Tag Archives: 3D printing

3D-printed ‘smart helmets’ for the military

Caption: The Rice University-designed smart helmet is intended to modernize standard-issue military helmets by 3D-printing a nanomaterial-enhanced exoskeleton with embedded sensors to actively protect the brain against kinetic or directed-energy effects. Credit: Rice University

Hopefully this will limit the number of head injuries suffered by soldiers.

Some years ago I was at dinner with friends when one of them, a doctor at the local hospital, told me that the Canadian military, which was in Afghanistan at the time, was dealing with a high number of head injury cases, in part due to the soldiers’ own protective gear.

For example, the protective helmet meant you were less likely to receive a catastrophic injury to your cranium (e.g., metal cracking through bone) but your head would be shaken and that isn’t good for anyone’s brain.

It would seem this project at Rice University (Texas, US) is designed to limit the problem of your own protective gear causing injury, from a November 10, 2021 Rice University news release (also on EurekAlert), Note: Links have been removed,

Rice University researchers have received $1.3 million from the Office of Naval Research through the Defense Research University Instrumentation Program to create the world’s first printable military “smart helmet” using industrial-grade 3D printers. 

Led by principal investigator Paul Cherukuri, executive director of Rice’s Institute of Biosciences and Bioengineering, the Smart Helmet program aims to modernize standard-issue military helmets by 3D-printing a nanomaterial-enhanced exoskeleton with embedded sensors to actively protect the brain against kinetic or directed-energy effects. 

Rice will utilize Carbon Inc.’s L1 printer to develop a strong-but-light military-grade helmet that incorporates advances in materials, image processing, artificial intelligence, haptic feedback and energy storage. The printer enables rapid prototyping that in turn simplifies the process of incorporating the sensors, cameras, batteries and wiring harnesses the program requires, Cherukuri said. 

“Current helmets have evolved little since the last century and are still heavy, bulky, passive devices,” he said. “Because of advances in sensors and additive manufacturing, we’re now reimagining the helmet as a 3D-printed, AI-enabled, ‘always-on’ wearable that detects threats near or far and is capable of launching countermeasures to protect soldiers, sailors, airmen and Marines. Essentially, we’re building J.A.R.V.I.S.”

The Smart Helmet program will use technology drawn from projects like the FlatCam, a system developed by co-investigator and electrical and computer engineer Ashok Veeraraghavan and his colleagues that incorporates sophisticated image processing to eliminate the need for bulky lenses, as well as Cherukuri’s Teslaphoresis, a kind of tractor beam for nanomaterials that could help create physical and electromagnetic shields inside the helmets. 

“A smart helmet task force has been assembled from some of the finest minds at Rice to tackle the challenge of creating a self-contained, intelligent system that protects the warfighter at all times,” Cherukuri said. The task force includes the labs of materials scientist Pulickel Ajayan, civil and environmental engineer and Rice Provost Reginald DesRoches, mechanical engineer Marcia O’Malley, chemist James Tour and Veeraraghavan.

While the location of the L1 has yet to be determined, a Carbon M2 printer will be located at the Oshman Engineering Design Kitchen (OEDK), where it will be available for projects other than the helmet. Rice undergraduates who design and build their mandated capstone projects at the OEDK are taking part in the helmet project, working alongside graduate students and postdoctoral researchers to develop the heads-up display.   

“We’ve got a lot of innovative tech in university labs that has never seen the light of day,” Cherukuri said. “We’re simply developing that technology into a device that gives the men and women protecting our country a real chance at coming home safe and sound. This is for them.”

Singapore contributes to art/science gallery on the International Space Station (ISS)

A March 15, 2022 Nanyang Technological University press release (also on EurekAlert) announces Singapore’s contribution to an art gallery in space,

Two Singapore-designed artefacts are now orbiting around the Earth on the International Space Station (ISS), as part of Moon Gallery.

These artworks were successfully launched into space recently as part of a test flight by the Moon Gallery and will come back to Earth after 10 months.

Currently consisting of 64 artworks made by artists all around the world, the Moon gallery will eventually consist of 100 artworks, which will then be placed on the moon by 2025. Out of these 64 art pieces on the ISS, only two are Singaporean artworks.

Here’s Singapore’s contribution,

Caption: NTU [Nanyang Technological University] Singapore Assistant Professor Matteo Seita (left), who is holding the Cube of Interaction, and Ms Lakshmi Mohanbabu (right), who designed both cubes. The Structure & Reflectance cube in the foreground was 3D printed at NTU Singapore.. Credit: NTU Singapore

A December 8, 2021 news item on phys.org describes the project,

The Moon Gallery Foundation is developing an art gallery to be sent to the Moon, contributing to the establishment of the first lunar outpost and permanent museum on Earth’s only natural satellite. The international initiative will see one hundred artworks from artists around the world integrated into a 10 cm x 10 cm x 1 cm grid tray, which will fly to the Moon by 2025. The Moon Gallery aims to expand humanity’s cultural dialog beyond Earth. The gallery will meet the cosmos for the first time in low Earth orbit in 2022 in a test flight.

The test flight is in collaboration with Nanoracks, a private in-space service provider. The gallery is set to fly to the International Space Station (ISS) aboard the NG-17 rocket as part of a Northrop Grumman Cygnus resupply mission in February of 2022. The art projects featured in the gallery will reach the final frontier of human habitat in space, and mark the historical meeting point of the Moon Gallery and the cosmos. Reaching low Earth orbit on the way to the Moon is a pivotal first step in extending our cultural dialog to space.

On its return flight, the Moon Gallery will become a part of the NanoLab technical payload, a module for space research experiments. The character of the gallery will offer a diverse range of materials and behaviors for camera observations and performance tests with NanoLab.

In return, Moon Gallery artists will get a chance to learn about the performance of their artworks in space. The result of these observations will serve as a solid basis for the subsequent Moon Gallery missions and a source of a valuable learning experience for future space artists. The test flight to the ISS is a precursor mission, contributing to the understanding of future possibilities for art in space and strengthening collaboration between the art and space sectors.

A December 8, 2021 NYU press release on EurekAlert, which originated the news item, provides more detail about the art from Singapore,

STRUCTURE & REFLECTANCE CUBE

Our every perception, analysis, and thought reflect the influences from our surroundings and the Universe in a world of collaboration, communication and interaction, making it possible to explore the real, the imagined and the unknown. The ‘Structure and Reflectance’ cube, a marriage of Art and Technology, is one of the hundred artworks selected by the Moon Gallery, with a unifying message of an integrated world, making it a quintessential signature of humankind on the Moon.

Ms Lakshmi Mohanbabu, a Singaporean architect and designer, is the first and only local artist to have her artwork selected for the Moon Gallery. Coined the ‘Structure and Reflectance’ cube, Lakshmi’s art is a marriage of Art and Technology and is one of the hundred artworks selected by the Moon Gallery. The cube signifies a unifying message of an integrated world, making it a quintessential signature of humankind on the Moon.

The early-stage prototyping and design iterations of the ‘Structure and Reflectance’ cube were performed with Additive Manufacturing, otherwise known as 3D printing, at Nanyang Technological University, Singapore’s (NTU Singapore)Singapore Centre for 3D Printing (SC3DP). This was part of a collaborative project supported by the National Additive Manufacturing Innovation Cluster (NAMIC), a national programme office which accelerates the adoption and commercialisation of additive manufacturing technologies. Previously, the NTU Singapore team at SC3DP produced a few iterations of Moon-Cube using metal 3D printing in various materials such as Inconel and Stainless Steel to evaluate the best suited material.

The newest iteration of the cube comprises crystals—ingrained in the cube via additive manufacturing technology— revealed to the naked eye by the microscopic differences in their surface roughness, which reflect light along different directions.

“Additive Manufacturing is suitable for enabling this level of control over the crystal structure of solids. More specifically, the work was created using ‘laser powder bed fusion technology’ a metal additive manufacturing process which allows us to control the surface roughness through varying the laser parameter,” said Dr Matteo Seita, Nanyang Assistant Professor, NTU Singapore, is the Principal Investigator overseeing the project for the current cube design.  

Dr Seita shared the meaning behind the materials used, “Like people, materials have a complex ‘structure’ resulting from their history—the sequence of processes that have shaped their constituent parts—which underpins their differences. Masked by an exterior façade, this structure often reveals little of the underlying quality in materials or people. The cube is a material representation of a human’s complex structure embodied in a block of metal consisting of two crystals with distinct reflectivity and complementary shape.”

Ms Lakshmi added, “The optical contrast on the cube surface from the crystals generates an intricate geometry which signifies the duality of man: the complexity of hidden thought and expressed emotion. This duality is reflected by the surface of the Moon where one side remains in plain sight, while the other has remained hidden to humankind for centuries; until space travel finally allowed humanity to gaze upon it. The bright portion of the visible side of the Moon is dependent on the Moon’s position relative to the Earth and the Sun. Thus, what we see is a function of our viewpoint.”

The hidden structure of materials, people, and the Moon are visualized as reflections of light through art and science in this cube. Expressed in the Structure & Reflectance cube is the concept of human’s duality—represented by two crystals with different reflectance—which appears to the observer as a function of their perspective.

Dr Ho Chaw Sing, Co-Founder and Managing Director of NAMIC said, “Space is humanity’s next frontier. Being the only Singaporean – among a selected few from the global community – Lakshmi’s 3D printed cube presents a unique perspective through the fusion of art and technology. We are proud to have played a small role supporting her in this ‘moon-shot’ initiative.”

Lakshmi views each artwork as a portrayal of humanity’s quests to discover the secrets of the Universe and—fused into a single cube—embody the unity of humankind, which transcends our differences in culture, religion, and social status.

The first cube face, the Primary, is divided into two triangles and depicts the two faces of the Moon, one visible to us from the earth and the other hidden from our view.

The second cube face, the Windmill, has two spiralling windmill forms, one clockwise and the other counter-clockwise, representing our existence, energy, and time.

The third cube face, the Dromenon, is a labyrinth form of nested squares, which represents the layers that we—as space explorers—are unravelling to discover the enigma of the Universe. 

The fourth cube face, the Nautilus, reflects the spiralling form of our DNA that makes each of us unique, a shape reflected in the form of our galaxy.

Not having heard of the Moon Gallery or the Moon Gallery Foundation, I did a little research. There’s a LinkedIn profile for the Moon Gallery Foundation (both the foundation and the gallery are located in Holland [Netherlands]),

Moon Gallery is where art and space meet. We aim to set up the first permanent museum on the Moon and develop a culture for future interplanetary society.

Moon Gallery will launch 100 artefacts to the Moon within the compact format of 10 x 10 x 1cm plate on a lunar lander exterior panelling no later than 2025. We suggest bringing this collection of ideas as the seeds of a new culture. We believe that culture makes a distinction between mere survival and life. Moon Gallery is a symbolic gesture that has a real influence – a way to reboot culture, rethink our values for better living on Earth planet.

The Moon Gallery has its own website, where I found more information about events, artists, and partners such as Nanoracks,

Nanoracks is dedicated to using our unique expertise to solve key problems both in space and on the Earth – all while lowering the barriers to entry of space exploration. Nanoracks’s main office is in Houston, Texas. The business development office is in Washington, D.C., and additional offices are located in Abu Dhabi, United Arab Emirates (UAE) and Turin, Italy. Nanoracks provides tools, hardware and services that allow other companies, organizations and governments to conduct research and other projects in space. Some of Nanoracks customers include Student Spaceflight Experiments Program (SSEP), the European Space Agency (ESA), the German Space Agency (DLR), NASA, Planet Labs, Space Florida, Virgin Galactic, Adidas, Aerospace Corporation, National Reconnaissance Office (NRO), UAE Space Agency, Mohammed bin Rashid Space Centre (MBRSC), and the Beijing Institute of Technology.

You can find the Nanoracks website here.

Microneedle vaccine patch outperforms needle

Vaccine patch sounds a lot friendlier than ‘needle’ and in the hoopla about vaccine hesitation I have to wonder if the fact that some people don’t like or are deeply fearful of needles is being overlooked.

Perhaps this or some other vaccine patch* will be ready for use in time for the next pandemic. From a September 24, 2021 news item on ScienceDaily,

Scientists at Stanford University and the University of North Carolina [UNC] at Chapel Hill have created a 3D-printed vaccine patch that provides greater protection than a typical vaccine shot.

The trick is applying the vaccine patch directly to the skin, which is full of immune cells that vaccines target.

The resulting immune response from the vaccine patch was 10 times greater than vaccine delivered into an arm muscle with a needle jab, according to a study conducted in animals and published by the team of scientists in the Proceedings of the National Academy of Sciences [PNAS].

A September 23, 2021 University of North Carolina at Chapel Hill news release (also on EurekAlert but published Sept. 24, 2021), which originated the news item, describes the patch in greater detail (Note: Links have been removed),

Considered a breakthrough are the 3D-printed microneedles lined up on a polymer patch and barely long enough to reach the skin to deliver vaccine.

“In developing this technology, we hope to set the foundation for even more rapid global development of vaccines, at lower doses, in a pain- and anxiety-free manner,” said lead study author and entrepreneur in 3D print technology Joseph M. DeSimone, professor of translational medicine and chemical engineering at Stanford University and professor emeritus at UNC-Chapel Hill.

The ease and effectiveness of a vaccine patch sets the course for a new way to deliver vaccines that’s painless, less invasive than a shot with a needle and can be self-administered. 

Study results show the vaccine patch generated a significant T-cell and antigen-specific antibody response that was 50 times greater than a subcutaneous injection delivered under the skin

That heightened immune response could lead to dose sparing, with a microneedle vaccine patch using a smaller dose to generate a similar immune response as a vaccine delivered with a needle and syringe.

While microneedle patches have been studied for decades, the work by Carolina and Stanford overcomes some past challenges: through 3D printing, the microneedles can be easily customized to develop various vaccine patches for flu, measles, hepatitis or COVID-19 vaccines.

Advantages of the vaccine patch

The COVID-19 pandemic has been a stark reminder of the difference made with timely vaccination. But getting a vaccine typically requires a visit to a clinic or hospital.

There a health care provider obtains a vaccine from a refrigerator or freezer, fills a syringe with the liquid vaccine formulation and injects it into the arm.

Although this process seems simple, there are issues that can hinder mass vaccination – from cold storage of vaccines to needing trained professionals who can give the shots.

Meanwhile vaccine patches, which incorporate vaccine-coated microneedles that dissolve into the skin, could be shipped anywhere in the world without special handling and people can apply the patch themselves.

Moreover, the ease of using a vaccine patch may lead to higher vaccination rates.

How the patches are made

It’s generally a challenge to adapt microneedles to different vaccine types, said lead study author Shaomin Tian, researcher in the Department of Microbiology and Immunology in the UNC School of Medicine.

“These issues, coupled with manufacturing challenges, have arguably held back the field of microneedles for vaccine delivery,” she said.  

Most microneedle vaccines are fabricated with master templates to make molds. However, the molding of microneedles is not very versatile, and drawbacks include reduced needle sharpness during replication.

“Our approach allows us to directly 3D print the microneedles which gives us lots of design latitude for making the best microneedles from a performance and cost point-of-view,” Tian said.

The microneedle patches were 3D printed at the University of North Carolina at Chapel Hill using a CLIP prototype 3D printer that DeSimone invented and is produced by CARBON, a Silicon-Valley company he co-founded.

The team of microbiologists and chemical engineers are continuing to innovate by formulating RNA vaccines, like the Pfizer and Moderna COVID-19 vaccines, into microneedle patches for future testing.

“One of the biggest lessons we’ve learned during the pandemic is that innovation in science and technology can make or break a global response,” DeSimone said. “Thankfully we have biotech and health care workers pushing the envelope for us all.”

Additional study authors include Cassie Caudill, Jillian L. Perry, Kimon lliadis,  Addis T. Tessema and Beverly S. Mecham of UNC-Chapel Hill and Brian J. Lee of Stanford.  

Here’s a link to and a citation for the paper,

Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity by Cassie Caudill, Jillian L. Perry, Kimon Iliadis, Addis T. Tessema, Brian J. Lee, Beverly S. Mecham, Shaomin Tian, and Joseph M. DeSimone. PNAS September 28, 2021 118 (39) e2102595118; DOI: https://doi.org/10.1073/pnas.2102595118

This paper appears to be open access.

*I have featured vaccine patches here before, this December 16, 2016 post (Australia’s nanopatch: a way to eliminate needle vaccinations) is one of many stretching back to 2009.

Mini T-shirt demonstrates photosynthetic living materials

Caption: A mini T-shirt demonstrates the photosynthetic living materials created in the lab of University Rochester biologist Anne S. Meyer and Delft University of Technology bionanoscientist Marie-Eve Aubin-Tam using 3D printers and a new bioink technique. Credit: University of Rochester photo

I’m not sure how I feel about a t-shirt, regardless of size, made of living biological material but these researchers seem uniformly enthusiastic. From a May 3, 2021 news item on phys.org (Note: A link has been removed),

Living materials, which are made by housing biological cells within a non-living matrix, have gained popularity in recent years as scientists recognize that often the most robust materials are those that mimic nature.

For the first time, an international team of researchers from the University of Rochester [located in New York state, US] and Delft University of Technology in the Netherlands used 3D printers and a novel bioprinting technique to print algae into living, photosynthetic materials that are tough and resilient. The material has a variety of applications in the energy, medical, and fashion sectors. The research is published in the journal Advanced Functional Materials.

An April 30, 2021 University of Rochester new release (also on EurekAlert but published May 3, 2021) by Lindsey Valich, which originated the news item, delves further into the topic of living materials,

“Three-dimensional printing is a powerful technology for fabrication of living functional materials that have a huge potential in a wide range of environmental and human-based applications.” says Srikkanth Balasubramanian, a postdoctoral research associate at Delft and the first author of the paper. “We provide the first example of an engineered photosynthetic material that is physically robust enough to be deployed in real-life applications.”

HOW TO BUILD NEW MATERIALS: LIVING AND NONLIVING COMPONENTS

To create the photosynthetic materials, the researchers began with a non-living bacterial cellulose–an organic compound that is produced and excreted by bacteria. Bacterial cellulose has many unique mechanical properties, including its flexibility, toughness, strength, and ability to retain its shape, even when twisted, crushed, or otherwise physically distorted.

The bacterial cellulose is like the paper in a printer, while living microalgae acts as the ink. The researchers used a 3D printer to deposit living algae onto the bacterial cellulose.

The combination of living (microalgae) and nonliving (bacterial cellulose) components resulted in a unique material that has the photosynthetic quality of the algae and the robustness of the bacterial cellulose; the material is tough and resilient while also eco-friendly, biodegradable, and simple and scalable to produce. The plant-like nature of the material means it can use photosynthesis to “feed” itself over periods of many weeks, and it is also able to be regenerated–a small sample of the material can be grown on-site to make more materials.

ARTIFICIAL LEAVES, PHOTOSYNTHETIC SKINS, AND BIO-GARMENTS

The unique characteristics of the material make it an ideal candidate for a variety of applications, including new products such as artificial leaves, photosynthetic skins, or photosynthetic bio-garments.

Artificial leaves are materials that mimic actual leaves in that they use sunlight to convert water and carbon dioxide–a major driver of climate change–into oxygen and energy, much like leaves during photosynthesis. The leaves store energy in chemical form as sugars, which can then be converted into fuels. Artificial leaves therefore offer a way to produce sustainable energy in places where plants don’t grow well, including outer space colonies. The artificial leaves produced by the researchers at Delft and Rochester are additionally made from eco-friendly materials, in contrast to most artificial leaf technologies currently in production, which are produced using toxic chemical methods.

“For artificial leaves, our materials are like taking the ‘best parts’ of plants–the leaves–which can create sustainable energy, without needing to use resources to produce parts of plants–the stems and the roots–that need resources but don’t produce energy,” says Anne S. Meyer, an associate professor of biology at Rochester. “We are making a material that is only focused on the sustainable production of energy.”

Another application of the material would be photosynthetic skins, which could be used for skin grafts, Meyer says. “The oxygen generated would help to kick-start healing of the damaged area, or it might be able to carry out light-activated wound healing.”

Besides offering sustainable energy and medical treatments, the materials could also change the fashion sector. Bio-garments made from algae would address some of the negative environmental effects of the current textile industry in that they would be high-quality fabrics that would be sustainability produced and completely biodegradable. They would also work to purify the air by removing carbon dioxide through photosynthesis and would not need to be washed as often as conventional garments, reducing water usage.

“Our living materials are promising because they can survive for several days with no water or nutrients access, and the material itself can be used as a seed to grow new living materials,” says Marie-Eve Aubin-Tam, an associate professor of bionanoscience at Delft. “This opens the door to applications in remote areas, even in space, where the material can be seeded on site.”

Here’s a link to and a citation for the paper,

Bioprinting of Regenerative Photosynthetic Living Materials by Srikkanth Balasubramanian, Kui Yu, Anne S. Meyer, Elvin Karana, Marie-Eve Aubin-Tam DOI: https://doi.org/10.1002/adfm.202011162 First published: 29 April 2021

This paper is open access.

The researchers have provided this artistic impression of 3D printing of living (microalgae) and nonliving materials (bacterial cellulose),

An artist’s illustration demonstrates how 3D printed materials could be applied as durable, living clothing. (Lizah van der Aart illustration)

New water treatment with 3D-printed graphene aerogels

Caption: Graphene aerogel on a single tissue. Credit: University at Buffalo

That image of the graphene aerogel on a tissue shows off its weightlessness very well.

Here’s more about the graphene aerogel water treatment from an April 14, 2021 news item on Nanowerk,

Graphene excels at removing contaminants from water, but it’s not yet a commercially viable use of the wonder material.

That could be changing.

In a recent study, University at Buffalo [UB] engineers report a new process of 3D printing graphene aerogels that they say overcomes two key hurdles — scalability and creating a version of the material that’s stable enough for repeated use — for water treatment.

“The goal is to safely remove contaminants from water without releasing any problematic chemical residue,” says study co-author Nirupam Aich, PhD, assistant professor of environmental engineering at the UB School of Engineering and Applied Sciences. “The aerogels we’ve created hold their structure when put in water treatment systems, and they can be applied in diverse water treatment applications.”

An April 14, 2021 UB news release (also on EurekAlert) by Melvin Bankhead III, which originated the news item, explains the breakthrough in more detail,

An aerogel is a light, highly porous solid formed by replacement of liquid in a gel with a gas so that the resulting solid is the same size as the original. They are similar in structural configuration to Styrofoam: very porous and lightweight, yet strong and resilient.

Graphene is a nanomaterial formed by elemental carbon and is composed of a single flat sheet of carbon atoms arranged in a repeating hexagonal lattice.

To create the right consistency of the graphene-based ink, the researchers looked to nature. They added to it two bio-inspired polymers — polydopamine (a synthetic material, often referred to as PDA, that is similar to the adhesive secretions of mussels), and bovine serum albumin (a protein derived from cows).

In tests, the reconfigured aerogel removed certain heavy metals, such as lead and chromium, that plague drinking water systems nationwide. It also removed organic dyes, such as cationic methylene blue and anionic Evans blue, as well as organic solvents like hexane, heptane and toluene.

To demonstrate the aerogel’s reuse potential, the researchers ran organic solvents through it 10 times. Each time, it removed 100% of the solvents. The researchers also reported the aerogel’s ability to capture methylene blue decreased by 2-20% after the third cycle.

The aerogels can also be scaled up in size, Aich says, because unlike nanosheets, aerogels can be printed in larger sizes. This eliminates a previous problem inherent in large-scale production, and makes the process available for use in large facilities, such as in wastewater treatment plants, he says. He adds the aerogels can be removed from water and reused in other locations, and that they don’t leave any kind of residue in the water.

Aich is part of a collaboration between UB and the University of Pittsburgh, led by UB chemistry professor Diana Aga, PhD, to find methods and tools to degrade per- and polyfluoroalkyl substances (PFAS), toxic materials so difficult to break down that they are known as “forever chemicals.” Aich notes the similarities to his work with 3D aerogels, and he hopes results from the two projects can be brought together to create more effective methods of removing waterborne contaminants.

“We can use these aerogels not only to contain graphene particles but also nanometal particles which can act as catalysts,” Aich says. “The future goal is to have nanometal particles embedded in the walls and the surface of these aerogels and they would be able to degrade or destroy not only biological contaminants, but also chemical contaminants.”

Aich, Chi, and Masud [Arvid Masud, PhD] hold a pending patent for the graphene aerogel described in the study, and they are looking for industrial partners to commercialize this process.

Here’s link to and a citation for the paper,

Emerging investigator series: 3D printed graphene-biopolymer aerogels for water contaminant removal: a proof of concept by Arvid Masud, Chi Zhoub and Nirupam Aich. Environ. Sci.: Nano, 2021,8, 399-414 DOI: https://doi.org/10.1039/D0EN00953A First published online: 09 Dec 2020

This paper is behind a paywall.

Transplanting healthy neurons could be possible with walking molecules and 3D printing

A February 23, 2021 news item on ScienceDaily announces work which may lead to healing brain injuries and diseases,

Imagine if surgeons could transplant healthy neurons into patients living with neurodegenerative diseases or brain and spinal cord injuries. And imagine if they could “grow” these neurons in the laboratory from a patient’s own cells using a synthetic, highly bioactive material that is suitable for 3D printing.

By discovering a new printable biomaterial that can mimic properties of brain tissue, Northwestern University researchers are now closer to developing a platform capable of treating these conditions using regenerative medicine.

A February 22, 2021 Northwestern University news release (also received by email and available on EurekAlert) by Lila Reynolds, which originated the news item, delves further into self-assembling ‘walking’ molecules and the nanofibers resulting in a new material designed to promote the growth of healthy neurons,

A key ingredient to the discovery is the ability to control the self-assembly processes of molecules within the material, enabling the researchers to modify the structure and functions of the systems from the nanoscale to the scale of visible features. The laboratory of Samuel I. Stupp published a 2018 paper in the journal Science which showed that materials can be designed with highly dynamic molecules programmed to migrate over long distances and self-organize to form larger, “superstructured” bundles of nanofibers.

Now, a research group led by Stupp has demonstrated that these superstructures can enhance neuron growth, an important finding that could have implications for cell transplantation strategies for neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, as well as spinal cord injury.

“This is the first example where we’ve been able to take the phenomenon of molecular reshuffling we reported in 2018 and harness it for an application in regenerative medicine,” said Stupp, the lead author on the study and the director of Northwestern’s Simpson Querrey Institute. “We can also use constructs of the new biomaterial to help discover therapies and understand pathologies.

Walking molecules and 3D printing

The new material is created by mixing two liquids that quickly become rigid as a result of interactions known in chemistry as host-guest complexes that mimic key-lock interactions among proteins, and also as the result of the concentration of these interactions in micron-scale regions through a long scale migration of “walking molecules.”

The agile molecules cover a distance thousands of times larger than themselves in order to band together into large superstructures. At the microscopic scale, this migration causes a transformation in structure from what looks like an uncooked chunk of ramen noodles into ropelike bundles.

“Typical biomaterials used in medicine like polymer hydrogels don’t have the capabilities to allow molecules to self-assemble and move around within these assemblies,” said Tristan Clemons, a research associate in the Stupp lab and co-first author of the paper with Alexandra Edelbrock, a former graduate student in the group. “This phenomenon is unique to the systems we have developed here.”

Furthermore, as the dynamic molecules move to form superstructures, large pores open that allow cells to penetrate and interact with bioactive signals that can be integrated into the biomaterials.

Interestingly, the mechanical forces of 3D printing disrupt the host-guest interactions in the superstructures and cause the material to flow, but it can rapidly solidify into any macroscopic shape because the interactions are restored spontaneously by self-assembly. This also enables the 3D printing of structures with distinct layers that harbor different types of neural cells in order to study their interactions.

Signaling neuronal growth

The superstructure and bioactive properties of the material could have vast implications for tissue regeneration. Neurons are stimulated by a protein in the central nervous system known as brain-derived neurotrophic factor (BDNF), which helps neurons survive by promoting synaptic connections and allowing neurons to be more plastic. BDNF could be a valuable therapy for patients with neurodegenerative diseases and injuries in the spinal cord but these proteins degrade quickly in the body and are expensive to produce.

One of the molecules in the new material integrates a mimic of this protein that activates its receptor known as Trkb, and the team found that neurons actively penetrate the large pores and populate the new biomaterial when the mimetic signal is present. This could also create an environment in which neurons differentiated from patient-derived stem cells mature before transplantation.

Now that the team has applied a proof of concept to neurons, Stupp believes he could now break into other areas of regenerative medicine by applying different chemical sequences to the material. Simple chemical changes in the biomaterials would allow them to provide signals for a wide range of tissues.

“Cartilage and heart tissue are very difficult to regenerate after injury or heart attacks, and the platform could be used to prepare these tissues in vitro from patient-derived cells,” Stupp said. “These tissues could then be transplanted to help restore lost functions. Beyond these interventions, the materials could be used to build organoids to discover therapies or even directly implanted into tissues for regeneration since they are biodegradable.”

Here’s a link to and a citation for the paper,

Superstructured Biomaterials Formed by Exchange Dynamics and Host–Guest Interactions in Supramolecular Polymers by Alexandra N. Edelbrock, Tristan D. Clemons, Stacey M. Chin, Joshua J. W. Roan, Eric P. Bruckner, Zaida Álvarez, Jack F. Edelbrock, Kristen S. Wek, Samuel I. Stupp. Advanced Science DOI: https://doi.org/10.1002/advs.202004042 First published: 22 February 2021

This paper is open access.

Lobster-inspired 3D printed concrete

A January 19, 2021 news item on ScienceDaily highlights bioinspired 3D printing of concrete,

New research shows that patterns inspired by lobster shells can make 3D printed concrete stronger, to support more complex and creative architectural structures.

Digital manufacturing technologies like 3D concrete printing (3DCP) have immense potential to save time, effort and material in construction.

They also promise to push the boundaries of architectural innovation, yet technical challenges remain in making 3D printed concrete strong enough for use in more free-form structures.

In a new experimental study, researchers at RMIT University [Australia] looked to the natural strength of lobster shells to design special 3D printing patterns.

Their bio-mimicking spiral patterns improved the overall durability of the 3D printed concrete, as well as enabling the strength to be precisely directed for structural support where needed.

Video: Carelle Mulawa-Richards

A January 19, 2021 RMIT University press release (also on EurekAlert) by Gosia Kaszubska, which originated the news item, goes into technical detail about the research once you get past the ‘fluffy’ bits,

When the team combined the twisting patterns with a specialised concrete mix enhanced with steel fibres, the resulting material was stronger than traditionally-made concrete.

Lead researcher Dr Jonathan Tran said 3D printing and additive manufacturing opened up opportunities in construction for boosting both efficiency and creativity.

“3D concrete printing technology has real potential to revolutionise the construction industry, and our aim is to bring that transformation closer,” said Tran, a senior lecturer in structured materials and design at RMIT.

“Our study explores how different printing patterns affect the structural integrity of 3D printed concrete, and for the first time reveals the benefits of a bio-inspired approach in 3DCP.

“We know that natural materials like lobster exoskeletons?have evolved into high-performance structures over millions of years, so by mimicking their key advantages we can follow where nature has already innovated.”

3D printing for construction

The automation of concrete construction is set to transform how we build, with construction the next frontier in the automation and data-driven revolution known as industry 4.0.

A 3D concrete printer builds houses or makes structural components by depositing the material layer-by-layer, unlike the traditional approach of casting concrete in a mould.

With the latest technology, a house can be 3D printed in just 24 hours for about half the cost, while construction on the world’s first 3D printed community began in 2019 in Mexico.

The emerging industry is already supporting architectural and engineering innovation, such as a 3D printed office building in Dubai, a nature-mimicking concrete bridge in Madrid and The Netherlands’ sail-shaped “Europe Building”.

The research team in RMIT’s School of Engineering focuses on 3D printing concrete, exploring ways to enhance the finished product through different combinations of printing pattern design, material choices, modelling, design optimisation and reinforcement options.

Patterns for printing

The most conventional pattern used in 3D printing is unidirectional, where layers are laid down on top of each other in parallel lines.

The new study published in a special issue of 3D Printing and Additive Manufacturing investigated the effect of different printing patterns on the strength of steel fibre-enhanced concrete.

Previous research by the RMIT team found that including 1-2% steel fibres in the concrete mix reduces defects and porosity, increasing strength. The fibres also help the concrete harden early without deformation, enabling higher structures to be built.

The team tested the impact of printing the concrete in helicoidal patterns (inspired by the internal structure of lobster shells), cross-ply and quasi-isotropic patterns (similar to those used for laminated composite structures and layer-by-layer deposited composites) and standard unidirectional patterns.

Supporting complex structures

The results showed strength improvement from each of the patterns, compared with unidirectional printing, but Tran said the spiral patterns hold the most promise for supporting complex 3D printed concrete structures.

“As lobster shells are naturally strong and naturally curved, we know this could help us deliver stronger concrete shapes like arches and flowing or twisted structures,” he said.

“This work is in early stages so we need further research to test how the concrete performs on a wider range of parameters, but our initial experimental results show we are on the right track.”

Further studies will be supported through a new large-scale mobile concrete 3D printer recently acquired by RMIT – making it the first research institution in the southern hemisphere to commission a machine of this kind.

The 5×5m robotic printer will be used by the team to research the 3D printing of houses, buildings and large structural components.

The team will also use the machine to explore the potential for 3D printing with concrete made with recycled waste materials such as soft plastic aggregate.

The work is connected to a new project with industry partners Replas and SR Engineering, focusing on sound-dampening walls made from post-consumer recycled soft plastics and concrete, which was recently supported with an Australian Government Innovations Connections grant.

Here’s a link to and a citation for the paper,

Influences of Printing Pattern on Mechanical Performance of Three-Dimensional-Printed Fiber-Reinforced Concrete by Luong Pham, Guoxing Lu, and Phuong Tran. 3D Printing and Additive Manufacturing DOI: https://doi.org/10.1089/3dp.2020.0172 Published Online:30 Dec 2020

This paper is open access.

3D-printed graphene sensors for highly sensitive food freshness detection

I love the opening line (lede). From a June 29, 2020 news item on Nanowerk,

Researchers dipped their new, printed sensors into tuna broth and watched the readings.

It turned out the sensors – printed with high-resolution aerosol jet printers on a flexible polymer film and tuned to test for histamine, an allergen and indicator of spoiled fish and meat – can detect histamine down to 3.41 parts per million.

The U.S. Food and Drug Administration has set histamine guidelines of 50 parts per million in fish, making the sensors more than sensitive enough to track food freshness and safety.

I find using 3D-printing techniques to produce graphene, a 2-d material, intriguing. Apparently, the technique is cheaper and offers an advantage as it allows for greater precision than other techniques (inkjet printing, chemical vapour depostion [CVD], etc.)

Here’s more detail from a June 25, 2020 Iowa State University news release (also on EurekAlert but published June 29, 2020), which originated the news item,

Making the sensor technology possible is graphene, a supermaterial that’s a carbon honeycomb just an atom thick and known for its strength, electrical conductivity, flexibility and biocompatibility. Making graphene practical on a disposable food-safety sensor is a low-cost, aerosol-jet-printing technology that’s precise enough to create the high-resolution electrodes necessary for electrochemical sensors to detect small molecules such as histamine.

“This fine resolution is important,” said Jonathan Claussen, an associate professor of mechanical engineering at Iowa State University and one of the leaders of the research project. “The closer we can print these electrode fingers, in general, the higher the sensitivity of these biosensors.”

Claussen and the other project leaders – Carmen Gomes, an associate professor of mechanical engineering at Iowa State; and Mark Hersam, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University in Evanston, Illinois – have recently reported their sensor discovery in a paper published online by the journal 2D Materials. (…)

The paper describes how graphene electrodes were aerosol jet printed on a flexible polymer and then converted to histamine sensors by chemically binding histamine antibodies to the graphene. The antibodies specifically bind histamine molecules.

The histamine blocks electron transfer and increases electrical resistance, Gomes said. That change in resistance can be measured and recorded by the sensor.

“This histamine sensor is not only for fish,” Gomes said. “Bacteria in food produce histamine. So it can be a good indicator of the shelf life of food.”

The researchers believe the concept will work to detect other kinds of molecules, too.

“Beyond the histamine case study presented here, the (aerosol jet printing) and functionalization process can likely be generalized to a diverse range of sensing applications including environmental toxin detection, foodborne pathogen detection, wearable health monitoring, and health diagnostics,” they wrote in their research paper.

For example, by switching the antibodies bonded to the printed sensors, they could detect salmonella bacteria, or cancers or animal diseases such as avian influenza, the researchers wrote.

Claussen, Hersam and other collaborators (…) have demonstrated broader application of the technology by modifying the aerosol-jet-printed sensors to detect cytokines, or markers of inflammation. The sensors, as reported in a recent paper published by ACS Applied Materials & Interfaces, can monitor immune system function in cattle and detect deadly and contagious paratuberculosis at early stages.

Claussen, who has been working with printed graphene for years, said the sensors have another characteristic that makes them very useful: They don’t cost a lot of money and can be scaled up for mass production.

“Any food sensor has to be really cheap,” Gomes said. “You have to test a lot of food samples and you can’t add a lot of cost.”

Claussen and Gomes know something about the food industry and how it tests for food safety. Claussen is chief scientific officer and Gomes is chief research officer for NanoSpy Inc., a startup company based in the Iowa State University Research Park that sells biosensors to food processing companies.

They said the company is in the process of licensing this new histamine and cytokine sensor technology.

It, after all, is what they’re looking for in a commercial sensor. “This,” Claussen said, “is a cheap, scalable, biosensor platform.”

Here’s a link to and a citation for the two papers mentioned in the news release,

Aerosol-jet-printed graphene electrochemical histamine sensors for food safety monitoring by Kshama Parate, Cícero C Pola, Sonal V Rangnekar, Deyny L Mendivelso-Perez, Emily A Smith, Mark C Hersam, Carmen L Gomes and Jonathan C Claussen. 2D Materials, Volume 7, Number 3 DOI https://doi.org/10.1088/2053-1583/ab8919 Published 10 June 2020 • © 2020 IOP Publishing Ltd

Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum by Kshama Parate, Sonal V. Rangnekar, Dapeng Jing, Deyny L. Mendivelso-Perez, Shaowei Ding, Ethan B. Secor, Emily A. Smith, Jesse M. Hostetter, Mark C. Hersam, and Jonathan C. Claussen. ACS Appl. Mater. Interfaces 2020, 12, 7, 8592–8603 DOI: https://doi.org/10.1021/acsami.9b22183 Publication Date: February 10, 2020 Copyright © 2020 American Chemical Society

Both papers are behind paywalls.

You can find the NanoSpy website here.

Nanocellulose films made with liquid-phase fabrication method

I always appreciate a reference to Star Trek and three-dimensional chess was one of my favourite concepts. You’ll find that and more in a May 19, 2020 news item on Nanowerk,

Researchers at The Institute of Scientific and Industrial Research at Osaka University [Japan] introduced a new liquid-phase fabrication method for producing nanocellulose films with multiple axes of alignment. Using 3D-printing methods for increased control, this work may lead to cheaper and more environmentally friendly optical and thermal devices.

Ever since appearing on the original Star Trek TV show in the 1960s, the game of “three-dimensional chess” has been used as a metaphor for sophisticated thinking. Now, researchers at Osaka University can say that they have added their own version, with potential applications in advanced optics and inexpensive smartphone displays.

It’s not exactly three-dimensional chess but this nanocellulose film was produced by 3D printing methods,

Caption: Developed multiaxis nanocellulose-oriented film. Credit: Osaka University

A May 20, 2020 Osaka University press release (also on EurekAlert but dated May 19, 2020), which originated the news item, provides more detail,

Many existing optical devices, including liquid-crystal displays (LCDs) found in older flat-screen televisions, rely on long needle-shaped molecules aligned in the same direction. However, getting fibers to line up in multiple directions on the same device is much more difficult. Having a method that can reliably and cheaply produce optical fibers would accelerate the manufacture of low-cost displays or even “paper electronics”–computers that could be printed from biodegradable materials on demand.

Cellulose, the primary component of cotton and wood, is an abundant renewable resource made of long molecules. Nanocelluloses are nanofibers made of uniaxially aligned cellulose molecular chains that have different optical and heat conduction properties along one direction compared to the another.

In newly published research from the Institute of Scientific and Industrial Research at Osaka University, nanocellulose was harvested from sea pineapples, a kind of sea squirt. They then used liquid-phase 3D-pattering, which combined the wet spinning of nanofibers with the precision of 3D-printing. A custom-made triaxial robot dispensed a nanocellulose aqueous suspension into an acetone coagulation bath.

“We developed this liquid-phase three-dimensional patterning technique to allow for nanocellulose alignment along any preferred axis,” says first author Kojiro Uetani. The direction of the patterns could be programmed so that it formed an alternating checkerboard pattern of vertically- and horizontally-aligned fibers.

To demonstrate the method, a film was sandwiched between two orthogonal polarizing films. Under the proper viewing conditions, a birefringent checkerboard pattern appeared. They also measured the thermal transfer and optical retardation properties.

“Our findings could aid in the development of next-generation optical materials and paper electronics,” says senior author Masaya Nogi. “This could be the start of bottom-up techniques for building sophisticated and energy-efficient optical and thermal materials.”

Here’s a link to and a citation for the paper,

Checkered Films of Multiaxis Oriented Nanocelluloses by Liquid-Phase Three-Dimensional Patterning by Kojiro Uetani, Hirotaka Koga and Masaya Nogi. Nanomaterials 2020, 10(5), 958; DOI: https://doi.org/10.3390/nano10050958 Published: 18 May 2020

This is an open access paper.

Fourth Industrial Revolution and its impact on charity organizations

Andy Levy-Ajzenkopf’s February 21, 2020 article (Technology and innovation: How the Fourth Industrial Revolution is impacting the charitable sector) for Charity Village has an ebullient approach to adoption of new and emerging technologies in the charitable sector (Note: A link has been removed),

Almost daily, new technologies are being developed to help innovate the way people give or the way organizations offer opportunities to advance their causes. There is no going back.

The charitable sector – along with society at large – is now fully in the midst of what is being called the Fourth Industrial Revolution, a term first brought to prominence among CEOs, thought leaders and policy makers at the 2016 World Economic Forum. And if you haven’t heard the phrase yet, get ready to hear it tons more as economies around the world embrace it.

To be clear, the Fourth Industrial Revolution is the newest disruption in the way our world works. When you hear someone talk about it, what they’re describing is the massive technological shift in our business and personal ecosystems that now rely heavily on things like artificial intelligence, quantum computing, 3D printing and the general “Internet of things.”

Still, now more than ever, charitable business is getting done and being advanced by sector pioneers who aren’t afraid to make use of new technologies on offer to help civil society.

It seems like everywhere one turns, the topic of artificial intelligence (A.I.) is increasingly becoming subject of choice.

This is no different in the charitable sector, and particularly so for a new company called Fundraise Wisely (aka Wisely). Its co-founder and CEO, Artiom Komarov, explains a bit about what exactly his tech is doing for the sector.

“We help accelerate fundraising, with A.I. At a product level, we connect to your CRM (content relationship management system) and predict the next gift and next gift date for every donor. We then use that information to help you populate and prioritize donor portfolios,” Komarov states.

He notes that his company is seeing increased demand for innovative technologies from charities over the last while.

“What we’re hearing is that… A.I. tech is compelling because at the end of the day it’s meant to move the bottom line, helping nonprofits grow their revenue. We’ve also found that internally [at a charitable organization] there’s always a champion that sees the potential impact of technology; and that’s a great place to start with change,” Komarov says. “If it’s done right, tech can be an enabler of better work for organizations. From both research and experience, we know that tech adoption usually fails because of culture rather than the underlying technology. We’re here to work with the client closely to help that transition.”

I would like to have seen some numbers. For example, Komarov says that AI is having a positive impact on a charity’s bottom line. So, how much money did one of these charities raise? Was it more money than they would have made without AI? Assuming they did manage to raise greater funds, could another technology been more cost effective?

For another perspective (equally positive) on technology and charity, there’s a November 29, 2012 posting (Why technology and innovation are key to increasing charity donations) on the Guardian blogs by Henna Butt and Renita Shah (Note: Links have been removed),

At the beginning of this year the [UK] Cabinet Office and Nesta [formerly National Endowment for Science, Technology and the Arts {NESTA}] announced a £10m fund to invest in innovation in giving. The first tranche of this money has already been invested in promising initiatives such as Timto which allows you to create a gift list that includes a charity donation and Pennies, whose electronic money box allows customers to donate when paying for something in a shop using a credit card. Small and sizeable organisations alike are now using web and mobile technologies to make giving more convenient, more social and more compelling.

Butt’s and Shah’s focus was on mobile technologies and social networks. Like Levy-Ajzenkopf’s article, there’s no discussion of any possible downside to these technologies, e.g., privacy issues. As well, the inevitability of this move toward more technology for charity is explicitly stated by Levy-Ajzenkopf “There is no going back” and noted less starkly by Butt and Shah “… innovation is becoming increasingly important for the success of charities.” To rephrase my concern, are we utilizing technology in our work or are we serving the needs of our technology?

Finally, for anyone who’s curious about the Fourth Industrial Revolution, I have a December 3, 2015 posting about it.