways in which evidence is collected and used are changing: The processes around new drug innovation, research and development, and designing clinical trials are evolving in ways that are more flexible and adaptive.

With these key drivers in mind, the Department selected the following six emerging technologies for further investigation to better understand how the health product space is evolving:

  1. Artificial intelligence, including activities such as machine learning, neural networks, natural language processing, and robotics.
  2. Advanced cell therapies, such as individualized cell therapies tailor-made to address specific patient needs.
  3. Big data, from sources such as sensors, genetic information, and social media that are increasingly used to inform patient and health care practitioner decisions.
  4. 3D printing of health products (e.g., implants, prosthetics, cells, tissues).
  5. New ways of delivering drugs that bring together different product lines and methods (e.g., nano-carriers, implantable devices).
  6. Gene editing, including individualized gene therapies that can assist in preventing and treating certain diseases.

Next, to test the drivers identified and further investigate emerging technologies, the Department consulted key organizations and thought leaders across the country with expertise in health innovation. To this end, Health Canada held seven workshops with over 140 representatives from industry associations, small-to-medium sized enterprises and start-ups, larger multinational companies, investors, researchers, and clinicians in Ottawa, Toronto, Montreal, and Vancouver. [emphases mine]

The ‘outocme’ report, ‘What we heard …’, is well worth reading in its entirety; it’s about 9 pp.

I have one comment, ‘stakeholders’ don’t seem to include anyone who isn’t “from industry associations, small-to-medium sized enterprises and start-ups, larger multinational companies, investors, researchers, and clinician” or from “Ottawa, Toronto, Montreal, and Vancouver.” Aren’t the rest of us stakeholders?

Innovating risk analysis

This line in the report caught my eye (from Health Canada’s Toward a strengthened Assisted Human Reproduction Act ; A Consultation with Canadians on Key Policy Proposals webpage),

There is increasing need to enable innovation in a flexible, risk-based way, with appropriate oversight to ensure safety, quality, and efficacy. [emphases mine]

It reminded me of the 2019 federal budget (from my March 22, 2019 posting). One comment before proceeding, regulation and risk are tightly linked and, so, by innovating regulation they are by exttension alos innovating risk analysis,

… Budget 2019 introduces the first three “Regulatory Roadmaps” to specifically address stakeholder issues and irritants in these sectors, informed by over 140 responses [emphasis mine] from businesses and Canadians across the country, as well as recommendations from the Economic Strategy Tables.

Introducing Regulatory Roadmaps

These Roadmaps lay out the Government’s plans to modernize regulatory frameworks, without compromising our strong health, safety, and environmental protections. They contain proposals for legislative and regulatory amendments as well as novel regulatory approaches to accommodate emerging technologies, including the use of regulatory sandboxes and pilot projects—better aligning our regulatory frameworks with industry realities.

Budget 2019 proposes the necessary funding and legislative revisions so that regulatory departments and agencies can move forward on the Roadmaps, including providing the Canadian Food Inspection Agency, Health Canada and Transport Canada with up to $219.1 million over five years, starting in 2019–20, (with $0.5 million in remaining amortization), and $3.1 million per year on an ongoing basis.

In the coming weeks, the Government will be releasing the full Regulatory Roadmaps for each of the reviews, as well as timelines for enacting specific initiatives, which can be grouped in the following three main areas:

What Is a Regulatory Sandbox? Regulatory sandboxes are controlled “safe spaces” in which innovative products, services, business models and delivery mechanisms can be tested without immediately being subject to all of the regulatory requirements.
– European Banking Authority, 2017

Establishing a regulatory sandbox for new and innovative medical products
The regulatory approval system has not kept up with new medical technologies and processes. Health Canada proposes to modernize regulations to put in place a regulatory sandbox for new and innovative products, such as tissues developed through 3D printing, artificial intelligence, and gene therapies targeted to specific individuals. [emphasis mine]

Modernizing the regulation of clinical trials
Industry and academics have expressed concerns that regulations related to clinical trials are overly prescriptive and inconsistent. Health Canada proposes to implement a risk-based approach [emphasis mine] to clinical trials to reduce costs to industry and academics by removing unnecessary requirements for low-risk drugs and trials. The regulations will also provide the agri-food industry with the ability to carry out clinical trials within Canada on products such as food for special dietary use and novel foods.

Does the government always get 140 responses from a consultation process? Moving on, I agree with finding new approaches to regulatory processes and oversight and, by extension, new approaches to risk analysis.

Earlier in this post, I asked if someone had a budget for public relations/promotion. I wasn’t joking. My March 22, 2019 posting also included these line items in the proposed 2019 budget,

Budget 2019 proposes to make additional investments in support of the following organizations:
Stem Cell Network: Stem cell research—pioneered by two Canadians in the 1960s [James Till and Ernest McCulloch]—holds great promise for new therapies and medical treatments for respiratory and heart diseases, spinal cord injury, cancer, and many other diseases and disorders. The Stem Cell Network is a national not-for-profit organization that helps translate stem cell research into clinical applications and commercial products. To support this important work and foster Canada’s leadership in stem cell research, Budget 2019 proposes to provide the Stem Cell Network with renewed funding of $18 million over three years, starting in 2019–20.

Genome Canada: The insights derived from genomics—the study of the entire genetic information of living things encoded in their DNA and related molecules and proteins—hold the potential for breakthroughs that can improve the lives of Canadians and drive innovation and economic growth. Genome Canada is a not-for-profit organization dedicated to advancing genomics science and technology in order to create economic and social benefits for Canadians. To support Genome Canada’s operations, Budget 2019 proposes to provide Genome Canada with $100.5 million over five years, starting in 2020–21. This investment will also enable Genome Canada to launch new large-scale research competitions and projects, in collaboration with external partners, ensuring that Canada’s research community continues to have access to the resources needed to make transformative scientific breakthroughs and translate these discoveries into real-world applications.

Years ago, I managed to find a webpage with all of the proposals various organizations were submitting to a government budget committee. It was eye-opening. You can tell which organizations were able to hire someone who knew the current government buzzwords and the things that a government bureaucrat would want to hear and the organizations that didn’t.

Of course, if the government of the day is adamantly against or uninterested, no amount of persusasion will work to get your organization more money in the budget.

Finally

Reluctantly, I am inclined to explore the topic of emerging technologies such as gene-editing not only in the field of agriculture (for gene-editing of plants, fish, and animals see my November 28, 2018 posting) but also with humans. At the very least, it needs to be discussed whether we choose to participate or not.

If you are interested in the arguments against changing Canada’s prohibition against gene-editing of humans, there’s an Ocotber 2, 2017 posting on Impact Ethics by Françoise Baylis, Professor and Canada Research Chair in Bioethics and Philosophy at Dalhousie University, and Alana Cattapan, Johnson Shoyama Graduate School of Public Policy at the University of Saskatchewan, which makes some compelling arguments. Of course, it was written before the CRISPR twins (my November 28, 2018 posting).

Recaliing CRISPR Therapeutics (mentioned by Gierczak), the company received permission to run clinical trials in the US in October 2018 after the FDA (US Food and Drug Administration) lifted an earlier ban on their trials according to an Oct. 10, 2018 article by Frank Vinhuan for exome,

The partners also noted that their therapy is making progress outside of the U.S. They announced that they have received regulatory clearance in “multiple countries” to begin tests of the experimental treatment in both sickle cell disease and beta thalassemia, …

It seems to me that the quotes around “multiple countries” are meant to suggest doubt of some kind. Generally speaking, company representatives make those kinds of generalizations when they’re trying to pump up their copy. E.g., 50% increase in attendance  but no whole numbers to tell you what that means. It could mean two people attended the first year and then brought a friend the next year or 100 people attended and the next year there were 150.

Despite attempts to declare personalized medicine as having arrived, I think everything is still in flux with no preordained outcome. The future has yet to be determined but it will be and I , for one, would like to have some say in the matter.

The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle

Setting the stage

Not unexpectedly, CRISPR-Cas9  or clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 can be dangerous as these scientists note in a July 16, 2018 news item on phys.org,

Scientists at the Wellcome Sanger Institute have discovered that CRISPR/Cas9 gene editing can cause greater genetic damage in cells than was previously thought. These results create safety implications for gene therapies using CRISPR/Cas9 in the future as the unexpected damage could lead to dangerous changes in some cells.

Reported today (16 July 2018) in the journal Nature Biotechnology, the study also revealed that standard tests for detecting DNA changes miss finding this genetic damage, and that caution and specific testing will be required for any potential gene therapies.

This CRISPR-Cas9 image reminds me of popcorn,

CRISPR-associated protein Cas9 (white) from Staphylococcus aureus based on Protein Database ID 5AXW. Credit: Thomas Splettstoesser (Wikipedia, CC BY-SA 4.0)[ downloaded from https://phys.org/news/2018-07-genome-crisprcas9-gene-higher-thought.html#jCp]

A July 16, 2018 Wellcome Sanger Institute press release (also on EurekAlert), which originated the news item, offers a little more explanation,

CRISPR/Cas9 is one of the newest genome editing tools. It can alter sections of DNA in cells by cutting at specific points and introducing changes at that location. Already extensively used in scientific research, CRISPR/Cas9 has also been seen as a promising way to create potential genome editing treatments for diseases such as HIV, cancer or sickle cell disease. Such therapeutics could inactivate a disease-causing gene, or correct a genetic mutation. However, any potential treatments would have to prove that they were safe.

Previous research had not shown many unforeseen mutations from CRISPR/Cas9 in the DNA at the genome editing target site. To investigate this further the researchers carried out a full systematic study in both mouse and human cells and discovered that CRISPR/Cas9 frequently caused extensive mutations, but at a greater distance from the target site.

The researchers found many of the cells had large genetic rearrangements such as DNA deletions and insertions. These could lead to important genes being switched on or off, which could have major implications for CRISPR/Cas9 use in therapies. In addition, some of these changes were too far away from the target site to be seen with standard genotyping methods.

Prof Allan Bradley, corresponding author on the study from the Wellcome Sanger Institute, said: “This is the first systematic assessment of unexpected events resulting from CRISPR/Cas9 editing in therapeutically relevant cells, and we found that changes in the DNA have been seriously underestimated before now. It is important that anyone thinking of using this technology for gene therapy proceeds with caution, and looks very carefully to check for possible harmful effects.”

Michael Kosicki, the first author from the Wellcome Sanger Institute, said: “My initial experiment used CRISPR/Cas9 as a tool to study gene activity, however it became clear that something unexpected was happening. Once we realised the extent of the genetic rearrangements we studied it systematically, looking at different genes and different therapeutically relevant cell lines, and showed that the CRISPR/Cas9 effects held true.”

The work has implications for how CRISPR/Cas9 is used therapeutically and is likely to re-spark researchers’ interest in finding alternatives to the standard CRISPR/Cas9 method for gene editing.

Prof Maria Jasin, an independent researcher from Memorial Slone Kettering Cancer Centre, New York, who was not involved in the study said: “This study is the first to assess the repertoire of genomic damage arising at a CRISPR/Cas9 cleavage site. While it is not known if genomic sites in other cell lines will be affected in the same way, this study shows that further research and specific testing is needed before CRISPR/Cas9 is used clinically.”

For anyone who’d like to better understand the terms gene editing and CRISPR-Cas9, the Wellcome Sanger Institute provides these explanatory webpages, What is genome editing? and What is CRISPR-Cas9?

For the more advanced, here’s a link and a citation for the paper,

Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements by Michael Kosicki, Kärt Tomberg, & Allan Bradley. Nature Biotechnology DOI: https://doi.org/10.1038/nbt.4192 Published 16 July 2018

This paper appears to be open access.

The kerfuffle

It seems this news has affected the CRISPR market. From a July 16, 2018 article by Cale Guthrie Weissman for Fast Company,

… CRISPR could unknowingly delete or alter non-targeted genes, which could lead to myriad unintended consequences. This is especially frightening, since the technology is going to be used in human clinical trials.

Meanwhile, other scientists working with CRISPR are trying to downplay the findings, telling STAT [a life sciences and business journalism website] that there have been no reported adverse effects similar to what the study describes. The news, however, has brought about a market reaction–at least three publicly traded companies that focus on CRISPR-based therapies are in stock nosedive. Crispr Therapeutics is down by over 6%; Editas fell by over 3%; and Intellia Therapeutics dropped by over 5%. [emphasis mine]

Damage control

Gaetan Burgio (geneticist, Australian National University)  in a July 16, 2018 essay on phys.org (originating from The Conversation) suggests some calm (Note: Links have been removed),

But a new study has called into question the precision of the technique [CRISPR gene editing technology].

The hope for gene editing is that it will be able to cure and correct diseases. To date, many successes have been reported, including curing deafness in mice, and in altering cells to cure cancer.

Some 17 clinical trials in human patients are registered [emphasis mine] testing gene editing on leukaemias, brain cancers and sickle cell anaemia (where red blood cells are misshaped, causing them to die). Before implementing CRISPR technology in clinics to treat cancer or congenital disorders, we must address whether the technique is safe and accurate.

There are a few options for getting around this problem. One option is to isolate the cells we wish to edit from the body and reinject only the ones we know have been correctly edited.

For example, lymphocytes (white blood cells) that are crucial to killing cancer cells could be taken out of the body, then modified using CRISPR to heighten their cancer-killing properties. The DNA of these cells could be sequenced in detail, and only the cells accurately and specifically gene-modified would be selected and delivered back into the body to kill the cancer cells.

While this strategy is valid for cells we can isolate from the body, some cells, such as neurons and muscles, cannot be removed from the body. These types of cells might not be suitable for gene editing using Cas9 scissors.

Fortunately, researchers have discovered other forms of CRISPR systems that don’t require the DNA to be cut. Some CRISPR systems only cut the RNA, not the DNA (DNA contains genetic instructions, RNA convey the instructions on how to synthesise proteins).

As RNA [ribonucleic acid] remains in our cells only for a specific period of time before being degraded, this would allow us to control the timing and duration of the CRISPR system delivery and reverse it (so the scissors are only functional for a short period of time).

This was found to be successful for dementia in mice. Similarly, some CRISPR systems simply change the letters of the DNA, rather than cutting them. This was successful for specific mutations causing diseases such as hereditary deafness in mice.

I agree with Burgio’s conclusion (not included here) that we have a lot more to learn and I can’t help wondering why there are 17 registered human clinical trials at this point.

Nanoparticle-based delivery platform for CRISPR-Cas9 (gene-editing technology)

A February 18, 2018 King Abdullah University of Science and Technology (KAUST; Saudi Arabia) news release (also on EurekAlert but published on Feb. 20, 2018) describes a new technology for delivering CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 into cells,

A new delivery system for introducing gene-editing technology into cells could help safely and efficiently correct disease-causing mutations in patients.

The system, developed by KAUST scientists, is the first to use sponge-like ensembles of metal ions and organic molecules to coat the molecular components of the precision DNA-editing technology known as CRISPR/Cas9, allowing efficient release of the genome-editing machinery inside the cell.

“This method presents an easy and economically feasible route to improve on the delivery problems that accompany RNA-based therapeutic approaches,” says Niveen Khashab, the associate professor of chemical sciences at KAUST who led the study. “This may permit such formulations to be eventually used for treating genetic diseases effectively in the future.”

CRISPR/Cas9 has a double delivery problem: For the gene-editing technology to work like a molecular Swiss Army knife, both a large protein (the Cas9 cutting enzyme) and a highly charged RNA component (the guide RNA used for DNA targeting) must each get from the outside of the cell into the cytoplasm and finally into the nucleus, all without getting trapped in the tiny intracellular bubbles that are known as endosomes.

To solve this problem, Khashab and her lab turned to a nano-sized type of porous material known as a zeolitic imidazolate framework, which forms a cage-like structure into which other molecules can be placed. The researchers encapsulated the Cas9 protein and guide RNA in this material and then introduced the resulting nanoparticles into hamster cells.

The encapsulated CRISPR-Cas9 constructs were not toxic to the cells. And because particles in the coating material become positively charged when absorbed into endosomes, they caused these membrane-bound bubbles to burst, freeing the CRISPR-Cas9 machinery to travel to the nucleus, home to the cell’s genome. There the gene-editing technology could get to work.

Using a guide RNA designed to target a gene that caused the cells to glow green under fluorescent light, Khashab and her team showed that they could reduce the expression of this gene by 37 percent over four days with their technology. “These cage-like structures are biocompatible and can be triggered on demand, making them smart options to overcome delivery problems of genetic materials and proteins,” says the study’s first author Shahad Alsaiari, a Ph.D. student in Khashab’s lab.

The researchers’ plan to test their system in human cells and in mice, and eventually, they hope, in clinical trials.

The zeolitic imidazolate framework forms a cage-like scaffold over the CRISPR/Cas9 machinery.. Reprinted (adapted) with permission from Alsaiari, S.K., Patil, S., Alyami, M., Alamoudi, K.O., Aleisa, F.A., Merzaban, J., Li M. & Khashab, N.M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. Journal of the American Chemical Society 140, 143–146 (2018). © 2018 American Chemical Society; KAUST Xavier Pita and Heno Huang ][downloaded from https://discovery.kaust.edu.sa/en/article/475/a%250adelivery-platform-for-gene-editing-technology]

Here’s a link to and a citation for the paper,

Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework by Shahad K. Alsaiari, Sachin Patil, Mram Alyami, Kholod O. Alamoudi, Fajr A. Aleisa, Jasmeen S. Merzaban, Mo Li, and Niveen M. Khashab. J. Am. Chem. Soc., 2018, 140 (1), pp 143–146 DOI: 10.1021/jacs.7b11754 Publication Date (Web): December 22, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

CRISPR-Cas12a as a new diagnostic tool

Similar to Cas9, Cas12a is has an added feature as noted in this February 15, 2018 news item on ScienceDaily,

Utilizing an unsuspected activity of the CRISPR-Cas12a protein, researchers created a simple diagnostic system called DETECTR to analyze cells, blood, saliva, urine and stool to detect genetic mutations, cancer and antibiotic resistance and also diagnose bacterial and viral infections. The scientists discovered that when Cas12a binds its double-stranded DNA target, it indiscriminately chews up all single-stranded DNA. They then created reporter molecules attached to single-stranded DNA to signal when Cas12a finds its target.

A February 15, 2018 University of California at Berkeley (UC Berkeley) news release by Robert Sanders and which originated the news item, provides more detail and history,

CRISPR-Cas12a, one of the DNA-cutting proteins revolutionizing biology today, has an unexpected side effect that makes it an ideal enzyme for simple, rapid and accurate disease diagnostics.

blood in test tube

(iStock)

Cas12a, discovered in 2015 and originally called Cpf1, is like the well-known Cas9 protein that UC Berkeley’s Jennifer Doudna and colleague Emmanuelle Charpentier turned into a powerful gene-editing tool in 2012.

CRISPR-Cas9 has supercharged biological research in a mere six years, speeding up exploration of the causes of disease and sparking many potential new therapies. Cas12a was a major addition to the gene-cutting toolbox, able to cut double-stranded DNA at places that Cas9 can’t, and, because it leaves ragged edges, perhaps easier to use when inserting a new gene at the DNA cut.

But co-first authors Janice Chen, Enbo Ma and Lucas Harrington in Doudna’s lab discovered that when Cas12a binds and cuts a targeted double-stranded DNA sequence, it unexpectedly unleashes indiscriminate cutting of all single-stranded DNA in a test tube.

Most of the DNA in a cell is in the form of a double-stranded helix, so this is not necessarily a problem for gene-editing applications. But it does allow researchers to use a single-stranded “reporter” molecule with the CRISPR-Cas12a protein, which produces an unambiguous fluorescent signal when Cas12a has found its target.

“We continue to be fascinated by the functions of bacterial CRISPR systems and how mechanistic understanding leads to opportunities for new technologies,” said Doudna, a professor of molecular and cell biology and of chemistry and a Howard Hughes Medical Institute investigator.

DETECTR diagnostics

The new DETECTR system based on CRISPR-Cas12a can analyze cells, blood, saliva, urine and stool to detect genetic mutations, cancer and antibiotic resistance as well as diagnose bacterial and viral infections. Target DNA is amplified by RPA to make it easier for Cas12a to find it and bind, unleashing indiscriminate cutting of single-stranded DNA, including DNA attached to a fluorescent marker (gold star) that tells researchers that Cas12a has found its target.

The UC Berkeley researchers, along with their colleagues at UC San Francisco, will publish their findings Feb. 15 [2018] via the journal Science’s fast-track service, First Release.

The researchers developed a diagnostic system they dubbed the DNA Endonuclease Targeted CRISPR Trans Reporter, or DETECTR, for quick and easy point-of-care detection of even small amounts of DNA in clinical samples. It involves adding all reagents in a single reaction: CRISPR-Cas12a and its RNA targeting sequence (guide RNA), fluorescent reporter molecule and an isothermal amplification system called recombinase polymerase amplification (RPA), which is similar to polymerase chain reaction (PCR). When warmed to body temperature, RPA rapidly multiplies the number of copies of the target DNA, boosting the chances Cas12a will find one of them, bind and unleash single-strand DNA cutting, resulting in a fluorescent readout.

The UC Berkeley researchers tested this strategy using patient samples containing human papilloma virus (HPV), in collaboration with Joel Palefsky’s lab at UC San Francisco. Using DETECTR, they were able to demonstrate accurate detection of the “high-risk” HPV types 16 and 18 in samples infected with many different HPV types.

“This protein works as a robust tool to detect DNA from a variety of sources,” Chen said. “We want to push the limits of the technology, which is potentially applicable in any point-of-care diagnostic situation where there is a DNA component, including cancer and infectious disease.”

The indiscriminate cutting of all single-stranded DNA, which the researchers discovered holds true for all related Cas12 molecules, but not Cas9, may have unwanted effects in genome editing applications, but more research is needed on this topic, Chen said. During the transcription of genes, for example, the cell briefly creates single strands of DNA that could accidentally be cut by Cas12a.

The activity of the Cas12 proteins is similar to that of another family of CRISPR enzymes, Cas13a, which chew up RNA after binding to a target RNA sequence. Various teams, including Doudna’s, are developing diagnostic tests using Cas13a that could, for example, detect the RNA genome of HIV.

infographic about DETECTR system

(Infographic by the Howard Hughes Medical Institute)

These new tools have been repurposed from their original role in microbes where they serve as adaptive immune systems to fend off viral infections. In these bacteria, Cas proteins store records of past infections and use these “memories” to identify harmful DNA during infections. Cas12a, the protein used in this study, then cuts the invading DNA, saving the bacteria from being taken over by the virus.

The chance discovery of Cas12a’s unusual behavior highlights the importance of basic research, Chen said, since it came from a basic curiosity about the mechanism Cas12a uses to cleave double-stranded DNA.

“It’s cool that, by going after the question of the cleavage mechanism of this protein, we uncovered what we think is a very powerful technology useful in an array of applications,” Chen said.

Here’s a link to and a citation for the paper,

CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity by Janice S. Chen, Enbo Ma, Lucas B. Harrington, Maria Da Costa, Xinran Tian, Joel M. Palefsky, Jennifer A. Doudna. Science 15 Feb 2018: eaar6245 DOI: 10.1126/science.aar6245

This paper is behind a paywall.

New nanomapping technology: CRISPR-CAS9 as a programmable nanoparticle

A November 21, 2017 news item on Nanowerk describes a rather extraordinary (to me, anyway) approach to using CRRISP ( Clustered Regularly Interspaced Short Palindromic Repeats)-CAS9 (Note: A link has been removed),

A team of scientists led by Virginia Commonwealth University physicist Jason Reed, Ph.D., have developed new nanomapping technology that could transform the way disease-causing genetic mutations are diagnosed and discovered. Described in a study published today [November 21, 2017] in the journal Nature Communications (“DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle”), this novel approach uses high-speed atomic force microscopy (AFM) combined with a CRISPR-based chemical barcoding technique to map DNA nearly as accurately as DNA sequencing while processing large sections of the genome at a much faster rate. What’s more–the technology can be powered by parts found in your run-of-the-mill DVD player.

A November 21, 2017 Virginia Commonwealth University news release by John Wallace, which originated the news item, provides more detail,

The human genome is made up of billions of DNA base pairs. Unraveled, it stretches to a length of nearly six feet long. When cells divide, they must make a copy of their DNA for the new cell. However, sometimes various sections of the DNA are copied incorrectly or pasted together at the wrong location, leading to genetic mutations that cause diseases such as cancer. DNA sequencing is so precise that it can analyze individual base pairs of DNA. But in order to analyze large sections of the genome to find genetic mutations, technicians must determine millions of tiny sequences and then piece them together with computer software. In contrast, biomedical imaging techniques such as fluorescence in situ hybridization, known as FISH, can only analyze DNA at a resolution of several hundred thousand base pairs.

Reed’s new high-speed AFM method can map DNA to a resolution of tens of base pairs while creating images up to a million base pairs in size. And it does it using a fraction of the amount of specimen required for DNA sequencing.

“DNA sequencing is a powerful tool, but it is still quite expensive and has several technological and functional limitations that make it difficult to map large areas of the genome efficiently and accurately,” said Reed, principal investigator on the study. Reed is a member of the Cancer Molecular Genetics research program at VCU Massey Cancer Center and an associate professor in the Department of Physics in the College of Humanities and Sciences.

“Our approach bridges the gap between DNA sequencing and other physical mapping techniques that lack resolution,” he said. “It can be used as a stand-alone method or it can complement DNA sequencing by reducing complexity and error when piecing together the small bits of genome analyzed during the sequencing process.”

IBM scientists made headlines in 1989 when they developed AFM technology and used a related technique to rearrange molecules at the atomic level to spell out “IBM.” AFM achieves this level of detail by using a microscopic stylus — similar to a needle on a record player — that barely makes contact with the surface of the material being studied. The interaction between the stylus and the molecules creates the image. However, traditional AFM is too slow for medical applications and so it is primarily used by engineers in materials science.

“Our device works in the same fashion as AFM but we move the sample past the stylus at a much greater velocity and use optical instruments to detect the interaction between the stylus and the molecules. We can achieve the same level of detail as traditional AFM but can process material more than a thousand times faster,” said Reed, whose team proved the technology can be mainstreamed by using optical equipment found in DVD players. “High-speed AFM is ideally suited for some medical applications as it can process materials quickly and provide hundreds of times more resolution than comparable imaging methods.”

Increasing the speed of AFM was just one hurdle Reed and his colleagues had to overcome. In order to actually identify genetic mutations in DNA, they had to develop a way to place markers or labels on the surface of the DNA molecules so they could recognize patterns and irregularities. An ingenious chemical barcoding solution was developed using a form of CRISPR technology.

CRISPR has made a lot of headlines recently in regard to gene editing. CRISPR is an enzyme that scientists have been able to “program” using targeting RNA in order to cut DNA at precise locations that the cell then repairs on its own. Reed’s team altered the chemical reaction conditions of the CRISPR enzyme so that it only sticks to the DNA and does not actually cut it.

“Because the CRISPR enzyme is a protein that’s physically bigger than the DNA molecule, it’s perfect for this barcoding application,” Reed said. “We were amazed to discover this method is nearly 90 percent efficient at bonding to the DNA molecules. And because it’s easy to see the CRISPR proteins, you can spot genetic mutations among the patterns in DNA.”

To demonstrate the technique’s effectiveness, the researchers mapped genetic translocations present in lymph node biopsies of lymphoma patients. Translocations occur when one section of the DNA gets copied and pasted to the wrong place in the genome. They are especially prevalent in blood cancers such as lymphoma but occur in other cancers as well.

While there are many potential uses for this technology, Reed and his team are focusing on medical applications. They are currently developing software based on existing algorithms that can analyze patterns in sections of DNA up to and over a million base pairs in size. Once completed, it would not be hard to imagine this shoebox-sized instrument in pathology labs assisting in the diagnosis and treatment of diseases linked to genetic mutations.

Here’s a link to and a citation for the paper,

DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle by Andrey Mikheikin, Anita Olsen, Kevin Leslie, Freddie Russell-Pavier, Andrew Yacoot, Loren Picco, Oliver Payton, Amir Toor, Alden Chesney, James K. Gimzewski, Bud Mishra, & Jason Reed. Nature Communications 8, Article number: 1665 (2017) doi:10.1038/s41467-017-01891-9 Published online: 21 November 2017

This paper is open access.

Why don’t you CRISPR yourself?

It must have been quite the conference. Josiah Zayner plunged a needle into himself and claimed to have changed his DNA (deoxyribonucleic acid) while giving his talk. (*Segue: There is some Canadian content if you keep reading.*) From an Oct. 10, 2017 article by Adele Peters for Fast Company (Note: A link has been removed),

“What we’ve got here is some DNA, and this is a syringe,” Josiah Zayner tells a room full of synthetic biologists and other researchers. He fills the needle and plunges it into his skin. “This will modify my muscle genes and give me bigger muscles.”

Zayner, a biohacker–basically meaning he experiments with biology in a DIY lab rather than a traditional one–was giving a talk called “A Step-by-Step Guide to Genetically Modifying Yourself With CRISPR” at the SynBioBeta conference in San Francisco, where other presentations featured academics in suits and the young CEOs of typical biotech startups. Unlike the others, he started his workshop by handing out shots of scotch and a booklet explaining the basics of DIY [do-it-yourwelf] genome engineering.

If you want to genetically modify yourself, it turns out, it’s not necessarily complicated. As he offered samples in small baggies to the crowd, Zayner explained that it took him about five minutes to make the DNA that he brought to the presentation. The vial held Cas9, an enzyme that snips DNA at a particular location targeted by guide RNA, in the gene-editing system known as CRISPR. In this case, it was designed to knock out the myostatin gene, which produces a hormone that limits muscle growth and lets muscles atrophy. In a study in China, dogs with the edited gene had double the muscle mass of normal dogs. If anyone in the audience wanted to try it, they could take a vial home and inject it later. Even rubbing it on skin, Zayner said, would have some effect on cells, albeit limited.

Peters goes on to note that Zayner has a PhD in molecular biology and biophysics and worked for NASA (US National Aeronautics and Space Administration). Zayner’s Wikipedia entry fills in a few more details (Note: Links have been removed),

Zayner graduated from the University of Chicago with a Ph.D. in biophysics in 2013. He then spent two years as a researcher at NASA’s Ames Research Center,[2] where he worked on Martian colony habitat design. While at the agency, Zayner also analyzed speech patterns in online chat, Twitter, and books, and found that language on Twitter and online chat is closer to how people talk than to how they write.[3] Zayner found NASA’s scientific work less innovative than he expected, and upon leaving in January 2016, he launched a crowdfunding campaign to provide CRISPR kits to let the general public experiment with editing bacterial DNA. He also continued his grad school business, The ODIN, which sells kits to let the general public experiment at home. As of May 2016, The ODIN had four employees and operates out of Zayner’s garage.[2]

He refers to himself as a biohacker and believes in the importance in letting the general public participate in scientific experimentation, rather than leaving it segregated to labs.[2][4][1] Zayner found the biohacking community exclusive and hierarchical, particularly in the types of people who decide what is “safe”. He hopes that his projects can let even more people experiment in their homes. Other scientists responded that biohacking is inherently privileged, as it requires leisure time and money, and that deviance from the safety rules of concern would lead to even harsher regulations for all.[5] Zayner’s public CRISPR kit campaign coincided with wider scrutiny over genetic modification. Zayner maintained that these fears were based on misunderstandings of the product, as genetic experiments on yeast and bacteria cannot produce a viral epidemic.[6][7] In April 2015, Zayner ran a hoax on Craigslist to raise awareness about the future potential of forgery in forensics genetics testing.[8]

In February 2016, Zayner performed a full body microbiome transplant on himself, including a fecal transplant, to experiment with microbiome engineering and see if he could cure himself from gastrointestinal and other health issues. The microbiome from the donors feces successfully transplanted in Zayner’s gut according to DNA sequencing done on samples.[2] This experiment was documented by filmmakers Kate McLean and Mario Furloni and turned into the short documentary film Gut Hack.[9]

In December 2016, Zayner created a fluorescent beer by engineering yeast to contain the green fluorescent protein from jellyfish. Zayner’s company, The ODIN, released kits to allow people to create their own engineered fluorescent yeast and this was met with some controversy as the FDA declared the green fluorescent protein can be seen as a color additive.[10] Zayner, views the kit as a way that individual can use genetic engineering to create things in their everyday life.[11]

I found the video for Zayner’s now completed crowdfunding campaign,

I also found The ODIN website (mentioned in the Wikipedia essay) where they claim to be selling various gene editing and gene engineering kits including the CRISPR editing kits mentioned in Peters’ article,

In 2016, he [Zayner] sold $200,000 worth of products, including a kit for yeast that can be used to brew glowing bioluminescent beer, a kit to discover antibiotics at home, and a full home lab that’s roughly the cost of a MacBook Pro. In 2017, he expects to double sales. Many kits are simple, and most buyers probably aren’t using the supplies to attempt to engineer themselves (many kits go to classrooms). But Zayner also hopes that as people using the kits gain genetic literacy, they experiment in wilder ways.

Zayner sells a full home biohacking lab that’s roughly the cost of a MacBook Pro. [Photo: The ODIN]

He questions whether traditional research methods, like randomized controlled trials, are the only way to make discoveries, pointing out that in newer personalized medicine (such as immunotherapy for cancer, which is personalized for each patient), a sample size of one person makes sense. At his workshop, he argued that people should have the choice to self-experiment if they want to; we also change our DNA when we drink alcohol or smoke cigarettes or breathe in dirty city air. Other society-sanctioned activities are more dangerous. “We sacrifice maybe a million people a year to the car gods,” he said. “If you ask someone, ‘Would you get rid of cars?’–no.” …

US researchers both conventional and DIY types such as Zayner are not the only ones who are editing genes. The Chinese study mentioned in Peters’ article was written up in an Oct. 19, 2015 article by Antonio Regalado for the MIT [Massachusetts Institute of Technology] Technology Review (Note: Links have been removed),

Scientists in China say they are the first to use gene editing to produce customized dogs. They created a beagle with double the amount of muscle mass by deleting a gene called myostatin.

The dogs have “more muscles and are expected to have stronger running ability, which is good for hunting, police (military) applications,” Liangxue Lai, a researcher with the Key Laboratory of Regenerative Biology at the Guangzhou Institutes of Biomedicine and Health, said in an e-mail.

Lai and 28 colleagues reported their results last week in the Journal of Molecular Cell Biology, saying they intend to create dogs with other DNA mutations, including ones that mimic human diseases such as Parkinson’s and muscular dystrophy. “The goal of the research is to explore an approach to the generation of new disease dog models for biomedical research,” says Lai. “Dogs are very close to humans in terms of metabolic, physiological, and anatomical characteristics.”

Lai said his group had no plans breed to breed the extra-muscular beagles as pets. Other teams, however, could move quickly to commercialize gene-altered dogs, potentially editing their DNA to change their size, enhance their intelligence, or correct genetic illnesses. A different Chinese Institute, BGI, said in September it had begun selling miniature pigs, created via gene editing, for $1,600 each as novelty pets.

People have been influencing the genetics of dogs for millennia. By at least 36,000 years ago, early humans had already started to tame wolves and shape the companions we have today. Charles Darwin frequently cited dog breeding in The Origin of Species to demonstrate how evolution gradually occurs by a process of selection. With CRISPR, however, evolution is no longer gradual or subject to chance. It is immediate and under human control.

It is precisely that power that is stirring wide debate and concern over CRISPR. Yet at least some researchers think that gene-edited dogs could put a furry, friendly face on the technology. In an interview this month, George Church, a professor at Harvard University who leads a large effort to employ CRISPR editing, said he thinks it will be possible to augment dogs by using DNA edits to make them live longer or simply make them smarter.

Church said he also believed the alteration of dogs and other large animals could open a path to eventual gene editing of people. “Germline editing of pigs or dogs offers a line into it,” he said. “People might say, ‘Hey, it works.’ ”

In the meantime, Zayner’s ideas are certainly thought provoking. I’m not endorsing either his products or his ideas but it should be noted that early science pioneers such as Humphrey Davy and others experimented on themselves. For anyone unfamiliar with Davy, (from the Humphrey Davy Wikipedia entry; Note: Links have been removed),

Sir Humphry Davy, 1st Baronet PRS MRIA FGS (17 December 1778 – 29 May 1829) was a Cornish chemist and inventor,[1] who is best remembered today for isolating a series of substances for the first time: potassium and sodium in 1807 and calcium, strontium, barium, magnesium and boron the following year, as well as discovering the elemental nature of chlorine and iodine. He also studied the forces involved in these separations, inventing the new field of electrochemistry. Berzelius called Davy’s 1806 Bakerian Lecture On Some Chemical Agencies of Electricity[2] “one of the best memoirs which has ever enriched the theory of chemistry.”[3] He was a Baronet, President of the Royal Society (PRS), Member of the Royal Irish Academy (MRIA), and Fellow of the Geological Society (FGS). He also invented the Davy lamp and a very early form of incandescent light bulb.

Canadian content*

A Nov. 11, 2017 posting on the Canadian Broadcasting Corporation’s (CBC) Quirks and Quarks blog notes that self-experimentation has a long history and goes on to describe Zayner’s and others biohacking exploits before describing the legality of biohacking in Canada,

With biohackers entering into the space traditionally held by scientists and clinicians, it begs questions. Professor Timothy Caulfield, a Canada research chair in health, law and policy at the University of Alberta, says when he hears of somebody giving themselves biohacked gene therapy, he wonders: “Is this legal? Is this safe? And if it’s not safe, is there anything that we can do about regulating it? And to be honest with you that’s a tough question and I think it’s an open question.”

In Canada, Caulfield says, Health Canada focuses on products. “You have to have something that you are going to regulate or you have to have something that’s making health claims. So if there is a product that is saying I can cure X, Y, or Z, Health Canada can say, ‘Well let’s make sure the science really backs up that claim.’ The problem with these do-it-yourself approaches is there isn’t really a product. You know these people are experimenting on themselves with something that may or may not be designed for health purposes.”

According to Caufield, if you could buy a gene therapy kit that was being marketed to you to biohack yourself, that would be different. “Health Canada could jump in. But right here that’s not the case,” he says.

There are places in the world that do regulate biohacking, says Caulfield. “Germany, for example, they have specific laws for it. And here in Canada we do have a regulatory framework that says that you cannot do gene therapy that will alter the germ line. In other words, you can’t do gene therapy or any kind of genetic editing that will create a change that you will pass on to your offspring. So that would be illegal, but that’s not what’s happening here. And I don’t think there’s a regulatory framework that adequately captures it.”

Infectious disease and policy experts aren’t that concerned yet about the possibility of a biohacker unleashing a genetically modified super germ into the population.

“I think in the future that could be a problem,”says Caulfield, “but this isn’t something that would be easy to do in your garage. I think it’s complicated science. But having said that, the science is moving quickly. We need to think about how we are going to control the potential harms.”

You can find out more about the ‘wild’ people (mostly men) of early science in Richard Holmes’ 2008 book, The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science.

Finally, should you be interested in connecting with synthetic biology enthusiasts, entrepreneurs, and others, SynBioBeta is more than a conference; it’s also an activity hub.

ETA January 25, 2018 (five minutes later): There are some CRISPR/CAS9 events taking place in Toronto, Canada on January 24 and 25, 2018. One is a workshop with Portuguese artist, Marta de Menezes, and the other is a panel discussion. See my January 10, 2018 posting for more details.

*’Segue: There is some Canadian content if you keep reading.’ and ‘Canadian content’ added January 25, 2018 six minutes after first publication.

ETA February 20, 2018: Sarah Zhang’s Feb. 20, 2018 article for The Atlantic revisits Josiah Zayner’s decision to inject himself with CRISPR,

When Josiah Zayner watched a biotech CEO drop his pants at a biohacking conference and inject himself with an untested herpes treatment, he realized things had gone off the rails.

Zayner is no stranger to stunts in biohacking—loosely defined as experiments, often on the self, that take place outside of traditional lab spaces. You might say he invented their latest incarnation: He’s sterilized his body to “transplant” his entire microbiome in front of a reporter. He’s squabbled with the FDA about selling a kit to make glow-in-the-dark beer. He’s extensively documented attempts to genetically engineer the color of his skin. And most notoriously, he injected his arm with DNA encoding for CRISPR that could theoretically enhance his muscles—in between taking swigs of Scotch at a live-streamed event during an October conference. (Experts say—and even Zayner himself in the live-stream conceded—it’s unlikely to work.)

So when Zayner saw Ascendance Biomedical’s CEO injecting himself on a live-stream earlier this month, you might say there was an uneasy flicker of recognition.

“Honestly, I kind of blame myself,” Zayner told me recently. He’s been in a soul-searching mood; he recently had a kid and the backlash to the CRISPR stunt in October [2017] had been getting to him. “There’s no doubt in my mind that somebody is going to end up hurt eventually,” he said.

Yup, it’s one of the reasons for rules; people take things too far. The trick is figuring out how to achieve balance between risk taking and recklessness.

CRISPR and editing the germline in the US (part 3 of 3): public discussions and pop culture

After giving a basic explanation of the technology and some of the controversies in part 1 and offering more detail about the technology and about the possibility of designer babies in part 2; this part covers public discussion, a call for one and the suggestion that one is taking place in popular culture.

But a discussion does need to happen

In a move that is either an exquisite coincidence or has been carefully orchestrated (I vote for the latter), researchers from the University of Wisconsin-Madison have released a study about attitudes in the US to human genome editing. From an Aug. 11, 2017 University of Wisconsin-Madison news release (also on EurekAllert),

In early August 2017, an international team of scientists announced they had successfully edited the DNA of human embryos. As people process the political, moral and regulatory issues of the technology — which nudges us closer to nonfiction than science fiction — researchers at the University of Wisconsin-Madison and Temple University show the time is now to involve the American public in discussions about human genome editing.

In a study published Aug. 11 in the journal Science, the researchers assessed what people in the United States think about the uses of human genome editing and how their attitudes may drive public discussion. They found a public divided on its uses but united in the importance of moving conversations forward.

“There are several pathways we can go down with gene editing,” says UW-Madison’s Dietram Scheufele, lead author of the study and member of a National Academy of Sciences committee that compiled a report focused on human gene editing earlier this year. “Our study takes an exhaustive look at all of those possible pathways forward and asks where the public stands on each one of them.”

Compared to previous studies on public attitudes about the technology, the new study takes a more nuanced approach, examining public opinion about the use of gene editing for disease therapy versus for human enhancement, and about editing that becomes hereditary versus editing that does not.

The research team, which included Scheufele and Dominique Brossard — both professors of life sciences communication — along with Michael Xenos, professor of communication arts, first surveyed study participants about the use of editing to treat disease (therapy) versus for enhancement (creating so-called “designer babies”). While about two-thirds of respondents expressed at least some support for therapeutic editing, only one-third expressed support for using the technology for enhancement.

Diving even deeper, researchers looked into public attitudes about gene editing on specific cell types — somatic or germline — either for therapy or enhancement. Somatic cells are non-reproductive, so edits made in those cells do not affect future generations. Germline cells, however, are heritable, and changes made in these cells would be passed on to children.

Public support of therapeutic editing was high both in cells that would be inherited and those that would not, with 65 percent of respondents supporting therapy in germline cells and 64 percent supporting therapy in somatic cells. When considering enhancement editing, however, support depended more upon whether the changes would affect future generations. Only 26 percent of people surveyed supported enhancement editing in heritable germline cells and 39 percent supported enhancement of somatic cells that would not be passed on to children.

“A majority of people are saying that germline enhancement is where the technology crosses that invisible line and becomes unacceptable,” says Scheufele. “When it comes to therapy, the public is more open, and that may partly be reflective of how severe some of those genetically inherited diseases are. The potential treatments for those diseases are something the public at least is willing to consider.”

Beyond questions of support, researchers also wanted to understand what was driving public opinions. They found that two factors were related to respondents’ attitudes toward gene editing as well as their attitudes toward the public’s role in its emergence: the level of religious guidance in their lives, and factual knowledge about the technology.

Those with a high level of religious guidance in their daily lives had lower support for human genome editing than those with low religious guidance. Additionally, those with high knowledge of the technology were more supportive of it than those with less knowledge.

While respondents with high religious guidance and those with high knowledge differed on their support for the technology, both groups highly supported public engagement in its development and use. These results suggest broad agreement that the public should be involved in questions of political, regulatory and moral aspects of human genome editing.

“The public may be split along lines of religiosity or knowledge with regard to what they think about the technology and scientific community, but they are united in the idea that this is an issue that requires public involvement,” says Scheufele. “Our findings show very nicely that the public is ready for these discussions and that the time to have the discussions is now, before the science is fully ready and while we have time to carefully think through different options regarding how we want to move forward.”

Here’s a  link to and a citation for the paper,

U.S. attitudes on human genome editing by Dietram A. Scheufele, Michael A. Xenos, Emily L. Howell, Kathleen M. Rose, Dominique Brossard1, and Bruce W. Hardy. Science 11 Aug 2017: Vol. 357, Issue 6351, pp. 553-554 DOI: 10.1126/science.aan3708

This paper is behind a paywall.

A couple of final comments

Briefly, I notice that there’s no mention of the ethics of patenting this technology in the news release about the study.

Moving on, it seems surprising that the first team to engage in germline editing in the US is in Oregon; I would have expected the work to come from Massachusetts, California, or Illinois where a lot of bleeding edge medical research is performed. However, given the dearth of financial support from federal funding institutions, it seems likely that only an outsider would dare to engage i the research. Given the timing, Mitalipov’s work was already well underway before the recent about-face from the US National Academy of Sciences (Note: Kaiser’s Feb. 14, 2017 article does note that for some the recent recommendations do not represent any change).

As for discussion on issues such as editing of the germline, I’ve often noted here that popular culture (including advertising with the science fiction and other dramas laid in various media) often provides an informal forum for discussion. Joelle Renstrom in an Aug. 13, 2017 article for slate.com writes that Orphan Black (a BBC America series featuring clones) opened up a series of questions about science and ethics in the guise of a thriller about clones. She offers a précis of the first four seasons (Note: A link has been removed),

If you stopped watching a few seasons back, here’s a brief synopsis of how the mysteries wrap up. Neolution, an organization that seeks to control human evolution through genetic modification, began Project Leda, the cloning program, for two primary reasons: to see whether they could and to experiment with mutations that might allow people (i.e., themselves) to live longer. Neolution partnered with biotech companies such as Dyad, using its big pharma reach and deep pockets to harvest people’s genetic information and to conduct individual and germline (that is, genetic alterations passed down through generations) experiments, including infertility treatments that result in horrifying birth defects and body modification, such as tail-growing.

She then provides the article’s thesis (Note: Links have been removed),

Orphan Black demonstrates Carl Sagan’s warning of a time when “awesome technological powers are in the hands of a very few.” Neolutionists do whatever they want, pausing only to consider whether they’re missing an opportunity to exploit. Their hubris is straight out of Victor Frankenstein’s playbook. Frankenstein wonders whether he ought to first reanimate something “of simpler organisation” than a human, but starting small means waiting for glory. Orphan Black’s evil scientists embody this belief: if they’re going to play God, then they’ll control not just their own destinies, but the clones’ and, ultimately, all of humanity’s. Any sacrifices along the way are for the greater good—reasoning that culminates in Westmoreland’s eugenics fantasy to genetically sterilize 99 percent of the population he doesn’t enhance.

Orphan Black uses sci-fi tropes to explore real-world plausibility. Neolution shares similarities with transhumanism, the belief that humans should use science and technology to take control of their own evolution. While some transhumanists dabble in body modifications, such as microchip implants or night-vision eye drops, others seek to end suffering by curing human illness and aging. But even these goals can be seen as selfish, as access to disease-eradicating or life-extending technologies would be limited to the wealthy. Westmoreland’s goal to “sell Neolution to the 1 percent” seems frighteningly plausible—transhumanists, who statistically tend to be white, well-educated, and male, and their associated organizations raise and spend massive sums of money to help fulfill their goals. …

On Orphan Black, denial of choice is tantamount to imprisonment. That the clones have to earn autonomy underscores the need for ethics in science, especially when it comes to genetics. The show’s message here is timely given the rise of gene-editing techniques such as CRISPR. Recently, the National Academy of Sciences gave germline gene editing the green light, just one year after academy scientists from around the world argued it would be “irresponsible to proceed” without further exploring the implications. Scientists in the United Kingdom and China have already begun human genetic engineering and American scientists recently genetically engineered a human embryo for the first time. The possibility of Project Leda isn’t farfetched. Orphan Black warns us that money, power, and fear of death can corrupt both people and science. Once that happens, loss of humanity—of both the scientists and the subjects—is inevitable.

In Carl Sagan’s dark vision of the future, “people have lost the ability to set their own agendas or knowledgeably question those in authority.” This describes the plight of the clones at the outset of Orphan Black, but as the series continues, they challenge this paradigm by approaching science and scientists with skepticism, ingenuity, and grit. …

I hope there are discussions such as those Scheufele and Brossard are advocating but it might be worth considering that there is already some discussion underway, as informal as it is.

-30-

Part 1: CRISPR and editing the germline in the US (part 1 of 3): In the beginning

Part 2: CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?