Tag Archives: Marc LePage

2017 proceedings for the Canadian Science Policy Conference

I received (via email) a December 11, 2017 notice from the Canadian Science Policy Centre that the 2017 Proceedings for the ninth annual conference (Nov. 1 – 3, 2017 in Ottawa, Canada) can now be accessed,

The Canadian Science Policy Centre is pleased to present you the Proceedings of CSPC 2017. Check out the reports and takeaways for each panel session, which have been carefully drafted by a group of professional writers. You can also listen to the audio recordings and watch the available videos. The proceedings page will provide you with the opportunity to immerse yourself in all of the discussions at the conference. Feel free to share the ones you like! Also, check out the CSPC 2017 reports, analyses, and stats in the proceedings.

Click here for the CSPC 2017 Proceedings

CSPC 2017 Interviews

Take a look at the 70+ one-on-one interviews with prominent figures of science policy. The interviews were conducted by the great team of CSPC 2017 volunteers. The interviews feature in-depth perspectives about the conference, panels, and new up and coming projects.

Click here for the CSPC 2017 interviews

Amongst many others, you can find a video of Governor General Julie Payette’s notorious remarks made at the opening ceremonies and which I highlighted in my November 3, 2017 posting about this year’s conference.

The proceedings are organized by day with links to individual pages for each session held that day. Here’s a sample of what is offered on Day 1: Artificial Intelligence and Discovery Science: Playing to Canada’s Strengths,

Artificial Intelligence and Discovery Science: Playing to Canada’s Strengths

Conference Day:
Day 1 – November 1st 2017

Organized by: Friends of the Canadian Institutes of Health Research

Keynote: Alan Bernstein, President and CEO, CIFAR, 2017 Henry G. Friesen International Prizewinner

Speakers: Brenda Andrews, Director, Andrew’s Lab, University of Toronto; Doina Precup, Associate Professor, McGill University; Dr Rémi Quirion, Chief Scientist of Quebec; Linda Rabeneck, Vice President, Prevention and Cancer Control, Cancer Care Ontario; Peter Zandstra, Director, School of Biomedical Engineering, University of British Columbia

Discussants: Henry Friesen, Professor Emeritus, University of Manitoba; Roderick McInnes, Acting President, Canadian Institutes of Health Research and Director, Lady Davis Institute, Jewish General Hospital, McGill University; Duncan J. Stewart, CEO and Scientific Director, Ottawa Hospital Research Institute; Vivek Goel, Vice President, Research and Innovation, University of Toronto

Moderators: Eric Meslin, President & CEO, Council of Canadian Academies; André Picard, Health Reporter and Columnist, The Globe and Mail

Takeaways and recommendations:

The opportunity for Canada

  • The potential impact of artificial intelligence (AI) could be as significant as the industrial revolution of the 19th century.
  • Canada’s global advantage in deep learning (a subset of machine learning) stems from the pioneering work of Geoffrey Hinton and early support from CIFAR and NSERC.
  • AI could mark a turning point in Canada’s innovation performance, fueled by the highest levels of venture capital financing in nearly a decade, and underpinned by publicly funded research at the federal, provincial and institutional levels.
  • The Canadian AI advantage can only be fully realized by developing and importing skilled talent, accessible markets, capital and companies willing to adopt new technologies into existing industries.
  • Canada leads in the combination of functional genomics and machine learning which is proving effective for predicting the functional variation in genomes.
  • AI promises advances in biomedical engineering by connecting chronic diseases – the largest health burden in Canada – to gene regulatory networks by understanding how stem cells make decisions.
  • AI can be effectively deployed to evaluate health and health systems in the general population.

The challenges

  • AI brings potential ethical and economic perils and requires a watchdog to oversee standards, engage in fact-based debate and prepare for the potential backlash over job losses to robots.
  • The ethical, environmental, economic, legal and social (GEL3S) aspects of genomics have been largely marginalized and it’s important not to make the same mistake with AI.
  • AI’s rapid scientific development makes it difficult to keep pace with safeguards and standards.
  • The fields of AI’s and pattern recognition are strongly connected but here is room for improvement.
  • Self-learning algorithms such as Alphaville could lead to the invention of new things that humans currently don’t know how to do. The field is developing rapidly, leading to some concern over the deployment of such systems.

Training future AI professionals

  • Young researchers must be given the oxygen to excel at AI if its potential is to be realized.
  • Students appreciate the breadth of training and additional resources they receive from researchers with ties to both academia and industry.
  • The importance of continuing fundamental research in AI is being challenged by companies such as Facebook, Google and Amazon which are hiring away key talent.
  • The explosion of AI is a powerful illustration of how the importance of fundamental research may only be recognized and exploited after 20 or 30 years. As a result, support for fundamental research, and the students working in areas related to AI, must continue.

A couple comments

To my knowledge, this is the first year the proceedings have been made so easily accessible. In fact, I can’t remember another year where they have been open access. Thank you!

Of course, I have to make a comment about the Day 2 session titled: Does Canada have a Science Culture? The answer is yes and it’s in the province of Ontario. Just take a look at the panel,

Organized by: Kirsten Vanstone, Royal Canadian Institute for Science and Reinhart Reithmeier, Professor, University of Toronto [in Ontario]

Speakers: Chantal Barriault, Director, Science Communication Graduate Program, Laurentian University [in Ontario] and Science North [in Ontario]; Maurice Bitran, CEO, Ontario Science Centre [take a wild guess as to where this institution is located?]; Kelly Bronson, Assistant Professor, Faculty of Social Sciences, University of Ottawa [in Ontario]; Marc LePage, President and CEO, Genome Canada [in Ontario]

Moderator: Ivan Semeniuk, Science Reporter, The Globe and Mail [in Ontario]

In fact, all of the institutions are in southern Ontario, even, the oddly named Science North.

I know from bitter experience it’s hard to put together panels but couldn’t someone from another province have participated?

Ah well, here’s hoping for 2018 and for a new location. After Ottawa as the CSPC site for three years in a row, please don’t make it a fourth year in a row.

Council of Canadian Academies and science policy for Alberta

The Council of Canadian Academies (CCA) has expanded its approach from assembling expert panels to report on questions posed by various Canadian government agencies (assessments) to special reports from a three-member panel and, now, to a workshop on the province of Alberta’s science policy ideas. From an Oct. 27, 2016 CCA news release (received via email),

The Council of Canadian Academies (CCA) is pleased to announce that it is undertaking an expert panel workshop on science policy ideas under development in Alberta. The workshop will engage national and international experts to explore various dimensions of sub-national science systems and the role of sub-national science policy.

“We are pleased to undertake this project,” said Eric M. Meslin, PhD, FCAHS, President and CEO of the CCA. “It is an assessment that could discuss strategies that have applications in Alberta, across Canada, and elsewhere.”

A two-day workshop, to be undertaken in November 2016, will bring together a multidisciplinary and multi-sectoral group of leading Canadian and international experts to review, validate, and advance work being done on science policy in Alberta. The workshop will explore the necessary considerations when creating science policy at the sub-national level. Specifically it will:

  • Debate and validate the main outcomes of a sub-national science enterprise, particularly in relation to knowledge, human, and social capital.
  • Identify the key elements and characteristics of a successful science enterprise (e.g., funding, trust, capacity, science culture, supporting interconnections and relationships) with a particular focus at a sub-national level.
  • Explore potential intents of a sub-national science policy, important features of such a policy, and the role of the policy in informing investment decisions.

To lead the design of the workshop, complete the necessary background research, and develop the workshop summary report, the CCA has appointed a five member Workshop Steering Committee, chaired by Joy Johnson, FCAHS, Vice President, Research, Simon Fraser University. The other Steering Committee members are: Paul Dufour, Adjunct Professor, Institute for Science, Society and Policy; University of Ottawa, Principal, Paulicy Works; Janet Halliwell, Principal, J.E. Halliwell Associates, Inc.; Kaye Husbands Fealing, Chair and Professor, School of Public Policy, Georgia Tech; and Marc LePage, President and CEO, Genome Canada.

The CCA, under the guidance of its Scientific Advisory Committee, and in collaboration with the Workshop Steering Committee, is now assembling a multidisciplinary, multi-sectoral, group of experts to participate in the two-day workshop. The CCA’s Member Academies – the Royal Society of Canada, the Canadian Academy of Engineering, and the Canadian Academy of Health Sciences – are a key source of membership for expert panels. Many experts are also Fellows of the Academies.

The workshop results will be published in a final summary report in spring 2017. This workshop assessment is supported by a grant from the Government of Alberta.

By comparison with the CCA’s last assessment mentioned here in a July 1, 2016 posting (The State of Science and Technology and Industrial Research and Development in Canada), this workshop has a better balance. The expert panel is being chaired by a woman (the first time I’ve seen that in a few years) and enough female members to add up to 60% representation. No representation from Québec (perhaps not a surprise given this is Alberta) but there is 40% from the western provinces given there is representation from both BC and Alberta. Business can boast 30% (?) with Paul Dufour doing double duty as both academic and business owner. It’s good to see international representation and one day I hope to see it from somewhere other than the US, the UK, and/or the Europe Union. Maybe Asia?

You can find contact information on the CCA’s Towards a Science Policy in Alberta webpage.

One comment, I find the lack of a specific date for the workshop interesting. It suggests either they were having difficulty scheduling or they wanted to keep the ‘unwashed’ away.

Synthetic Aesthetics update and an informal Canadian synthetic biology roundup

Amanda Ruggeri has written a very good introduction to synthetic biology for nonexperts in her May 20, 2015 Globe and Mail article about ‘Designing for the Sixth Extinction’, an exhibit showcasing designs and thought experiments focused on synthetic biology ,

In a corner of Istanbul’s Design Biennial late last year [2014], photographs of bizarre creatures sat alongside more conventional displays of product design and typefaces. Diaphanous globes, like transparent balloons, clung to the mossy trunk of an oak tree. Rust-coloured patterns ran across green leaves, as if the foliage had been decorated with henna. On the forest floor, a slug-like creature slithered, its back dotted with gold markings; in another photograph, what looked like a porcupine without a head crawled over the dirt, its quills tipped blood-red.

But as strange as the creatures looked, what they actually are is even stranger. Not quite living things, not quite machines, these imagined prototypes inhabit a dystopic, future world – a world in which they had been created to solve the problems of the living. The porcupine, for example, is an Autonomous Seed Disperser, described as a device that would collect and disperse seeds to increase biodiversity. The slug would be programmed to seek out acidic soils and neutralize them by dispersing an alkali hygroscopic fluid.

They are the designs – and thought experiments – of London-based Alexandra Daisy Ginsberg, designer, artist and lead author of the book Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature. In her project Designing for the Sixth Extinction, which after Istanbul is now on display at the Design Museum in London, Ginsberg imagines what a synthetic biology-designed world would look like – and whether it’s desirable. “

I have a couple of comments. First, the ‘Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature’ book launch last year was covered here in a May 5, 2014 post. where you’ll notice a number of the academics included in Ruggeri’s article are contributors to the book (but not mentioned as such). Second, I cannot find ‘Design for the Sixth Extinction’ listed as an exhibition on London’s Design Museum website.

Getting back to the matter at hand, not all of the projects mentioned in Ruggeri’s article are ‘art’ projects, there is also this rather practical and controversial initiative,

Designing even more complex organisms is the inevitable, and controversial, next step. And those designs have already begun. The British company Oxitec has designed a sterile male mosquito. When the bugs are released into nature and mate, no offspring result, reducing the population or eliminating it altogether. This could be a solution to dengue fever, a mosquito-carried disease that infects more than 50 million people each year: In field trials in Cayman, Panama and Brazil, the wild population of the dengue-carrying mosquito species was reduced by 90 per cent. Yet, as a genetically engineered solution, it also makes some skittish. The consequences of such manipulations remain unforeseen, they say. Proponents counter that the solution is more elegant, and safer, than the current practice of spraying chemicals.

Even so, the engineered mosquito leads to overarching questions: What are the dangers of tinkering with life? Could this cause a slide toward eugenics? Currently, the field doesn’t have an established ethics oversight process, something some critics are pushing to change.

It’s a surprising piece for the Globe and Mail newspaper to run since it doesn’t have a Canadian angle to it and the Globe and Mail doesn’t specialize in science (not withstanding Ivan Semeniuk’s science articles) or art/science or synthetic biology writing, for that matter. Perhaps it bodes an interest and more pieces on emerging science and technology and on art/science projects?

In any event, it seems like a good time to review some of the synthetic biology work or the centres of activity in Canada.  I believe the last time I tackled this particular topic was in a May 24, 2010 post titled, Canada and synthetic biology in the wake of the first ‘synthetic’ bacteria.

After a brief search, I found three centres for research:

Concordia [University] Centre for Applied Synthetic Biology (CASB)

[University of Toronto] The Synthetic Biology and Cellular Control Lab

[University of British Columbia] Centre for High-Throughput Biology (CHiBi)

Following an Oct. 27 – 28, 2014 UK-Canada Synthetic Biology Workshop held at Concordia University, Rémi Quirion, Vincent Martin, Pierre Meulien and Marc LePage co-wrote a Nov. 4, 2014 Concordia University post titled, How Canada is poised to revolutionize synthetic biology,

Rémi Quirion is the Chief Scientist of Québec, Fonds de recherche du Québec. Vincent Martin is Canada Research Chair in Microbial Genomics and Engineering and a professor in the Department of Biology at Concordia University in Montreal. Pierre Meulien is President and CEO of Genome Canada. Marc LePage is the President and CEO of Génome Québec.

Canada’s research and business communities have an opportunity to become world leaders in a burgeoning field that is fast shaping how we deal with everything from climate change to global food security and the production of lifesaving medications. The science of synthetic biology has the transformative capacity to equip us with novel technology tools and products to build a more sustainable society, while creating new business and employment opportunities for the economy of tomorrow.

We can now decipher the code of life for any organism faster and less expensively than ever before. Canadian scientists are producing anti-malarial drugs from organic materials that increase the availability and decrease the cost of lifesaving medicines. They are also developing energy efficient biofuels to dramatically reduce environmental and manufacturing costs, helping Canadian industry to thrive in the global marketplace.

The groundwork has also been laid for a Canadian revolution in the field. Canada’s scientific community is internationally recognized for its leadership in genomics research and strong partnerships with key industries. Since 2000, Genome Canada and partners have invested more than $2.3 billion in deciphering the genomes of economically important plants, animals and microbes in order to understand how they function. A significant proportion of these funds has been invested in building the technological toolkits that can be applied to synthetic biology.

But science cannot do it alone. Innovation on this scale requires multiple forms of expertise in order to be successful. Research in law, business, social sciences and humanities is vital to addressing questions of ethics, supply chain management, social innovation and cultural adaptation to new technologies. Industry knowledge and investments, as well as the capacity to incentivize entrepreneurship, are key to devising business models that will enable new products to thrive. Governments and funding agencies also need to do their part by supporting multidisciplinary research, training and infrastructure.

It’s a bit ‘hype happy’ for my taste but it does provide some fascinating insight in what seems to be a male activity in Canada.

Counterbalancing that impression is an Oct. 6, 2013 article by Ivan Semeniuk for the Globe and Mail about a University of Lethbridge team winning the top prize in a synthetic biology contest,

If you want to succeed in the scientific revolution of the future, it helps to think about life as a computer program.

That strategy helped University of Lethbridge students walk away with the top prize in a synthetic biology competition Sunday. Often touted as the genetic equivalent of the personal computer revolution, synthetic biology involves thinking about cells as programmable machines that can be designed and built to suit a particular need – whether it’s mass producing a vaccine or breaking down a hazardous chemical in the environment.

The five member Lethbridge team came up with a way to modify how cells translate genetic information into proteins. Rather than one bit of DNA carrying the information to make one protein – the usual way cells go about their business – the method involves inserting a genetic command that jiggles a cell’s translational machinery while it’s in mid-operation, coaxing it to produce two proteins out of the same DNA input.

“We started off with a computer analogy – kind of like zipping your files together – so you’d zip two protein sequences together and therefore save space,” said Jenna Friedt, a graduate student in biochemistry at Lethbridge. [emphasis mine]

There are concerns other than gender issues, chief amongst them, ethics. The Canadian Biotechnology Action Network maintains an information page on Synthetic Biology which boasts this as its latest update,

October 2014: In a unanimous decision of 194 countries, the United Nation’s Convention on Biological Diversity formally urged countries to regulate synthetic biology, a new extreme form of genetic engineering. The landmark decision follows ten days of hard-fought negotiations between developing countries and a small group of wealthy biotech-friendly economies. Until now, synthetic organisms have been developed and commercialized without international regulations. …

Finally, there’s a June 2014 synthetic biology timeline from the University of Ottawa’s Institute for Science, Society, and Policy (ISSP) which contextualizes Canadian research, policy and regulation with Australia, the European Union, the UK, and the US.

(On a closely related note, there’s my May 14, 2015 post about genetic engineering and newly raised concerns.)

Expert panel to assess the state of Canada’s science culture—not exactly whelming

I was very excited when the forthcoming assessment The State of Canada’s Science Culture was announced in early 2012 (or was it late 2011?). At any rate, much has happened since then including what appears to be some political shenanigans. The assessment was originally requested by the Canada Science and Technology Museums Corporation. After many, many months the chair of the panel was announced, Arthur Carty, and mentioned here in my Dec. 19, 2012 posting.

I was somewhat surprised to note (although I didn’t say much about it in December) that the science culture in Canada assessment webpage now included two new government agencies as requestors, Industry Canada and Natural Resources Canada. Where are Environment Canada, Transport Canada, Heritage Canada (we have an exciting science history which is part of our Canadian heritage), Health Canada, and Statistics Canada? For that matter, why not the entire civil service structure, as arguably every single government department has a vested interest in and commitment to science culture in Canada?

It took an extraordinarily long period of time before the Council of Canadian Academies (CCA) announced its chair and expert panel and presumably the addition of two random government departments in the request was a factor. One would hope that the CCA’s desire to find the most exciting and diverse group of ‘experts’ would be another factor in the delay.  To be clear my greatest concern is not about the individuals. It is the totality of the panel that concerns me most deeply. Here’s the list from The Expert Panel on the State of Canada’s Science Culture webpage,

The Expert Panel on the State of Canada’s Science Culture is comprised of the following members:

Arthur Carty,  O.C., FRSC, FCAE  (Chair) Executive Director, Waterloo Institute for Nanotechnology (Waterloo, ON)

Adam Bly, Founder and Chairman, Seed (New York, NY)

Karen A. Burke, Director, Regulatory Affairs, Drug Safety and Quality Assurance,  Amgen Canada Inc. (Mississauga, ON)

Edna F. Einsiedel, Professor, Department of Communication and Culture,  University of Calgary (Calgary, AB)

Tamara A. Franz-Odendaal, NSERC Chair for Women in Science and Engineering (Atlantic Canada) and Associate Professor of  Biology, Mount Saint Vincent University (Halifax, NS)

Ian Hacking, C.C., FRSC University Professor Emeritus, Philosophy, University of Toronto (Toronto, ON)

Jay Ingram, C.M. Chair, Science Communications Program, Banff Centre; Former Co-Host, Discovery Channel’s “Daily Planet” (Calgary, AB)

Sidney Katz, C.M. Professor of Pharmacology and Toxicology,  Faculty of Pharmaceutical Sciences, University of British Columbia (Vancouver, BC)

Marc LePage, President and CEO, Génome Québec (Montréal, QC)

James Marchbank, Former CEO, Science North (Sudbury, ON)

Timothy I. Meyer, Head, Strategic Planning and Communications, TRIUMF (Vancouver, BC)

Jon Miller, Research Scientist, Center for Political Studies, University of Michigan (Ann Arbor, MI)

Bernard Schiele, Professor of Communications, Université du Québec à Montréal (UQAM) and Researcher, Centre interuniversitaire de recherche sur la science et la technologie (CIRST) (Montréal, QC)

Dawn Sutherland, Canada Research Chair in Science Education in Cultural Contexts, University of Winnipeg (Winnipeg, MB)

James Wilsdon, Professor of Science and Democracy, University of Sussex (Brighton, United Kingdom)

Given the CCA’s most recent assessment, Strengthening Canada’s Research Capacity: The Gender Dimension, it’s striking that the number of women on this panel of 15 individuals is four. This suggests that while the CCA is happy to analyze information and advise about gender and science, it is not able to incorporate its own advice when assembling an expert panel, especially one concerning science culture.

There is only one person in the group who has built a business and that’s Adam Bly. Ordinarily I’d be happy to see this inclusion but Bly and/or his company (Seed Media Group) are making an attempt to trademark the term ‘scientific thinking’. (I’ve objected to attempts to trademark parts of commonly used language many, many times in the past.) In addition to that, there’s another activity I questioned in my Feb. 11, 2013 posting about visualizing nanotechnology data.

(For those who are interested in some of the discussion around attempts to trademark phrases that are in common usage, there’s a Feb. 18, 2013 posting by Mike Masnick on Techdirt about a bank which is attempting to trademark the term ‘virtual wallet’.)

It’s a shame the members of the panel did not (or were not encouraged) to write a biography that showed their interest in science culture, however the member imagines it to be. Following the links from the ‘expert panel’ page leads only to information that has been reused countless times and has absolutely no hint of personality or passion. Even a single sentence would have been welcome. Whatever makes these individuals ‘experts on science culture in Canada’ has to be inferred. As it is, this looks like a list of policy and academic wonks with a few media types (Bly and Ingram) and business types (Bly, again, and Burke) thrown in for good measure.

I half jokingly applied to be on the panel in my Dec. 19, 2012 posting so (excluding me) here’s a list of people I’d suggest would make for a more interesting panel,

  • Margaret Atwood (writes speculative/science fiction)
  • Baba Brinkman (rapper, MFA from the University of Victoria, BC, known internationally for his Rap Guide to Evolution, the world’s peer-reviewed science rap)
  • Claire Eamer, founder of the Sci/Why blog about Canadian science writing for kids, science writer located in Yukon
  • Mary Filer (internationally known artist in glass who worked in the Montreal Neuro Centre and was a member of one of the most storied surgical teams in Canadian history)
  • Pascal Lapointe, founder of Agence Science Presse agency and Je vote pour la science project
  • Robert Lepage (theatre director known internationally for his groundbreaking use of technology)
  • Robert J. Sawyer (internationally know Canadian science fiction writer)

Could they not have found one visual or performing artist or writer or culture maker to add to this expert panel? One of them might have added a hint of creativity or imagination to this assessment.  Ironically, the visual and performing arts were included in the CCA’s asssesment The State of Science and Technology in Canada, 2012 released in Sept. 2012.

As for incorporating other marginalized, be it by race, ethnicity, social class, ability, etc., groups the panel members’ biography pages do not give any hint of whether or not any attempt was made. I hope attempts will be made during the information gathering process and that those attempts will be documented, however briefly, in the forthcoming assessment.

In any event, I’ve been hearing a few whispers about the panel and its doings. Apparently, the first meeting was held recently and predictably (from my Dec. 19, 2012 posting),

Hopefully, the expert panel will have a definition of some kind for “science culture.”

the expert panel discussed a definition for science culture. I hear from another source the panel may even consider science blogging in their assessment. It seems amusing that this possibility was mentioned in hushed tones suggesting there was no certainty science blogging would be included in the assessment since Bly and his company established the Science Blogs network. Of course, there was the ‘Pepsigate’ situation a few years ago. (This Wikipedia essay offers the least heated description I’ve seen of the Science Blogs/Pepsi contretemps.)

I have a prediction about this forthcoming assessment, it will be hugely focused on getting more children to study STEM (science, technology, engineering, and mathematics) subjects. I have no formal objection to the notion but it does seem like a huge opportunity lost to focus primarily on children when it’s the parents who so often influence their children’s eventual choices.  Here’s an excerpt from my Jan. 31, 2012 post illustrating my point about children, their parents, and attitudes towards science,

One of the research efforts in the UK is the ASPIRES research project at King’s College London (KCL), which is examining children’s attitudes to science and future careers. Their latest report, Ten Science Facts and Fictions: the case for early education about STEM careers (PDF), is profiled in a Jan. 11, 2012 news item on physorg.com (from the news item),

Professor Archer [Louise Archer, Professor of Sociology of Education at King’s] said: “Children and their parents hold quite complex views of science and scientists and at age 10 or 11 these views are largely positive. The vast majority of children at this age enjoy science at school, have parents who are supportive of them studying science and even undertake science-related activities in their spare time. They associate scientists with important work, such as finding medical cures, and with work that is well paid.

“Nevertheless, less than 17 per cent aspire to a career in science. These positive impressions seem to lead to the perception that science offers only a very limited range of careers, for example doctor, scientist or science teacher. It appears that this positive stereotype is also problematic in that it can lead people to view science as out of reach for many, only for exceptional or clever people, and ‘not for me’.

Professor Archer says the findings indicate that engaging young people in science is not therefore simply a case of making it more interesting or more fun. She said: “There is a disconnect between interest and aspirations. Our research shows that young people’s ambitions are strongly influenced by their social backgrounds – ethnicity, social class and gender – and by family contexts. [emphases mine]

I purposefully used the term STEM as I suspect this expert panel will not have knowledge of the HSE (humanities, social sciences, and education), LS (life sciences), and PCEM (physical sciences, computer science, engineering, and mathematics) categories as defined by the recent assessment “(Strengthening Canada’s Research Capacity: The Gender Dimension; The Expert Panel on Women in University Research.” Those categories were defined as an attempt to reflect the disposition of the major science funding organizations in Canada ((SSHRC [Social Sciences and Humanities Research Council], CIHR [Canadian Institutes of Health Research], and NSERC [Natural Sciences and Engineering Research Council]) and, arguably, they are a big—if not the biggest—influence on Canadian science culture.

I do have a question I hope will be answered in the assessment. If we motivate more children to study science type topics, where will the jobs be? David Kent on University Affairs’ The Black Hole blog has written about science trainees and their future for years. In fact, his Feb. 19, 2013 posting is titled, Planning Ahead: How many of you are there and who will pay you?

Interestingly, there was an announcement this morning of another assessment which could be described as related to science culture, from the Feb. 22, 2013 CCA news release,

Doug Owram to Serve as Expert Panel Chair on Memory Institutions and the Digital Revolution

The Council is pleased to announce the appointment of Dr. Doug Owram, FRSC, as Chair of the Expert Panel on Memory Institutions and the Digital Revolution. Library and Archives Canada has asked the Council to assess how memory institutions, including archives, libraries, museums, and other cultural institutions, can embrace the opportunities and challenges in which Canadians are communicating and working in the digital age.

While the expert panel has yet to be announced, it is comforting to note that Owram is an historian and the link between memory and history seems unimpeachable. Oddly, the page listing ‘in progress assessments’ has the Memory Institutions and the Digital Revolution assessment listed as being On Hold (more political shenanigans?). Regardless, you can find out more about the assessment and its questions on the Memory Institutions and the Digital Revolution assessment page.

I wonder what impact, if any, these assessments will have on each other. In the meantime, I have one more prediction, the word innovation will be used with gay abandon throughout the science culture assessment.