Tag Archives: International Space Station (ISS)

Transformative potential of Martian nanomaterials

Yes, nanomaterials from Mars! A December 21, 2023 news item on Nanowerk makes the proposition, Note: A link has been removed,

Researchers at the University of Sussex have discovered the transformative potential of Martian nanomaterials, potentially opening the door to sustainable habitation on the red planet. They published their findings in (“Quasi–1D Anhydrite Nanobelts from the Sustainable Liquid Exfoliation of Terrestrial Gypsum for Future Martian-Based Electronics”).

Using resources and techniques currently applied on the International Space Station [ISS] and by NASA [US National Aeronautics and Space Administration], Dr Conor Boland, a Lecturer in Materials Physics at the University of Sussex, led a research group that investigated the potential of nanomaterials – incredibly tiny components thousands of times smaller than a human hair – for clean energy production and building materials on Mars.

Taking what was considered a waste product by NASA and applying only sustainable production methods, including water-based chemistry and low-energy processes, the researchers have successfully identified electrical properties within gypsum nanomaterials – opening the door to potential clean energy and sustainable technology production on Mars.

A December 21, 2023 University of Sussex press release (also on EurekAlert) by Stephanie Allen, which originated the news item, features the lead researcher’s hopes for the discovery, Note: A link has been removed,

Dr Conor Boland, said: 

“This study shows that the potential is quite literally out of this world for nanomaterials. Our study builds off recent research performed by NASA and takes what was considered waste, essentially lumps of rock, and turns it into transformative nanomaterials for a range of applications from creating clean hydrogen fuel to developing an electronic device similar to a transistor, to creating an additive to textiles to increase their robustness.

“This opens avenues for sustainable technology – and building – on Mars but also highlights the broader potential for eco-friendly breakthroughs here on Earth.”

To make the breakthrough the researchers used NASA’s innovative method for extracting water from Martian gypsum, which is dehydrated by the agency to get water for human consumption. This produces a byproduct called anhydrite—considered waste material by NASA, but now shown to be hugely valuable.

The Sussex researchers processed anhydrite into nanobelts –  essentially tagliatelle-shaped materials – demonstrating their potential to provide clean energy and sustainable electronics. Furthermore, at every step of their process, water could be continuously collected and recycled.

Dr Boland added: 

“We are optimistic of the feasibility of this process on Mars, as it requires only naturally occurring materials – everything we used could, in theory, be replicated on the red planet. Arguably this is the most important goal in making the Martian colony sustainable from the outset.”

While full-scale electronics production may be impractical on Mars due to the lack of clean rooms and sterile conditions, the anhydrite nanobelts hold promise for clean energy production on Earth, and could, later down the line, still have a profound effect on sustainable energy production on Mars.

Here’s what a Martian nanomaterial looks like,

Caption: Two raw rocks used by the researchers (left). Vials show the nanobelts in water, with a close up of the actual nanobelts (right). Credit: University of Sussex

Here’s a link to and a citation for the paper,

Quasi–1D Anhydrite Nanobelts from the Sustainable Liquid Exfoliation of Terrestrial Gypsum for Future Martian-Based Electronics by Cencen Wei, Abhijit Roy, Adel K. A. Aljarid, Yi Hu, S. Mark Roe, Dimitrios G. Papageorgiou, Raul Arenal, Conor S. Boland. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202310600 First published: 14 December 2023

This paper is open access.

Singapore contributes to art/science gallery on the International Space Station (ISS)

A March 15, 2022 Nanyang Technological University press release (also on EurekAlert) announces Singapore’s contribution to an art gallery in space,

Two Singapore-designed artefacts are now orbiting around the Earth on the International Space Station (ISS), as part of Moon Gallery.

These artworks were successfully launched into space recently as part of a test flight by the Moon Gallery and will come back to Earth after 10 months.

Currently consisting of 64 artworks made by artists all around the world, the Moon gallery will eventually consist of 100 artworks, which will then be placed on the moon by 2025. Out of these 64 art pieces on the ISS, only two are Singaporean artworks.

Here’s Singapore’s contribution,

Caption: NTU [Nanyang Technological University] Singapore Assistant Professor Matteo Seita (left), who is holding the Cube of Interaction, and Ms Lakshmi Mohanbabu (right), who designed both cubes. The Structure & Reflectance cube in the foreground was 3D printed at NTU Singapore.. Credit: NTU Singapore

A December 8, 2021 news item on phys.org describes the project,

The Moon Gallery Foundation is developing an art gallery to be sent to the Moon, contributing to the establishment of the first lunar outpost and permanent museum on Earth’s only natural satellite. The international initiative will see one hundred artworks from artists around the world integrated into a 10 cm x 10 cm x 1 cm grid tray, which will fly to the Moon by 2025. The Moon Gallery aims to expand humanity’s cultural dialog beyond Earth. The gallery will meet the cosmos for the first time in low Earth orbit in 2022 in a test flight.

The test flight is in collaboration with Nanoracks, a private in-space service provider. The gallery is set to fly to the International Space Station (ISS) aboard the NG-17 rocket as part of a Northrop Grumman Cygnus resupply mission in February of 2022. The art projects featured in the gallery will reach the final frontier of human habitat in space, and mark the historical meeting point of the Moon Gallery and the cosmos. Reaching low Earth orbit on the way to the Moon is a pivotal first step in extending our cultural dialog to space.

On its return flight, the Moon Gallery will become a part of the NanoLab technical payload, a module for space research experiments. The character of the gallery will offer a diverse range of materials and behaviors for camera observations and performance tests with NanoLab.

In return, Moon Gallery artists will get a chance to learn about the performance of their artworks in space. The result of these observations will serve as a solid basis for the subsequent Moon Gallery missions and a source of a valuable learning experience for future space artists. The test flight to the ISS is a precursor mission, contributing to the understanding of future possibilities for art in space and strengthening collaboration between the art and space sectors.

A December 8, 2021 NYU press release on EurekAlert, which originated the news item, provides more detail about the art from Singapore,

STRUCTURE & REFLECTANCE CUBE

Our every perception, analysis, and thought reflect the influences from our surroundings and the Universe in a world of collaboration, communication and interaction, making it possible to explore the real, the imagined and the unknown. The ‘Structure and Reflectance’ cube, a marriage of Art and Technology, is one of the hundred artworks selected by the Moon Gallery, with a unifying message of an integrated world, making it a quintessential signature of humankind on the Moon.

Ms Lakshmi Mohanbabu, a Singaporean architect and designer, is the first and only local artist to have her artwork selected for the Moon Gallery. Coined the ‘Structure and Reflectance’ cube, Lakshmi’s art is a marriage of Art and Technology and is one of the hundred artworks selected by the Moon Gallery. The cube signifies a unifying message of an integrated world, making it a quintessential signature of humankind on the Moon.

The early-stage prototyping and design iterations of the ‘Structure and Reflectance’ cube were performed with Additive Manufacturing, otherwise known as 3D printing, at Nanyang Technological University, Singapore’s (NTU Singapore)Singapore Centre for 3D Printing (SC3DP). This was part of a collaborative project supported by the National Additive Manufacturing Innovation Cluster (NAMIC), a national programme office which accelerates the adoption and commercialisation of additive manufacturing technologies. Previously, the NTU Singapore team at SC3DP produced a few iterations of Moon-Cube using metal 3D printing in various materials such as Inconel and Stainless Steel to evaluate the best suited material.

The newest iteration of the cube comprises crystals—ingrained in the cube via additive manufacturing technology— revealed to the naked eye by the microscopic differences in their surface roughness, which reflect light along different directions.

“Additive Manufacturing is suitable for enabling this level of control over the crystal structure of solids. More specifically, the work was created using ‘laser powder bed fusion technology’ a metal additive manufacturing process which allows us to control the surface roughness through varying the laser parameter,” said Dr Matteo Seita, Nanyang Assistant Professor, NTU Singapore, is the Principal Investigator overseeing the project for the current cube design.  

Dr Seita shared the meaning behind the materials used, “Like people, materials have a complex ‘structure’ resulting from their history—the sequence of processes that have shaped their constituent parts—which underpins their differences. Masked by an exterior façade, this structure often reveals little of the underlying quality in materials or people. The cube is a material representation of a human’s complex structure embodied in a block of metal consisting of two crystals with distinct reflectivity and complementary shape.”

Ms Lakshmi added, “The optical contrast on the cube surface from the crystals generates an intricate geometry which signifies the duality of man: the complexity of hidden thought and expressed emotion. This duality is reflected by the surface of the Moon where one side remains in plain sight, while the other has remained hidden to humankind for centuries; until space travel finally allowed humanity to gaze upon it. The bright portion of the visible side of the Moon is dependent on the Moon’s position relative to the Earth and the Sun. Thus, what we see is a function of our viewpoint.”

The hidden structure of materials, people, and the Moon are visualized as reflections of light through art and science in this cube. Expressed in the Structure & Reflectance cube is the concept of human’s duality—represented by two crystals with different reflectance—which appears to the observer as a function of their perspective.

Dr Ho Chaw Sing, Co-Founder and Managing Director of NAMIC said, “Space is humanity’s next frontier. Being the only Singaporean – among a selected few from the global community – Lakshmi’s 3D printed cube presents a unique perspective through the fusion of art and technology. We are proud to have played a small role supporting her in this ‘moon-shot’ initiative.”

Lakshmi views each artwork as a portrayal of humanity’s quests to discover the secrets of the Universe and—fused into a single cube—embody the unity of humankind, which transcends our differences in culture, religion, and social status.

The first cube face, the Primary, is divided into two triangles and depicts the two faces of the Moon, one visible to us from the earth and the other hidden from our view.

The second cube face, the Windmill, has two spiralling windmill forms, one clockwise and the other counter-clockwise, representing our existence, energy, and time.

The third cube face, the Dromenon, is a labyrinth form of nested squares, which represents the layers that we—as space explorers—are unravelling to discover the enigma of the Universe. 

The fourth cube face, the Nautilus, reflects the spiralling form of our DNA that makes each of us unique, a shape reflected in the form of our galaxy.

Not having heard of the Moon Gallery or the Moon Gallery Foundation, I did a little research. There’s a LinkedIn profile for the Moon Gallery Foundation (both the foundation and the gallery are located in Holland [Netherlands]),

Moon Gallery is where art and space meet. We aim to set up the first permanent museum on the Moon and develop a culture for future interplanetary society.

Moon Gallery will launch 100 artefacts to the Moon within the compact format of 10 x 10 x 1cm plate on a lunar lander exterior panelling no later than 2025. We suggest bringing this collection of ideas as the seeds of a new culture. We believe that culture makes a distinction between mere survival and life. Moon Gallery is a symbolic gesture that has a real influence – a way to reboot culture, rethink our values for better living on Earth planet.

The Moon Gallery has its own website, where I found more information about events, artists, and partners such as Nanoracks,

Nanoracks is dedicated to using our unique expertise to solve key problems both in space and on the Earth – all while lowering the barriers to entry of space exploration. Nanoracks’s main office is in Houston, Texas. The business development office is in Washington, D.C., and additional offices are located in Abu Dhabi, United Arab Emirates (UAE) and Turin, Italy. Nanoracks provides tools, hardware and services that allow other companies, organizations and governments to conduct research and other projects in space. Some of Nanoracks customers include Student Spaceflight Experiments Program (SSEP), the European Space Agency (ESA), the German Space Agency (DLR), NASA, Planet Labs, Space Florida, Virgin Galactic, Adidas, Aerospace Corporation, National Reconnaissance Office (NRO), UAE Space Agency, Mohammed bin Rashid Space Centre (MBRSC), and the Beijing Institute of Technology.

You can find the Nanoracks website here.

The metaverse or not

The ‘metaverse’ seems to be everywhere these days (especially since Facebook has made a number of announcements bout theirs (more about that later in this posting).

At this point, the metaverse is very hyped up despite having been around for about 30 years. According to the Wikipedia timeline (see the Metaverse entry), the first one was a MOO in 1993 called ‘The Metaverse’. In any event, it seems like it might be a good time to see what’s changed since I dipped my toe into a metaverse (Second Life by Linden Labs) in 2007.

(For grammar buffs, I switched from definite article [the] to indefinite article [a] purposefully. In reading the various opinion pieces and announcements, it’s not always clear whether they’re talking about a single, overarching metaverse [the] replacing the single, overarching internet or whether there will be multiple metaverses, in which case [a].)

The hype/the buzz … call it what you will

This September 6, 2021 piece by Nick Pringle for Fast Company dates the beginning of the metaverse to a 1992 science fiction novel before launching into some typical marketing hype (for those who don’t know, hype is the short form for hyperbole; Note: Links have been removed),

The term metaverse was coined by American writer Neal Stephenson in his 1993 sci-fi hit Snow Crash. But what was far-flung fiction 30 years ago is now nearing reality. At Facebook’s most recent earnings call [June 2021], CEO Mark Zuckerberg announced the company’s vision to unify communities, creators, and commerce through virtual reality: “Our overarching goal across all of these initiatives is to help bring the metaverse to life.”

So what actually is the metaverse? It’s best explained as a collection of 3D worlds you explore as an avatar. Stephenson’s original vision depicted a digital 3D realm in which users interacted in a shared online environment. Set in the wake of a catastrophic global economic crash, the metaverse in Snow Crash emerged as the successor to the internet. Subcultures sprung up alongside new social hierarchies, with users expressing their status through the appearance of their digital avatars.

Today virtual worlds along these lines are formed, populated, and already generating serious money. Household names like Roblox and Fortnite are the most established spaces; however, there are many more emerging, such as Decentraland, Upland, Sandbox, and the soon to launch Victoria VR.

These metaverses [emphasis mine] are peaking at a time when reality itself feels dystopian, with a global pandemic, climate change, and economic uncertainty hanging over our daily lives. The pandemic in particular saw many of us escape reality into online worlds like Roblox and Fortnite. But these spaces have proven to be a place where human creativity can flourish amid crisis.

In fact, we are currently experiencing an explosion of platforms parallel to the dotcom boom. While many of these fledgling digital worlds will become what Ask Jeeves was to Google, I predict [emphasis mine] that a few will match the scale and reach of the tech giant—or even exceed it.

Because the metaverse brings a new dimension to the internet, brands and businesses will need to consider their current and future role within it. Some brands are already forging the way and establishing a new genre of marketing in the process: direct to avatar (D2A). Gucci sold a virtual bag for more than the real thing in Roblox; Nike dropped virtual Jordans in Fortnite; Coca-Cola launched avatar wearables in Decentraland, and Sotheby’s has an art gallery that your avatar can wander in your spare time.

D2A is being supercharged by blockchain technology and the advent of digital ownership via NFTs, or nonfungible tokens. NFTs are already making waves in art and gaming. More than $191 million was transacted on the “play to earn” blockchain game Axie Infinity in its first 30 days this year. This kind of growth makes NFTs hard for brands to ignore. In the process, blockchain and crypto are starting to feel less and less like “outsider tech.” There are still big barriers to be overcome—the UX of crypto being one, and the eye-watering environmental impact of mining being the other. I believe technology will find a way. History tends to agree.

Detractors see the metaverse as a pandemic fad, wrapping it up with the current NFT bubble or reducing it to Zuck’s [Jeffrey Zuckerberg and Facebook] dystopian corporate landscape. This misses the bigger behavior change that is happening among Gen Alpha. When you watch how they play, it becomes clear that the metaverse is more than a buzzword.

For Gen Alpha [emphasis mine], gaming is social life. While millennials relentlessly scroll feeds, Alphas and Zoomers [emphasis mine] increasingly stroll virtual spaces with their friends. Why spend the evening staring at Instagram when you can wander around a virtual Harajuku with your mates? If this seems ridiculous to you, ask any 13-year-old what they think.

Who is Nick Pringle and how accurate are his predictions?

At the end of his September 6, 2021 piece, you’ll find this,

Nick Pringle is SVP [Senior Vice President] executive creative director at R/GA London.

According to the R/GA Wikipedia entry,

… [the company] evolved from a computer-assisted film-making studio to a digital design and consulting company, as part of a major advertising network.

Here’s how Pringle sees our future, his September 6, 2021 piece,

By thinking “virtual first,” you can see how these spaces become highly experimental, creative, and valuable. The products you can design aren’t bound by physics or marketing convention—they can be anything, and are now directly “ownable” through blockchain. …

I believe that the metaverse is here to stay. That means brands and marketers now have the exciting opportunity to create products that exist in multiple realities. The winners will understand that the metaverse is not a copy of our world, and so we should not simply paste our products, experiences, and brands into it.

I emphasized “These metaverses …” in the previous section to highlight the fact that I find the use of ‘metaverses’ vs. ‘worlds’ confusing as the words are sometimes used as synonyms and sometimes as distinctions. We do it all the time in all sorts of conversations but for someone who’s an outsider to a particular occupational group or subculture, the shifts can make for confusion.

As for Gen Alpha and Zoomer, I’m not a fan of ‘Gen anything’ as shorthand for describing a cohort based on birth years. For example, “For Gen Alpha [emphasis mine], gaming is social life,” ignores social and economic classes, as well as, the importance of locations/geography, e.g., Afghanistan in contrast to the US.

To answer the question I asked, Pringle does not mention any record of accuracy for his predictions for the future but I was able to discover that he is a “multiple Cannes Lions award-winning creative” (more here).

A more measured view of the metaverse

An October 4, 2021 article (What is the metaverse, and do I have to care? One part definition, one part aspiration, one part hype) by Adi Robertson and Jay Peters for The Verge offers a deeper dive into the metaverse (Note: Links have been removed),

In recent months you may have heard about something called the metaverse. Maybe you’ve read that the metaverse is going to replace the internet. Maybe we’re all supposed to live there. Maybe Facebook (or Epic, or Roblox, or dozens of smaller companies) is trying to take it over. And maybe it’s got something to do with NFTs [non-fungible tokens]?

Unlike a lot of things The Verge covers, the metaverse is tough to explain for one reason: it doesn’t necessarily exist. It’s partly a dream for the future of the internet and partly a neat way to encapsulate some current trends in online infrastructure, including the growth of real-time 3D worlds.

Then what is the real metaverse?

There’s no universally accepted definition of a real “metaverse,” except maybe that it’s a fancier successor to the internet. Silicon Valley metaverse proponents sometimes reference a description from venture capitalist Matthew Ball, author of the extensive Metaverse Primer:

“The Metaverse is an expansive network of persistent, real-time rendered 3D worlds and simulations that support continuity of identity, objects, history, payments, and entitlements, and can be experienced synchronously by an effectively unlimited number of users, each with an individual sense of presence.”

Facebook, arguably the tech company with the biggest stake in the metaverse, describes it more simply:

“The ‘metaverse’ is a set of virtual spaces where you can create and explore with other people who aren’t in the same physical space as you.”

There are also broader metaverse-related taxonomies like one from game designer Raph Koster, who draws a distinction between “online worlds,” “multiverses,” and “metaverses.” To Koster, online worlds are digital spaces — from rich 3D environments to text-based ones — focused on one main theme. Multiverses are “multiple different worlds connected in a network, which do not have a shared theme or ruleset,” including Ready Player One’s OASIS. And a metaverse is “a multiverse which interoperates more with the real world,” incorporating things like augmented reality overlays, VR dressing rooms for real stores, and even apps like Google Maps.

If you want something a little snarkier and more impressionistic, you can cite digital scholar Janet Murray — who has described the modern metaverse ideal as “a magical Zoom meeting that has all the playful release of Animal Crossing.”

But wait, now Ready Player One isn’t a metaverse and virtual worlds don’t have to be 3D? It sounds like some of these definitions conflict with each other.

An astute observation.

Why is the term “metaverse” even useful? “The internet” already covers mobile apps, websites, and all kinds of infrastructure services. Can’t we roll virtual worlds in there, too?

Matthew Ball favors the term “metaverse” because it creates a clean break with the present-day internet. [emphasis mine] “Using the metaverse as a distinctive descriptor allows us to understand the enormity of that change and in turn, the opportunity for disruption,” he said in a phone interview with The Verge. “It’s much harder to say ‘we’re late-cycle into the last thing and want to change it.’ But I think understanding this next wave of computing and the internet allows us to be more proactive than reactive and think about the future as we want it to be, rather than how to marginally affect the present.”

A more cynical spin is that “metaverse” lets companies dodge negative baggage associated with “the internet” in general and social media in particular. “As long as you can make technology seem fresh and new and cool, you can avoid regulation,” researcher Joan Donovan told The Washington Post in a recent article about Facebook and the metaverse. “You can run defense on that for several years before the government can catch up.”

There’s also one very simple reason: it sounds more futuristic than “internet” and gets investors and media people (like us!) excited.

People keep saying NFTs are part of the metaverse. Why?

NFTs are complicated in their own right, and you can read more about them here. Loosely, the thinking goes: NFTs are a way of recording who owns a specific virtual good, creating and transferring virtual goods is a big part of the metaverse, thus NFTs are a potentially useful financial architecture for the metaverse. Or in more practical terms: if you buy a virtual shirt in Metaverse Platform A, NFTs can create a permanent receipt and let you redeem the same shirt in Metaverse Platforms B to Z.

Lots of NFT designers are selling collectible avatars like CryptoPunks, Cool Cats, and Bored Apes, sometimes for astronomical sums. Right now these are mostly 2D art used as social media profile pictures. But we’re already seeing some crossover with “metaverse”-style services. The company Polygonal Mind, for instance, is building a system called CryptoAvatars that lets people buy 3D avatars as NFTs and then use them across multiple virtual worlds.

If you have the time, the October 4, 2021 article (What is the metaverse, and do I have to care? One part definition, one part aspiration, one part hype) is definitely worth the read.

Facebook’s multiverse and other news

Since starting this post sometime in September 2021, the situation regarding Facebook has changed a few times. I’ve decided to begin my version of the story from a summer 2021 announcement.

On Monday, July 26, 2021, Facebook announced a new Metaverse product group. From a July 27, 2021 article by Scott Rosenberg for Yahoo News (Note: A link has been removed),

Facebook announced Monday it was forming a new Metaverse product group to advance its efforts to build a 3D social space using virtual and augmented reality tech.

Facebook’s new Metaverse product group will report to Andrew Bosworth, Facebook’s vice president of virtual and augmented reality [emphasis mine], who announced the new organization in a Facebook post.

Facebook, integrity, and safety in the metaverse

On September 27, 2021 Facebook posted this webpage (Building the Metaverse Responsibly by Andrew Bosworth, VP, Facebook Reality Labs [emphasis mine] and Nick Clegg, VP, Global Affairs) on its site,

The metaverse won’t be built overnight by a single company. We’ll collaborate with policymakers, experts and industry partners to bring this to life.

We’re announcing a $50 million investment in global research and program partners to ensure these products are developed responsibly.

We develop technology rooted in human connection that brings people together. As we focus on helping to build the next computing platform, our work across augmented and virtual reality and consumer hardware will deepen that human connection regardless of physical distance and without being tied to devices. 

Introducing the XR [extended reality] Programs and Research Fund

There’s a long road ahead. But as a starting point, we’re announcing the XR Programs and Research Fund, a two-year $50 million investment in programs and external research to help us in this effort. Through this fund, we’ll collaborate with industry partners, civil rights groups, governments, nonprofits and academic institutions to determine how to build these technologies responsibly. 

..

Where integrity and safety are concerned Facebook is once again having some credibility issues according to an October 5, 2021 Associated Press article (Whistleblower testifies Facebook chooses profit over safety, calls for ‘congressional action’) posted on the Canadian Broadcasting Corporation’s (CBC) news online website.

Rebranding Facebook’s integrity and safety issues away?

It seems Facebook’s credibility issues are such that the company is about to rebrand itself according to an October 19, 2021 article by Alex Heath for The Verge (Note: Links have been removed),

Facebook is planning to change its company name next week to reflect its focus on building the metaverse, according to a source with direct knowledge of the matter.

The coming name change, which CEO Mark Zuckerberg plans to talk about at the company’s annual Connect conference on October 28th [2021], but could unveil sooner, is meant to signal the tech giant’s ambition to be known for more than social media and all the ills that entail. The rebrand would likely position the blue Facebook app as one of many products under a parent company overseeing groups like Instagram, WhatsApp, Oculus, and more. A spokesperson for Facebook declined to comment for this story.

Facebook already has more than 10,000 employees building consumer hardware like AR glasses that Zuckerberg believes will eventually be as ubiquitous as smartphones. In July, he told The Verge that, over the next several years, “we will effectively transition from people seeing us as primarily being a social media company to being a metaverse company.”

A rebrand could also serve to further separate the futuristic work Zuckerberg is focused on from the intense scrutiny Facebook is currently under for the way its social platform operates today. A former employee turned whistleblower, Frances Haugen, recently leaked a trove of damning internal documents to The Wall Street Journal and testified about them before Congress. Antitrust regulators in the US and elsewhere are trying to break the company up, and public trust in how Facebook does business is falling.

Facebook isn’t the first well-known tech company to change its company name as its ambitions expand. In 2015, Google reorganized entirely under a holding company called Alphabet, partly to signal that it was no longer just a search engine, but a sprawling conglomerate with companies making driverless cars and health tech. And Snapchat rebranded to Snap Inc. in 2016, the same year it started calling itself a “camera company” and debuted its first pair of Spectacles camera glasses.

If you have time, do read Heath’s article in its entirety.

An October 20, 2021 Thomson Reuters item on CBC (Canadian Broadcasting Corporation) news online includes quotes from some industry analysts about the rebrand,

“It reflects the broadening out of the Facebook business. And then, secondly, I do think that Facebook’s brand is probably not the greatest given all of the events of the last three years or so,” internet analyst James Cordwell at Atlantic Equities said.

“Having a different parent brand will guard against having this negative association transferred into a new brand, or other brands that are in the portfolio,” said Shankha Basu, associate professor of marketing at University of Leeds.

Tyler Jadah’s October 20, 2021 article for the Daily Hive includes an earlier announcement (not mentioned in the other two articles about the rebranding), Note: A link has been removed,

Earlier this week [October 17, 2021], Facebook announced it will start “a journey to help build the next computing platform” and will hire 10,000 new high-skilled jobs within the European Union (EU) over the next five years.

“Working with others, we’re developing what is often referred to as the ‘metaverse’ — a new phase of interconnected virtual experiences using technologies like virtual and augmented reality,” wrote Facebook’s Nick Clegg, the VP of Global Affairs. “At its heart is the idea that by creating a greater sense of “virtual presence,” interacting online can become much closer to the experience of interacting in person.”

Clegg says the metaverse has the potential to help unlock access to new creative, social, and economic opportunities across the globe and the virtual world.

In an email with Facebook’s Corporate Communications Canada, David Troya-Alvarez told Daily Hive, “We don’t comment on rumour or speculation,” in regards to The Verge‘s report.

I will update this posting when and if Facebook rebrands itself into a ‘metaverse’ company.

***See Oct. 28, 2021 update at the end of this posting and prepare yourself for ‘Meta’.***

Who (else) cares about integrity and safety in the metaverse?

Apparently, the international legal firm, Norton Rose Fulbright also cares about safety and integrity in the metaverse. Here’s more from their July 2021 The Metaverse: The evolution of a universal digital platform webpage,

In technology, first-mover advantage is often significant. This is why BigTech and other online platforms are beginning to acquire software businesses to position themselves for the arrival of the Metaverse.  They hope to be at the forefront of profound changes that the Metaverse will bring in relation to digital interactions between people, between businesses, and between them both. 

What is the Metaverse? The short answer is that it does not exist yet. At the moment it is vision for what the future will be like where personal and commercial life is conducted digitally in parallel with our lives in the physical world. Sounds too much like science fiction? For something that does not exist yet, the Metaverse is drawing a huge amount of attention and investment in the tech sector and beyond.  

Here we look at what the Metaverse is, what its potential is for disruptive change, and some of the key legal and regulatory issues future stakeholders may need to consider.

What are the potential legal issues?

The revolutionary nature of the Metaverse is likely to give rise to a range of complex legal and regulatory issues. We consider some of the key ones below. As time goes by, naturally enough, new ones will emerge.

Data

Participation in the Metaverse will involve the collection of unprecedented amounts and types of personal data. Today, smartphone apps and websites allow organisations to understand how individuals move around the web or navigate an app. Tomorrow, in the Metaverse, organisations will be able to collect information about individuals’ physiological responses, their movements and potentially even brainwave patterns, thereby gauging a much deeper understanding of their customers’ thought processes and behaviours.

Users participating in the Metaverse will also be “logged in” for extended amounts of time. This will mean that patterns of behaviour will be continually monitored, enabling the Metaverse and the businesses (vendors of goods and services) participating in the Metaverse to understand how best to service the users in an incredibly targeted way.

The hungry Metaverse participant

How might actors in the Metaverse target persons participating in the Metaverse? Let us assume one such woman is hungry at the time of participating. The Metaverse may observe a woman frequently glancing at café and restaurant windows and stopping to look at cakes in a bakery window, and determine that she is hungry and serve her food adverts accordingly.

Contrast this with current technology, where a website or app can generally only ascertain this type of information if the woman actively searched for food outlets or similar on her device.

Therefore, in the Metaverse, a user will no longer need to proactively provide personal data by opening up their smartphone and accessing their webpage or app of choice. Instead, their data will be gathered in the background while they go about their virtual lives. 

This type of opportunity comes with great data protection responsibilities. Businesses developing, or participating in, the Metaverse will need to comply with data protection legislation when processing personal data in this new environment. The nature of the Metaverse raises a number of issues around how that compliance will be achieved in practice.

Who is responsible for complying with applicable data protection law? 

In many jurisdictions, data protection laws place different obligations on entities depending on whether an entity determines the purpose and means of processing personal data (referred to as a “controller” under the EU General Data Protection Regulation (GDPR)) or just processes personal data on behalf of others (referred to as a “processor” under the GDPR). 

In the Metaverse, establishing which entity or entities have responsibility for determining how and why personal data will be processed, and who processes personal data on behalf of another, may not be easy. It will likely involve picking apart a tangled web of relationships, and there may be no obvious or clear answers – for example:

Will there be one main administrator of the Metaverse who collects all personal data provided within it and determines how that personal data will be processed and shared?
Or will multiple entities collect personal data through the Metaverse and each determine their own purposes for doing so? 

Either way, many questions arise, including:

How should the different entities each display their own privacy notice to users? 
Or should this be done jointly? 
How and when should users’ consent be collected? 
Who is responsible if users’ personal data is stolen or misused while they are in the Metaverse? 
What data sharing arrangements need to be put in place and how will these be implemented?

There’s a lot more to this page including a look at Social Media Regulation and Intellectual Property Rights.

One other thing, according to the Norton Rose Fulbright Wikipedia entry, it is one of the ten largest legal firms in the world.

How many realities are there?

I’m starting to think we should talking about RR (real reality), as well as, VR (virtual reality), AR (augmented reality), MR (mixed reality), and XR (extended reality). It seems that all of these (except RR, which is implied) will be part of the ‘metaverse’, assuming that it ever comes into existence. Happily, I have found a good summarized description of VR/AR/MR/XR in a March 20, 2018 essay by North of 41 on medium.com,

Summary: VR is immersing people into a completely virtual environment; AR is creating an overlay of virtual content, but can’t interact with the environment; MR is a mixed of virtual reality and the reality, it creates virtual objects that can interact with the actual environment. XR brings all three Reality (AR, VR, MR) together under one term.

If you have the interest and approximately five spare minutes, read the entire March 20, 2018 essay, which has embedded images illustrating the various realities.

Alternate Mixed Realities: an example

TransforMR: Pose-Aware Object Substitution for Composing Alternate Mixed Realities (ISMAR ’21)

Here’s a description from one of the researchers, Mohamed Kari, of the video, which you can see above, and the paper he and his colleagues presented at the 20th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2021 (from the TransforMR page on YouTube),

We present TransforMR, a video see-through mixed reality system for mobile devices that performs 3D-pose-aware object substitution to create meaningful mixed reality scenes in previously unseen, uncontrolled, and open-ended real-world environments.

To get a sense of how recent this work is, ISMAR 2021 was held from October 4 – 8, 2021.

The team’s 2021 ISMAR paper, TransforMR Pose-Aware Object Substitution for Composing Alternate Mixed Realities by Mohamed Kari, Tobias Grosse-Puppendah, Luis Falconeri Coelho, Andreas Rene Fender, David Bethge, Reinhard Schütte, and Christian Holz lists two educational institutions I’d expect to see (University of Duisburg-Essen and ETH Zürich), the surprise was this one: Porsche AG. Perhaps that explains the preponderance of vehicles in this demonstration.

Space walking in virtual reality

Ivan Semeniuk’s October 2, 2021 article for the Globe and Mail highlights a collaboration between Montreal’s Felix and Paul Studios with NASA (US National Aeronautics and Space Administration) and Time studios,

Communing with the infinite while floating high above the Earth is an experience that, so far, has been known to only a handful.

Now, a Montreal production company aims to share that experience with audiences around the world, following the first ever recording of a spacewalk in the medium of virtual reality.

The company, which specializes in creating virtual-reality experiences with cinematic flair, got its long-awaited chance in mid-September when astronauts Thomas Pesquet and Akihiko Hoshide ventured outside the International Space Station for about seven hours to install supports and other equipment in preparation for a new solar array.

The footage will be used in the fourth and final instalment of Space Explorers: The ISS Experience, a virtual-reality journey to space that has already garnered a Primetime Emmy Award for its first two episodes.

From the outset, the production was developed to reach audiences through a variety of platforms for 360-degree viewing, including 5G-enabled smart phones and tablets. A domed theatre version of the experience for group audiences opened this week at the Rio Tinto Alcan Montreal Planetarium. Those who desire a more immersive experience can now see the first two episodes in VR form by using a headset available through the gaming and entertainment company Oculus. Scenes from the VR series are also on offer as part of The Infinite, an interactive exhibition developed by Montreal’s Phi Studio, whose works focus on the intersection of art and technology. The exhibition, which runs until Nov. 7 [2021], has attracted 40,000 visitors since it opened in July [2021?].

At a time when billionaires are able to head off on private extraterrestrial sojourns that almost no one else could dream of, Lajeunesse [Félix Lajeunesse, co-founder and creative director of Felix and Paul studios] said his project was developed with a very different purpose in mind: making it easier for audiences to become eyewitnesses rather than distant spectators to humanity’s greatest adventure.

For the final instalments, the storyline takes viewers outside of the space station with cameras mounted on the Canadarm, and – for the climax of the series – by following astronauts during a spacewalk. These scenes required extensive planning, not only because of the limited time frame in which they could be gathered, but because of the lighting challenges presented by a constantly shifting sun as the space station circles the globe once every 90 minutes.

… Lajeunesse said that it was equally important to acquire shots that are not just technically spectacular but that serve the underlying themes of Space Explorers: The ISS Experience. These include an examination of human adaptation and advancement, and the unity that emerges within a group of individuals from many places and cultures and who must learn to co-exist in a high risk environment in order to achieve a common goal.

If you have the time, do read Semeniuk’s October 2, 2021 article in its entirety. You can find the exhibits (hopefully, you’re in Montreal) The Infinite here and Space Explorers: The ISS experience here (see the preview below),

The realities and the ‘verses

There always seems to be a lot of grappling with new and newish science/technology where people strive to coin terms and define them while everyone, including members of the corporate community, attempts to cash in.

The last time I looked (probably about two years ago), I wasn’t able to find any good definitions for alternate reality and mixed reality. (By good, I mean something which clearly explicated the difference between the two.) It was nice to find something this time.

As for Facebook and its attempts to join/create a/the metaverse, the company’s timing seems particularly fraught. As well, paradigm-shifting technology doesn’t usually start with large corporations. The company is ignoring its own history.

Multiverses

Writing this piece has reminded me of the upcoming movie, “Doctor Strange in the Multiverse of Madness” (Wikipedia entry). While this multiverse is based on a comic book, the idea of a Multiverse (Wikipedia entry) has been around for quite some time,

Early recorded examples of the idea of infinite worlds existed in the philosophy of Ancient Greek Atomism, which proposed that infinite parallel worlds arose from the collision of atoms. In the third century BCE, the philosopher Chrysippus suggested that the world eternally expired and regenerated, effectively suggesting the existence of multiple universes across time.[1] The concept of multiple universes became more defined in the Middle Ages.

Multiple universes have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology, music, and all kinds of literature, particularly in science fiction, comic books and fantasy. In these contexts, parallel universes are also called “alternate universes”, “quantum universes”, “interpenetrating dimensions”, “parallel universes”, “parallel dimensions”, “parallel worlds”, “parallel realities”, “quantum realities”, “alternate realities”, “alternate timelines”, “alternate dimensions” and “dimensional planes”.

The physics community has debated the various multiverse theories over time. Prominent physicists are divided about whether any other universes exist outside of our own.

Living in a computer simulation or base reality

The whole thing is getting a little confusing for me so I think I’ll stick with RR (real reality) or as it’s also known base reality. For the notion of base reality, I want to thank astronomer David Kipping of Columbia University in Anil Ananthaswamy’s article for this analysis of the idea that we might all be living in a computer simulation (from my December 8, 2020 posting; scroll down about 50% of the way to the “Are we living in a computer simulation?” subhead),

… there is a more obvious answer: Occam’s razor, which says that in the absence of other evidence, the simplest explanation is more likely to be correct. The simulation hypothesis is elaborate, presuming realities nested upon realities, as well as simulated entities that can never tell that they are inside a simulation. “Because it is such an overly complicated, elaborate model in the first place, by Occam’s razor, it really should be disfavored, compared to the simple natural explanation,” Kipping says.

Maybe we are living in base reality after all—The Matrix, Musk and weird quantum physics notwithstanding.

To sum it up (briefly)

I’m sticking with the base reality (or real reality) concept, which is where various people and companies are attempting to create a multiplicity of metaverses or the metaverse effectively replacing the internet. This metaverse can include any all of these realities (AR/MR/VR/XR) along with base reality. As for Facebook’s attempt to build ‘the metaverse’, it seems a little grandiose.

The computer simulation theory is an interesting thought experiment (just like the multiverse is an interesting thought experiment). I’ll leave them there.

Wherever it is we are living, these are interesting times.

***Updated October 28, 2021: D. (Devindra) Hardawar’s October 28, 2021 article for engadget offers details about the rebranding along with a dash of cynicism (Note: A link has been removed),

Here’s what Facebook’s metaverse isn’t: It’s not an alternative world to help us escape from our dystopian reality, a la Snow Crash. It won’t require VR or AR glasses (at least, not at first). And, most importantly, it’s not something Facebook wants to keep to itself. Instead, as Mark Zuckerberg described to media ahead of today’s Facebook Connect conference, the company is betting it’ll be the next major computing platform after the rise of smartphones and the mobile web. Facebook is so confident, in fact, Zuckerberg announced that it’s renaming itself to “Meta.”

After spending the last decade becoming obsessed with our phones and tablets — learning to stare down and scroll practically as a reflex — the Facebook founder thinks we’ll be spending more time looking up at the 3D objects floating around us in the digital realm. Or maybe you’ll be following a friend’s avatar as they wander around your living room as a hologram. It’s basically a digital world layered right on top of the real world, or an “embodied internet” as Zuckerberg describes.

Before he got into the weeds for his grand new vision, though, Zuckerberg also preempted criticism about looking into the future now, as the Facebook Papers paint the company as a mismanaged behemoth that constantly prioritizes profit over safety. While acknowledging the seriousness of the issues the company is facing, noting that it’ll continue to focus on solving them with “industry-leading” investments, Zuckerberg said: 

“The reality is is that there’s always going to be issues and for some people… they may have the view that there’s never really a great time to focus on the future… From my perspective, I think that we’re here to create things and we believe that we can do this and that technology can make things better. So we think it’s important to to push forward.”

Given the extent to which Facebook, and Zuckerberg in particular, have proven to be untrustworthy stewards of social technology, it’s almost laughable that the company wants us to buy into its future. But, like the rise of photo sharing and group chat apps, Zuckerberg at least has a good sense of what’s coming next. And for all of his talk of turning Facebook into a metaverse company, he’s adamant that he doesn’t want to build a metaverse that’s entirely owned by Facebook. He doesn’t think other companies will either. Like the mobile web, he thinks every major technology company will contribute something towards the metaverse. He’s just hoping to make Facebook a pioneer.

“Instead of looking at a screen, or today, how we look at the Internet, I think in the future you’re going to be in the experiences, and I think that’s just a qualitatively different experience,” Zuckerberg said. It’s not quite virtual reality as we think of it, and it’s not just augmented reality. But ultimately, he sees the metaverse as something that’ll help to deliver more presence for digital social experiences — the sense of being there, instead of just being trapped in a zoom window. And he expects there to be continuity across devices, so you’ll be able to start chatting with friends on your phone and seamlessly join them as a hologram when you slip on AR glasses.

D. (Devindra) Hardawar’s October 28, 2021 article provides a lot more details and I recommend reading it in its entirety.

A smart shirt at the Canadian Space Agency

Caption: Canadian Space Agency astronaut David Saint-Jacques tries the Bio-Monitor, a new Canadian technology, for the first time in space (January 16, 2019). The innovative smart shirt system is designed to measure and record astronauts’ vital signs. Credit: Canadian Space Agency/NASA

Here’s a biosensor announcement from an April 27, 2021 Experimental Biology (annual meeting) news release on EurekAlert,

A technology-packed tank top offers a simple, effective way to track astronauts’ vital signs and physiological changes during spaceflight, according to research being presented at the American Physiological Society annual meeting during the Experimental Biology (EB) 2021 meeting, held virtually April 27-30.

By monitoring key health markers over long periods of time with one non-intrusive device, researchers say the garment can help improve understanding of how spaceflight affects the body.

“Until now, the heart rate and activity levels of astronauts were monitored by separate devices,” said Carmelo Mastrandrea, PhD, a postdoctoral fellow at the Schlegel-University of Waterloo Research Institute for Aging in Canada, and the study’s first author. “The Bio-Monitor shirt allows simultaneous and continuous direct measurements of heart rate, breathing rate, oxygen saturation in the blood, physical activity and skin temperature, and provides a continuous estimate of arterial systolic blood pressure.”

The Bio-Monitor shirt was developed for the Canadian Space Agency by Carré Technologies based on its commercially available Hexoskin garment. In a study funded by the Canadian Space Agency, a team of researchers from the Schlegel-University of Waterloo Research Institute for Aging oversaw the first test of the shirt in space for a scientific purpose. Astronauts wore the shirt continually for 72 hours before their spaceflight and 72 hours during spaceflight, except for periods of water immersion or when the device conflicted with another activity.

The shirt’s sensors and accelerometer performed well, providing consistent results and a large amount of usable data. Based on these initial results, researchers say the shirt represents an improvement over conventional methods for monitoring astronauts’ health, which require more hands-on attention.

“By monitoring continuously and non-intrusively, we remove the psychological impacts of defined testing periods from astronaut measurements,” said Mastrandrea. “Additionally, we are able to gather information during normal activities over several days, including during daily activities and sleep, something that traditional testing cannot achieve.”

In flight, the astronauts recorded far less physical activity than the two and a half hours per day recorded in the monitoring period before takeoff, a finding that aligns with previous studies showing large reductions in physical activity during spaceflight. In addition to monitoring astronauts’ health and physical activity in space, Mastrandrea noted that the shirt could provide early warning of any health problems that occur as their bodies re-adapt to gravity back on Earth.

The commercial version of the Bio-Monitor shirt is available to the public, where it can be used for various applications including assessing athletic performance and monitoring the health of people with limited mobility. In addition to spaceflight, researchers are examining its potential use in other occupational settings that involve extreme environments, such as firefighting.

Mastrandrea will present this research in poster R2888 (abstract). Contact the media team for more information or to obtain a free press pass to access the virtual meeting.

###

About Experimental Biology 2021

Experimental Biology is an annual meeting comprised of thousands of scientists from five host societies and multiple guest societies. With a mission to share the newest scientific concepts and research findings shaping clinical advances, the meeting offers an unparalleled opportunity for exchange among scientists from across the U.S. and the world who represent dozens of scientific areas, from laboratory to translational to clinical research. http://www.experimentalbiology.org #expbio

About the American Physiological Society (APS)

Physiology is a broad area of scientific inquiry that focuses on how molecules, cells, tissues and organs function in health and disease. The American Physiological Society connects a global, multidisciplinary community of more than 10,000 biomedical scientists and educators as part of its mission to advance scientific discovery, understand life and improve health. The Society drives collaboration and spotlights scientific discoveries through its 16 scholarly journals and programming that support researchers and educators in their work. http://www.physiology.org

Mastrandrea’s abstract offers details explaining what makes this particular biosensor a new technology (from the ‘(R2888) Tracking astronaut physical activity and cardiorespiratory responses with the Bio-Monitor sensor shirt‘ abstract at the Experimental Biology (EB) 2021 meeting,

Carmelo Mastrandrea (Schlegel-UW Research Institute for Aging)| Danielle Greaves (Schlegel-UW Research Institute for Aging)| Richard Hughson (Schlegel-UW Research Institute for Aging)

Astronauts develop insulin resistance, and are at risk for cardiovascular deconditioning, during long-duration missions to the International Space Station (ISS) despite their daily exercise sessions (Hughson et al. Am J Physiol Heart Circ Physiol 310: H628–H638, 2016). Chronic unloading of the musculoskeletal and cardiovascular systems in microgravity dramatically reduces the challenge of daily activities, and the astronauts’ schedules limit them to approximately 30-min/day aerobic exercise. To understand the physical demands of spaceflight and how these change from daily life on Earth, the Vascular Aging experiment is equipping astronauts for 48-72h continuous recordings with the Canadian Space Agency’s Bio-Monitor wearable sensor shirt. The Bio-Monitor (Bio-M), developed from the commercial Hexoskin® device, consists of 3-lead ECG, thoracic and abdominal respiratory bands, 3-axis accelerometer, skin temperature and SpO2 sensor placed on the forehead. Our utilisation of this equipment necessitated the development of novel processing and visualisation techniques, to better interpret and guide subsequent data analyses [emphasis mine]. Here we present initial data from astronauts wearing the BioM prior to launch and aboard the ISS, demonstrating the ability to extract useful data from BioM, using software developed ‘in-house’.

Astronauts wore the Bio-M continually for 72-h except for periods of water immersion or when the device conflicted with another activity. After physical exercise, astronauts changed to a dry shirt. First, we assessed the key data-quality metrics to provide initial appraisals of acceptable recordings. Mean total recording length pre-flight (60.5 hours) was similar to that in-flight (66.5 hours), with a consistent distribution of recorded day (44% vs 45%, 6am-6pm) and night (56% vs 55%, 6pm-6am) hours (pre-flight vs in-flight respectively).

For each recording, quality assessment of ECG signals was performed for individual leads, before combining signals and cross-correlating R-waves to produce reliable heart-rate timings. Mean ECG quality for individual leads, represented here as the percentage of usable signal to total recording duration, was somewhat lower in-flight (92%) when compared to pre-flight (96%), likely caused by poor skin contact or dry shirt electrodes; combining lead signals as mentioned above improved the proportion of usable data to 97% and 98% respectively. Accelerometer recordings identified a significant reduction in high-force movements over the 72-hour recordings, with just over 2.5 hours/day of high-force activity in astronauts pre-flight vs 50 minutes/day in-flight. It should be noted however that accelerometer measurements in zero-gravity are likely to be reduced, and future refinement of activity data continues. Average heart rates in-flight showed little difference when compared to pre-flight, although future analyses will compare periods of sleep, rest, and activity to further refine this comparison.

We conclude that utilisation of the BioM hardware with our own analysis techniques produces high-quality data allowing for future interpretation and investigation of spaceflight-induced physiological adaptations.

As for Hexoskin (Carré Technologies inc.), I found out more on the About Us webpage of the Hexoskin website (Note: Links have been removed),

Hexoskin (Carré Technologies inc.)

Founded in 2006 in Montreal [Canada], Hexoskin is a growing private company, leader in non-invasive sensors, software, data science & AI services. The company headquartered in the bustling Rosemont neighborhood, provides solutions and services directly to customers & researchers; and through B2B contracts in pharmaceutical, academics, healthcare, security, defense, first responders, aerospace public & private organizations.

Hexoskin’s mission has always been to make the precise health data collected by its body-worn sensors accessible and useful for everyone. When the cofounders Pierre-Alexandre Fournier and Jean-François Roy started the company back in 2006, the existing technologies to report rich health data continuously didn’t exist. Hexoskin took a different approach to non-portable and invasive monitoring solutions by releasing in 2013 the first washable Smart Shirts that captures cardiac, respiratory, and activity body metrics. Today Hexoskin’s main R&D focus is the development of innovative body-worn sensors for health, mobile, and distributed software for health data management and analysis.

Since then, Hexoskin has designed the Hexoskin Connected Health Platform, a system to minimize user setup time and to maximize vital signs monitoring over long periods in a non-obstructive way with sensors embedded in a Smart Shirt. Data are synced to local and remote servers for health data management and analysis.
The Hexoskin Smart Garments are clinically validated and are developed involving patients & clients to be comfortable and easy to use.

The system is the next evolution to improve the standard of care in the following therapeutic areas: respiratory, cardiology, mental health, behavioral and physiological psychology, somnology, aging and physical performance, physical conditioning & wellbeing etc.

Next Generation Biometric Smart Shirts

Hexoskin supported the evolution of its 100% washable industry-leading Hexoskin Smart Garments to offer an easy and comfortable solution for continuously monitoring precise data during daily activities and sleep. Hexoskin is a machine washable Smart garment, designed and made in Canada that allows precise long-term monitoring of respiratory, cardiac and activity functions simultaneously, as well as sleep quality. 

Users are provided access the Hexoskin Connected Health Platform, an end-to-end system that supplies the tools to report and analyze precise data from the Hexoskin & third-party body-worn sensors. The platform offers apps for iOS, Android, and Watch OS devices. Users can access from anywhere an online dashboard with advanced reporting and analytics functionalities. Today, the Hexoskin Connected Platform is used worldwide and supported thousands of users and organizations to achieve their goals.

In 2019, Hexoskin launched the new Hexoskin ProShirt line for Men and Women with an all-new design to withstand the most active lifestyle and diverse daily living activities. The Hexoskin ProShirtcomes with built-in textile ECG & Respiratory sensors and a precise Activity sensor. The ProShirt works with the latest Hexoskin Smart recording device to offer uninterrupted continuous 24-hour monitoring. 

Today, the Hexoskin ProShirt are used by professional athletes for performance training, police & first responders for longitudinal stress monitoring, and patients in clinical trials living with chronic cardiac & respiratory conditions. 

Connected Health & Software Solutions

Hexoskin provides interoperable software solutions, secure and private infrastructure and data science services to support research and professional organizations. The system is designed to reduce the frequency of travel and allow remote communication between patients, study volunteers, caregivers, and researchers. Hexoskin is an efficient and precise solution that collects daily quantitative data from users, in their everyday lives, and over long periods of time. 

Conscious of the need for its users to understand how the data is collected and interpreted, Hexoskin early took a transparent approach by opening and documenting its Application Programing Interface (API). Today, part of Hexoskin’s success can be attributed to its community of developers and scientists that are leveraging its Connected Health Platform to create new applications and interventions not possible just a few years ago. 

Future Applications—remote health to space exploration

Since 2011, Hexoskin collaborated with the Canadian Space Agency on the Astroskin, a cutting edge Space Grade Smart Garment, now used in the International Space Station to monitor the astronauts’ health in Space. The Astroskin Vital Signs Monitoring Platform is also available to conduct research on earth.

Hexoskin hopes to bring the innovations developed for Space and its Hexoskin Connected Health Platform to support the growing need to provide patients’ access to affordable and adapted healthcare services remotely. Future applications include healthcare, chronic disease management, sleep medicine, aging at home, security & defense, and space exploration missions.

Hexoskin shirts, as noted earlier, are available commercially while inquiries about Astroskin shirts are welcomed (Note: Links have been removed),

Thinking that Astroskin will be perfect for your next study or project? Contact us  to discuss how Astroskin can support your next project. You can also request a demo of the Astroskin Vital Signs Monitoring Platform here.

Finally, I noticed that the researchers on this project were from the Schlegel-UW [University of Waterloo] Research Institute for Aging. I gather this was all about aging.

“Eat up your ceramic nanoparticles” says the European Space Agency

A Sept. 4, 2020 news item on phys.org showcases some intriguing research from the European Space Agency (ESA),

“Eat your vitamins” might be replaced with “ingest your ceramic nano-particles” in the future as space research is giving more weight to the idea that nanoscopic particles could help protect cells from common causes of damage.

A Sept, 4, 2020 ESA press release, which originated the news item, fills in some of the details and raises a question,

Oxidative stress occurs in our bodies when cells lose the natural balance of electrons in the molecules that we are made of. This is a common and constant occurrence that is part of our metabolism but also plays a role in the aging process and several pathological conditions, such as heart failure, muscle atrophy and Parkinson’s disease.

The best advice for keeping your body in balance and avoiding oxidative stress is still to have a healthy diet and eat enough vitamins, but nanoparticles are showing promising results in keeping cells in shape.

When in space, astronauts have been shown to suffer from more oxidative stress due to the extra radiation they receive and as a by-product of floating in weightlessness, so researchers in Italy were keen to see if nanoparticles would have the same protective effect on cells on the International Space Station as on Earth.

They prepared muscle cells that flew to the International Space Station and were cultured in ESA’s Kubik incubator before being frozen for storage.

A year ago [emphasis mine] our frozen samples splashed down in the Pacific Ocean on the Dragon spacecraft, and after comparing the samples we saw a marked effect in the cells treated with ceramic nanoparticles,” says Gianni Ciofani from the Istituto Italiano di Tecnologia in Italy. “The effect we observed seems to imply that nanoparticles work better and longer than traditional antioxidants such as vitamins.”

“The experiment setup resulted in excellent samples to analyze using state-of-the art RNA sequencing,” continues Gianni. “Conducting space research is nothing like traditional lab work, as we have less samples, we cannot do the work ourselves and we have to work around deadlines such as launch days, landing and storing the samples, it is challenging but thrilling research!” The team even found ways to improve and simplify the process for future studies.

Baby astronauts hypothesis

The research adds weight to the baby-astronaut hypothesis of weightlessness. The changes in muscle tissue observed are similar to how babies’ tissues develop in the womb.

“Some researchers see similarities to how human bodies adapt to living in space with pre-natal conditions: there are similarities with floating in a warm environment with different oxygen intake and we consider it a possibility of return to the state,” says Giada Genchi, also of the Istituto Italiano di Tecnologia’s Smart Bio-Interfaces department.

The team’s high-quality muscle tissue samples are being further analyzed and compared to samples from similar experiments that flew earlier. There is still much more to learn, such as what is the best way to administer nano-ceramics and how long do their protective effects last as well as possible unwanted side effects.

I highlighted a “A year ago” because that should mean 2019 but the research the ESA press release linked to was published in 2018. I cannot find anything more recent. So, for the curious, here’s a link to and a citation for the 2018 research paper,

Modulation of gene expression in rat muscle cells following treatment with nanoceria in different gravity regimes by Giada Graziana Genchi, Andrea Degl’Innocenti, Alice Rita Salgarella, Ilaria Pezzini, Attilio Marino, Arianna Menciassi, Sara Piccirillo, Michele Balsamo & Gianni Ciofani. Nanomedicine Vol. 13, No. 22 Preliminary Communication DOI: https://doi.org/10.2217/nnm-2018-0316 Published Online: 18 Oct 2018 Print Version: 2018 Nov;13 (22): 2821-2833. DOI: 10.2217/nnm-2018-0316.

The paper is behind a paywall.

This image was used to illustrate the work,

Courtesy Nanomedicine (journal)

Regardless of when the research was published, it’s still pretty interesting work and I hope to hear more about it in the future.