Tag Archives: Ivan Semeniuk

The metaverse or not

The ‘metaverse’ seems to be everywhere these days (especially since Facebook has made a number of announcements bout theirs (more about that later in this posting).

At this point, the metaverse is very hyped up despite having been around for about 30 years. According to the Wikipedia timeline (see the Metaverse entry), the first one was a MOO in 1993 called ‘The Metaverse’. In any event, it seems like it might be a good time to see what’s changed since I dipped my toe into a metaverse (Second Life by Linden Labs) in 2007.

(For grammar buffs, I switched from definite article [the] to indefinite article [a] purposefully. In reading the various opinion pieces and announcements, it’s not always clear whether they’re talking about a single, overarching metaverse [the] replacing the single, overarching internet or whether there will be multiple metaverses, in which case [a].)

The hype/the buzz … call it what you will

This September 6, 2021 piece by Nick Pringle for Fast Company dates the beginning of the metaverse to a 1992 science fiction novel before launching into some typical marketing hype (for those who don’t know, hype is the short form for hyperbole; Note: Links have been removed),

The term metaverse was coined by American writer Neal Stephenson in his 1993 sci-fi hit Snow Crash. But what was far-flung fiction 30 years ago is now nearing reality. At Facebook’s most recent earnings call [June 2021], CEO Mark Zuckerberg announced the company’s vision to unify communities, creators, and commerce through virtual reality: “Our overarching goal across all of these initiatives is to help bring the metaverse to life.”

So what actually is the metaverse? It’s best explained as a collection of 3D worlds you explore as an avatar. Stephenson’s original vision depicted a digital 3D realm in which users interacted in a shared online environment. Set in the wake of a catastrophic global economic crash, the metaverse in Snow Crash emerged as the successor to the internet. Subcultures sprung up alongside new social hierarchies, with users expressing their status through the appearance of their digital avatars.

Today virtual worlds along these lines are formed, populated, and already generating serious money. Household names like Roblox and Fortnite are the most established spaces; however, there are many more emerging, such as Decentraland, Upland, Sandbox, and the soon to launch Victoria VR.

These metaverses [emphasis mine] are peaking at a time when reality itself feels dystopian, with a global pandemic, climate change, and economic uncertainty hanging over our daily lives. The pandemic in particular saw many of us escape reality into online worlds like Roblox and Fortnite. But these spaces have proven to be a place where human creativity can flourish amid crisis.

In fact, we are currently experiencing an explosion of platforms parallel to the dotcom boom. While many of these fledgling digital worlds will become what Ask Jeeves was to Google, I predict [emphasis mine] that a few will match the scale and reach of the tech giant—or even exceed it.

Because the metaverse brings a new dimension to the internet, brands and businesses will need to consider their current and future role within it. Some brands are already forging the way and establishing a new genre of marketing in the process: direct to avatar (D2A). Gucci sold a virtual bag for more than the real thing in Roblox; Nike dropped virtual Jordans in Fortnite; Coca-Cola launched avatar wearables in Decentraland, and Sotheby’s has an art gallery that your avatar can wander in your spare time.

D2A is being supercharged by blockchain technology and the advent of digital ownership via NFTs, or nonfungible tokens. NFTs are already making waves in art and gaming. More than $191 million was transacted on the “play to earn” blockchain game Axie Infinity in its first 30 days this year. This kind of growth makes NFTs hard for brands to ignore. In the process, blockchain and crypto are starting to feel less and less like “outsider tech.” There are still big barriers to be overcome—the UX of crypto being one, and the eye-watering environmental impact of mining being the other. I believe technology will find a way. History tends to agree.

Detractors see the metaverse as a pandemic fad, wrapping it up with the current NFT bubble or reducing it to Zuck’s [Jeffrey Zuckerberg and Facebook] dystopian corporate landscape. This misses the bigger behavior change that is happening among Gen Alpha. When you watch how they play, it becomes clear that the metaverse is more than a buzzword.

For Gen Alpha [emphasis mine], gaming is social life. While millennials relentlessly scroll feeds, Alphas and Zoomers [emphasis mine] increasingly stroll virtual spaces with their friends. Why spend the evening staring at Instagram when you can wander around a virtual Harajuku with your mates? If this seems ridiculous to you, ask any 13-year-old what they think.

Who is Nick Pringle and how accurate are his predictions?

At the end of his September 6, 2021 piece, you’ll find this,

Nick Pringle is SVP [Senior Vice President] executive creative director at R/GA London.

According to the R/GA Wikipedia entry,

… [the company] evolved from a computer-assisted film-making studio to a digital design and consulting company, as part of a major advertising network.

Here’s how Pringle sees our future, his September 6, 2021 piece,

By thinking “virtual first,” you can see how these spaces become highly experimental, creative, and valuable. The products you can design aren’t bound by physics or marketing convention—they can be anything, and are now directly “ownable” through blockchain. …

I believe that the metaverse is here to stay. That means brands and marketers now have the exciting opportunity to create products that exist in multiple realities. The winners will understand that the metaverse is not a copy of our world, and so we should not simply paste our products, experiences, and brands into it.

I emphasized “These metaverses …” in the previous section to highlight the fact that I find the use of ‘metaverses’ vs. ‘worlds’ confusing as the words are sometimes used as synonyms and sometimes as distinctions. We do it all the time in all sorts of conversations but for someone who’s an outsider to a particular occupational group or subculture, the shifts can make for confusion.

As for Gen Alpha and Zoomer, I’m not a fan of ‘Gen anything’ as shorthand for describing a cohort based on birth years. For example, “For Gen Alpha [emphasis mine], gaming is social life,” ignores social and economic classes, as well as, the importance of locations/geography, e.g., Afghanistan in contrast to the US.

To answer the question I asked, Pringle does not mention any record of accuracy for his predictions for the future but I was able to discover that he is a “multiple Cannes Lions award-winning creative” (more here).

A more measured view of the metaverse

An October 4, 2021 article (What is the metaverse, and do I have to care? One part definition, one part aspiration, one part hype) by Adi Robertson and Jay Peters for The Verge offers a deeper dive into the metaverse (Note: Links have been removed),

In recent months you may have heard about something called the metaverse. Maybe you’ve read that the metaverse is going to replace the internet. Maybe we’re all supposed to live there. Maybe Facebook (or Epic, or Roblox, or dozens of smaller companies) is trying to take it over. And maybe it’s got something to do with NFTs [non-fungible tokens]?

Unlike a lot of things The Verge covers, the metaverse is tough to explain for one reason: it doesn’t necessarily exist. It’s partly a dream for the future of the internet and partly a neat way to encapsulate some current trends in online infrastructure, including the growth of real-time 3D worlds.

Then what is the real metaverse?

There’s no universally accepted definition of a real “metaverse,” except maybe that it’s a fancier successor to the internet. Silicon Valley metaverse proponents sometimes reference a description from venture capitalist Matthew Ball, author of the extensive Metaverse Primer:

“The Metaverse is an expansive network of persistent, real-time rendered 3D worlds and simulations that support continuity of identity, objects, history, payments, and entitlements, and can be experienced synchronously by an effectively unlimited number of users, each with an individual sense of presence.”

Facebook, arguably the tech company with the biggest stake in the metaverse, describes it more simply:

“The ‘metaverse’ is a set of virtual spaces where you can create and explore with other people who aren’t in the same physical space as you.”

There are also broader metaverse-related taxonomies like one from game designer Raph Koster, who draws a distinction between “online worlds,” “multiverses,” and “metaverses.” To Koster, online worlds are digital spaces — from rich 3D environments to text-based ones — focused on one main theme. Multiverses are “multiple different worlds connected in a network, which do not have a shared theme or ruleset,” including Ready Player One’s OASIS. And a metaverse is “a multiverse which interoperates more with the real world,” incorporating things like augmented reality overlays, VR dressing rooms for real stores, and even apps like Google Maps.

If you want something a little snarkier and more impressionistic, you can cite digital scholar Janet Murray — who has described the modern metaverse ideal as “a magical Zoom meeting that has all the playful release of Animal Crossing.”

But wait, now Ready Player One isn’t a metaverse and virtual worlds don’t have to be 3D? It sounds like some of these definitions conflict with each other.

An astute observation.

Why is the term “metaverse” even useful? “The internet” already covers mobile apps, websites, and all kinds of infrastructure services. Can’t we roll virtual worlds in there, too?

Matthew Ball favors the term “metaverse” because it creates a clean break with the present-day internet. [emphasis mine] “Using the metaverse as a distinctive descriptor allows us to understand the enormity of that change and in turn, the opportunity for disruption,” he said in a phone interview with The Verge. “It’s much harder to say ‘we’re late-cycle into the last thing and want to change it.’ But I think understanding this next wave of computing and the internet allows us to be more proactive than reactive and think about the future as we want it to be, rather than how to marginally affect the present.”

A more cynical spin is that “metaverse” lets companies dodge negative baggage associated with “the internet” in general and social media in particular. “As long as you can make technology seem fresh and new and cool, you can avoid regulation,” researcher Joan Donovan told The Washington Post in a recent article about Facebook and the metaverse. “You can run defense on that for several years before the government can catch up.”

There’s also one very simple reason: it sounds more futuristic than “internet” and gets investors and media people (like us!) excited.

People keep saying NFTs are part of the metaverse. Why?

NFTs are complicated in their own right, and you can read more about them here. Loosely, the thinking goes: NFTs are a way of recording who owns a specific virtual good, creating and transferring virtual goods is a big part of the metaverse, thus NFTs are a potentially useful financial architecture for the metaverse. Or in more practical terms: if you buy a virtual shirt in Metaverse Platform A, NFTs can create a permanent receipt and let you redeem the same shirt in Metaverse Platforms B to Z.

Lots of NFT designers are selling collectible avatars like CryptoPunks, Cool Cats, and Bored Apes, sometimes for astronomical sums. Right now these are mostly 2D art used as social media profile pictures. But we’re already seeing some crossover with “metaverse”-style services. The company Polygonal Mind, for instance, is building a system called CryptoAvatars that lets people buy 3D avatars as NFTs and then use them across multiple virtual worlds.

If you have the time, the October 4, 2021 article (What is the metaverse, and do I have to care? One part definition, one part aspiration, one part hype) is definitely worth the read.

Facebook’s multiverse and other news

Since starting this post sometime in September 2021, the situation regarding Facebook has changed a few times. I’ve decided to begin my version of the story from a summer 2021 announcement.

On Monday, July 26, 2021, Facebook announced a new Metaverse product group. From a July 27, 2021 article by Scott Rosenberg for Yahoo News (Note: A link has been removed),

Facebook announced Monday it was forming a new Metaverse product group to advance its efforts to build a 3D social space using virtual and augmented reality tech.

Facebook’s new Metaverse product group will report to Andrew Bosworth, Facebook’s vice president of virtual and augmented reality [emphasis mine], who announced the new organization in a Facebook post.

Facebook, integrity, and safety in the metaverse

On September 27, 2021 Facebook posted this webpage (Building the Metaverse Responsibly by Andrew Bosworth, VP, Facebook Reality Labs [emphasis mine] and Nick Clegg, VP, Global Affairs) on its site,

The metaverse won’t be built overnight by a single company. We’ll collaborate with policymakers, experts and industry partners to bring this to life.

We’re announcing a $50 million investment in global research and program partners to ensure these products are developed responsibly.

We develop technology rooted in human connection that brings people together. As we focus on helping to build the next computing platform, our work across augmented and virtual reality and consumer hardware will deepen that human connection regardless of physical distance and without being tied to devices. 

Introducing the XR [extended reality] Programs and Research Fund

There’s a long road ahead. But as a starting point, we’re announcing the XR Programs and Research Fund, a two-year $50 million investment in programs and external research to help us in this effort. Through this fund, we’ll collaborate with industry partners, civil rights groups, governments, nonprofits and academic institutions to determine how to build these technologies responsibly. 

..

Where integrity and safety are concerned Facebook is once again having some credibility issues according to an October 5, 2021 Associated Press article (Whistleblower testifies Facebook chooses profit over safety, calls for ‘congressional action’) posted on the Canadian Broadcasting Corporation’s (CBC) news online website.

Rebranding Facebook’s integrity and safety issues away?

It seems Facebook’s credibility issues are such that the company is about to rebrand itself according to an October 19, 2021 article by Alex Heath for The Verge (Note: Links have been removed),

Facebook is planning to change its company name next week to reflect its focus on building the metaverse, according to a source with direct knowledge of the matter.

The coming name change, which CEO Mark Zuckerberg plans to talk about at the company’s annual Connect conference on October 28th [2021], but could unveil sooner, is meant to signal the tech giant’s ambition to be known for more than social media and all the ills that entail. The rebrand would likely position the blue Facebook app as one of many products under a parent company overseeing groups like Instagram, WhatsApp, Oculus, and more. A spokesperson for Facebook declined to comment for this story.

Facebook already has more than 10,000 employees building consumer hardware like AR glasses that Zuckerberg believes will eventually be as ubiquitous as smartphones. In July, he told The Verge that, over the next several years, “we will effectively transition from people seeing us as primarily being a social media company to being a metaverse company.”

A rebrand could also serve to further separate the futuristic work Zuckerberg is focused on from the intense scrutiny Facebook is currently under for the way its social platform operates today. A former employee turned whistleblower, Frances Haugen, recently leaked a trove of damning internal documents to The Wall Street Journal and testified about them before Congress. Antitrust regulators in the US and elsewhere are trying to break the company up, and public trust in how Facebook does business is falling.

Facebook isn’t the first well-known tech company to change its company name as its ambitions expand. In 2015, Google reorganized entirely under a holding company called Alphabet, partly to signal that it was no longer just a search engine, but a sprawling conglomerate with companies making driverless cars and health tech. And Snapchat rebranded to Snap Inc. in 2016, the same year it started calling itself a “camera company” and debuted its first pair of Spectacles camera glasses.

If you have time, do read Heath’s article in its entirety.

An October 20, 2021 Thomson Reuters item on CBC (Canadian Broadcasting Corporation) news online includes quotes from some industry analysts about the rebrand,

“It reflects the broadening out of the Facebook business. And then, secondly, I do think that Facebook’s brand is probably not the greatest given all of the events of the last three years or so,” internet analyst James Cordwell at Atlantic Equities said.

“Having a different parent brand will guard against having this negative association transferred into a new brand, or other brands that are in the portfolio,” said Shankha Basu, associate professor of marketing at University of Leeds.

Tyler Jadah’s October 20, 2021 article for the Daily Hive includes an earlier announcement (not mentioned in the other two articles about the rebranding), Note: A link has been removed,

Earlier this week [October 17, 2021], Facebook announced it will start “a journey to help build the next computing platform” and will hire 10,000 new high-skilled jobs within the European Union (EU) over the next five years.

“Working with others, we’re developing what is often referred to as the ‘metaverse’ — a new phase of interconnected virtual experiences using technologies like virtual and augmented reality,” wrote Facebook’s Nick Clegg, the VP of Global Affairs. “At its heart is the idea that by creating a greater sense of “virtual presence,” interacting online can become much closer to the experience of interacting in person.”

Clegg says the metaverse has the potential to help unlock access to new creative, social, and economic opportunities across the globe and the virtual world.

In an email with Facebook’s Corporate Communications Canada, David Troya-Alvarez told Daily Hive, “We don’t comment on rumour or speculation,” in regards to The Verge‘s report.

I will update this posting when and if Facebook rebrands itself into a ‘metaverse’ company.

***See Oct. 28, 2021 update at the end of this posting and prepare yourself for ‘Meta’.***

Who (else) cares about integrity and safety in the metaverse?

Apparently, the international legal firm, Norton Rose Fulbright also cares about safety and integrity in the metaverse. Here’s more from their July 2021 The Metaverse: The evolution of a universal digital platform webpage,

In technology, first-mover advantage is often significant. This is why BigTech and other online platforms are beginning to acquire software businesses to position themselves for the arrival of the Metaverse.  They hope to be at the forefront of profound changes that the Metaverse will bring in relation to digital interactions between people, between businesses, and between them both. 

What is the Metaverse? The short answer is that it does not exist yet. At the moment it is vision for what the future will be like where personal and commercial life is conducted digitally in parallel with our lives in the physical world. Sounds too much like science fiction? For something that does not exist yet, the Metaverse is drawing a huge amount of attention and investment in the tech sector and beyond.  

Here we look at what the Metaverse is, what its potential is for disruptive change, and some of the key legal and regulatory issues future stakeholders may need to consider.

What are the potential legal issues?

The revolutionary nature of the Metaverse is likely to give rise to a range of complex legal and regulatory issues. We consider some of the key ones below. As time goes by, naturally enough, new ones will emerge.

Data

Participation in the Metaverse will involve the collection of unprecedented amounts and types of personal data. Today, smartphone apps and websites allow organisations to understand how individuals move around the web or navigate an app. Tomorrow, in the Metaverse, organisations will be able to collect information about individuals’ physiological responses, their movements and potentially even brainwave patterns, thereby gauging a much deeper understanding of their customers’ thought processes and behaviours.

Users participating in the Metaverse will also be “logged in” for extended amounts of time. This will mean that patterns of behaviour will be continually monitored, enabling the Metaverse and the businesses (vendors of goods and services) participating in the Metaverse to understand how best to service the users in an incredibly targeted way.

The hungry Metaverse participant

How might actors in the Metaverse target persons participating in the Metaverse? Let us assume one such woman is hungry at the time of participating. The Metaverse may observe a woman frequently glancing at café and restaurant windows and stopping to look at cakes in a bakery window, and determine that she is hungry and serve her food adverts accordingly.

Contrast this with current technology, where a website or app can generally only ascertain this type of information if the woman actively searched for food outlets or similar on her device.

Therefore, in the Metaverse, a user will no longer need to proactively provide personal data by opening up their smartphone and accessing their webpage or app of choice. Instead, their data will be gathered in the background while they go about their virtual lives. 

This type of opportunity comes with great data protection responsibilities. Businesses developing, or participating in, the Metaverse will need to comply with data protection legislation when processing personal data in this new environment. The nature of the Metaverse raises a number of issues around how that compliance will be achieved in practice.

Who is responsible for complying with applicable data protection law? 

In many jurisdictions, data protection laws place different obligations on entities depending on whether an entity determines the purpose and means of processing personal data (referred to as a “controller” under the EU General Data Protection Regulation (GDPR)) or just processes personal data on behalf of others (referred to as a “processor” under the GDPR). 

In the Metaverse, establishing which entity or entities have responsibility for determining how and why personal data will be processed, and who processes personal data on behalf of another, may not be easy. It will likely involve picking apart a tangled web of relationships, and there may be no obvious or clear answers – for example:

Will there be one main administrator of the Metaverse who collects all personal data provided within it and determines how that personal data will be processed and shared?
Or will multiple entities collect personal data through the Metaverse and each determine their own purposes for doing so? 

Either way, many questions arise, including:

How should the different entities each display their own privacy notice to users? 
Or should this be done jointly? 
How and when should users’ consent be collected? 
Who is responsible if users’ personal data is stolen or misused while they are in the Metaverse? 
What data sharing arrangements need to be put in place and how will these be implemented?

There’s a lot more to this page including a look at Social Media Regulation and Intellectual Property Rights.

One other thing, according to the Norton Rose Fulbright Wikipedia entry, it is one of the ten largest legal firms in the world.

How many realities are there?

I’m starting to think we should talking about RR (real reality), as well as, VR (virtual reality), AR (augmented reality), MR (mixed reality), and XR (extended reality). It seems that all of these (except RR, which is implied) will be part of the ‘metaverse’, assuming that it ever comes into existence. Happily, I have found a good summarized description of VR/AR/MR/XR in a March 20, 2018 essay by North of 41 on medium.com,

Summary: VR is immersing people into a completely virtual environment; AR is creating an overlay of virtual content, but can’t interact with the environment; MR is a mixed of virtual reality and the reality, it creates virtual objects that can interact with the actual environment. XR brings all three Reality (AR, VR, MR) together under one term.

If you have the interest and approximately five spare minutes, read the entire March 20, 2018 essay, which has embedded images illustrating the various realities.

Alternate Mixed Realities: an example

TransforMR: Pose-Aware Object Substitution for Composing Alternate Mixed Realities (ISMAR ’21)

Here’s a description from one of the researchers, Mohamed Kari, of the video, which you can see above, and the paper he and his colleagues presented at the 20th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2021 (from the TransforMR page on YouTube),

We present TransforMR, a video see-through mixed reality system for mobile devices that performs 3D-pose-aware object substitution to create meaningful mixed reality scenes in previously unseen, uncontrolled, and open-ended real-world environments.

To get a sense of how recent this work is, ISMAR 2021 was held from October 4 – 8, 2021.

The team’s 2021 ISMAR paper, TransforMR Pose-Aware Object Substitution for Composing Alternate Mixed Realities by Mohamed Kari, Tobias Grosse-Puppendah, Luis Falconeri Coelho, Andreas Rene Fender, David Bethge, Reinhard Schütte, and Christian Holz lists two educational institutions I’d expect to see (University of Duisburg-Essen and ETH Zürich), the surprise was this one: Porsche AG. Perhaps that explains the preponderance of vehicles in this demonstration.

Space walking in virtual reality

Ivan Semeniuk’s October 2, 2021 article for the Globe and Mail highlights a collaboration between Montreal’s Felix and Paul Studios with NASA (US National Aeronautics and Space Administration) and Time studios,

Communing with the infinite while floating high above the Earth is an experience that, so far, has been known to only a handful.

Now, a Montreal production company aims to share that experience with audiences around the world, following the first ever recording of a spacewalk in the medium of virtual reality.

The company, which specializes in creating virtual-reality experiences with cinematic flair, got its long-awaited chance in mid-September when astronauts Thomas Pesquet and Akihiko Hoshide ventured outside the International Space Station for about seven hours to install supports and other equipment in preparation for a new solar array.

The footage will be used in the fourth and final instalment of Space Explorers: The ISS Experience, a virtual-reality journey to space that has already garnered a Primetime Emmy Award for its first two episodes.

From the outset, the production was developed to reach audiences through a variety of platforms for 360-degree viewing, including 5G-enabled smart phones and tablets. A domed theatre version of the experience for group audiences opened this week at the Rio Tinto Alcan Montreal Planetarium. Those who desire a more immersive experience can now see the first two episodes in VR form by using a headset available through the gaming and entertainment company Oculus. Scenes from the VR series are also on offer as part of The Infinite, an interactive exhibition developed by Montreal’s Phi Studio, whose works focus on the intersection of art and technology. The exhibition, which runs until Nov. 7 [2021], has attracted 40,000 visitors since it opened in July [2021?].

At a time when billionaires are able to head off on private extraterrestrial sojourns that almost no one else could dream of, Lajeunesse [Félix Lajeunesse, co-founder and creative director of Felix and Paul studios] said his project was developed with a very different purpose in mind: making it easier for audiences to become eyewitnesses rather than distant spectators to humanity’s greatest adventure.

For the final instalments, the storyline takes viewers outside of the space station with cameras mounted on the Canadarm, and – for the climax of the series – by following astronauts during a spacewalk. These scenes required extensive planning, not only because of the limited time frame in which they could be gathered, but because of the lighting challenges presented by a constantly shifting sun as the space station circles the globe once every 90 minutes.

… Lajeunesse said that it was equally important to acquire shots that are not just technically spectacular but that serve the underlying themes of Space Explorers: The ISS Experience. These include an examination of human adaptation and advancement, and the unity that emerges within a group of individuals from many places and cultures and who must learn to co-exist in a high risk environment in order to achieve a common goal.

If you have the time, do read Semeniuk’s October 2, 2021 article in its entirety. You can find the exhibits (hopefully, you’re in Montreal) The Infinite here and Space Explorers: The ISS experience here (see the preview below),

The realities and the ‘verses

There always seems to be a lot of grappling with new and newish science/technology where people strive to coin terms and define them while everyone, including members of the corporate community, attempts to cash in.

The last time I looked (probably about two years ago), I wasn’t able to find any good definitions for alternate reality and mixed reality. (By good, I mean something which clearly explicated the difference between the two.) It was nice to find something this time.

As for Facebook and its attempts to join/create a/the metaverse, the company’s timing seems particularly fraught. As well, paradigm-shifting technology doesn’t usually start with large corporations. The company is ignoring its own history.

Multiverses

Writing this piece has reminded me of the upcoming movie, “Doctor Strange in the Multiverse of Madness” (Wikipedia entry). While this multiverse is based on a comic book, the idea of a Multiverse (Wikipedia entry) has been around for quite some time,

Early recorded examples of the idea of infinite worlds existed in the philosophy of Ancient Greek Atomism, which proposed that infinite parallel worlds arose from the collision of atoms. In the third century BCE, the philosopher Chrysippus suggested that the world eternally expired and regenerated, effectively suggesting the existence of multiple universes across time.[1] The concept of multiple universes became more defined in the Middle Ages.

Multiple universes have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology, music, and all kinds of literature, particularly in science fiction, comic books and fantasy. In these contexts, parallel universes are also called “alternate universes”, “quantum universes”, “interpenetrating dimensions”, “parallel universes”, “parallel dimensions”, “parallel worlds”, “parallel realities”, “quantum realities”, “alternate realities”, “alternate timelines”, “alternate dimensions” and “dimensional planes”.

The physics community has debated the various multiverse theories over time. Prominent physicists are divided about whether any other universes exist outside of our own.

Living in a computer simulation or base reality

The whole thing is getting a little confusing for me so I think I’ll stick with RR (real reality) or as it’s also known base reality. For the notion of base reality, I want to thank astronomer David Kipping of Columbia University in Anil Ananthaswamy’s article for this analysis of the idea that we might all be living in a computer simulation (from my December 8, 2020 posting; scroll down about 50% of the way to the “Are we living in a computer simulation?” subhead),

… there is a more obvious answer: Occam’s razor, which says that in the absence of other evidence, the simplest explanation is more likely to be correct. The simulation hypothesis is elaborate, presuming realities nested upon realities, as well as simulated entities that can never tell that they are inside a simulation. “Because it is such an overly complicated, elaborate model in the first place, by Occam’s razor, it really should be disfavored, compared to the simple natural explanation,” Kipping says.

Maybe we are living in base reality after all—The Matrix, Musk and weird quantum physics notwithstanding.

To sum it up (briefly)

I’m sticking with the base reality (or real reality) concept, which is where various people and companies are attempting to create a multiplicity of metaverses or the metaverse effectively replacing the internet. This metaverse can include any all of these realities (AR/MR/VR/XR) along with base reality. As for Facebook’s attempt to build ‘the metaverse’, it seems a little grandiose.

The computer simulation theory is an interesting thought experiment (just like the multiverse is an interesting thought experiment). I’ll leave them there.

Wherever it is we are living, these are interesting times.

***Updated October 28, 2021: D. (Devindra) Hardawar’s October 28, 2021 article for engadget offers details about the rebranding along with a dash of cynicism (Note: A link has been removed),

Here’s what Facebook’s metaverse isn’t: It’s not an alternative world to help us escape from our dystopian reality, a la Snow Crash. It won’t require VR or AR glasses (at least, not at first). And, most importantly, it’s not something Facebook wants to keep to itself. Instead, as Mark Zuckerberg described to media ahead of today’s Facebook Connect conference, the company is betting it’ll be the next major computing platform after the rise of smartphones and the mobile web. Facebook is so confident, in fact, Zuckerberg announced that it’s renaming itself to “Meta.”

After spending the last decade becoming obsessed with our phones and tablets — learning to stare down and scroll practically as a reflex — the Facebook founder thinks we’ll be spending more time looking up at the 3D objects floating around us in the digital realm. Or maybe you’ll be following a friend’s avatar as they wander around your living room as a hologram. It’s basically a digital world layered right on top of the real world, or an “embodied internet” as Zuckerberg describes.

Before he got into the weeds for his grand new vision, though, Zuckerberg also preempted criticism about looking into the future now, as the Facebook Papers paint the company as a mismanaged behemoth that constantly prioritizes profit over safety. While acknowledging the seriousness of the issues the company is facing, noting that it’ll continue to focus on solving them with “industry-leading” investments, Zuckerberg said: 

“The reality is is that there’s always going to be issues and for some people… they may have the view that there’s never really a great time to focus on the future… From my perspective, I think that we’re here to create things and we believe that we can do this and that technology can make things better. So we think it’s important to to push forward.”

Given the extent to which Facebook, and Zuckerberg in particular, have proven to be untrustworthy stewards of social technology, it’s almost laughable that the company wants us to buy into its future. But, like the rise of photo sharing and group chat apps, Zuckerberg at least has a good sense of what’s coming next. And for all of his talk of turning Facebook into a metaverse company, he’s adamant that he doesn’t want to build a metaverse that’s entirely owned by Facebook. He doesn’t think other companies will either. Like the mobile web, he thinks every major technology company will contribute something towards the metaverse. He’s just hoping to make Facebook a pioneer.

“Instead of looking at a screen, or today, how we look at the Internet, I think in the future you’re going to be in the experiences, and I think that’s just a qualitatively different experience,” Zuckerberg said. It’s not quite virtual reality as we think of it, and it’s not just augmented reality. But ultimately, he sees the metaverse as something that’ll help to deliver more presence for digital social experiences — the sense of being there, instead of just being trapped in a zoom window. And he expects there to be continuity across devices, so you’ll be able to start chatting with friends on your phone and seamlessly join them as a hologram when you slip on AR glasses.

D. (Devindra) Hardawar’s October 28, 2021 article provides a lot more details and I recommend reading it in its entirety.

Slippery toilet coating could save water

On a practical level, it’s becoming clear that we need to become more thoughtful about our use of water. We here in Canada tend to take our water for granted, as if we have an inexhaustible supply. According to this August 21, 2008 CBC (Canadian Broadcasting Corporation) online news item, that’s not the case,

Canada’s stores of fresh water are not as plentiful as once thought, and threaten to pinch the economy and pit provinces against each other, a federal document says.

An internal report drafted last December [2007] by Environment Canada warns that climate change and a growing population will further drain resources.

“We can no longer take our extensive water supplies for granted,” says the report, titled A Federal Perspective on Water Quantity Issues.

The Canadian Press obtained the 21-page draft report under the Access to Information Act.

It suggests the federal government take a more hands-on role in managing the country’s water, which is now largely done by the provinces. Ottawa still manages most of the fresh water in the North through water boards.

The Conservatives promised a national water strategy in last fall’s throne speech but have been criticized since for announcing only piecemeal projects.

The Tories, like the previous Liberal government, are also behind in publishing annual reports required by law that show how water supplies are used and maintained.

The last assessment posted on Environment Canada’s website is from 2005-06.

The internal draft report says the government currently does not know enough about the country’s water to properly manage it.

‘This is not a crisis yet. Why would we expect any government, regardless of political leaning or level, to do anything about it?’

“Canada lacks sound information at a national scale on the major uses and user[s] of water,” it says.

“National forecasting of water availability has never been done because traditionally our use of the resource was thought to be unlimited.”

Canada has a fifth of the world’s supply of fresh water, but only seven per cent of it is renewable. The rest comes from ice-age glaciers and underground aquifers.

One per cent of Canada’s total water supply is renewed each year by precipitation, the report says.

Moreover, government data on the country’s groundwater reserves is deemed “sparse and often inadequate.”

That’s in contrast to the United States, which has spent more than a decade mapping its underground water reserves. Canada shares aquifers with the U.S., and the report says: “Our lack of data places Canada at strategic disadvantage for bilateral negotiations with the U.S.”

The most recent update I can find is Ivan Semeniuk’s June 11, 2017 article for the Globe and Mail tilted: Charting Canada’s troubled waters: Where the danger lies for watersheds across the country,

A comprehensive review [World Wildlife Federation: a national assessment of of Canada’s freshwater Watershed Reports; 2017] freshwater ecosystems reveals rising threats from pollution, overuse, invasive species and climate change among other problems. Yet, the biggest threat of all may be a lack of information that hinders effective regulation, Ivan Semeniuk reports. …

Some of that information may be out of date.

Getting back on topic, here’s one possible solution to better managing our use of water.

Toilet coating

A November 18, 2019 news item on phys.org announces research that could save water,

Every day, more than 141 billion liters of water are used solely to flush toilets. With millions of global citizens experiencing water scarcity, what if that amount could be reduced by 50%?

The possibility may exist through research conducted at Penn State, released today (Nov. 18) in Nature Sustainability.

“Our team has developed a robust bio-inspired, liquid, sludge- and bacteria-repellent coating that can essentially make a toilet self-cleaning,” said Tak-Sing Wong, Wormley Early Career Professor of Engineering and associate professor of mechanical engineering and biomedical engineering.

Penn State researchers have developed a method that dramatically reduces the amount of water needed to flush a conventional toilet, which usually requires 6 liters. Image: Wong Laboratory for Nature Inspired Engineering

A November 18, 2019 Pennsylvania State University news release (also on EurekAlert,) which originated the news item, describes the research in more detail,

In the Wong Laboratory for Nature Inspired Engineering, housed within the Department of Mechanical Engineering and the Materials Research Institute, researchers have developed a method that dramatically reduces the amount of water needed to flush a conventional toilet, which usually requires 6 liters.

Co-developed by Jing Wang, a doctoral graduate from Wong’s lab, the liquid-entrenched smooth surface (LESS) coating is a two-step spray that, among other applications, can be applied to a ceramic toilet bowl. The first spray, created from molecularly grafted polymers, is the initial step in building an extremely smooth and liquid-repellent foundation.

“When it dries, the first spray grows molecules that look like little hairs, with a diameter of about 1,000,000 times thinner than a human’s,” Wang said.

While this first application creates an extremely smooth surface as is, the second spray infuses a thin layer of lubricant around those nanoscopic “hairs” to create a super-slippery surface.

“When we put that coating on a toilet in the lab and dump synthetic fecal matter on it, it (the synthetic fecal matter) just completely slides down and nothing sticks to it (the toilet),” Wang said.

With this novel slippery surface, the toilets can effectively clean residue from inside the bowl and dispose of the waste with only a fraction of the water previously needed. The researchers also predict the coating could last for about 500 flushes in a conventional toilet before a reapplication of the lubricant layer is needed.

While other liquid-infused slippery surfaces can take hours to cure, the LESS two-step coating takes less than five minutes. The researcher’s experiments also found the surface effectively repelled bacteria, particularly ones that spread infectious diseases and unpleasant odors.

If it were widely adopted in the United States, it could direct critical resources toward other important activities, to drought-stricken areas or to regions experiencing chronic water scarcity, said the researchers.

Driven by these humanitarian solutions, the researchers also hope their work can make an impact in the developing world. The technology could be used within waterless toilets, which are used extensively around the world.

“Poop sticking to the toilet is not only unpleasant to users, but it also presents serious health concerns,” Wong said.

However, if a waterless toilet or urinal used the LESS coating, the team predicts these types of fixtures would be more appealing and safer for widespread use.

To address these issues in both the United States and around the world, Wong and his collaborators, Wang, Birgitt Boschitsch, and Nan Sun, all mechanical engineering alumni, began a start-up venture.

With support from the Ben Franklin Technology Partners’ TechCelerator, the National Science Foundation, the Department of Energy, the Office of Naval Research, the Rice Business Plan Competition and Y-Combinator, their company, spotLESS Materials, is already bringing the LESS coating to market.

“Our goal is to bring impactful technology to the market so everyone can benefit,” Wong said. “To maximize the impact of our coating technology, we need to get it out of the lab.”

Looking forward, the team hopes spotLESS Materials will play a role in sustaining the world’s water resources and continue expanding the reach of their technology.

“As a researcher in an academic setting, my goal is to invent things that everyone can benefit from,” Wong said. “As a Penn Stater, I see this culture being amplified through entrepreneurship, and I’m excited to contribute.”

Here’s a link to and a citation for the paper,

Viscoelastic solid-repellent coatings for extreme water saving and global sanitation by Jing Wang, Lin Wang, Nan Sun, Ross Tierney, Hui Li, Margo Corsetti, Leon Williams, Pak Kin Wong & Tak-Sing Wong. Nature Sustainability (2019) DOI: https://doi.org/10.1038/s41893-019-0421-0 Published 18 November 2019

This paper is behind a paywall. However, the researchers have made a brief video available,

There you have it. One random thought, that toilet image reminded me of the controversy over Marcel Duchamp, the Fountain, and who actually submitted a urinal for consideration as a piece of art (Jan. 23, 2019 posting). Hint: Some believe it was Baroness Elsa von Freytag-Loringhoven.

Science and technology, the 2019 Canadian federal government, and the Phoenix Pay System

This posting will focus on science, technology, the tragic consequence of bureaucratic and political bungling (the technology disaster that is* the Phoenix payroll system), and the puzzling lack of concern about some of the biggest upcoming technological and scientific changes in government and society in decades or more.

Setting the scene

After getting enough Liberal party members elected to the Canadian Parliament’s House of Commons to form a minority government in October 2019, Prime Minister Justin Trudeau announced a new cabinet and some changes to the ‘science’ portfolios in November 2019. You can read more about the overall cabinet announcement in this November 20, 2019 news item by Peter Zimonjic on the Canadian Broadcasting Corporation (CBC) website, my focus will be the science and technology. (Note: For those who don’t know, there is already much discussion about how long this Liberal minority government will last. All i takes is a ‘loss of confidence’ motion and a majority of the official opposition and other parties to vote ‘no confidence’ and Canada will back into the throes of an election. Mitigating against a speedy new federal election,, the Conservative party [official opposition] needs to choose a new leader and the other parties may not have the financial resources for another federal election so soon after the last one.)

Getting back to now and the most recent Cabinet announcements, it seems this time around, there’s significantly less interest in science. Concerns about this were noted in a November 22, 2019 article by Ivan Semeniuk for the Globe and Mail,

Canadian researchers are raising concerns that the loss of a dedicated science minister signals a reduced voice for their agenda around the federal cabinet table.

“People are wondering if the government thinks its science agenda is done,” said Marie Franquin, a doctoral student in neuroscience and co-president of Science and Policy Exchange, a student-led research-advocacy group. “There’s still a lot of work to do.”

While not a powerful player within cabinet, Ms. Duncan [Kirsty Duncan] proved to be an ardent booster of Canada’s research community and engaged with its issues, including the muzzling of federal scientists by the former Harper government and the need to improve gender equity in the research ecosystem.

Among Ms. Duncan’s accomplishments was the appointment of a federal chief science adviser [sic] and the commissioning of a landmark review of Ottawa’s support for fundamental research, chaired by former University of Toronto president David Naylor

… He [Andre Albinati, managing principal with Earnscliffe Strategy Group] added the role of science in government is now further bolstered by chief science adviser [sic] Mona Nemer and a growing network of departmental science advisers [sic]. .

Mehrdad Hariri, president of the Canadian Science Policy Centre …, cautioned that the chief science adviser’s [sic] role was best described as “science for policy,” meaning the use of science advice in decision-making. He added that the government still needed a separate role like that filled by Ms. Duncan … to champion “policy for science,” meaning decisions that optimize Canada’s research enterprise.

There’s one other commentary (by CresoSá) but I’m saving it for later.

The science minister disappears

There is no longer a separate position for Science. Kirsty Duncan was moved from her ‘junior’ position as Minister of Science (and Sport) to Deputy Leader of the government. Duncan’s science portfolio has been moved over to Navdeep Bains whose portfolio evolved from Minister of Innovation, Science and Economic Development (yes, there were two ‘ministers of science’) to Minister of Innovation, Science and Industry. (It doesn’t make a lot of sense to me. Sadly, nobody from the Prime Minister’s team called to ask for my input on the matter.)

Science (and technology) have to be found elsewhere

There’s the Natural Resources (i.e., energy, minerals and metals, forests, earth sciences, mapping, etc.) portfolio which was led by Catherine McKenna who’s been moved over to Infrastructure and Communities. There have been mumblings that she was considered ‘too combative’ in her efforts. Her replacement in Natural Resources is Seamus O’Regan. No word yet on whether or not, he might also be ‘too combative’. Of course, it’s much easier if you’re female to gain that label. (You can read about the spray-painted slurs found on the windows of McKenna’s campaign offices after she was successfully re-elected. See: Mike Blanchfield’s October 24, 2019 article for Huffington Post and Brigitte Pellerin’s October 31, 2019 article for the Ottawa Citizen.)

There are other portfolios which can also be said to include science such as Environment and Climate Change which welcomes a new minister, Jonathan Wilkinson moving over from his previous science portfolio, Fisheries, Oceans, and Canadian Coast Guard where Bernadette Jordan has moved into place. Patti Hajdu takes over at Heath Canada (which despite all of the talk about science muzzles being lifted still has its muzzle in place). While it’s not typically considered a ‘science’ portfolio in Canada, the military establishment regardless of country has long been considered a source of science innovation; Harjit Sajjan has retained his Minister of National Defence portfolio.

Plus there are at least half a dozen other portfolios that can be described as having significant science and/or technology elements folded into their portfolios, e.g., Transport Canada, Agriculture and Agri-Food, Safety and Emergency Preparedness, etc.

As I tend to focus on emerging science and technology, most of these portfolios are not ones I follow even on an irregular basis meaning I have nothing more to add about them in this posting. Mixing science and technology together in this posting is a reflection of how tightly the two are linked together. For example, university research into artificial intelligence is taking place on theoretical levels (science) and as applied in business and government (technology). Apologies to the mathematicians but this explanation is already complicated and I don’t think I can do justice to their importance.

Moving onto technology with a strong science link, this next portfolio received even less attention than the ‘science’ portfolios and I believe that’s undeserved.

The Minister of Digital Government and a bureaucratic débacle

These days people tend to take the digital nature of daily life for granted and that may be why this portfolio has escaped much notice. When the ministerial posting was first introduced, it was an addition to Scott Brison’s responsibilities as head of the Treasury Board. It continued to be linked to the Treasury Board when Joyce Murray* inherited Brison’s position, after his departure from politics. As of the latest announcement in November 2019, Digital Government and the Treasury Board are no longer tended to by the same cabinet member.

The new head of the Treasury Board is Jean-Yves Duclos while Joyce Murray has held on to the Minister of Digital Government designation. I’m not sure if the separation from the Treasury Board is indicative of the esteem the Prime Minister has for digital government or if this has been done to appease someone or some group, which means the digital government portfolio could well disappear in the future just as the ‘junior’ science portfolio did.

Regardless, here’s some evidence as to why I think ‘digital government’ is unfairly overlooked, from the minister’s December 13, 2019 Mandate Letter from the Prime Minister (Note: All of the emphases are mine],

I will expect you to work with your colleagues and through established legislative, regulatory and Cabinet processes to deliver on your top priorities. In particular, you will:

  • Lead work across government to transition to a more digital government in order to improve citizen service.
  • Oversee the Chief Information Officer and the Canadian Digital Service as they work with departments to develop solutions that will benefit Canadians and enhance the capacity to use modern tools and methodologies across Government.
  • Lead work to analyze and improve the delivery of information technology (IT) within government. This work will include identifying all core and at-risk IT systems and platforms. You will lead the renewal of SSC [Shared Services Canada which provides ‘modern, secure and reliable IT services so federal organizations can deliver digital programs and services to meet Canadians’ needs’] so that it is properly resourced and aligned to deliver common IT infrastructure that is reliable and secure.
  • Lead work to create a centre of expertise that brings together the necessary skills to effectively implement major transformation projects across government, including technical, procurement and legal expertise.
  • Support the Minister of Innovation, Science and Industry in continuing work on the ethical use of data and digital tools like artificial intelligence for better government.
  • With the support of the President of the Treasury Board and the Minister of Families, Children and Social Development, accelerate progress on a new Government of Canada service strategy that aims to create a single online window for all government services with new performance standards.
  • Support the Minister of Families, Children and Social Development in expanding and improving the services provided by Service Canada.
  • Support the Minister of National Revenue on additional steps required to meaningfully improve the satisfaction of Canadians with the quality, timeliness and accuracy of services they receive from the Canada Revenue Agency.
  • Support the Minister of Public Services and Procurement in eliminating the backlog of outstanding pay issues for public servants as a result of the Phoenix Pay System.
  • Lead work on the Next Generation Human Resources and Pay System to replace the Phoenix Pay System and support the President of the Treasury Board as he actively engages Canada’s major public sector unions.
  • Support the Minister of Families, Children and Social Development and the Minister of National Revenue to implement a voluntary, real-time e-payroll system with an initial focus on small businesses.
  • Fully implement lessons learned from previous information technology project challenges and failures [e,g, the Phoenix Payroll System], particularly around sunk costs and major multi-year contracts. Act transparently by sharing identified successes and difficulties within government, with the aim of constantly improving the delivery of projects large and small.
  • Encourage the use and development of open source products and open data, allowing for experimentation within existing policy directives and building an inventory of validated and secure applications that can be used by government to share knowledge and expertise to support innovation.

To be clear, the Minister of Digital Government is responsible (more or less) for helping to clean up a débacle, i.e., the implementation of the federal government’s Phoenix Payroll System and drive even more digitization and modernization of government data and processes.

They’ve been trying to fix the Phoenix problems since the day it was implemented in early 2016.That’s right, it will be four years in Spring 2020 when the Liberal government chose to implement a digital payroll system that had been largely untested and despite its supplier’s concerns.

The Phoenix Pay System and a great sadness

The Public Service Alliance of Canada (the largest union for federal employees; PSAC) has a separate space for Phoneix on its website, which features this video,

That video was posted on September 24, 2018 (on YouTube) and, to my knowledge, the situation has not changed appreciably. A November 8, 2019 article by Tom Spears for the Ottawa Citizen details a very personal story about what can only be described as a failure on just about every level you can imagine,

Linda Deschâtelets’s death by suicide might have been prevented if the flawed Phoenix pay system hadn’t led her to emotional and financial ruin, a Quebec coroner has found.

Deschâtelets died in December of 2017, at age 52. At the time she was struggling with chronic pain and massive mortgage payments.

The fear of losing her home weighed heavily on her. In her final text message to one of her sons she said she had run out of energy and wanted to die before she lost her house in Val des Monts.

But Deschâtelets might have lived, says a report from coroner Pascale Boulay, if her employer, the Canada Revenue Agency, had shown a little empathy.

“During the final months before her death, she experienced serious financial troubles linked to the federal government’s pay system, Phoenix, which cut off her pay in a significant way, making her fear she would lose her house,” said Boulay’s report.

“A thorough analysis of this case strongly suggests that this death could have been avoided if a search for a solution to the current financial, psychological and medical situation had been made.”

Boulay found “there is no indication that management sought to meet Ms. Deschâtelets to offer her options. In addition, the lack of prompt follow-up in the processing of requests for information indicates a distressing lack of empathy for an employee who is experiencing real financial insecurity.”

Pay records “indeed show that she was living through serious financial problems and that she received irregular payments since the beginning of October 2017,” the coroner wrote.

As well, “her numerous online applications using the form for a compensation problem, in which she expresses her fear of not being able to make her mortgage payments and says that she wants a detailed statement of account, remain unanswered.”

On top of that, she had chronic back pain and sciatica and had been missing work. She was scheduled to get an ergonomically designed work area, but this change was never made even though she waited for months.

Money troubles kept getting worse.

She ran out of paid sick leave, and her department sent her an email to explain that she had automatically been docked pay for taking sick days. “In this same email, she was also advised that in the event that she missed additional days, other amounts would be deducted. No further follow-up with her was done,” the coroner wrote.

That email came eight days before her death.

Deschâtelets was also taking cocaine but this did not alter the fact that she genuinely risked losing her home over her financial problems, the coroner wrote.

“Given the circumstances, it is highly likely that Ms. Deschâtelets felt trapped” and ended her life “because of her belief that she would lose the house anyway. It was only a matter of time.”

The situation is “even more sad” because CRA had advisers on site who dealt with Phoenix issues, and could meet with employees, Boulay wrote.

“The federal government does a lot of promotion of workplace wellness. Surprisingly, these wellness measures are silent on the subject of financial insecurity at work,” Boulay wrote.

I feel sad for the family and indignant that there doesn’t seem to have been enough done to mitigate the hardships due to an astoundingly ill-advised decision to implement an untested payroll system for the federal government’s 280,000 or more civil servants.

Canada’s Senate reports back on Phoenix

I’m highlighting the Senate report here although there are also two reports from the Auditor General should you care to chase them down. From an August 1, 2018 article by Brian Jackson for IT World Canada,

In February 2016, in anticipation of the start of the Phoenix system rolling out, the government laid off 2,700 payroll clerks serving 120,000 employees. [I’m guessing the discrepancy in numbers of employees may be due to how the clerks were laid off, i.e., if they were load off in groups scheduled to be made redundant at different intervals.]

As soon as Phoenix was launched, problems began. By May 2018 there were 60,000 pay requests backlogged. Now the government has dedicated resources to explaining to affected employees the best way to avoid pay-related problems, and to file grievances related to the system.

“The causes of the failure are multiple, including, failing to manage the pay system in an integrated fashion with human resources processes, not conducting a pilot project, removing essential processing functions to stay on budget, laying off experienced compensation advisors, and implementing a pay system that wasn’t ready,” the Senate report states. “We are dismayed that this project proceeded with minimal independent oversight, including from central agencies, and that no one has accepted responsibility for the failure of Phoenix or has been held to account. We believe that there is an underlying cultural problem that needs to be addressed. The government needs to move away from a culture that plays down bad news and avoids responsibility, [emphasis mine] to one that encourages employee engagement, feedback and collaboration.”

There is at least one estimate that the Phoenix failure will cost $2.2 billion but I’m reasonably certain that figure does not include the costs of suicide, substance abuse, counseling, marriage breakdown, etc. (Of course, how do you really estimate the cost of a suicide or a marriage breakdown or the impact that financial woes have on children?)

Also concerning the Senate report, there is a July 31, 2018 news item on CBC (Canadian Broadcasting Corporation) news online,

“We are not confident that this problem has been solved, that the lessons have all been learned,” said Sen. André Pratte, deputy chair of the committee. [emphases mine]

I haven’t seen much coverage about the Phoenix Pay System recently in the mainstream media but according to a December 4, 2019 PSAC update,

The Parliamentary Budget Officer has said the Phoenix situation could continue until 2023, yet government funding commitments so far have fallen significantly short of what is needed to end the Phoenix nightmare. 

PSAC will continue pressing for enough funding and urgent action:

  • eliminate the over 200,000 cases in the pay issues backlog
  • compensate workers for their many hardships
  • stabilize Phoenix
  • properly develop, test and launch a new pay system

2023 would mean the débacle had a seven year lifespan, assuming everything has been made better by then.

Finally, there seems to be one other minister tasked with the Phoenix Pay System ‘fix’ (December 13, 2019 mandate letter) and that is the Minister of Public Services and Procurement, Anita Anand. She is apparently a rookie MP (member of Parliament), which would make her a ‘cabinet rookie’ as well. Interesting choice.

More digital for federal workers and the Canadian public

Despite all that has gone before, the government is continuing in its drive to digitize itself as can be seen in the Minister of Digital Government’s mandate letter (excerpted above in ‘The Minister of Digital Government and some …’ subsection) and on the government’s Digital Government webspace,

Our digital shift to becoming more agile, open, and user-focused. We’re working on tomorrow’s Canada today.

I don’t find that particularly reassuring in light of the Phoenix Payroll System situation. However, on the plus side, Canada has a Digital Charter with 10 principles which include universal access, safety and security, control and consent, etc. Oddly, it looks like it’s the Minister of Justice and Attorney General of Canada, the Minister of Canadian Heritage and the Minister of Innovation, Science and Industry who are tasked with enhancing and advancing the charter. Shouldn’t this group also include the Minister of Digital Government?

The Minister of Digital Government, Joyce Murray, does not oversee a ministry and I think that makes this a ‘junior’ position in much the same way the Minister of Science was a junior position. It suggests a mindset where some of the biggest changes to come for both employees and the Canadian public are being overseen by someone without the resources to do the work effectively or the bureaucratic weight and importance to ensure the changes are done properly.

It’s all very well to have a section on the Responsible use of artificial intelligence (AI) on your Digital Government webspace but there is no mention of ways and means to fix problems. For example, what happens to people who somehow run into an issue that the AI system can’t fix or even respond to because the algorithm wasn’t designed that way. Ever gotten caught in an automated telephone system? Or perhaps more saliently, what about the people who died in two different airplane accidents due to the pilots’ poor training and an AI system? (For a more informed view of the Boeing 737 Max, AI, and two fatal plane crashes see: a June 2, 2019 article by Rachel Kraus for Mashable.)

The only other minister whose mandate letter includes AI is the Minister of Innovation, Science and Industry, Navdeep Bains (from his December 13, 2019 mandate letter),

  • With the support of the Minister of Digital Government, continue work on the ethical use of data and digital tools like artificial intelligence for better government.

So, the Minister of Digital Government, Joyce Murray, is supporting the Minister of Innovation, Science and Industry, Navdeep Bains. That would suggest a ‘junior’ position wouldn’t it? If you look closely at the Minister of Digital Services’ mandate letter, you’ll see the Minister is almost always supporting another minister.

Where the Phoenix Pay System is concerned, the Minister of Digital Services is supporting the Minister of Public Services and Procurement, the previously mentioned rookie MP and rookie Cabinet member, Anita Anand. Interestingly, the employees’ union, PSAC, has decided (as of a November 20, 2019 news release) to ramp up its ad campaign regarding the Phoenix Pay System and its bargaining issues by targeting the Prime Minister and the new President of the Treasury Board, Jean-Yves Duclos. Guess whose mandate letter makes no mention of Phoenix (December 13, 2019 mandate letter for the President of the Treasury Board).

Open government, eh?

Putting a gift bow on a pile of manure doesn’t turn it into a gift (for most people, anyway) and calling your government open and/or transparent doesn’t necessarily make it so even when you amend your Access to Information Act to make it more accessible (August 22, 2019 Digital Government news release by Ruth Naylor).

One of the Liberal government’s most heavily publicized ‘open’ initiatives was the lifting of the muzzles put on federal scientists in the Environment and Natural Resources ministries. Those muzzles were put into place by a Conservative government and the 2015 Liberal government gained a lot of political capital from its actions. No one seemed to remember that Health Canada also had been muzzled. That muzzle had been put into place by one of the Liberal governments preceding the Conservative one. To date there is no word as to whether or not that muzzle has ever been lifted.

However, even in the ministries where the muzzles were lifted, it seems scientists didn’t feel free to speak even many months later (from a Feb 21, 2018 article by Brian Owens for Science),

More than half of government scientists in Canada—53%—do not feel they can speak freely to the media about their work, even after Prime Minister Justin Trudeau’s government eased restrictions on what they can say publicly, according to a survey released today by a union that represents more than 16,000 federal scientists.

That union—the Professional Institute of the Public Service of Canada (PIPSC) based in Ottawa—conducted the survey last summer, a little more than a year and a half into the Trudeau government. It followed up on a similar survey the union released in 2013 at the height of the controversy over the then-Conservative government’s reported muzzling of scientists by preventing media interviews and curtailing travel to scientific conferences. The new survey found the situation much improved—in 2013, 90% of scientists felt unable to speak about their work. But the union says more work needs to be done. “The work needs to be done at the department level,” where civil servants may have been slow to implement political directives, PIPSC President Debi Daviau said. ”We need a culture change that promotes what we have heard from ministers.”

I found this a little chilling (from the PIPSC Defrosting Public Science; a 2017 survey of federal scientists webpage),

To better illustrate this concern, in 2013, The Big Chill revealed that 86% of respondents feared censorship or retaliation from their department or agency if they spoke out about a departmental decision or action that, based on their scientific knowledge, could bring harm to the public interest. In 2017, when asked the same question, 73% of respondents said they would not be able to do so without fear of censorship or retaliation – a mere 13% drop.

It’s possible things have improved but while the 2018 Senate report did not focus on scientists, it did highlight issues with the government’s openness and transparency or in their words: “… a culture that plays down bad news and avoids responsibility.” It seems the Senate is not the only group with concerns about government culture; so do the government’s employees (the scientists, anyway).

The other science commentary

I can’t find any commentary or editorials about the latest ministerial changes or the mandate letters on the Canadian Science Policy Centre website so was doubly pleased to find this December 6, 2019 commentary by Creso Sá for University Affairs,

The recently announced Liberal cabinet brings what appear to be cosmetic changes to the science file. Former Science Minister Kirsty Duncan is no longer in it, which sparked confusion among casual observers who believed that the elimination of her position signalled the termination of the science ministry or the downgrading of the science agenda. In reality, science was and remains part of the renamed Ministry of Innovation, Science, and (now) Industry (rather than Economic Development), where Minister Navdeep Bains continues at the helm.

Arguably, these reactions show that appearances have been central [emphasis mine] to the modus operandi of this government. Minister Duncan was an active, and generally well-liked, champion for the Trudeau government’s science platform. She carried the torch of team science over the last four years, becoming vividly associated with the launch of initiatives such as the Fundamental Science Review, the creation of the chief science advisor position, and the introduction of equity provisions in the Canada Research Chairs program. She talked a good talk, but her role did not in fact give her much authority to change the course of science policy in the country. From the start, her mandate was mostly defined around building bridges with members of cabinet, which was likely good experience for her new role of deputy house leader.

Upon the announcement of the new cabinet, Minister Bains took to Twitter to thank Dr. Duncan for her dedication to placing science in “its rightful place back at the centre of everything our government does.” He indicated that he will take over her responsibilities, which he was already formally responsible for. Presumably, he will now make time to place science at the centre of everything the government does.

This kind of sloganeering has been common [emphasis mine] since the 2015 campaign, which seems to be the strategic moment the Liberals can’t get out of. Such was the real and perceived hostility of the Harper Conservatives to science that the Liberals embraced the role of enlightened advocates. Perhaps the lowest hanging fruit their predecessors left behind was the sheer absence of any intelligible articulation of where they stood on the science file, which the Liberals seized upon with gusto. Virtue signalling [emphasis mine] became a first line of response.

When asked about her main accomplishments over the past year as chief science advisor at the recent Canadian Science Policy Conference in Ottawa, Mona Nemer started with the creation of a network of science advisors across government departments. Over the past four years, the government has indeed not been shy about increasing the number of appointments with “science” in their job titles. That is not a bad thing. We just do not hear much about how “science is at the centre of everything the government does.” Things get much fuzzier when the conversation turns to the bold promises of promoting evidence-based decision making that this government has been vocal about. Queried on how her role has impacted policy making, Dr. Nemer suggested the question should be asked to politicians. [emphasis mine]

I’m tempted to describe the ‘Digital Government’ existence and portfolio as virtue signalling.

Finally

There doesn’t seem to be all that much government interest in science or, even, technology for that matter. We have a ‘junior’ Minister of Science disappear so that science can become part of all the ministries. Frankly, I wish that science were integrated throughout all the ministries but when you consider the government culture, this move more easily lends itself to even less responsibility being taken by anyone. Take another look at the Canada’s Chief Science Advisor’s comment: “Queried on how her role has impacted policy making, Dr. Nemer suggested the question should be asked to politicians.” Meanwhile, we get a ‘junior Minister of Digital Government whose portfolio has the potential to affect Canadians of all ages and resident in Canada or not.

A ‘junior’ minister is not necessarily evil as Sá points out but I would like to see some indication that efforts are being made to shift the civil service culture and the attitude about how the government conducts its business and that the Minister of Digital Government will receive the resources and the respect she needs to do her job. I’d also like to see some understanding of how catastrophic a wrong move has already been and could be in the future along with options for how citizens are going to be making their way through this brave new digital government world and some options for fixing problems, especially the catastrophic ones.

*December 30, 2019 correction: After Scott Brison left his position as President of the Treasury Board and Minister of Digital Government in January 2019, Jane Philpott held the two positions until March 2019 when she left the Liberal Party. Carla Quatrough was acting head from March 4 – March 18, 2019 when Joyce Murray was appointed to the two positions which she held for eight months until November 2019 when, as I’ve noted, the ‘Minister of Digital Government’ was split from the ‘President of the Treasury Board’ appointment.

ETA January 28, 2020: The Canadian Broadcasting Corporation (CBC) has an update on the Phoenix Pay System situation in a January 28, 2020 posting (supplied by The Canadian Press),

More than 98,000 civil servants may still owe the federal government money after being overpaid through the disastrous Phoenix pay system.

… the problems persist, despite the hiring of hundreds of pay specialists to work through a backlog of system errors.

The public service pay centre was still dealing with a backlog of about 202,000 complaints as of Dec. 24 [2019], down from 214,000 pay transactions that went beyond normal workload in November [2019].

* Duplicate ‘is’ removed from sentence on July 2, 2024.

No mention of climate change or environmental impact? Transforming Canadian science through infrastructure; a report from the Council of Canadian Academies

If there’s a topic that cries out for passion it’s infrastructure. It can be the only thing that will sustain you as the years go by in your quest to improve wonky and sometimes dangerous buildings (e.g. the Science and Technology Museum of Canada prior to i2017; see Ivan Semeniuk’s Nov. 12, 2017 article for the Globe & Mail about the refurbished museum), address poorly designed work environments, and replace inadequate tools and equipment.

Unless you count the report itself , you won’t find any more evidence of passion in the Council of Canadian Academies’ (CCA) report, ‘Building Excellence; The Expert Panel on Leading Practices for Transforming Canadian Science Through Infrastructure’ (webpage). There is a lot of good stuff and I’ll start with that after the description of the panel’s remit. Finally, there’ll be some shortcomings including the failure to make any mention of climate change or environmental impacts. By the way, this posting will not feature an exhaustive analysis.

Rules of the game

For those who don’t know, all of the reports written and published by the CCA are at the request of a government body. From Building Excellence (Note: I have not been able replicate the report formatting),

Public Services and Procurement Canada (the Sponsor) asked the Council of Canadian Academies (CCA) to assess the evidence on leading practices for federal S&T infrastructure investment decisions. Specifically, the Sponsor posed the following questions:

What is known about leading practices for evaluating proposals for science and technology infrastructure investments that is relevant to Canadian federal science for the future?

What processes and advisory structures have been used for reviewing proposals for significant science infrastructure investments, and what is known about their strengths and weaknesses?

What guiding principles and criteria can help assess proposals that support the federal vision for science in Canada, including, for example, interdisciplinarity? [p. 15 PDF; p. 1 print]

Defining infrastructure

In this report they seem to be using the terms scope and definition interchangeably (from Building Excellence),

… In consultation with the Sponsor, the Panel confirmed the scope of the assessment, which included investments in S&T infrastructure that is multi-sectoral, multidisciplinary, and multi-departmental. These investments will be focused on government mission-oriented (or priority-driven) research and development (R&D) and related scientific activities (RSA), such as regulatory science and long-term data collection and monitoring. Out of scope were facilities housing a single department, non-federal science infrastructure, mobile assets (e.g., vessels), global research infrastructure (e.g., CERN), and large infrastructure for basic research (e.g., telescopes). [p. 15 PDF; p. 1 print]

Although the Panel defined infrastructure broadly, the focus of this assessment is primarily on buildings and facilities. However, S&T infrastructure can include a variety of resources, as depicted in Figure 1.1

• equipment, instruments, and tools;
• knowledge-based resources such as libraries, archives, specimen collections, and databases; • cyberinfrastructure, communications, and IT support including hardware, software, services, and personnel;
• animal colonies, cell lines, and plant or bacteria strains;
• technical support staff and services; and
• administrative, management, and governance structures.

(Neal et al., 2008) [p. 16 PDF; p. 2 print]

Unfortunately, I can’t include the infrastructure image referred to as Figure 1.1 but you can find it in the report.

Building Excellence: the good stuff

Gender parity

There were four people on the expert panel; two women and two men. This marks the first time I’ve stumbled across a 50/50 split for any of these expert panels. I realize that ‘standard’ gender categories are seen as reductive and that gender can be fluid, dynamic, and multilayered but, for the moment, I’d like to applaud a tiny step for ‘gender parity’ in the right direction.

The future

It’s very encouraging to see that the authors and other contributors (a workshop was held) are looking to not only fix current problems but anticipate future directions for Canadian government research (from Building Excellence),

Leading practices in decision-making for S&T infrastructure investments take into consideration four principles: scientific excellence, collaboration, feasibility, and broader impacts.

These principles help ensure that S&T infrastructure investments build for a future in which agile, cross-disciplinary, collaborative facilities allow government scientists to engage meaningfully with each other, as well as with collaborators from academia, industry, Indigenous communities, non-governmental organizations, and local organizations, to meet challenges as they arise. Robust evaluations of infrastructure investment proposals also consider the needs of government science, including the urgent need to address existing deficits in infrastructure. [p. 11 PDF; p. IX print]

Also, it’s more than nice to see support staff singled out. Too often there’s a failure to recognize the important role that support staff plays (from Building Excellence),

S&T [science and technology] infrastructure that supports collaboration can amplify science outcomes and lead to solutions for complex challenges.

Collaborative S&T infrastructure proposals highlight the ways that new users can find opportunities for engagement within a facility, and support building relationships by addressing potential barriers to access. Dedicated, professional support staff [emphasis mine] hold the institutional knowledge that facilitates relationship building and enables new collaborations to face future challenges. S&T infrastructure proposals that provide different types of spaces — such as private, formal meeting, semi-open, open, virtual, and overbuilt spaces — support different but equally vital aspects of collaborative work. [p. 11 PDF; p. IX print]

Co-creating sounds promising

In engineering and community organizing there’s top-down and bottom-up engineering/organizing; this is the first I’ve heard of ‘middle-out’ which leads, apparently, to co-creation (from Building Excellence),

A “middle-out” approach to developing proposals facilitates relationship building from the outset of the proposal process and can ensure the success of collaborative S&T infrastructure.

In a middle-out approach, funders request proposals that address specific objectives and manage a process in which the community [emphasis mine] refines proposals collaboratively. This approach allows the S&T community to co-create promising proposals that meet government needs. In contrast, bottom-up approaches (developed solely by the community) might overlook government-mandated activities and top-down approaches (developed solely by funders) might limit collaborative opportunities [p. 12 PDF; p. X print]

So, if the proposal comes from the S&T (science and technology) community it’s a bottom-up process? What about the larger community? I gather we don’t count. (sigh) I did indicate this would be focused on the good. Here goes: it’s good to see that there is a focus on co-creating or, what some might call collaboration, between scientists and government funding agencies.

Good stuff: final thoughts

This is a thoughtful, readable, carefully constructed report.

The weird and the overlooked

I find it weird that there isn’t more information and insight solicited from parts of the world that are not in Europe, or one of the Commonwealth countries, or the US, in addition to the Canadian input. Take a look (from Building Excellence),

There is limited publicly available evidence on infrastructure evaluation processes for intramural government S&T facilities. Therefore, the Panel looked to organizations that evaluate proposals for research infrastructure dedicated to basic discovery-oriented research, including large-scale big science facilities. The review of these organizations was complemented by interviews with individuals familiar with top research infrastructure programs around the world. Specifically, the Panel examined evidence for reviewing research infrastructure proposals in:

• Australia: National Collaborative Research Infrastructure Strategy (NCRIS);
• Canada: Canada Foundation for Innovation (CFI);
• Denmark: Nationalt Udvalg for Forskningsinfrastruktur [National Committee for Research Infrastructure] (NUFI);
• European Union: European Strategy Forum on Research Infrastructures (ESFRI);
• Germany: Bundesministerium für Bildung und Forschung [Federal Ministry of Education and Research] (BMBF);
• United Kingdom: Science and Technology Facilities Council (STFC); and
• United States: Major Research Equipment and Facilities Construction (MREFC). [p. 16 PDF; p. 2 print]

It’s quite possible there was an attempt to reach out beyond the ‘usual suspects’ but it’s not apparent so maybe it’s time they started including a section on attempts made to reach out and broaden the expertise brought to the table/report and perhaps note some of the other exclusions and why they had to be made.

As per the head for this posting, there’s no mention of climate change or environmental impact. Given that this is a report about buildings (for the most part) and presumably the old ones will be retrofitted or there will be new buildings, how is there no mention of the environmental impact of these proposed changes? It just seems odd to me especially since the lead on the expert panel is Wendy Watson-Wright, Chief Executive Officer of the Ocean Frontier Institute. Here’s what’s on the Ocean Frontier Institute‘s home page,

SAFE AND SUSTAINABLE DEVELOPMENT OF THE OCEAN FRONTIER

Safe and sustainable, eh? Where is that in the report?

There’s more. A peer review process, a standard practice, was undertaken for this report. It included Karen Dodds, Former Assistant Deputy Minister, Science and Technology Branch, Environment and Climate Change Canada [emphasis mine].

What happened?

It’s a mystery and not one that is likely to be solved unless … somebody would like to contact me and give me the inside story: nano@frogheart.ca.

One other odd thing, the agency which initiated Building Excellence, Public Services and Procurement Canada (PSPC), was in charge of the Phoenix Pay System, which is widely considered one of the greatest government debacles in Canadian history. You can read this Wikipedia entry for a fairly restrained description.

This connection between PSPC and the Phoenix pay system raises questions, in my mind if no one else’s, as to whether or not the agency has learned any lessons from the experience. A July 31, 2018 news item on the Canadian Broadcasting Corporation (CBC) online news website had this title: Senate committee ‘not confident’ government has learned lessons from Phoenix. So who’s going to be in charge of this infrastructure, what failsafes do they have in place, and will warnings be heeded?

The blogger misses an important piece of information

In 2018, the government announced Canada’s Science Vision in a video of Minister of Science Kirsty Duncan posted on October 10, 2018 and I didn’t catch it.

Try as I might, I cannot find a news release for this announcement but I did find a Canada’s Science Vision website.

I think that if I’m going to point out other people’s shortcomings I have to be willing to admit my own and this was definitely a fail on my part.

Final bit

I’m glad to see that infrastructure for government science is being addressed and, as noted earlier, this is a thoughtful report. Let’s hope that climate change and environmental impact will somehow also be considered in the context of science infrastructure and there will be new points of view (experts and/or agencies not based in the European Union, the United States and/or the United Kingdom) represented in any future reports.

A Café Scientifique Vancouver (Canada) May 28, 2019 talk ‘Getting to the heart of Mars with insight’ and an update on Baba Brinkman (former Vancouverite) and his science raps

It’s been a while since I’ve received any notices about upcoming talks from the local Café Scientifique crowd but on May 22, 2019 there was this announcement in an email,

Dear Café Scientifiquers,

Our next café will happen on TUESDAY, MAY 28TH [2019] at 7:30PM in the back room at YAGGER’S DOWNTOWN (433 W Pender). Our speaker for the evening will be DR. CATHERINE JOHNSON from the Department of Earth, Ocean and Atmospheric Sciences at UBC [University of British Columbia] .

GETTING TO THE HEART OF MARS WITH INSIGHT

Catherine Johnson is a professor of geophysics in the Dept of Earth, Ocean and Atmospheric Sciences at UBC Vancouver [campus], and a senior scientist at the Planetary Science Institute, Tucson.  She is a Co-Investigator on the InSight mission to Mars, the OSIRIS-REx mission to asteroid Bennu and was previously a Participating Scientist on the MESSENGER mission to Mercury.

We hope to see you there!

I did some digging and found two articles about Johnson, the InSight mission, and Mars. The first one is an October 21, 2012 article by James Keller on the Huffington Post Canada website,

As NASA’s Curiosity rover beams back photos of the rocky surface of Mars, another group of scientists, including one from British Columbia, is preparing the next mission to uncover what’s underneath.

Prof. Catherine Johnson, of the University of British Columbia, is among the scientists whose project, named Insight, was selected by NASA this week as part of the U.S. space agency’s Discovery program, which invites proposals from within the scientific community.

Insight will send a stationary robotic lander to Mars in 2016, drilling down several metres into the surface as it uses a combination of temperature readings and seismic measurements to help scientists on this planet learn more about the Martian core.

The second one is a May 6, 2018 article (I gather it took them longer to get to Mars than they anticipated in 2012) by Ivan Semeniuk for the Globe and Mail newspaper website,

Thanks to a thick bank of predawn fog, Catherine Johnson couldn’t see the rocket when it blasted off early Saturday morning at the Vandenberg Air Force Base in California – but she could hear the roar as NASA’s InSight mission set off on its 6½-month journey to Mars.

“It was really impressive,” said Dr. Johnson, a planetary scientist at the University of British Columbia and a member of the mission’s science team. Describing the mood at the launch as a mixture of relief and joy, Dr. Johnson added that “the spacecraft is finally en route to do what we have worked toward for many years.”

But while InSight’s mission is just getting under way, it also marks the last stage in a particularly fruitful period for the U.S. space agency’s Mars program. In the past two decades, multiple, complementary spacecraft tackled different aspects of Mars science.

Unlike the Curiosity rover, which landed on Mars nearly six years ago and is in the process of climbing a mountain in the middle of an ancient crater, InSight is designed to stay in one place after it touches down Nov. 26 [2018]. Its purpose is to open a new direction in Mars exploration – one that leads straight down as the spacecraft deploys a unique set of instruments to spy on the planet’s interior.

“What we will learn … will help us understand the earliest history of rocky planets, including Earth,” Dr. Johnson said.

It has been a prolonged voyage to the red planet. In 2015, technical problems forced program managers to postpone InSight’s launch for 2½ years. Now, scientists are hoping for smooth sailing to Mars and an uneventful landing a few hundred kilometres north of Curiosity, at a site that Dr. Johnson cheerfully describes as “boring.”

Does the timing of this talk mean you’ll be getting the latest news since InSight landed on Mars roughly six months ago? One can only hope. Finally, Johnson’s UBC bio webpage is here.

Baba Brinkman brings us up-to-date

Here’s most of a May 22, 2019 newsletter update (received via email) from former Vancouverite and current rapper, playwright, and science communicator, Baba Brinkman,

… Over the past five years I have been collaborating frequently with a company in California called SpectorDance, after the artistic director Fran Spector Atkins invited me to write and perform a rap soundtrack to one of her dance productions. Well, a few weeks ago we played our biggest venue yet with our latest collaborative show, Ocean Trilogy, which is all about the impact of human activities including climate change on marine ecosystems. The show was developed in collaboration with scientists at the Monterey Bay Aquarium Research Institute, and for the first time there’s now a full video of the production online. Have you ever seen scientifically-informed eco rap music combined in live performance with ballet and modern dance? Enjoy.

Speaking of “Science is Everywhere”, about a year ago I got to perform my song “Can’t Stop” about the neurobiology of free will for a sold-out crowd at the Brooklyn Academy of Music alongside physicist Brian Greene, comedian Chuck Nice, and Neil deGrasse Tyson. The song is half scripted and half freestyle (can you tell which part is which?) They just released the video.

Over the past few months I’ve been performing Rap Guide to Evolution, Consciousness, and Climate Chaos off-Broadway 2-3 times per week, which has been a roller coaster. Some nights I have 80 people and it’s rocking, other nights I step on stage and play to 15 people and it takes effort to keep it lively. But since this is New York, occasionally when there’s only 15 people one of them will turn out to be a former Obama Administration Energy Advisor or will publish a five star review, which keeps it exciting.

Tonight I fly to the UK where I’ll be performing all next week, including the premiere of my newest show Rap Guide to Culture, with upcoming shows in Brighton, followed by off-Broadway previews in June, followed by a full run at the Edinburgh Fringe in August (plus encores of my other shows), followed by… well I can’t really see any further than August at the moment, but the next few months promise to be action-packed.

What’s Rap Guide to Culture about? Cultural evolution and the psychology of norms of course. I recently attended a conference at the National Institute for Mathematical and Biological Synthesis in Knoxville, TN where I performed a sneak preview and did a “Rap Up” of the various conference talks, summarizing the scientific content at the end of the day, check out the video.

Okay, time to get back to packing and hit the road. More to come soon, and wish me luck continuing to dominate my lonely genre.

Brinkman has been featured here many times (just use his name as the term in the blog’s search engine). While he lives in New York City these days, he does retain a connection to Vancouver in that his mother Joyce Murray is the Member of Parliament for Vancouver Quadra and, currently, the president of the Treasury Board.

Alberta adds a newish quantum nanotechnology research hub to the Canada’s quantum computing research scene

One of the winners in Canada’s 2017 federal budget announcement of the Pan-Canadian Artificial Intelligence Strategy was Edmonton, Alberta. It’s a fact which sometimes goes unnoticed while Canadians marvel at the wonderfulness found in Toronto and Montréal where it seems new initiatives and monies are being announced on a weekly basis (I exaggerate) for their AI (artificial intelligence) efforts.

Alberta’s quantum nanotechnology hub (graduate programme)

Intriguingly, it seems that Edmonton has higher aims than (an almost unnoticed) leadership in AI. Physicists at the University of Alberta have announced hopes to be just as successful as their AI brethren in a Nov. 27, 2017 article by Juris Graney for the Edmonton Journal,

Physicists at the University of Alberta [U of A] are hoping to emulate the success of their artificial intelligence studying counterparts in establishing the city and the province as the nucleus of quantum nanotechnology research in Canada and North America.

Google’s artificial intelligence research division DeepMind announced in July [2017] it had chosen Edmonton as its first international AI research lab, based on a long-running partnership with the U of A’s 10-person AI lab.

Retaining the brightest minds in the AI and machine-learning fields while enticing a global tech leader to Alberta was heralded as a coup for the province and the university.

It is something U of A physics professor John Davis believes the university’s new graduate program, Quanta, can help achieve in the world of quantum nanotechnology.

The field of quantum mechanics had long been a realm of theoretical science based on the theory that atomic and subatomic material like photons or electrons behave both as particles and waves.

“When you get right down to it, everything has both behaviours (particle and wave) and we can pick and choose certain scenarios which one of those properties we want to use,” he said.

But, Davis said, physicists and scientists are “now at the point where we understand quantum physics and are developing quantum technology to take to the marketplace.”

“Quantum computing used to be realm of science fiction, but now we’ve figured it out, it’s now a matter of engineering,” he said.

Quantum computing labs are being bought by large tech companies such as Google, IBM and Microsoft because they realize they are only a few years away from having this power, he said.

Those making the groundbreaking developments may want to commercialize their finds and take the technology to market and that is where Quanta comes in.

East vs. West—Again?

Ivan Semeniuk in his article, Quantum Supremacy, ignores any quantum research effort not located in either Waterloo, Ontario or metro Vancouver, British Columbia to describe a struggle between the East and the West (a standard Canadian trope). From Semeniuk’s Oct. 17, 2017 quantum article [link follows the excerpts] for the Globe and Mail’s October 2017 issue of the Report on Business (ROB),

 Lazaridis [Mike], of course, has experienced lost advantage first-hand. As co-founder and former co-CEO of Research in Motion (RIM, now called Blackberry), he made the smartphone an indispensable feature of the modern world, only to watch rivals such as Apple and Samsung wrest away Blackberry’s dominance. Now, at 56, he is engaged in a high-stakes race that will determine who will lead the next technology revolution. In the rolling heartland of southwestern Ontario, he is laying the foundation for what he envisions as a new Silicon Valley—a commercial hub based on the promise of quantum technology.

Semeniuk skips over the story of how Blackberry lost its advantage. I came onto that story late in the game when Blackberry was already in serious trouble due to a failure to recognize that the field they helped to create was moving in a new direction. If memory serves, they were trying to keep their technology wholly proprietary which meant that developers couldn’t easily create apps to extend the phone’s features. Blackberry also fought a legal battle in the US with a patent troll draining company resources and energy in proved to be a futile effort.

Since then Lazaridis has invested heavily in quantum research. He gave the University of Waterloo a serious chunk of money as they named their Quantum Nano Centre (QNC) after him and his wife, Ophelia (you can read all about it in my Sept. 25, 2012 posting about the then new centre). The best details for Lazaridis’ investments in Canada’s quantum technology are to be found on the Quantum Valley Investments, About QVI, History webpage,

History-bannerHistory has repeatedly demonstrated the power of research in physics to transform society.  As a student of history and a believer in the power of physics, Mike Lazaridis set out in 2000 to make real his bold vision to establish the Region of Waterloo as a world leading centre for physics research.  That is, a place where the best researchers in the world would come to do cutting-edge research and to collaborate with each other and in so doing, achieve transformative discoveries that would lead to the commercialization of breakthrough  technologies.

Establishing a World Class Centre in Quantum Research:

The first step in this regard was the establishment of the Perimeter Institute for Theoretical Physics.  Perimeter was established in 2000 as an independent theoretical physics research institute.  Mike started Perimeter with an initial pledge of $100 million (which at the time was approximately one third of his net worth).  Since that time, Mike and his family have donated a total of more than $170 million to the Perimeter Institute.  In addition to this unprecedented monetary support, Mike also devotes his time and influence to help lead and support the organization in everything from the raising of funds with government and private donors to helping to attract the top researchers from around the globe to it.  Mike’s efforts helped Perimeter achieve and grow its position as one of a handful of leading centres globally for theoretical research in fundamental physics.

Stephen HawkingPerimeter is located in a Governor-General award winning designed building in Waterloo.  Success in recruiting and resulting space requirements led to an expansion of the Perimeter facility.  A uniquely designed addition, which has been described as space-ship-like, was opened in 2011 as the Stephen Hawking Centre in recognition of one of the most famous physicists alive today who holds the position of Distinguished Visiting Research Chair at Perimeter and is a strong friend and supporter of the organization.

Recognizing the need for collaboration between theorists and experimentalists, in 2002, Mike applied his passion and his financial resources toward the establishment of The Institute for Quantum Computing at the University of Waterloo.  IQC was established as an experimental research institute focusing on quantum information.  Mike established IQC with an initial donation of $33.3 million.  Since that time, Mike and his family have donated a total of more than $120 million to the University of Waterloo for IQC and other related science initiatives.  As in the case of the Perimeter Institute, Mike devotes considerable time and influence to help lead and support IQC in fundraising and recruiting efforts.  Mike’s efforts have helped IQC become one of the top experimental physics research institutes in the world.

Quantum ComputingMike and Doug Fregin have been close friends since grade 5.  They are also co-founders of BlackBerry (formerly Research In Motion Limited).  Doug shares Mike’s passion for physics and supported Mike’s efforts at the Perimeter Institute with an initial gift of $10 million.  Since that time Doug has donated a total of $30 million to Perimeter Institute.  Separately, Doug helped establish the Waterloo Institute for Nanotechnology at the University of Waterloo with total gifts for $29 million.  As suggested by its name, WIN is devoted to research in the area of nanotechnology.  It has established as an area of primary focus the intersection of nanotechnology and quantum physics.

With a donation of $50 million from Mike which was matched by both the Government of Canada and the province of Ontario as well as a donation of $10 million from Doug, the University of Waterloo built the Mike & Ophelia Lazaridis Quantum-Nano Centre, a state of the art laboratory located on the main campus of the University of Waterloo that rivals the best facilities in the world.  QNC was opened in September 2012 and houses researchers from both IQC and WIN.

Leading the Establishment of Commercialization Culture for Quantum Technologies in Canada:

In the Research LabFor many years, theorists have been able to demonstrate the transformative powers of quantum mechanics on paper.  That said, converting these theories to experimentally demonstrable discoveries has, putting it mildly, been a challenge.  Many naysayers have suggested that achieving these discoveries was not possible and even the believers suggested that it could likely take decades to achieve these discoveries.  Recently, a buzz has been developing globally as experimentalists have been able to achieve demonstrable success with respect to Quantum Information based discoveries.  Local experimentalists are very much playing a leading role in this regard.  It is believed by many that breakthrough discoveries that will lead to commercialization opportunities may be achieved in the next few years and certainly within the next decade.

Recognizing the unique challenges for the commercialization of quantum technologies (including risk associated with uncertainty of success, complexity of the underlying science and high capital / equipment costs) Mike and Doug have chosen to once again lead by example.  The Quantum Valley Investment Fund will provide commercialization funding, expertise and support for researchers that develop breakthroughs in Quantum Information Science that can reasonably lead to new commercializable technologies and applications.  Their goal in establishing this Fund is to lead in the development of a commercialization infrastructure and culture for Quantum discoveries in Canada and thereby enable such discoveries to remain here.

Semeniuk goes on to set the stage for Waterloo/Lazaridis vs. Vancouver (from Semeniuk’s 2017 ROB article),

… as happened with Blackberry, the world is once again catching up. While Canada’s funding of quantum technology ranks among the top five in the world, the European Union, China, and the US are all accelerating their investments in the field. Tech giants such as Google [also known as Alphabet], Microsoft and IBM are ramping up programs to develop companies and other technologies based on quantum principles. Meanwhile, even as Lazaridis works to establish Waterloo as the country’s quantum hub, a Vancouver-area company has emerged to challenge that claim. The two camps—one methodically focused on the long game, the other keen to stake an early commercial lead—have sparked an East-West rivalry that many observers of the Canadian quantum scene are at a loss to explain.

Is it possible that some of the rivalry might be due to an influential individual who has invested heavily in a ‘quantum valley’ and has a history of trying to ‘own’ a technology?

Getting back to D-Wave Systems, the Vancouver company, I have written about them a number of times (particularly in 2015; for the full list: input D-Wave into the blog search engine). This June 26, 2015 posting includes a reference to an article in The Economist magazine about D-Wave’s commercial opportunities while the bulk of the posting is focused on a technical breakthrough.

Semeniuk offers an overview of the D-Wave Systems story,

D-Wave was born in 1999, the same year Lazaridis began to fund quantum science in Waterloo. From the start, D-Wave had a more immediate goal: to develop a new computer technology to bring to market. “We didn’t have money or facilities,” says Geordie Rose, a physics PhD who co0founded the company and served in various executive roles. …

The group soon concluded that the kind of machine most scientists were pursing based on so-called gate-model architecture was decades away from being realized—if ever. …

Instead, D-Wave pursued another idea, based on a principle dubbed “quantum annealing.” This approach seemed more likely to produce a working system, even if the application that would run on it were more limited. “The only thing we cared about was building the machine,” says Rose. “Nobody else was trying to solve the same problem.”

D-Wave debuted its first prototype at an event in California in February 2007 running it through a few basic problems such as solving a Sudoku puzzle and finding the optimal seating plan for a wedding reception. … “They just assumed we were hucksters,” says Hilton [Jeremy Hilton, D.Wave senior vice-president of systems]. Federico Spedalieri, a computer scientist at the University of Southern California’s [USC} Information Sciences Institute who has worked with D-Wave’s system, says the limited information the company provided about the machine’s operation provoked outright hostility. “I think that played against them a lot in the following years,” he says.

It seems Lazaridis is not the only one who likes to hold company information tightly.

Back to Semeniuk and D-Wave,

Today [October 2017], the Los Alamos National Laboratory owns a D-Wave machine, which costs about $15million. Others pay to access D-Wave systems remotely. This year , for example, Volkswagen fed data from thousands of Beijing taxis into a machine located in Burnaby [one of the municipalities that make up metro Vancouver] to study ways to optimize traffic flow.

But the application for which D-Wave has the hights hope is artificial intelligence. Any AI program hings on the on the “training” through which a computer acquires automated competence, and the 2000Q [a D-Wave computer] appears well suited to this task. …

Yet, for all the buzz D-Wave has generated, with several research teams outside Canada investigating its quantum annealing approach, the company has elicited little interest from the Waterloo hub. As a result, what might seem like a natural development—the Institute for Quantum Computing acquiring access to a D-Wave machine to explore and potentially improve its value—has not occurred. …

I am particularly interested in this comment as it concerns public funding (from Semeniuk’s article),

Vern Brownell, a former Goldman Sachs executive who became CEO of D-Wave in 2009, calls the lack of collaboration with Waterloo’s research community “ridiculous,” adding that his company’s efforts to establish closer ties have proven futile, “I’ll be blunt: I don’t think our relationship is good enough,” he says. Brownell also point out that, while  hundreds of millions in public funds have flowed into Waterloo’s ecosystem, little funding is available for  Canadian scientists wishing to make the most of D-Wave’s hardware—despite the fact that it remains unclear which core quantum technology will prove the most profitable.

There’s a lot more to Semeniuk’s article but this is the last excerpt,

The world isn’t waiting for Canada’s quantum rivals to forge a united front. Google, Microsoft, IBM, and Intel are racing to develop a gate-model quantum computer—the sector’s ultimate goal. (Google’s researchers have said they will unveil a significant development early next year.) With the U.K., Australia and Japan pouring money into quantum, Canada, an early leader, is under pressure to keep up. The federal government is currently developing  a strategy for supporting the country’s evolving quantum sector and, ultimately, getting a return on its approximately $1-billion investment over the past decade [emphasis mine].

I wonder where the “approximately $1-billion … ” figure came from. I ask because some years ago MP Peter Julian asked the government for information about how much Canadian federal money had been invested in nanotechnology. The government replied with sheets of paper (a pile approximately 2 inches high) that had funding disbursements from various ministries. Each ministry had its own method with different categories for listing disbursements and the titles for the research projects were not necessarily informative for anyone outside a narrow specialty. (Peter Julian’s assistant had kindly sent me a copy of the response they had received.) The bottom line is that it would have been close to impossible to determine the amount of federal funding devoted to nanotechnology using that data. So, where did the $1-billion figure come from?

In any event, it will be interesting to see how the Council of Canadian Academies assesses the ‘quantum’ situation in its more academically inclined, “The State of Science and Technology and Industrial Research and Development in Canada,” when it’s released later this year (2018).

Finally, you can find Semeniuk’s October 2017 article here but be aware it’s behind a paywall.

Whither we goest?

Despite any doubts one might have about Lazaridis’ approach to research and technology, his tremendous investment and support cannot be denied. Without him, Canada’s quantum research efforts would be substantially less significant. As for the ‘cowboys’ in Vancouver, it takes a certain temperament to found a start-up company and it seems the D-Wave folks have more in common with Lazaridis than they might like to admit. As for the Quanta graduate  programme, it’s early days yet and no one should ever count out Alberta.

Meanwhile, one can continue to hope that a more thoughtful approach to regional collaboration will be adopted so Canada can continue to blaze trails in the field of quantum research.

2017 proceedings for the Canadian Science Policy Conference

I received (via email) a December 11, 2017 notice from the Canadian Science Policy Centre that the 2017 Proceedings for the ninth annual conference (Nov. 1 – 3, 2017 in Ottawa, Canada) can now be accessed,

The Canadian Science Policy Centre is pleased to present you the Proceedings of CSPC 2017. Check out the reports and takeaways for each panel session, which have been carefully drafted by a group of professional writers. You can also listen to the audio recordings and watch the available videos. The proceedings page will provide you with the opportunity to immerse yourself in all of the discussions at the conference. Feel free to share the ones you like! Also, check out the CSPC 2017 reports, analyses, and stats in the proceedings.

Click here for the CSPC 2017 Proceedings

CSPC 2017 Interviews

Take a look at the 70+ one-on-one interviews with prominent figures of science policy. The interviews were conducted by the great team of CSPC 2017 volunteers. The interviews feature in-depth perspectives about the conference, panels, and new up and coming projects.

Click here for the CSPC 2017 interviews

Amongst many others, you can find a video of Governor General Julie Payette’s notorious remarks made at the opening ceremonies and which I highlighted in my November 3, 2017 posting about this year’s conference.

The proceedings are organized by day with links to individual pages for each session held that day. Here’s a sample of what is offered on Day 1: Artificial Intelligence and Discovery Science: Playing to Canada’s Strengths,

Artificial Intelligence and Discovery Science: Playing to Canada’s Strengths

Conference Day:
Day 1 – November 1st 2017

Organized by: Friends of the Canadian Institutes of Health Research

Keynote: Alan Bernstein, President and CEO, CIFAR, 2017 Henry G. Friesen International Prizewinner

Speakers: Brenda Andrews, Director, Andrew’s Lab, University of Toronto; Doina Precup, Associate Professor, McGill University; Dr Rémi Quirion, Chief Scientist of Quebec; Linda Rabeneck, Vice President, Prevention and Cancer Control, Cancer Care Ontario; Peter Zandstra, Director, School of Biomedical Engineering, University of British Columbia

Discussants: Henry Friesen, Professor Emeritus, University of Manitoba; Roderick McInnes, Acting President, Canadian Institutes of Health Research and Director, Lady Davis Institute, Jewish General Hospital, McGill University; Duncan J. Stewart, CEO and Scientific Director, Ottawa Hospital Research Institute; Vivek Goel, Vice President, Research and Innovation, University of Toronto

Moderators: Eric Meslin, President & CEO, Council of Canadian Academies; André Picard, Health Reporter and Columnist, The Globe and Mail

Takeaways and recommendations:

The opportunity for Canada

  • The potential impact of artificial intelligence (AI) could be as significant as the industrial revolution of the 19th century.
  • Canada’s global advantage in deep learning (a subset of machine learning) stems from the pioneering work of Geoffrey Hinton and early support from CIFAR and NSERC.
  • AI could mark a turning point in Canada’s innovation performance, fueled by the highest levels of venture capital financing in nearly a decade, and underpinned by publicly funded research at the federal, provincial and institutional levels.
  • The Canadian AI advantage can only be fully realized by developing and importing skilled talent, accessible markets, capital and companies willing to adopt new technologies into existing industries.
  • Canada leads in the combination of functional genomics and machine learning which is proving effective for predicting the functional variation in genomes.
  • AI promises advances in biomedical engineering by connecting chronic diseases – the largest health burden in Canada – to gene regulatory networks by understanding how stem cells make decisions.
  • AI can be effectively deployed to evaluate health and health systems in the general population.

The challenges

  • AI brings potential ethical and economic perils and requires a watchdog to oversee standards, engage in fact-based debate and prepare for the potential backlash over job losses to robots.
  • The ethical, environmental, economic, legal and social (GEL3S) aspects of genomics have been largely marginalized and it’s important not to make the same mistake with AI.
  • AI’s rapid scientific development makes it difficult to keep pace with safeguards and standards.
  • The fields of AI’s and pattern recognition are strongly connected but here is room for improvement.
  • Self-learning algorithms such as Alphaville could lead to the invention of new things that humans currently don’t know how to do. The field is developing rapidly, leading to some concern over the deployment of such systems.

Training future AI professionals

  • Young researchers must be given the oxygen to excel at AI if its potential is to be realized.
  • Students appreciate the breadth of training and additional resources they receive from researchers with ties to both academia and industry.
  • The importance of continuing fundamental research in AI is being challenged by companies such as Facebook, Google and Amazon which are hiring away key talent.
  • The explosion of AI is a powerful illustration of how the importance of fundamental research may only be recognized and exploited after 20 or 30 years. As a result, support for fundamental research, and the students working in areas related to AI, must continue.

A couple comments

To my knowledge, this is the first year the proceedings have been made so easily accessible. In fact, I can’t remember another year where they have been open access. Thank you!

Of course, I have to make a comment about the Day 2 session titled: Does Canada have a Science Culture? The answer is yes and it’s in the province of Ontario. Just take a look at the panel,

Organized by: Kirsten Vanstone, Royal Canadian Institute for Science and Reinhart Reithmeier, Professor, University of Toronto [in Ontario]

Speakers: Chantal Barriault, Director, Science Communication Graduate Program, Laurentian University [in Ontario] and Science North [in Ontario]; Maurice Bitran, CEO, Ontario Science Centre [take a wild guess as to where this institution is located?]; Kelly Bronson, Assistant Professor, Faculty of Social Sciences, University of Ottawa [in Ontario]; Marc LePage, President and CEO, Genome Canada [in Ontario]

Moderator: Ivan Semeniuk, Science Reporter, The Globe and Mail [in Ontario]

In fact, all of the institutions are in southern Ontario, even, the oddly named Science North.

I know from bitter experience it’s hard to put together panels but couldn’t someone from another province have participated?

Ah well, here’s hoping for 2018 and for a new location. After Ottawa as the CSPC site for three years in a row, please don’t make it a fourth year in a row.

Announcing Canada’s Chief Science Advisor: Dr. Mona Nemer

Thanks to the Canadian Science Policy Centre’s September 26, 2017 announcement (received via email) a burning question has been answered,

After great anticipation, Prime Minister Trudeau along with Minister Duncan have announced Canada’s Chief Science Advisor, Dr. Mona Nemer, [emphasis mine]  at a ceremony at the House of Commons. The Canadian Science Policy Centre welcomes this exciting news and congratulates Dr. Nemer on her appointment in this role and we wish her the best in carrying out her duties in this esteemed position. CSPC is looking forward to working closely with Dr. Nemer for the Canadian science policy community. Mehrdad Hariri, CEO & President of the CSPC, stated, “Today’s historic announcement is excellent news for science in Canada, for informed policy-making and for all Canadians. We look forward to working closely with the new Chief Science Advisor.”

In fulfilling our commitment to keep the community up to date and informed regarding science, technology, and innovation policy issues, CSPC has been compiling all news, publications, and editorials in recognition of the importance of the Federal Chief Science Officer as it has been developing, as you may see by clicking here.

We invite your opinions regarding the new Chief Science Advisor, to be published on our CSPC Featured Editorial page. We will publish your reactions on our website, sciencepolicy.ca on our Chief Science Advisor page.

Please send your opinion pieces to editorial@sciencepolicy.ca.

Here are a few (very few) details from the Prime Minister’s (Justin Trudeau) Sept. 26, 2017 press release making the official announcement,

The Government of Canada is committed to strengthen science in government decision-making and to support scientists’ vital work.

In keeping with these commitments, the Prime Minister, Justin Trudeau, today announced Dr. Mona Nemer as Canada’s new Chief Science Advisor, following an open, transparent, and merit-based selection process.  

We know Canadians value science. As the new Chief Science Advisor, Dr. Nemer will help promote science and its real benefits for Canadians—new knowledge, novel technologies, and advanced skills for future jobs. These breakthroughs and new opportunities form an essential part of the Government’s strategy to secure a better future for Canadian families and to grow Canada’s middle class.

Dr. Nemer is a distinguished medical researcher whose focus has been on the heart, particularly on the mechanisms of heart failure and congenital heart diseases. In addition to publishing over 200 scholarly articles, her research has led to new diagnostic tests for heart failure and the genetics of cardiac birth defects. Dr. Nemer has spent more than ten years as the Vice-President, Research at the University of Ottawa, has served on many national and international scientific advisory boards, and is a Fellow of the Royal Society of Canada, a Member of the Order of Canada, and a Chevalier de l’Ordre du Québec.

As Canada’s new top scientist, Dr. Nemer will provide impartial scientific advice to the Prime Minister and the Minister of Science. She will also make recommendations to help ensure that government science is fully available and accessible to the public, and that federal scientists remain free to speak about their work. Once a year, she will submit a report about the state of federal government science in Canada to the Prime Minister and the Minister of Science, which will also be made public.

Quotes

“We have taken great strides to fulfill our promise to restore science as a pillar of government decision-making. Today, we took another big step forward by announcing Dr. Mona Nemer as our Chief Science Advisor. Dr. Nemer brings a wealth of expertise to the role. Her advice will be invaluable and inform decisions made at the highest levels. I look forward to working with her to promote a culture of scientific excellence in Canada.”
— The Rt. Hon. Justin Trudeau, Prime Minister of Canada

“A respect for science and for Canada’s remarkable scientists is a core value for our government. I look forward to working with Dr. Nemer, Canada’s new Chief Science Advisor, who will provide us with the evidence we need to make decisions about what matters most to Canadians: their health and safety, their families and communities, their jobs, environment and future prosperity.”
— The Honourable Kirsty Duncan, Minister of Science

“I am honoured and excited to be Canada’s Chief Science Advisor. I am very pleased to be representing Canadian science and research – work that plays a crucial role in protecting and improving the lives of people everywhere. I look forward to advising the Prime Minister and the Minister of Science and working with the science community, policy makers, and the public to make science part of government policy making.”
— Dr. Mona Nemer, Chief Science Advisor, Canada

Quick Facts

  • Dr. Nemer is also a Knight of the Order of Merit of the French Republic, and has been awarded honorary doctorates from universities in France and Finland.
  • The Office of the Chief Science Advisor will be housed at Innovation, Science and Economic Development and supported by a secretariat.

Nemers’ Wikipedia entry does not provide much additional information although you can find out a bit more on her University of Ottawa page. Brian Owens in a Sept. 26, 2017 article for the American Association for the Advancement of Science’s (AAAS) Science Magazine provides a bit more detail, about this newly created office and its budget

Nemer’s office will have a $2 million budget, and she will report to both Trudeau and science minister Kirsty Duncan. Her mandate includes providing scientific advice to government ministers, helping keep government-funded science accessible to the public, and protecting government scientists from being muzzled.

Ivan Semeniuk’s Sept. 26, 2017 article for the Globe and Mail newspaper about Nemer’s appointment is the most informative (that I’ve been able to find),

Mona Nemer, a specialist in the genetics of heart disease and a long time vice-president of research at the University of Ottawa, has been named Canada’s new chief science advisor.

The appointment, announced Tuesday [Sept. 26, 2017] by Prime Minister Justin Trudeau, comes two years after the federal Liberals pledged to reinstate the position during the last election campaign and nearly a decade after the previous version of the role was cut by then prime minister Stephen Harper.

Dr. Nemer steps into the job of advising the federal government on science-related policy at a crucial time. Following a landmark review of Canada’s research landscape [Naylor report] released last spring, university-based scientists are lobbying hard for Ottawa to significantly boost science funding, one of the report’s key recommendations. At the same time, scientists and science-advocacy groups are increasingly scrutinizing federal actions on a range of sensitive environment and health-related issues to ensure the Trudeau government is making good on promises to embrace evidence-based decision making.

A key test of the position’s relevance for many observers will be the extent to which Dr. Nemer is able to speak her mind on matters where science may run afoul of political expediency.

Born in 1957, Dr. Nemer grew up in Lebanon and pursued an early passion for chemistry at a time and place where women were typically discouraged from entering scientific fields. With Lebanon’s civil war making it increasingly difficult for her to pursue her studies, her family was able to arrange for her to move to the United States, where she completed an undergraduate degree at Wichita State University in Kansas.

A key turning point came in the summer of 1977 when Dr. Nemer took a trip with friends to Montreal. She quickly fell for the city and, in short order, managed to secure acceptance to McGill University, where she received a PhD in 1982. …

It took a lot of searching to find out that Nemer was born in Lebanon and went to the United States first. A lot of immigrants and their families view Canada as a second choice and Nemer and her family would appear to have followed that pattern. It’s widely believed (amongst Canadians too) that the US is where you go for social mobility. I’m not sure if this is still the case but at one point in the 1980s Israel ranked as having the greatest social mobility in the world. Canada came in second while the US wasn’t even third or fourth ranked.

It’s the second major appointment by Justin Trudeau in the last few months to feature a woman who speaks French. The first was Julie Payette, former astronaut and Québecker, as the upcoming Governor General (there’s more detail and a whiff of sad scandal in this Aug. 21, 2017 Canadian Broadcasting Corporation online news item). Now there’s Dr. Mona Nemer who’s lived both in Québec and Ontario. Trudeau and his feminism, eh? Also, his desire to keep Québeckers happy (more or less).

I’m not surprised by the fact that Nemer has been based in Ottawa for several years. I guess they want someone who’s comfortable with the government apparatus although I for one think a little fresh air might be welcome. After all, the Minister of Science, Kirsty Duncan, is from Toronto which between Nemer and Duncan gives us the age-old Canadian government trifecta (geographically speaking), Ottawa-Montréal-Toronto.

Two final comments, I am surprised that Duncan did not make the announcement. After all, it was in her 2015 mandate letter.But perhaps Paul Wells in his acerbic June 29, 2017 article for Macleans hints at the reason as he discusses the Naylor report (review of fundamental science mentioned in Semeniuk’s article and for which Nemer is expected to provide advice),

The Naylor report represents Canadian research scientists’ side of a power struggle. The struggle has been continuing since Jean Chrétien left office. After early cuts, he presided for years over very large increases to the budgets of the main science granting councils. But since 2003, governments have preferred to put new funding dollars to targeted projects in applied sciences. …

Naylor wants that trend reversed, quickly. He is supported in that call by a frankly astonishingly broad coalition of university administrators and working researchers, who until his report were more often at odds. So you have the group representing Canada’s 15 largest research universities and the group representing all universities and a new group representing early-career researchers and, as far as I can tell, every Canadian scientist on Twitter. All backing Naylor. All fundamentally concerned that new money for research is of no particular interest if it does not back the best science as chosen by scientists, through peer review.

The competing model, the one preferred by governments of all stripes, might best be called superclusters. Very large investments into very large projects with loosely defined scientific objectives, whose real goal is to retain decorated veteran scientists and to improve the Canadian high-tech industry. Vast and sprawling labs and tech incubators, cabinet ministers nodding gravely as world leaders in sexy trendy fields sketch the golden path to Jobs of Tomorrow.

You see the imbalance. On one side, ribbons to cut. On the other, nerds experimenting on tapeworms. Kirsty Duncan, a shaky political performer, transparently a junior minister to the supercluster guy, with no deputy minister or department reporting to her, is in a structurally weak position: her title suggests she’s science’s emissary to the government, but she is not equipped to be anything more than government’s emissary to science.

Second,  our other science minister, Navdeep Bains, Minister of Innovation, Science  and Economic Development does not appear to have been present at the announcement. Quite surprising given where her office will located (from the government’s Sept. 26, 2017 press release in Quick Facts section ) “The Office of the Chief Science Advisor will be housed at Innovation, Science and Economic Development and supported by a secretariat.”

Finally, Wells’ article is well worth reading in its entirety and for those who are information gluttons, I have a three part series on the Naylor report, published June 8, 2017,

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

This is the final commentary on the report titled,(INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research). Part 1 of my commentary having provided some introductory material and first thoughts about the report, Part 2 offering more detailed thoughts; this part singles out ‘special cases’, sums up* my thoughts (circling back to ideas introduced in the first part), and offers link to other commentaries.

Special cases

Not all of the science funding in Canada is funneled through the four agencies designed for that purpose, (The Natural Sciences and Engineering Research Council (NSERC), Social Sciences and Humanities Research Council (SSHRC), Canadian Institutes of Health Research (CIHR) are known collectively as the tri-council funding agencies and are focused on disbursement of research funds received from the federal government. The fourth ‘pillar’ agency, the Canada Foundation for Innovation (CFI) is focused on funding for infrastructure and, technically speaking, is a 3rd party organization along with MITACS, CANARIE, the Perimeter Institute, and others.

In any event, there are also major research facilities and science initiatives which may receive direct funding from the federal government bypassing the funding agencies and, it would seem, peer review. For example, I featured this in my April 28, 2015 posting about the 2015 federal budget,

The $45 million announced for TRIUMF will support the laboratory’s role in accelerating science in Canada, an important investment in discovery research.

While the news about the CFI seems to have delighted a number of observers, it should be noted (as per Woodgett’s piece) that the $1.3B is to be paid out over six years ($220M per year, more or less) and the money won’t be disbursed until the 2017/18 fiscal year. As for the $45M designated for TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics), this is exciting news for the lab which seems to have bypassed the usual channels, as it has before, to receive its funding directly from the federal government. [emphases mine]

The Naylor report made this recommendation for Canada’s major research facilities, (MRF)

We heard from many who recommended that the federal government should manage its investments in “Big Science” in a more coordinated manner, with a cradle-to-grave perspective. The Panel agrees. Consistent with NACRI’s overall mandate, it should work closely with the CSA [Chief Science Advisor] in establishing a Standing Committee on Major Research Facilities (MRFs).

CFI defines a national research facility in the following way:

We define a national research facility as one that addresses the needs of a community of Canadian researchers representing a critical mass of users distributed across the country. This is done by providing shared access to substantial and advanced specialized equipment, services, resources, and scientific and technical personnel. The facility supports leading-edge research and technology development, and promotes the mobilization of knowledge and transfer of technology to society. A national research facility requires resource commitments well beyond the capacity of any one institution. A national research facility, whether single-sited, distributed or virtual, is specifically identified or recognized as serving pan-Canadian needs and its governance and management structures reflect this mandate.8

We accept this definition as appropriate for national research facilities to be considered by the Standing Committee on MRFs, but add that the committee should:

• define a capital investment or operating cost level above which such facilities are considered “major” and thus require oversight by this committee (e.g., defined so as to include the national MRFs proposed in Section 6.3: Compute Canada, Canadian Light Source, Canada’s National Design Network, Canadian Research Icebreaker Amundsen, International Vaccine Centre, Ocean Networks Canada, Ocean Tracking Network, and SNOLAB plus the TRIUMF facility); and

• consider international MRFs in which Canada has a significant role, such as astronomical telescopes of global significance.

The structure and function of this Special Standing Committee would closely track the proposal made in 2006 by former NSA [National Science Advisor] Dr Arthur Carty. We return to this topic in Chapter 6. For now, we observe that this approach would involve:

• a peer-reviewed decision on beginning an investment;

• a funded plan for the construction and operation of the facility, with continuing oversight by a peer specialist/agency review group for the specific facility;

• a plan for decommissioning; and

• a regular review scheduled to consider whether the facility still serves current needs.

We suggest that the committee have 10 members, with an eminent scientist as Chair. The members should include the CSA, two representatives from NACRI for liaison, and seven others. The other members should include Canadian and international scientists from a broad range of disciplines and experts on the construction, operation, and administration of MRFs. Consideration should be given to inviting the presidents of NRC [National Research Council of Canada] and CFI to serve as ex-officio members. The committee should be convened by the CSA, have access to the Secretariat associated with the CSA and NACRI, and report regularly to NACRI. (pp. 66-7 print; pp. 100-1 PDF)

I have the impression there’s been some ill feeling over the years regarding some of the major chunks of money given for ‘big science’. At a guess, direct appeals to a federal government that has no official mechanism for assessing the proposed ‘big science’ whether that means a major research facility (e.g., TRIUMF) or major science initiative (e.g., Pan Canadian Artificial Intelligence Strategy [keep reading to find out how I got the concept of a major science initiative wrong]) or 3rd party (MITACS) has seemed unfair to those who have to submit funding applications and go through vetting processes. This recommendation would seem to be an attempt to redress some of the issues.

Moving onto the third-party delivery and matching programs,

Three bodies in particular are the largest of these third-party organizations and illustrate the challenges of evaluating contribution agreements: Genome Canada, Mitacs, and Brain Canada. Genome Canada was created in 2000 at a time when many national genomics initiatives were being developed in the wake of the Human Genome Project. It emerged from a “bottom-up” design process driven by genomic scientists to complement existing programs by focusing on large-scale projects and technology platforms. Its funding model emphasized partnerships and matching funds to leverage federal commitments with the objective of rapidly ramping up genomics research in Canada.

This approach has been successful: Genome Canada has received $1.1 billion from the Government of Canada since its creation in 2000, and has raised over $1.6 billion through co-funding commitments, for a total investment in excess of $2.7 billion.34 The scale of Genome Canada’s funding programs allows it to support large-scale genomics research that the granting councils might otherwise not be able to fund. Genome Canada also supports a network of genomics technology and innovation centres with an emphasis on knowledge translation and has built domestic and international strategic partnerships. While its primary focus has been human health, it has also invested extensively in agriculture, forestry, fisheries, environment, and, more recently, oil and gas and mining— all with a view to the application and commercialization of genomic biotechnology.

Mitacs attracts, trains, and retains HQP [highly qualified personnel] in the Canadian research enterprise. Founded in 1999 as an NCE [Network Centre for Excellence], it was developed at a time when enrolments in graduate programs had flat-lined, and links between mathematics and industry were rare. Independent since 2011, Mitacs has focused on providing industrial research internships and postdoctoral fellowships, branching out beyond mathematics to all disciplines. It has leveraged funding effectively from the federal and provincial governments, industry, and not-for-profit organizations. It has also expanded internationally, providing two-way research mobility. Budget 2015 made Mitacs the single mechanism of federal support for postsecondary research internships with a total federal investment of $135.4 million over the next five years. This led to the wind-down of NSERC’s Industrial Postgraduate Scholarships Program. With matching from multiple other sources, Mitacs’ average annual budget is now $75 to $80 million. The organization aims to more than double the number of internships it funds to 10,000 per year by 2020.35

Finally, Brain Canada was created in 1998 (originally called NeuroScience Canada) to increase the scale of brain research funding in Canada and widen its scope with a view to encouraging interdisciplinary collaboration. In 2011 the federal government established the Canada Brain Research Fund to expand Brain Canada’s work, committing $100 million in new public investment for brain research to be matched 1:1 through contributions raised by Brain Canada. According to the STIC ‘State of the Nation’ 2014 report, Canada’s investment in neuroscience research is only about 40 per cent of that in the U.S. after adjusting for the size of the U.S. economy.36 Brain Canada may be filling a void left by declining success rates and flat funding at CIHR.

Recommendation and Elaboration

The Panel noted that, in general, third-party organizations for delivering research funding are particularly effective in leveraging funding from external partners. They fill important gaps in research funding and complement the work of the granting councils and CFI. At the same time, we questioned the overall efficiency of directing federal research funding through third-party organizations, noting that our consultations solicited mixed reactions. Some respondents favoured more overall funding concentrated in the agencies rather than diverting the funding to third-party entities. Others strongly supported the business models of these organizations.

We have indicated elsewhere that a system-wide review panel such as ours is not well-suited to examine these and other organizations subject to third-party agreements. We recommended instead in Chapter 4 that a new oversight body, NACRI, be created to provide expert advice and guidance on when a new entity might reasonably be supported by such an agreement. Here we make the case for enlisting NACRI in determining not just the desirability of initiating a new entity, but also whether contribution agreements should continue and, if so, on what terms.

The preceding sketches of three diverse organizations subject to contribution agreements help illustrate the rationale for this proposal. To underscore the challenges of adjudication, we elaborate briefly. Submissions highlighted that funding from Genome Canada has enabled fundamental discoveries to be made and important knowledge to be disseminated to the Canadian and international research communities. However, other experts suggested a bifurcation with CIHR or NSERC funding research-intensive development of novel technologies, while Genome Canada would focus on application (e.g., large-scale whole genome studies) and commercialization of existing technologies. From the Panel’s standpoint, these observations underscore the subtleties of determining where and how Genome Canada’s mandate overlaps and departs from that of CIHR and NSERC as well as CFI. Added to the complexity of any assessment is Genome Canada’s meaningful role in providing large-scale infrastructure grants and its commercialization program. Mitacs, even more than Genome Canada, bridges beyond academe to the private and non-profit sectors, again highlighting the advantage of having any review overseen by a body with representatives from both spheres. Finally, as did the other two entities, Brain Canada won plaudits, but some interchanges saw discussants ask when and whether it might be more efficient to flow this type of funding on a programmatic basis through CIHR.

We emphasize that the Panel’s intent here is neither to signal agreement nor disagreement with any of these submissions or discussions. We simply wish to highlight that decisions about ongoing funding will involve expert judgments informed by deep expertise in the relevant research areas and, in two of these examples, an ability to bridge from research to innovation and from extramural independent research to the private and non-profit sectors. Under current arrangements, management consulting firms and public servants drive the review and decision-making processes. Our position is that oversight by NACRI and stronger reliance on advice from content experts would be prudent given the sums involved and the nature of the issues. (pp. 102-4 print; pp. 136-8 PDF)

I wasn’t able to find anything other than this about major science initiatives (MSIs),

Big Science facilities, such as MSIs, have had particular challenges in securing ongoing stable operating support. Such facilities often have national or international missions. We termed them “major research facilities” (MRFs) xi in Chapter 4, and proposed an improved oversight mechanism that would provide lifecycle stewardship of these national science resources, starting with the decision to build them in the first instance. (p. 132 print; p. 166 PDF)

So, an MSI is an MRF? (head shaking) Why two terms for the same thing? And, how does the newly announced Pan Canadian Artificial Intelligence Strategy fit into the grand scheme of things?

The last ‘special case’ I’m featuring is the ‘Programme for Research Chairs for Excellent Scholars and Scientists’. Here’s what the report had to say about the state of affairs,

The major sources of federal funding for researcher salary support are the CRC [Canada Research Chair]and CERC [Canada Excellence Reseach Chair] programs. While some salary support is provided through council-specific programs, these investments have been declining over time. The Panel supports program simplification but, as noted in Chapter 5, we are concerned about the gaps created by the elimination of these personnel awards. While we focus here on the CRC and CERC programs because of their size, profile, and impact, our recommendations will reflect these concerns.

The CRC program was launched in 2000 and remains the Government of Canada’s flagship initiative to keep Canada among the world’s leading countries in higher education R&D. The program has created 2,000 research professorships across Canada with the stated aim “to attract and retain some of the world’s most accomplished and promising minds”5 as part of an effort to curtail the potential academic brain drain to the U.S. and elsewhere. The program is a tri-council initiative with most Chairs allocated to eligible institutions based on the national proportion of total research grant funding they receive from the three granting councils. The vast majority of Chairs are distributed based on area of research, of which 45 per cent align with NSERC, 35 per cent with CIHR, and 20 per cent with SSHRC; an additional special allocation of 120 Chairs can be used in the area of research chosen by the universities receiving the Chairs. There are two types of Chairs: Tier 1 Chairs are intended for outstanding researchers who are recognized as world leaders in their fields and are renewable; Tier 2 Chairs are targeted at exceptional emerging researchers with the potential to become leaders in their field and can be renewed once. Awards are paid directly to the universities and are valued at $200,000 annually for seven years (Tier 1) or $100,000 annually for five years (Tier 2). The program notes that Tier 2 Chairs are not meant to be a feeder group for Tier 1 Chairs; rather, universities are expected to develop a succession plan for their Tier 2 Chairs.

The CERC program was established in 2008 with the expressed aim of “support[ing] Canadian universities in their efforts to build on Canada’s growing reputation as a global leader in research and innovation.”6 The program aims to award world-renowned researchers and their teams with up to $10 million over seven years to establish ambitious research programs at Canadian universities, making these awards among the most prestigious and generous available internationally. There are currently 27 CERCs with funding available to support up to 30 Chairs, which are awarded in the priority areas established by the federal government. The awards, which are not renewable, require 1:1 matching funds from the host institution, and all degree-granting institutions that receive tri-council funding are eligible to compete. Both the CERC and CRC programs are open to Canadians and foreign citizens. However, until the most recent round, the CERCs have been constrained to the government’s STEM-related priorities; this has limited their availability to scholars and scientists from SSHRC-related disciplines. As well, even though Canadian-based researchers are eligible for CERC awards, the practice has clearly been to use them for international recruitment with every award to date going to researchers from abroad.

Similar to research training support, the funding for salary support to researchers and scholars is a significant proportion of total federal research investments, but relatively small with respect to the research ecosystem as a whole. There are more than 45,000 professors and teaching staff at Canada’s universities7 and a very small fraction hold these awards. Nevertheless, the programs can support research excellence by repatriating top Canadian talent from abroad and by recruiting and retaining top international talent in Canada.

The programs can also lead by example in promoting equity and diversity in the research enterprise. Unfortunately, both the CRC and CERC programs suffer from serious challenges regarding equity and diversity, as described in Chapter 5. Both programs have been criticized in particular for under-recruitment of women.

While the CERC program has recruited exclusively from outside Canada, the CRC program has shown declining performance in that regard. A 2016 evaluation of the CRC program8  observed that a rising number of chairholders were held by nominees who originated from within the host institution (57.5 per cent), and another 14.4 per cent had been recruited from other Canadian institutions. The Panel acknowledges that some of these awards may be important to retaining Canadian talent. However, we were also advised in our consultations that CRCs are being used with some frequency to offset salaries as part of regular faculty complement planning.

The evaluation further found that 28.1 per cent of current chairholders had been recruited from abroad, a decline from 32 per cent in the 2010 evaluation. That decline appears set to continue. The evaluation reported that “foreign nominees accounted, on average, for 13 per cent and 15 per cent respectively of new Tier 1 and Tier 2 nominees over the five-year period 2010 to 2014”, terming it a “large decrease” from 2005 to 2009 when the averages respectively were 32 per cent and 31 per cent. As well, between 2010-11 and 2014-15, the attrition rate for chairholders recruited from abroad was 75 per cent higher than for Canadian chairholders, indicating that the program is also falling short in its ability to retain international talent.9

One important factor here appears to be the value of the CRC awards. While they were generous in 2000, their value has remained unchanged for some 17 years, making it increasingly difficult to offer the level of support that world-leading research professors require. The diminishing real value of the awards also means that Chair positions are becoming less distinguishable from regular faculty positions, threatening the program’s relevance and effectiveness. To rejuvenate this program and make it relevant for recruitment and retention of top talent, it seems logical to take two steps:

• ask the granting councils and the Chairs Secretariat to work with universities in developing a plan to restore the effectiveness of these awards; and

• once that plan is approved, increase the award values by 35 per cent, thereby restoring the awards to their original value and making them internationally competitive once again.

In addition, the Panel observes that the original goal was for the program to fund 2,000 Chairs. Due to turnover and delays in filling Chair positions, approximately 10 to 15 per cent of them are unoccupied at any one time.i As a result, the program budget was reduced by $35 million in 2012. However, the occupancy rate has continued to decline since then, with an all-time low of only 1,612 Chair positions (80.6 per cent) filled as of December 2016. The Panel is dismayed by this inefficiency, especially at a time when Tier 2 Chairs remain one of the only external sources of salary support for ECRs [early career researchers]—a group that represents the future of Canadian research and scholarship. (pp. 142-4 print; pp. 176-8 PDF)

I think what you can see as a partial subtext in this report and which I’m attempting to highlight here in ‘special cases’ is a balancing act between supporting a broad range of research inquiries and focusing or pouring huge sums of money into ‘important’ research inquiries for high impact outcomes.

Final comments

There are many things to commend this report including the writing style. The notion that more coordination is needed amongst the various granting agencies, that greater recognition (i.e,, encouragement and funding opportunities) should be given to boundary-crossing research, and that we need to do more interprovincial collaboration is welcome. And yes, they want more money too. (That request is perfectly predictable. When was the last time a report suggested less funding?) Perhaps more tellingly, the request for money is buttressed with a plea to make it partisan-proof. In short, that funding doesn’t keep changing with the political tides.

One area that was not specifically mentioned, except when discussing prizes, was mathematics. I found that a bit surprising given how important the field of mathematics is to  to virtually all the ‘sciences’. A 2013 report, Spotlight on Science, suggests there’s a problem(as noted my Oct. 9, 2013 posting about that report,  (I also mention Canada’s PISA scores [Programme for International Student Assessment] by the OECD [Organization for Economic Cooperation and Development], which consistently show Canadian students at the age of 15 [grade 10] do well) ,

… it appears that we have high drop out rates in the sciences and maths, from an Oct. 8, 2013 news item on the CBC (Canadian Broadcasting Corporation) website,

… Canadians are paying a heavy price for the fact that less than 50 per cent of Canadian high school students graduate with senior courses in science, technology, engineering and math (STEM) at a time when 70 per cent of Canada’s top jobs require an education in those fields, said report released by the science education advocacy group Let’s Talk Science and the pharmaceutical company Amgen Canada.

Spotlight on Science Learning 2013 compiles publicly available information about individual and societal costs of students dropping out STEM courses early.

Even though most provinces only require math and science courses until Grade 10, the report [Spotlight on Science published by Let’s Talk Science and pharmaceutical company Amgen Canada) found students without Grade 12 math could expect to be excluded from 40 to 75 per cent of programs at Canadian universities, and students without Grade 11 could expect to be excluded from half of community college programs. [emphasis mine]

While I realize that education wasn’t the panel’s mandate they do reference the topic  elsewhere and while secondary education is a provincial responsibility there is a direct relationship between it and postsecondary education.

On the lack of imagination front, there was some mention of our aging population but not much planning or discussion about integrating older researchers into the grand scheme of things. It’s all very well to talk about the aging population but shouldn’t we start introducing these ideas into more of our discussions on such topics as research rather than only those discussions focused on aging?

Continuing on with the lack of  imagination and lack of forethought, I was not able to find any mention of independent scholars. The assumption, as always, is that one is affiliated with an institution. Given the ways in which our work world is changing with fewer jobs at the institutional level, it seems the panel was not focused on important and fra reaching trends. Also, there was no mention of technologies, such as artificial intelligence, that could affect basic research. One other thing from my wish list, which didn’t get mentioned, art/science or SciArt. Although that really would have been reaching.

Weirdly, one of the topics the panel did note, the pitiifull lack of interprovincial scientific collaboration, was completely ignored when it came time for recommendations.

Should you spot any errors in this commentary, please do drop me a comment.

Other responses to the report:

Nassif Ghoussoub (Piece of Mind blog; he’s a professor mathematics at the University of British Columbia; he attended one of the roundtable discussions held by the panel). As you might expect, he focuses on the money end of things in his May 1, 2017 posting.

You can find a series of essays about the report here under the title Response to Naylor Panel Report ** on the Canadian Science Policy Centre website.

There’s also this May 31, 2017 opinion piece by Jamie Cassels for The Vancouver Sun exhorting us to go forth collaborate internationally, presumably with added funding for the University of Victoria of which Cassels is the president and vice-chancellor. He seems not to have noticed that Canadian do much more poorly with interprovincial collaboration.

*ETA June 21, 2017: I’ve just stumbled across Ivan Semeniuk’s April 10, 2017 analysis (Globe and Mail newspaper) of the report. It’s substantive and well worth checking out.*

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 1

Part 2

*’up’ added on June 8, 2017 at 15:10 hours PDT.

**’Science Funding Review Panel Repor’t was changed to ‘Responses to Naylor Panel Report’ on June 22, 2017.