Tag Archives: CCA

2018 Canadian Science Policy Conference (Nov. 7 – 9, 2018) highlights and Council of Canadian Academies: a communications job, a report, and more

This is a going to a science policy heavy posting with both a conference and the latest report from the Canadian Council of Academies (CCA).

2018 Canadian Science Policy Conference

As I noted in my March 1, 2018 posting, this is the fourth year in a row that the conference is being held in Ottawa and the theme for this 10th edition is ‘Building Bridges Between Science, Policy and Society‘.

The dates are November 7 -9, 2018 and as the opening draws closer I’m getting more ‘breathlessly enthusiastic’ announcements. Here are a few highlights from an October 23, 2018 announcement received via email,

CSPC 2018 is honoured to announce that the Honourable Kirsty Duncan, Minister of Science and Sport, will be delivering the keynote speech of the Gala Dinner on Thursday, November 8 at 7:00 PM. Minister Duncan will also hand out the 4th Science Policy Award of Excellence to the winner of this year’s competition.

CSPC 2018 features 250 speakers, a record number, and above is the breakdown of the positions they hold, over 43% of them being at the executive level and 57% of our speakers being women.

*All information as of October 15, 2018

If you think that you will not meet any new people at CSPC and all of the registrants are the same as last year, think again!

Over 57% of  registrants are attending the conference for the FIRST TIME!

Secure your spot today!

*All information as of October 15, 2018

Here’s more from an October 31, 2018 announcement received via email,

One year after her appointment as Canada’s Chief Science Advisor, Dr. Mona Nemer will discuss her experience with the community. Don’t miss this opportunity.

[Canadian Science Policy Centre editorials in advance of conference]

Paul Dufour
“Evidence and Science in Parliament–Looking Back at CSPC and Moving Forward”

Dr. Tom Corr
“Commercializing Innovation in Canada: Advancing in the Right Direction”

Joseph S Sparling, PhD
“Reimagining the Canadian Postdoctoral Training System”

Milton Friesen
“Conspiring Together for Good: Institutional Science and Religion”

Joseph Tafese
“Science and the Next Generation : Science and Inclusivity, Going beyond the Slogans”

Eva Greyeyes
“Opinion Editorial for CSPC, November 2018”

Monique Crichlow
Chris Loken

“Policy Considerations Towards Converged HPC-AI Platforms”

Should you be in the Ottawa area November 7 – 9, 2018, it’s still possible to register.

**Update November 6, 2018: The 2018 CSPC is Sold Out!**

Council of Canadian Academies: job and the ‘managing innovation’ report

Let’s start with the job (from the posting),

October 17, 2018

Role Title:      Director of Communications
Deadline:       November 5, 2018
Salary:            $115,000 to $165,000

About the Council of Canadian Academies
The Council of Canadian Academies (CCA) is a not-for-profit organization that conducts assessments of evidence on scientific topics of public interest to inform decision-making in Canada.

Role Summary
The CCA is seeking an experienced communications professional to join its senior management team as Director of Communications. Reporting to the President and CEO, the Director is responsible for developing and implementing a communications plan for the organization that promotes and highlights the CCA’s work, brand, and overall mission to a variety of potential users and stakeholders; overseeing the publication and dissemination of high-quality hard copy and online products; and providing strategic advice to the President and CCA’s Board, Committees, and Panels. In fulfilling these responsibilities, the Director of Communications is expected to work with a variety of interested groups including the media, the broad policy community, government, and non-governmental organizations.

Key Responsibilities and Accountabilities
Under the direction of the President and CEO, the Director leads a small team of communications and publishing professionals to meet the responsibilities and accountabilities outlined below.

Strategy Development and External Communications
• Develop and execute an overall strategic communications plan for the organization that promotes and highlights the CCA’s work, brand, and overall mission.
• Oversee the CCA’s presence and influence on digital and social platforms including the development and execution of a comprehensive content strategy for linking CCA’s work with the broader science and policy ecosystem with a focus on promoting and disseminating the findings of the CCA’s expert panel reports.
• Provide support, as needed for relevant government relations activities including liaising with communications counterparts, preparing briefing materials, responding to requests to share CCA information, and coordinating any appearances before Parliamentary committees or other bodies.
• Harness opportunities for advancing the uptake and use of CCA assessments, including leveraging the strengths of key partners particularly the founding Academies.

Publication and Creative Services
• Oversee the creative services, quality control, and publication of all CCA’s expert panel reports including translation, layout, quality assurance, graphic design, proofreading, and printing processes.
• Oversee the creative development and publication of all CCA’s corporate materials including the Annual Report and Corporate Plan through content development, editing, layout, translation, graphic design, proofreading, and printing processes.

Advice and Issues Management
• Provide strategic advice and support to the President’s Office, Board of Directors, Committees, and CCA staff about increasing the overall impact of CCA expert panel reports, brand awareness, outreach opportunities, and effective science communication.
• Provide support to the President by anticipating project-based or organizational issues, understanding potential implications, and suggesting strategic management solutions.
• Ensure consistent messages, style, and approaches in the delivery of all internal and external communications across the organization.

Leadership
• Mentor, train, and advise up to five communications and publishing staff on a day-to-day basis and complete annual performance reviews and planning.
• Lead the development and implementation of all CCA-wide policy and procedures relating to all aspects of communications and publishing.
• Represent the issues, needs, and ongoing requirements for the communications and publishing staff as a member of the CCA senior management team.

Knowledge Requirements
The Director of Communications requires:
• Superior knowledge of communications and public relations principles – preferably as it applies in a non-profit or academic setting;
• Extensive experience in communications planning and issues management;
• Knowledge of current research, editorial, and publication production standards and procedures including but not limited to: translation, copy-editing, layout/design, proofreading and publishing;
• Knowledge of evaluating impact of reports and assessments;
• Knowledge in developing content strategy, knowledge mobilization techniques, and creative services and design;
• Knowledge of human resource management techniques and experience managing a team;
• Experience in coordinating, organizing and implementing communications activities including those involving sensitive topics;
• Knowledge of the relationships and major players in Canada’s intramural and extramural science and public policy ecosystem, including awareness of federal science departments and Parliamentary committees, funding bodies, and related research groups;
• Knowledge of Microsoft Office Suite, Adobe Creative Suite, WordPress and other related programs;
• Knowledge of a variety of social media platforms and measurement tools.

Skills Requirements
The Director of Communications must have:
• Superior time and project management skills
• Superior writing skills
• Superior ability to think strategically regarding how best to raise the CCA’s profile and ensure impact of the CCA’s expert panel reports
• Ability to be flexible and adaptable; able to respond quickly to unanticipated demands
• Strong advisory, negotiation, and problem-solving skills
• Strong skills in risk mitigation
• Superior ability to communicate in both written and oral forms, effectively and diplomatically
• Ability to mentor, train, and provide constructive feedback to direct reports

Education and Experience
This knowledge and skillset is typically obtained through the completion of a post-secondary degree in Journalism, Communications, Public Affairs or a related field, and/or a minimum of 10
years of progressive and related experience. Experience in an organization that has addressed topics in public policy would be valuable.

Language Requirements: This position is English Essential. Fluency in French is a strong asset.

To apply to this position please send your CV and cover letter to careers@scienceadvice.ca before November 5, 2018. The cover letter should answer the following questions in 1,000 words or less:

1. How does your background and work experience make you well-suited for the position of Director of Communications at CCA?
2. What trends do you see emerging in the communications field generally, and in science and policy communications more specifically? How might CCA take advantage of these trends and developments?
3. Knowing that CCA is in the business of conducting assessments of evidence on important policy topics, how do you feel communicating this type of science differs from communicating other types of information and knowledge?

Improving Innovation Through Better Management

The Council of Canadian Academies released their ‘Improving Innovation Through Better Management‘ report on October 18, 2018..As some of my regular readers (assuming there are some) might have predicted, I have issues.

There’s a distinct disconnection between the described problem and the questions to be answered. From the ‘Improving Innovation Through Better Management‘ summary webpage,

While research is world-class and technology start-ups are thriving, few companies grow and mature in Canada. This cycle — invent and sell, invent and sell — allows other countries to capture much of the economic and social benefits of Canadian-invented products, processes, marketing methods, and business models. …

So, the problem is ‘invent and sell’. Leaving aside the questionable conclusion that other countries are reaping the benefits of Canadian innovation (I’ll get back to that shortly), what questions could you ask about how to break the ‘invent and sell, invent and sell’ cycle? Hmm, maybe we should ask, How do we break the ‘invent and sell’ cycle in Canada?

The government presented two questions to deal with the problem and no, how to break the cycle is not one of the questions. From the ‘Improving Innovation Through Better Management‘ summary webpage,

… Escaping this cycle may be aided through education and training of innovation managers who can systematically manage ideas for commercial success and motivate others to reimagine innovation in Canada.

To understand how to better support innovation management in Canada, Innovation, Science and Economic Development Canada (ISED) asked the CCA two critical questions: What are the key skills required to manage innovation? And, what are the leading practices for teaching these skills in business schools, other academic departments, colleges/polytechnics, and industry?

As lawyers, journalists, scientists, doctors, librarians, and anyone who’s ever received misinformation can tell you, asking the right questions can make a big difference.

As for the conclusion that other countries are reaping the benefits of Canadian innovation, is there any supporting data? We enjoy a very high standard of living and have done so for at least a couple of generations. The Organization for Economic Cooperation and Development (OECD) has a Better Life Index, which ranks well-being on these 11 dimensions (from the OECD Better Life Index entry on Wikipedia), Note: Links have been removed,

  1. Housing: housing conditions and spendings (e.g. real estate pricing)
  2. Income: household income and financial wealth
  3. Jobs: earnings, job security and unemployment
  4. Community: quality of social support network
  5. Education: education and what you get out of it
  6. Environment: quality of environment (e.g. environmental health)
  7. Governance: involvement in democracy
  8. Health
  9. Life Satisfaction: level of happiness
  10. Safety: murder and assault rates
  11. Work-life balance

In 2017, the index ranked Canada as fifth in the world while the US appears to have slipped from a previous ranking of 7th to 8th. (See these Wikipedia entries with relevant subsections for rankings:  OECD Better Life Index; Rankings, 2017 ranking and Standard of living in the United States, Measures, 3rd paragraph.)

This notion that other countries are profiting from Canadian innovation while we lag behind has been repeated so often that it’s become an article of faith and I never questioned it until someone else challenged me. This article of faith is repeated internationally and sometimes seems that every country in the world is worried that someone else will benefit from their national innovation.

Getting back to the Canadian situation, we’ve decided to approach the problem by not asking questions about our article of faith or how to break the ‘invent and sell’ cycle. Instead of questioning an assumption and producing an open-ended question, we have these questions (1) What are the key skills required to manage innovation? (2) And, what are the leading practices for teaching these skills in business schools, other academic departments, colleges/polytechnics, and industry?

in my world that first question, would be a second tier question, at best. The second question, presupposes the answer: more training in universities and colleges. I took a look at the report’s Expert Panel webpage and found it populated by five individuals who are either academics or have strong ties to academe. They did have a workshop and the list of participants does include people who run businesses, from the Improving Innovation Through Better Management‘ report (Note: Formatting has not been preserved),

Workshop Participants

Max Blouw,
Former President and Vice-Chancellor of
Wilfrid Laurier University (Waterloo, ON)

Richard Boudreault, FCAE,
Chairman, Sigma Energy
Storage (Montréal, QC)

Judy Fairburn, FCAE,
Past Board Chair, Alberta Innovates;
retired EVP Business Innovation & Chief Digital Officer,
Cenovus Energy Inc. (Calgary, AB)

Tom Jenkins, O.C., FCAE,
Chair of the Board, OpenText
(Waterloo, ON)

Sarah Kaplan,
Director of the Institute for Gender and the
Economy and Distinguished Professor, Rotman School of
Management, University of Toronto (Toronto, ON)

Jean-Michel Lemieux,
Senior Vice President of Engineering,
Shopify Inc. (Ottawa, ON)

Elicia Maine,
Academic Director and Professor, i2I, Beedie
School of Business, Simon Fraser University (Vancouver, BC)

Kathy Malas,
Innovation Platform Manager, CHU
Sainte Justine (Montréal, QC)

John L. Mann, FCAE,
Owner, Mann Consulting
(Blenheim, ON)

Jesse Rodgers,
CEO, Volta Labs (Halifax, NS)

Creso Sá,
Professor of Higher Education and Director of
the Centre for the Study of Canadian and International
Higher Education, Ontario Institute for Studies in Education,
University of Toronto (Toronto, ON)

Dhirendra Shukla,
Professor and Chair, J. Herbert Smith
Centre for Technology Management & Entrepreneurship,
Faculty of Engineering, University of New Brunswick
(Fredericton, NB)

Dan Sinai,
Senior Executive, Innovation, IBM Canada
(Toronto, ON)

Valerie Walker,
Executive Director, Business/Higher
Education Roundtable (Ottawa, ON)

J. Mark Weber,
Eyton Director, Conrad School of
Entrepreneurship & Business, University of Waterloo
(Waterloo, ON)

I am a little puzzled by the IBM executive’s presence (Dan Sinai) on this list. Wouldn’t Canadians holding onto their companies be counterproductive to IBM’s interests? As for John L. Mann, I’ve not been able to find him or his consulting company online. it’s unusual not to find any trace of an individual or company online these days.

In all there were nine individuals representing academic or government institutions in this list. The gender balance is 10 males and five females for the workshop participants and three males and two females for the expert panel. There is no representation from the North or from Manitoba, Saskatchewan, Prince Edward Island, or Newfoundland.

If they’re serious about looking at how to use innovation to drive higher standards of living, why aren’t there any people from Asian countries where they have been succeeding at that very project? South Korea and China come to mind.

I’m sure there are some excellent ideas in the report, I just wish they’d taken their topic to heart and actually tried to approach innovation in Canada in an innovative fashion.

Meanwhile, Vancouver gets another technology hub, from an October 30, 2018 article by Kenneth Chan for the Daily Hive (Vancouver [Canada]), Note: Links have been removed,

Vancouver’s rapidly growing virtual reality (VR) and augmented reality (AR) tech sectors will greatly benefit from a new VR and AR hub created by Launch Academy.

The technology incubator has opened a VR and AR hub at its existing office at 300-128 West Hastings Street in downtown, in partnership with VR/AR Association Vancouver. Immersive tech companies have access to desk space, mentorship programs, VR/AR equipment rentals, investor relations connected to Silicon Valley [emphasis mine], advisory services, and community events and workshops.

Within the Vancouver tech industry, the immersive sector has grown from 15 companies working in VR and AR in 2015 to 220 organizations today.

Globally, the VR and AR market is expected to hit a value of $108 billion by 2021, with tech giants like Amazon, Apple, Facebook, Google, and Microsoft [emphasis mine] investing billions into product development.

In the Vancouver region, the ‘invent and sell’ cycle can be traced back to the 19th century.

One more thing, as I was writing this piece I tripped across this news: “$7.7-billion pact makes Encana more American than Canadian‘ by Geoffrey Morgan. It’s in the Nov. 2, 2018 print edition of the Vancouver Sun’s front page for business. “Encana Corp., the storied Canadian company that had been slowly transitioning away from Canada and natural gas over the past few years under CEO [Chief Executive Officer] Doug Suttles, has pivoted aggressively to US shale basins. … Suttles, formerly as BP Plc. executive, moved from Calgary [Alberta, Canada] to Denver [Colorado, US], though the company said that was for personal reasons and not a precursor to relocation of Encana’s headquarters.”  Yes, that’s quite believable. By the way, Suttles has spent* most of his life in the US (Wikipedia entry).

In any event, it’s not just Canadian emerging technology companies that get sold or somehow shifted out of Canada.

So, should we break the cycle and, if so, how are we going to do it?

*’spend’ corrected to ‘spent’ on November 6, 2018.

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (1 of 2)

Before launching into the assessment, a brief explanation of my theme: Hedy Lamarr was considered to be one of the great beauties of her day,

“Ziegfeld Girl” Hedy Lamarr 1941 MGM *M.V.
Titles: Ziegfeld Girl
People: Hedy Lamarr
Image courtesy mptvimages.com [downloaded from https://www.imdb.com/title/tt0034415/mediaviewer/rm1566611456]

Aside from starring in Hollywood movies and, before that, movies in Europe, she was also an inventor and not just any inventor (from a Dec. 4, 2017 article by Laura Barnett for The Guardian), Note: Links have been removed,

Let’s take a moment to reflect on the mercurial brilliance of Hedy Lamarr. Not only did the Vienna-born actor flee a loveless marriage to a Nazi arms dealer to secure a seven-year, $3,000-a-week contract with MGM, and become (probably) the first Hollywood star to simulate a female orgasm on screen – she also took time out to invent a device that would eventually revolutionise mobile communications.

As described in unprecedented detail by the American journalist and historian Richard Rhodes in his new book, Hedy’s Folly, Lamarr and her business partner, the composer George Antheil, were awarded a patent in 1942 for a “secret communication system”. It was meant for radio-guided torpedoes, and the pair gave to the US Navy. It languished in their files for decades before eventually becoming a constituent part of GPS, Wi-Fi and Bluetooth technology.

(The article goes on to mention other celebrities [Marlon Brando, Barbara Cartland, Mark Twain, etc] and their inventions.)

Lamarr’s work as an inventor was largely overlooked until the 1990’s when the technology community turned her into a ‘cultish’ favourite and from there her reputation grew and acknowledgement increased culminating in Rhodes’ book and the documentary by Alexandra Dean, ‘Bombshell: The Hedy Lamarr Story (to be broadcast as part of PBS’s American Masters series on May 18, 2018).

Canada as Hedy Lamarr

There are some parallels to be drawn between Canada’s S&T and R&D (science and technology; research and development) and Ms. Lamarr. Chief amongst them, we’re not always appreciated for our brains. Not even by people who are supposed to know better such as the experts on the panel for the ‘Third assessment of The State of Science and Technology and Industrial Research and Development in Canada’ (proper title: Competing in a Global Innovation Economy: The Current State of R&D in Canada) from the Expert Panel on the State of Science and Technology and Industrial Research and Development in Canada.

A little history

Before exploring the comparison to Hedy Lamarr further, here’s a bit more about the history of this latest assessment from the Council of Canadian Academies (CCA), from the report released April 10, 2018,

This assessment of Canada’s performance indicators in science, technology, research, and innovation comes at an opportune time. The Government of Canada has expressed a renewed commitment in several tangible ways to this broad domain of activity including its Innovation and Skills Plan, the announcement of five superclusters, its appointment of a new Chief Science Advisor, and its request for the Fundamental Science Review. More specifically, the 2018 Federal Budget demonstrated the government’s strong commitment to research and innovation with historic investments in science.

The CCA has a decade-long history of conducting evidence-based assessments about Canada’s research and development activities, producing seven assessments of relevance:

The State of Science and Technology in Canada (2006) [emphasis mine]
•Innovation and Business Strategy: Why Canada Falls Short (2009)
•Catalyzing Canada’s Digital Economy (2010)
•Informing Research Choices: Indicators and Judgment (2012)
The State of Science and Technology in Canada (2012) [emphasis mine]
The State of Industrial R&D in Canada (2013) [emphasis mine]
•Paradox Lost: Explaining Canada’s Research Strength and Innovation Weakness (2013)

Using similar methods and metrics to those in The State of Science and Technology in Canada (2012) and The State of Industrial R&D in Canada (2013), this assessment tells a similar and familiar story: Canada has much to be proud of, with world-class researchers in many domains of knowledge, but the rest of the world is not standing still. Our peers are also producing high quality results, and many countries are making significant commitments to supporting research and development that will position them to better leverage their strengths to compete globally. Canada will need to take notice as it determines how best to take action. This assessment provides valuable material for that conversation to occur, whether it takes place in the lab or the legislature, the bench or the boardroom. We also hope it will be used to inform public discussion. [p. ix Print, p. 11 PDF]

This latest assessment succeeds the general 2006 and 2012 reports, which were mostly focused on academic research, and combines it with an assessment of industrial research, which was previously separate. Also, this third assessment’s title (Competing in a Global Innovation Economy: The Current State of R&D in Canada) makes what was previously quietly declared in the text, explicit from the cover onwards. It’s all about competition, despite noises such as the 2017 Naylor report (Review of fundamental research) about the importance of fundamental research.

One other quick comment, I did wonder in my July 1, 2016 posting (featuring the announcement of the third assessment) how combining two assessments would impact the size of the expert panel and the size of the final report,

Given the size of the 2012 assessment of science and technology at 232 pp. (PDF) and the 2013 assessment of industrial research and development at 220 pp. (PDF) with two expert panels, the imagination boggles at the potential size of the 2016 expert panel and of the 2016 assessment combining the two areas.

I got my answer with regard to the panel as noted in my Oct. 20, 2016 update (which featured a list of the members),

A few observations, given the size of the task, this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

The imbalance I noted then was addressed, somewhat, with the selection of the reviewers (from the report released April 10, 2018),

The CCA wishes to thank the following individuals for their review of this report:

Ronald Burnett, C.M., O.B.C., RCA, Chevalier de l’ordre des arts et des
lettres, President and Vice-Chancellor, Emily Carr University of Art and Design
(Vancouver, BC)

Michelle N. Chretien, Director, Centre for Advanced Manufacturing and Design
Technologies, Sheridan College; Former Program and Business Development
Manager, Electronic Materials, Xerox Research Centre of Canada (Brampton,
ON)

Lisa Crossley, CEO, Reliq Health Technologies, Inc. (Ancaster, ON)
Natalie Dakers, Founding President and CEO, Accel-Rx Health Sciences
Accelerator (Vancouver, BC)

Fred Gault, Professorial Fellow, United Nations University-MERIT (Maastricht,
Netherlands)

Patrick D. Germain, Principal Engineering Specialist, Advanced Aerodynamics,
Bombardier Aerospace (Montréal, QC)

Robert Brian Haynes, O.C., FRSC, FCAHS, Professor Emeritus, DeGroote
School of Medicine, McMaster University (Hamilton, ON)

Susan Holt, Chief, Innovation and Business Relationships, Government of
New Brunswick (Fredericton, NB)

Pierre A. Mohnen, Professor, United Nations University-MERIT and Maastricht
University (Maastricht, Netherlands)

Peter J. M. Nicholson, C.M., Retired; Former and Founding President and
CEO, Council of Canadian Academies (Annapolis Royal, NS)

Raymond G. Siemens, Distinguished Professor, English and Computer Science
and Former Canada Research Chair in Humanities Computing, University of
Victoria (Victoria, BC) [pp. xii- xiv Print; pp. 15-16 PDF]

The proportion of women to men as reviewers jumped up to about 36% (4 of 11 reviewers) and there are two reviewers from the Maritime provinces. As usual, reviewers external to Canada were from Europe. Although this time, they came from Dutch institutions rather than UK or German institutions. Interestingly and unusually, there was no one from a US institution. When will they start using reviewers from other parts of the world?

As for the report itself, it is 244 pp. (PDF). (For the really curious, I have a  December 15, 2016 post featuring my comments on the preliminary data for the third assessment.)

To sum up, they had a lean expert panel tasked with bringing together two inquiries and two reports. I imagine that was daunting. Good on them for finding a way to make it manageable.

Bibliometrics, patents, and a survey

I wish more attention had been paid to some of the issues around open science, open access, and open data, which are changing how science is being conducted. (I have more about this from an April 5, 2018 article by James Somers for The Atlantic but more about that later.) If I understand rightly, they may not have been possible due to the nature of the questions posed by the government when requested the assessment.

As was done for the second assessment, there is an acknowledgement that the standard measures/metrics (bibliometrics [no. of papers published, which journals published them; number of times papers were cited] and technometrics [no. of patent applications, etc.] of scientific accomplishment and progress are not the best and new approaches need to be developed and adopted (from the report released April 10, 2018),

It is also worth noting that the Panel itself recognized the limits that come from using traditional historic metrics. Additional approaches will be needed the next time this assessment is done. [p. ix Print; p. 11 PDF]

For the second assessment and as a means of addressing some of the problems with metrics, the panel decided to take a survey which the panel for the third assessment has also done (from the report released April 10, 2018),

The Panel relied on evidence from multiple sources to address its charge, including a literature review and data extracted from statistical agencies and organizations such as Statistics Canada and the OECD. For international comparisons, the Panel focused on OECD countries along with developing countries that are among the top 20 producers of peer-reviewed research publications (e.g., China, India, Brazil, Iran, Turkey). In addition to the literature review, two primary research approaches informed the Panel’s assessment:
•a comprehensive bibliometric and technometric analysis of Canadian research publications and patents; and,
•a survey of top-cited researchers around the world.

Despite best efforts to collect and analyze up-to-date information, one of the Panel’s findings is that data limitations continue to constrain the assessment of R&D activity and excellence in Canada. This is particularly the case with industrial R&D and in the social sciences, arts, and humanities. Data on industrial R&D activity continue to suffer from time lags for some measures, such as internationally comparable data on R&D intensity by sector and industry. These data also rely on industrial categories (i.e., NAICS and ISIC codes) that can obscure important trends, particularly in the services sector, though Statistics Canada’s recent revisions to how this data is reported have improved this situation. There is also a lack of internationally comparable metrics relating to R&D outcomes and impacts, aside from those based on patents.

For the social sciences, arts, and humanities, metrics based on journal articles and other indexed publications provide an incomplete and uneven picture of research contributions. The expansion of bibliometric databases and methodological improvements such as greater use of web-based metrics, including paper views/downloads and social media references, will support ongoing, incremental improvements in the availability and accuracy of data. However, future assessments of R&D in Canada may benefit from more substantive integration of expert review, capable of factoring in different types of research outputs (e.g., non-indexed books) and impacts (e.g., contributions to communities or impacts on public policy). The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity. It is vital that such contributions are better measured and assessed. [p. xvii Print; p. 19 PDF]

My reading: there’s a problem and we’re not going to try and fix it this time. Good luck to those who come after us. As for this line: “The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity.” Did no one explain that when you use ‘no doubt’, you are introducing doubt? It’s a cousin to ‘don’t take this the wrong way’ and ‘I don’t mean to be rude but …’ .

Good news

This is somewhat encouraging (from the report released April 10, 2018),

Canada’s international reputation for its capacity to participate in cutting-edge R&D is strong, with 60% of top-cited researchers surveyed internationally indicating that Canada hosts world-leading infrastructure or programs in their fields. This share increased by four percentage points between 2012 and 2017. Canada continues to benefit from a highly educated population and deep pools of research skills and talent. Its population has the highest level of educational attainment in the OECD in the proportion of the population with
a post-secondary education. However, among younger cohorts (aged 25 to 34), Canada has fallen behind Japan and South Korea. The number of researchers per capita in Canada is on a par with that of other developed countries, andincreased modestly between 2004 and 2012. Canada’s output of PhD graduates has also grown in recent years, though it remains low in per capita terms relative to many OECD countries. [pp. xvii-xviii; pp. 19-20]

Don’t let your head get too big

Most of the report observes that our international standing is slipping in various ways such as this (from the report released April 10, 2018),

In contrast, the number of R&D personnel employed in Canadian businesses
dropped by 20% between 2008 and 2013. This is likely related to sustained and
ongoing decline in business R&D investment across the country. R&D as a share
of gross domestic product (GDP) has steadily declined in Canada since 2001,
and now stands well below the OECD average (Figure 1). As one of few OECD
countries with virtually no growth in total national R&D expenditures between
2006 and 2015, Canada would now need to more than double expenditures to
achieve an R&D intensity comparable to that of leading countries.

Low and declining business R&D expenditures are the dominant driver of this
trend; however, R&D spending in all sectors is implicated. Government R&D
expenditures declined, in real terms, over the same period. Expenditures in the
higher education sector (an indicator on which Canada has traditionally ranked
highly) are also increasing more slowly than the OECD average. Significant
erosion of Canada’s international competitiveness and capacity to participate
in R&D and innovation is likely to occur if this decline and underinvestment
continue.

Between 2009 and 2014, Canada produced 3.8% of the world’s research
publications, ranking ninth in the world. This is down from seventh place for
the 2003–2008 period. India and Italy have overtaken Canada although the
difference between Italy and Canada is small. Publication output in Canada grew
by 26% between 2003 and 2014, a growth rate greater than many developed
countries (including United States, France, Germany, United Kingdom, and
Japan), but below the world average, which reflects the rapid growth in China
and other emerging economies. Research output from the federal government,
particularly the National Research Council Canada, dropped significantly
between 2009 and 2014.(emphasis mine)  [p. xviii Print; p. 20 PDF]

For anyone unfamiliar with Canadian politics,  2009 – 2014 were years during which Stephen Harper’s Conservatives formed the government. Justin Trudeau’s Liberals were elected to form the government in late 2015.

During Harper’s years in government, the Conservatives were very interested in changing how the National Research Council of Canada operated and, if memory serves, the focus was on innovation over research. Consequently, the drop in their research output is predictable.

Given my interest in nanotechnology and other emerging technologies, this popped out (from the report released April 10, 2018),

When it comes to research on most enabling and strategic technologies, however, Canada lags other countries. Bibliometric evidence suggests that, with the exception of selected subfields in Information and Communication Technologies (ICT) such as Medical Informatics and Personalized Medicine, Canada accounts for a relatively small share of the world’s research output for promising areas of technology development. This is particularly true for Biotechnology, Nanotechnology, and Materials science [emphasis mine]. Canada’s research impact, as reflected by citations, is also modest in these areas. Aside from Biotechnology, none of the other subfields in Enabling and Strategic Technologies has an ARC rank among the top five countries. Optoelectronics and photonics is the next highest ranked at 7th place, followed by Materials, and Nanoscience and Nanotechnology, both of which have a rank of 9th. Even in areas where Canadian researchers and institutions played a seminal role in early research (and retain a substantial research capacity), such as Artificial Intelligence and Regenerative Medicine, Canada has lost ground to other countries.

Arguably, our early efforts in artificial intelligence wouldn’t have garnered us much in the way of ranking and yet we managed some cutting edge work such as machine learning. I’m not suggesting the expert panel should have or could have found some way to measure these kinds of efforts but I’m wondering if there could have been some acknowledgement in the text of the report. I’m thinking a couple of sentences in a paragraph about the confounding nature of scientific research where areas that are ignored for years and even decades then become important (e.g., machine learning) but are not measured as part of scientific progress until after they are universally recognized.

Still, point taken about our diminishing returns in ’emerging’ technologies and sciences (from the report released April 10, 2018),

The impression that emerges from these data is sobering. With the exception of selected ICT subfields, such as Medical Informatics, bibliometric evidence does not suggest that Canada excels internationally in most of these research areas. In areas such as Nanotechnology and Materials science, Canada lags behind other countries in levels of research output and impact, and other countries are outpacing Canada’s publication growth in these areas — leading to declining shares of world publications. Even in research areas such as AI, where Canadian researchers and institutions played a foundational role, Canadian R&D activity is not keeping pace with that of other countries and some researchers trained in Canada have relocated to other countries (Section 4.4.1). There are isolated exceptions to these trends, but the aggregate data reviewed by this Panel suggest that Canada is not currently a world leader in research on most emerging technologies.

The Hedy Lamarr treatment

We have ‘good looks’ (arts and humanities) but not the kind of brains (physical sciences and engineering) that people admire (from the report released April 10, 2018),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphases mine] It accounts for more than 5% of world researchin these fields. Conversely, Canada has lower research output than expected
in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]

Couldn’t they have used a more buoyant tone? After all, science was known as ‘natural philosophy’ up until the 19th century. As for visual and performing arts, let’s include poetry as a performing and literary art (both have been the case historically and cross-culturally) and let’s also note that one of the great physics texts, (De rerum natura by Lucretius) was a multi-volume poem (from Lucretius’ Wikipedia entry; Note: Links have been removed).

His poem De rerum natura (usually translated as “On the Nature of Things” or “On the Nature of the Universe”) transmits the ideas of Epicureanism, which includes Atomism [the concept of atoms forming materials] and psychology. Lucretius was the first writer to introduce Roman readers to Epicurean philosophy.[15] The poem, written in some 7,400 dactylic hexameters, is divided into six untitled books, and explores Epicurean physics through richly poetic language and metaphors. Lucretius presents the principles of atomism; the nature of the mind and soul; explanations of sensation and thought; the development of the world and its phenomena; and explains a variety of celestial and terrestrial phenomena. The universe described in the poem operates according to these physical principles, guided by fortuna, “chance”, and not the divine intervention of the traditional Roman deities.[16]

Should you need more proof that the arts might have something to contribute to physical sciences, there’s this in my March 7, 2018 posting,

It’s not often you see research that combines biologically inspired engineering and a molecular biophysicist with a professional animator who worked at Peter Jackson’s (Lord of the Rings film trilogy, etc.) Park Road Post film studio. An Oct. 18, 2017 news item on ScienceDaily describes the project,

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, [emphasis mine] is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions to many of the world’s greatest problems. “I feel that there’s a huge disconnect between science and the public because it’s depicted as rote memorization in schools, when by definition, if you can memorize it, it’s not science,” says Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at the Harvard Paulson School of Engineering and Applied Sciences (SEAS). [emphasis mine] “Science is the pursuit of the unknown. We have a responsibility to reach out to the public and convey that excitement of exploration and discovery, and fortunately, the film industry is already great at doing that.”

“Not only is our physics-based simulation and animation system as good as other data-based modeling systems, it led to the new scientific insight [emphasis mine] that the limited motion of the dynein hinge focuses the energy released by ATP hydrolysis, which causes dynein’s shape change and drives microtubule sliding and axoneme motion,” says Ingber. “Additionally, while previous studies of dynein have revealed the molecule’s two different static conformations, our animation visually depicts one plausible way that the protein can transition between those shapes at atomic resolution, which is something that other simulations can’t do. The animation approach also allows us to visualize how rows of dyneins work in unison, like rowers pulling together in a boat, which is difficult using conventional scientific simulation approaches.”

It comes down to how we look at things. Yes, physical sciences and engineering are very important. If the report is to be believed we have a very highly educated population and according to PISA scores our students rank highly in mathematics, science, and reading skills. (For more information on Canada’s latest PISA scores from 2015 see this OECD page. As for PISA itself, it’s an OECD [Organization for Economic Cooperation and Development] programme where 15-year-old students from around the world are tested on their reading, mathematics, and science skills, you can get some information from my Oct. 9, 2013 posting.)

Is it really so bad that we choose to apply those skills in fields other than the physical sciences and engineering? It’s a little bit like Hedy Lamarr’s problem except instead of being judged for our looks and having our inventions dismissed, we’re being judged for not applying ourselves to physical sciences and engineering and having our work in other closely aligned fields dismissed as less important.

Canada’s Industrial R&D: an oft-told, very sad story

Bemoaning the state of Canada’s industrial research and development efforts has been a national pastime as long as I can remember. Here’s this from the report released April 10, 2018,

There has been a sustained erosion in Canada’s industrial R&D capacity and competitiveness. Canada ranks 33rd among leading countries on an index assessing the magnitude, intensity, and growth of industrial R&D expenditures. Although Canada is the 11th largest spender, its industrial R&D intensity (0.9%) is only half the OECD average and total spending is declining (−0.7%). Compared with G7 countries, the Canadian portfolio of R&D investment is more concentrated in industries that are intrinsically not as R&D intensive. Canada invests more heavily than the G7 average in oil and gas, forestry, machinery and equipment, and finance where R&D has been less central to business strategy than in many other industries. …  About 50% of Canada’s industrial R&D spending is in high-tech sectors (including industries such as ICT, aerospace, pharmaceuticals, and automotive) compared with the G7 average of 80%. Canadian Business Enterprise Expenditures on R&D (BERD) intensity is also below the OECD average in these sectors. In contrast, Canadian investment in low and medium-low tech sectors is substantially higher than the G7 average. Canada’s spending reflects both its long-standing industrial structure and patterns of economic activity.

R&D investment patterns in Canada appear to be evolving in response to global and domestic shifts. While small and medium-sized enterprises continue to perform a greater share of industrial R&D in Canada than in the United States, between 2009 and 2013, there was a shift in R&D from smaller to larger firms. Canada is an increasingly attractive place to conduct R&D. Investment by foreign-controlled firms in Canada has increased to more than 35% of total R&D investment, with the United States accounting for more than half of that. [emphasis mine]  Multinational enterprises seem to be increasingly locating some of their R&D operations outside their country of ownership, possibly to gain proximity to superior talent. Increasing foreign-controlled R&D, however, also could signal a long-term strategic loss of control over intellectual property (IP) developed in this country, ultimately undermining the government’s efforts to support high-growth firms as they scale up. [pp. xxii-xxiii Print; pp. 24-25 PDF]

Canada has been known as a ‘branch plant’ economy for decades. For anyone unfamiliar with the term, it means that companies from other countries come here, open up a branch and that’s how we get our jobs as we don’t have all that many large companies here. Increasingly, multinationals are locating R&D shops here.

While our small to medium size companies fund industrial R&D, it’s large companies (multinationals) which can afford long-term and serious investment in R&D. Luckily for companies from other countries, we have a well-educated population of people looking for jobs.

In 2017, we opened the door more widely so we can scoop up talented researchers and scientists from other countries, from a June 14, 2017 article by Beckie Smith for The PIE News,

Universities have welcomed the inclusion of the work permit exemption for academic stays of up to 120 days in the strategy, which also introduces expedited visa processing for some highly skilled professions.

Foreign researchers working on projects at a publicly funded degree-granting institution or affiliated research institution will be eligible for one 120-day stay in Canada every 12 months.

And universities will also be able to access a dedicated service channel that will support employers and provide guidance on visa applications for foreign talent.

The Global Skills Strategy, which came into force on June 12 [2017], aims to boost the Canadian economy by filling skills gaps with international talent.

As well as the short term work permit exemption, the Global Skills Strategy aims to make it easier for employers to recruit highly skilled workers in certain fields such as computer engineering.

“Employers that are making plans for job-creating investments in Canada will often need an experienced leader, dynamic researcher or an innovator with unique skills not readily available in Canada to make that investment happen,” said Ahmed Hussen, Minister of Immigration, Refugees and Citizenship.

“The Global Skills Strategy aims to give those employers confidence that when they need to hire from abroad, they’ll have faster, more reliable access to top talent.”

Coincidentally, Microsoft, Facebook, Google, etc. have announced, in 2017, new jobs and new offices in Canadian cities. There’s a also Chinese multinational telecom company Huawei Canada which has enjoyed success in Canada and continues to invest here (from a Jan. 19, 2018 article about security concerns by Matthew Braga for the Canadian Broadcasting Corporation (CBC) online news,

For the past decade, Chinese tech company Huawei has found no shortage of success in Canada. Its equipment is used in telecommunications infrastructure run by the country’s major carriers, and some have sold Huawei’s phones.

The company has struck up partnerships with Canadian universities, and say it is investing more than half a billion dollars in researching next generation cellular networks here. [emphasis mine]

While I’m not thrilled about using patents as an indicator of progress, this is interesting to note (from the report released April 10, 2018),

Canada produces about 1% of global patents, ranking 18th in the world. It lags further behind in trademark (34th) and design applications (34th). Despite relatively weak performance overall in patents, Canada excels in some technical fields such as Civil Engineering, Digital Communication, Other Special Machines, Computer Technology, and Telecommunications. [emphases mine] Canada is a net exporter of patents, which signals the R&D strength of some technology industries. It may also reflect increasing R&D investment by foreign-controlled firms. [emphasis mine] [p. xxiii Print; p. 25 PDF]

Getting back to my point, we don’t have large companies here. In fact, the dream for most of our high tech startups is to build up the company so it’s attractive to buyers, sell, and retire (hopefully before the age of 40). Strangely, the expert panel doesn’t seem to share my insight into this matter,

Canada’s combination of high performance in measures of research output and impact, and low performance on measures of industrial R&D investment and innovation (e.g., subpar productivity growth), continue to be viewed as a paradox, leading to the hypothesis that barriers are impeding the flow of Canada’s research achievements into commercial applications. The Panel’s analysis suggests the need for a more nuanced view. The process of transforming research into innovation and wealth creation is a complex multifaceted process, making it difficult to point to any definitive cause of Canada’s deficit in R&D investment and productivity growth. Based on the Panel’s interpretation of the evidence, Canada is a highly innovative nation, but significant barriers prevent the translation of innovation into wealth creation. The available evidence does point to a number of important contributing factors that are analyzed in this report. Figure 5 represents the relationships between R&D, innovation, and wealth creation.

The Panel concluded that many factors commonly identified as points of concern do not adequately explain the overall weakness in Canada’s innovation performance compared with other countries. [emphasis mine] Academia-business linkages appear relatively robust in quantitative terms given the extent of cross-sectoral R&D funding and increasing academia-industry partnerships, though the volume of academia-industry interactions does not indicate the nature or the quality of that interaction, nor the extent to which firms are capitalizing on the research conducted and the resulting IP. The educational system is high performing by international standards and there does not appear to be a widespread lack of researchers or STEM (science, technology, engineering, and mathematics) skills. IP policies differ across universities and are unlikely to explain a divergence in research commercialization activity between Canadian and U.S. institutions, though Canadian universities and governments could do more to help Canadian firms access university IP and compete in IP management and strategy. Venture capital availability in Canada has improved dramatically in recent years and is now competitive internationally, though still overshadowed by Silicon Valley. Technology start-ups and start-up ecosystems are also flourishing in many sectors and regions, demonstrating their ability to build on research advances to develop and deliver innovative products and services.

You’ll note there’s no mention of a cultural issue where start-ups are designed for sale as soon as possible and this isn’t new. Years ago, there was an accounting firm that published a series of historical maps (the last one I saw was in 2005) of technology companies in the Vancouver region. Technology companies were being developed and sold to large foreign companies from the 19th century to present day.

Part 2

2016 thoughts and 2017 hopes from FrogHeart

This is the 4900th post on this blog and as FrogHeart moves forward to 5000, I’m thinking there will be some changes although I’m not sure what they’ll be. In the meantime, here are some random thoughts on the year that was in Canadian science and on the FrogHeart blog.

Changeover to Liberal government: year one

Hopes were high after the Trudeau government was elected. Certainly, there seems to have been a loosening where science communication policies have been concerned although it may not have been quite the open and transparent process people dreamed of. On the plus side, it’s been easier to participate in public consultations but there has been no move (perceptible to me) towards open government science or better access to government-funded science papers.

Open Science in Québec

As far as I know, la crème de la crème of open science (internationally) is the Montreal Neurological Institute (Montreal Neuro; affiliated with McGill University. They bookended the year with two announcements. In January 2016, Montreal Neuro announced it was going to be an “Open Science institution (my Jan. 22, 2016 posting),

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Then, there’s my Dec. 19, 2016 posting about this Montreal Neuro announcement,

It’s one heck of a Christmas present. Canadian businessmen Larry Tannenbaum and his wife Judy have given the Montreal Neurological Institute (Montreal Neuro), which is affiliated with McGill University, a $20M donation. From a Dec. 16, 2016 McGill University news release,

The Prime Minister of Canada, Justin Trudeau, was present today at the Montreal Neurological Institute and Hospital (MNI) for the announcement of an important donation of $20 million by the Larry and Judy Tanenbaum family. This transformative gift will help to establish the Tanenbaum Open Science Institute, a bold initiative that will facilitate the sharing of neuroscience findings worldwide to accelerate the discovery of leading edge therapeutics to treat patients suffering from neurological diseases.

‟Today, we take an important step forward in opening up new horizons in neuroscience research and discovery,” said Mr. Larry Tanenbaum. ‟Our digital world provides for unprecedented opportunities to leverage advances in technology to the benefit of science.  That is what we are celebrating here today: the transformation of research, the removal of barriers, the breaking of silos and, most of all, the courage of researchers to put patients and progress ahead of all other considerations.”

Neuroscience has reached a new frontier, and advances in technology now allow scientists to better understand the brain and all its complexities in ways that were previously deemed impossible. The sharing of research findings amongst scientists is critical, not only due to the sheer scale of data involved, but also because diseases of the brain and the nervous system are amongst the most compelling unmet medical needs of our time.

Neurological diseases, mental illnesses, addictions, and brain and spinal cord injuries directly impact 1 in 3 Canadians, representing approximately 11 million people across the country.

“As internationally-recognized leaders in the field of brain research, we are uniquely placed to deliver on this ambitious initiative and reinforce our reputation as an institution that drives innovation, discovery and advanced patient care,” said Dr. Guy Rouleau, Director of the Montreal Neurological Institute and Hospital and Chair of McGill University’s Department of Neurology and Neurosurgery. “Part of the Tanenbaum family’s donation will be used to incentivize other Canadian researchers and institutions to adopt an Open Science model, thus strengthening the network of like-minded institutes working in this field.”

Chief Science Advisor

Getting back to the federal government, we’re still waiting for a Chief Science Advisor. Should you be interested in the job, apply here. The job search was launched in early Dec. 2016 (see my Dec. 7, 2016 posting for details) a little over a year after the Liberal government was elected. I’m not sure why the process is taking so long. It’s not like the Canadian government is inventing a position or trailblazing in this regard. Many, many countries and jurisdictions have chief science advisors. Heck the European Union managed to find their first chief science advisor in considerably less time than we’ve spent on the project. My guess, it just wasn’t a priority.

Prime Minister Trudeau, quantum, nano, and Canada’s 150th birthday

In April 2016, Prime Minister Justin Trudeau stunned many when he was able to answer, in an articulate and informed manner, a question about quantum physics during a press conference at the Perimeter Institute in Waterloo, Ontario (my April 18, 2016 post discussing that incident and the so called ‘quantum valley’ in Ontario).

In Sept. 2016, the University of Waterloo publicized the world’s smallest Canadian flag to celebrate the country’s upcoming 150th birthday and to announce its presence in QUANTUM: The Exhibition (a show which will tour across Canada). Here’s more from my Sept. 20, 2016 posting,

The record-setting flag was unveiled at IQC’s [Institute of Quantum Computing at the University of Waterloo] open house on September 17 [2016], which attracted nearly 1,000 visitors. It will also be on display in QUANTUM: The Exhibition, a Canada 150 Fund Signature Initiative, and part of Innovation150, a consortium of five leading Canadian science-outreach organizations. QUANTUM: The Exhibition is a 4,000-square-foot, interactive, travelling exhibit IQC developed highlighting Canada’s leadership in quantum information science and technology.

“I’m delighted that IQC is celebrating Canadian innovation through QUANTUM: The Exhibition and Innovation150,” said Raymond Laflamme, executive director of IQC. “It’s an opportunity to share the transformative technologies resulting from Canadian research and bring quantum computing to fellow Canadians from coast to coast to coast.”

The first of its kind, the exhibition will open at THEMUSEUM in downtown Kitchener on October 14 [2016], and then travel to science centres across the country throughout 2017.

You can find the English language version of QUANTUM: The Exhibition website here and the French language version of QUANTUM: The Exhibition website here.

There are currently four other venues for the show once finishes its run in Waterloo. From QUANTUM’S Join the Celebration webpage,

2017

  • Science World at TELUS World of Science, Vancouver
  • TELUS Spark, Calgary
  • Discovery Centre, Halifax
  • Canada Science and Technology Museum, Ottawa

I gather they’re still looking for other venues to host the exhibition. If interested, there’s this: Contact us.

Other than the flag which is both nanoscale and microscale, they haven’t revealed what else will be included in their 4000 square foot exhibit but it will be “bilingual, accessible, and interactive.” Also, there will be stories.

Hmm. The exhibition is opening in roughly three weeks and they have no details. Strategy or disorganization? Only time will tell.

Calgary and quantum teleportation

This is one of my favourite stories of the year. Scientists at the University of Calgary teleported photons six kilometers from the university to city hall breaking the teleportation record. What I found particularly interesting was the support for science from Calgary City Hall. Here’s more from my Sept. 21, 2016 post,

Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometres using The City of Calgary’s fibre optic cable infrastructure. The project began with an Urban Alliance seed grant in 2014.

This accomplishment, which set a new record for distance of transferring a quantum state by teleportation, has landed the researchers a spot in the prestigious Nature Photonics scientific journal. The finding was published back-to-back with a similar demonstration by a group of Chinese researchers.

The research could not be possible without access to the proper technology. One of the critical pieces of infrastructure that support quantum networking is accessible dark fibre. Dark fibre, so named because of its composition — a single optical cable with no electronics or network equipment on the alignment — doesn’t interfere with quantum technology.

The City of Calgary is building and provisioning dark fibre to enable next-generation municipal services today and for the future.

“By opening The City’s dark fibre infrastructure to the private and public sector, non-profit companies, and academia, we help enable the development of projects like quantum encryption and create opportunities for further research, innovation and economic growth in Calgary,” said Tyler Andruschak, project manager with Innovation and Collaboration at The City of Calgary.

As for the science of it (also from my post),

A Sept. 20, 2016 article by Robson Fletcher for CBC (Canadian Broadcasting News) online provides a bit more insight from the lead researcher (Note: A link has been removed),

“What is remarkable about this is that this information transfer happens in what we call a disembodied manner,” said physics professor Wolfgang Tittel, whose team’s work was published this week in the journal Nature Photonics.

“Our transfer happens without any need for an object to move between these two particles.”

A Sept. 20, 2016 University of Calgary news release by Drew Scherban, which originated the news item, provides more insight into the research,

“Such a network will enable secure communication without having to worry about eavesdropping, and allow distant quantum computers to connect,” says Tittel.

Experiment draws on ‘spooky action at a distance’

The experiment is based on the entanglement property of quantum mechanics, also known as “spooky action at a distance” — a property so mysterious that not even Einstein could come to terms with it.

“Being entangled means that the two photons that form an entangled pair have properties that are linked regardless of how far the two are separated,” explains Tittel. “When one of the photons was sent over to City Hall, it remained entangled with the photon that stayed at the University of Calgary.”

Next, the photon whose state was teleported to the university was generated in a third location in Calgary and then also travelled to City Hall where it met the photon that was part of the entangled pair.

“What happened is the instantaneous and disembodied transfer of the photon’s quantum state onto the remaining photon of the entangled pair, which is the one that remained six kilometres away at the university,” says Tittel.

Council of Canadian Academies and The State of Science and Technology and Industrial Research and Development in Canada

Preliminary data was released by the CCA’s expert panel in mid-December 2016. I reviewed that material briefly in my Dec. 15, 2016 post but am eagerly awaiting the full report due late 2017 when, hopefully, I’ll have the time to critique the material, and which I hope will have more surprises and offer greater insights than the preliminary report did.

Colleagues

Thank you to my online colleagues. While we don’t interact much it’s impossible to estimate how encouraging it is to know that these people continually participate and help create the nano and/or science blogosphere.

David Bruggeman at his Pasco Phronesis blog keeps me up-to-date on science policy both in the US, Canada, and internationally, as well as, keeping me abreast of the performing arts/science scene. Also, kudos to David for raising my (and his audience’s) awareness of just how much science is discussed on late night US television. Also, I don’t know how he does it but he keeps scooping me on Canadian science policy matters. Thankfully, I’m not bitter and hope he continues to scoop me which will mean that I will get the information from somewhere since it won’t be from the Canadian government.

Tim Harper of Cientifica Research keeps me on my toes as he keeps shifting his focus. Most lately, it’s been on smart textiles and wearables. You can download his latest White Paper titled, Fashion, Smart Textiles, Wearables and Disappearables, from his website. Tim consults on nanotechnology and other emerging technologies at the international level.

Dexter Johnson of the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website consistently provides informed insight into how a particular piece of research fits into the nano scene and often provides historical details that you’re not likely to get from anyone else.

Dr. Andrew Maynard is currently the founding Director of the Risk Innovation Lab at the University of Arizona. I know him through his 2020 Science blog where he posts text and videos on many topics including emerging technologies, nanotechnologies, risk, science communication, and much more. Do check out 2020 Science as it is a treasure trove.

2017 hopes and dreams

I hope Canada’s Chief Science Advisor brings some fresh thinking to science in government and that the Council of Canadian Academies’ upcoming assessment on The State of Science and Technology and Industrial Research and Development in Canada is visionary. Also, let’s send up some collective prayers for the Canada Science and Technology Museum which has been closed since 2014 (?) due to black mold (?). It would be lovely to see it open in time for Canada’s 150th anniversary.

I’d like to see the nanotechnology promise come closer to a reality, which benefits as many people as possible.

As for me and FrogHeart, I’m not sure about the future. I do know there’s one more Steep project (I’m working with Raewyn Turner on a multiple project endeavour known as Steep; this project will involve sound and gold nanoparticles).

Should anything sparkling occur to me, I will add it at a future date.

In the meantime, Happy New Year and thank you from the bottom of my heart for reading this blog!

Preliminary data from third assessment of The State of Science and Technology and Industrial Research and Development in Canada

It’s a little misleading to call this a third assessment as the first two were titled “The state of science and technology” whereas this time they’ve thrown “industrial research and development” (which previously rated its own separate assessment) into the mix as I noted in my July 1, 2016 post about this upcoming report by the Council of Canadian Academies (CCA).

To whet our appetites, the CCA’s expert panel has released some preliminary data according to a Dec. 15, 2016 news release (received via email),

The Council of Canadian Academies is pleased to release the Preliminary Data Update on Canadian Research Performance and International Reputation. This document represents the early work of the Expert Panel on the State of Science and Technology and Industrial Research and Development in Canada. It contains a preliminary update of key bibliometric and opinion survey data comparable to that published in the 2012 CCA assessment on the state of science and technology in Canada.

“This update provides a window into some of the data we are using to explore the state of research, development, and innovation in Canada,” said Max Blouw, Chair of the Expert Panel and President and Vice-Chancellor of Wilfrid Laurier University. “Our intention is to provide timely access to a body of evidence on Canada’s research performance that may serve as an important input to ongoing federal policy development.”

Highlights of this work include updated data on research output and collaboration, research impact, international reputation and stature, and data on research fields.

This data update is part of a larger project to assess the state of research, development, and innovation in Canada. The Expert Panel continues to work on its final report, which is expected to be released in late 2017.

I have taken a look at the material and these are the research highlights from the preliminary report,

Research Output and Collaboration
• Canada ranks ninth in the world in research publication output and accounts for 3.8% of the world’s output.
• Canada’s research output is growing at a rate comparable to that exhibited by most developed countries. Developed countries, however, are increasingly being overshadowed by the dramatic growth in research production in China and other emerging economies over the past decade.
• Canadian researchers continue to be highly collaborative internationally, working with international co-authors in nearly 46% of their publications.

Research Impact
• Citation-based indicators show that Canadian research continues to have relatively high levels of impact. By ARC score, Canada ranks sixth out of leading countries: its research is cited 43% more than the world average across all fields of study.
• The impact of Canada’s research, as reflected in citations (ARC, MRC, and HCP1%), has increased in recent years. However, these increases have been often matched or exceeded by other countries. Canada’s rank by ARC declined slightly in many fields as a result.

International Reputation and Stature
• Canada’s research contributions continue to be well regarded internationally according to a survey of top-cited researchers around the world. The share of top-cited researchers who rate Canada’s research as strong in their field of study rose from 68% in 2012 to 72% in 2016.
• Approximately 36% of surveyed top-cited researchers identify Canada as one of the top five countries in their research fields. As a result, Canada ranks fourth overall, behind the United States, United Kingdom, and Germany.
• The share of top-cited researchers who have worked or studied in Canada, or collaborated with Canadians, has increased since 2012.

Data by Field of Research
• Preliminary analysis of Canadian research by field reveals patterns similar to those presented in the 2012 S&T report.
• All fields of research in Canada were cited at rates above the world average in 2009–2014. Few fields in Canada have experienced major shifts in output or impact in recent years, though the specialization rate of Clinical Medicine gradually increased and that of Engineering decreased relative to other countries.
• Fields in which Canada has both a relatively high degree of specialization and a high impact (above the G7 average) include Clinical Medicine; Biology; Information and Communication Technologies; Agriculture, Fisheries and Forestry; Earth and Environmental Sciences; and Economics and Business.
• Canada’s research contributions in Physics and Astronomy continue to be highly cited despite a lower publication output than might be expected. Chemistry and Enabling and Strategic Technologies (Energy, Biotechnology, Bioinformatics, Nanoscience and Nanotechnology, Optoelectronics and Photonics) are other areas in which Canada’s research output is low relative to other countries.
• When analyzed by field of study, results from the international survey of top-cited researchers are consistent with those from the 2012 survey. Canada continues to rank among the top five countries in three-quarters of fields.
• Canada’s research reputation is the weakest in core fields of the natural sciences such as Mathematics and Statistics, Physics and Astronomy, Chemistry, Engineering, and in Enabling and Strategic Technologies. [p. 5 PDF; p. v print]

As the panel notes they have the same problem as their predecessors. Bibliometric data, i. e., the number of papers your researchers have published, how often they’ve been cited, and in which journals (impact factor) they’ve been published are problematic as indicators of scientific progress.  Excellent research can end up in an obscure journal and be ignored for decades while more problematic (substandard) work may be published in a prestigious (high impact) journal thereby gaining more attention.  Unfortunately, despite these and other issues, bibliometric data remains a basic indicator of scientific progress. The expert panel for the 2012 report (State of Science and Technology) attempted to mitigate some of the problems by using other indicators. If I remember rightly, one of those indicators was an international survey of researchers (which is also problematic in some ways) about their awareness of and opinion of Canadian research. It seems this expert panel has also gone that route,

Qualitative evidence can be a useful complement to bibliometric data in assessing research performance, especially when drawing on the insights of researchers and scientists who are highly accomplished in their fields. Similar to the 2012 S&T report, a survey was sent to the top 1% of highly cited researchers by field worldwide, asking them to identify the leading countries in their areas of expertise. The results of this survey are comparable to those from 2012 and illustrate that Canada’s international research reputation remains strong across most fields of research.

6.1 CANADA’S OvERALL RESEARCH REPUTATION

Researchers were asked to identify the top five countries in their field and sub-field of expertise. As shown in Figure 6.1, 35.5% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada within the top five countries in their field. Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany and ahead of France. This represents a change of about 1.5 percentage points from the overall results of the 2012 survey. There was a three percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% of respondents rated Canadian research as “strong” (corresponds to a score of 5 or higher on a 7-point scale), and 47% rated it as “very strong” (Figure 6.1 and Table 6.1). These ratings increased from 68% and 42%, respectively, in the 2012 report.16 [p. 29 PDF, p. 23 print]

Taking into account that there are no perfect measures, here’s what the preliminary report has to say overall,

Canada continues to rank within the top 10 countries in total output of research publications, but fell from seventh place to ninth between 2003–2008 and 2009–2014. Canada produces 3.8% of the world output.6 During the period, Canadian researchers produced about 496,696 publications (see Table 3.1).7 In the 2012 S&T report, Canada ranked seventh in 2005–2010 with roughly 395,000 scientific publications. Although India and Italy overtook Canada to reach the seventh and eighth positions, respectively, the distance separating Canada from Italy is negligible (over 2,000 publications). The United States continues to lead in number of publications, but the gap with China is rapidly narrowing.

This data update presents country rankings in a similar manner to the 2012 S&T report. Note that research output may be normalized by various measures to produce alternative rankings. For example, output can be examined relative to the size of the population or the economy of a country.

Figure 3.1 shows overall output of publications relative to a country’s population. By this measure, Canada ranks fifth with about 14 publications per 1,000 inhabitants in 2009–2014. This indicator shows China’s rank to be lower on a per capita basis; however, this could also indicate China’s potential for considerable future growth. For countries like Switzerland, high publication output reflects a high level of international collaboration and the presence of major scientific research facilities, such as CERN, which are associated with global networks of researchers. [p. 11 PDF; p. 5 print]

This represents a few bits of information from the panel’s 34 pp. preliminary report. If you have the time, do take a look at it. As these things go, it’s readable. One last comment, the panel notes that nothing about industrial research has been included in the preliminary report.

Council of Canadian Academies and science policy for Alberta

The Council of Canadian Academies (CCA) has expanded its approach from assembling expert panels to report on questions posed by various Canadian government agencies (assessments) to special reports from a three-member panel and, now, to a workshop on the province of Alberta’s science policy ideas. From an Oct. 27, 2016 CCA news release (received via email),

The Council of Canadian Academies (CCA) is pleased to announce that it is undertaking an expert panel workshop on science policy ideas under development in Alberta. The workshop will engage national and international experts to explore various dimensions of sub-national science systems and the role of sub-national science policy.

“We are pleased to undertake this project,” said Eric M. Meslin, PhD, FCAHS, President and CEO of the CCA. “It is an assessment that could discuss strategies that have applications in Alberta, across Canada, and elsewhere.”

A two-day workshop, to be undertaken in November 2016, will bring together a multidisciplinary and multi-sectoral group of leading Canadian and international experts to review, validate, and advance work being done on science policy in Alberta. The workshop will explore the necessary considerations when creating science policy at the sub-national level. Specifically it will:

  • Debate and validate the main outcomes of a sub-national science enterprise, particularly in relation to knowledge, human, and social capital.
  • Identify the key elements and characteristics of a successful science enterprise (e.g., funding, trust, capacity, science culture, supporting interconnections and relationships) with a particular focus at a sub-national level.
  • Explore potential intents of a sub-national science policy, important features of such a policy, and the role of the policy in informing investment decisions.

To lead the design of the workshop, complete the necessary background research, and develop the workshop summary report, the CCA has appointed a five member Workshop Steering Committee, chaired by Joy Johnson, FCAHS, Vice President, Research, Simon Fraser University. The other Steering Committee members are: Paul Dufour, Adjunct Professor, Institute for Science, Society and Policy; University of Ottawa, Principal, Paulicy Works; Janet Halliwell, Principal, J.E. Halliwell Associates, Inc.; Kaye Husbands Fealing, Chair and Professor, School of Public Policy, Georgia Tech; and Marc LePage, President and CEO, Genome Canada.

The CCA, under the guidance of its Scientific Advisory Committee, and in collaboration with the Workshop Steering Committee, is now assembling a multidisciplinary, multi-sectoral, group of experts to participate in the two-day workshop. The CCA’s Member Academies – the Royal Society of Canada, the Canadian Academy of Engineering, and the Canadian Academy of Health Sciences – are a key source of membership for expert panels. Many experts are also Fellows of the Academies.

The workshop results will be published in a final summary report in spring 2017. This workshop assessment is supported by a grant from the Government of Alberta.

By comparison with the CCA’s last assessment mentioned here in a July 1, 2016 posting (The State of Science and Technology and Industrial Research and Development in Canada), this workshop has a better balance. The expert panel is being chaired by a woman (the first time I’ve seen that in a few years) and enough female members to add up to 60% representation. No representation from Québec (perhaps not a surprise given this is Alberta) but there is 40% from the western provinces given there is representation from both BC and Alberta. Business can boast 30% (?) with Paul Dufour doing double duty as both academic and business owner. It’s good to see international representation and one day I hope to see it from somewhere other than the US, the UK, and/or the Europe Union. Maybe Asia?

You can find contact information on the CCA’s Towards a Science Policy in Alberta webpage.

One comment, I find the lack of a specific date for the workshop interesting. It suggests either they were having difficulty scheduling or they wanted to keep the ‘unwashed’ away.

The State of Science and Technology (S&T) and Industrial Research and Development (IR&D) in Canada

Earlier this year I featured (in a July 1, 2016 posting) the announcement of a third assessment of science and technology in Canada by the Council of Canadian Academies. At the time I speculated as to the size of the ‘expert panel’ making the assessment as they had rolled a second assessment (Industrial Research and Development) into this one on the state of science and technology. I now have my answer thanks to an Oct. 17, 2016 Council of Canadian Academies news release announcing the chairperson (received via email; Note: Links have been removed and emphases added for greater readability),

The Council of Canadian Academies (CCA) is pleased to announce Dr. Max Blouw, President and Vice-Chancellor of Wilfrid Laurier University, as Chair of the newly appointed Expert Panel on the State of Science and Technology (S&T) and Industrial Research and Development (IR&D) in Canada.

“Dr. Blouw is a widely respected leader with a strong background in research and academia,” said Eric M. Meslin, PhD, FCAHS, President and CEO of the CCA. “I am delighted he has agreed to serve as Chair for an assessment that will contribute to the current policy discussion in Canada.”

As Chair of the Expert Panel, Dr. Blouw will work with the multidisciplinary, multi-sectoral Expert Panel to address the following assessment question, referred to the CCA by Innovation, Science and Economic Development Canada (ISED):

What is the current state of science and technology and industrial research and development in Canada?

Dr. Blouw will lead the CCA Expert Panel to assess the available evidence and deliver its final report by late 2017. Members of the panel include experts from different fields of academic research, R&D, innovation, and research administration. The depth of the Panel’s experience and expertise, paired with the CCA’s rigorous assessment methodology, will ensure the most authoritative, credible, and independent response to the question.

“I am very pleased to accept the position of Chair for this assessment and I consider myself privileged to be working with such an eminent group of experts,” said Dr. Blouw. “The CCA’s previous reports on S&T and IR&D provided crucial insights into Canada’s strengths and weaknesses in these areas. I look forward to contributing to this important set of reports with new evidence and trends.”

Dr. Blouw was Vice-President Research, Associate Vice-President Research, and Professor of Biology, at the University of Northern British Columbia, before joining Wilfrid Laurier as President. Dr. Blouw served two terms as the chair of the university advisory group to Industry Canada and was a member of the adjudication panel for the Ontario Premier’s Discovery Awards, which recognize the province’s finest senior researchers. He recently chaired the International Review Committee of the NSERC Discovery Grants Program.

For a complete list of Expert Panel members, their biographies, and details on the assessment, please visit the assessment page. The CCA’s Member Academies – the Royal Society of Canada, the Canadian Academy of Engineering, and the Canadian Academy of Health Sciences – are a key source of membership for expert panels. Many experts are also Fellows of the Academies.

The Expert Panel on the State of S&T and IR&D
Max Blouw, (Chair) President and Vice-Chancellor of Wilfrid Laurier University
Luis Barreto, President, Dr. Luis Barreto & Associates and Special Advisor, NEOMED-LABS
Catherine Beaudry, Professor, Department of Mathematical and Industrial Engineering, Polytechnique Montréal
Donald Brooks, FCAHS, Professor, Pathology and Laboratory Medicine, and Chemistry, University of British Columbia
Madeleine Jean, General Manager, Prompt
Philip Jessop, FRSC, Professor, Inorganic Chemistry and Canada Research Chair in Green Chemistry, Department of Chemistry, Queen’s University; Technical Director, GreenCentre Canada
Claude Lajeunesse, FCAE, Corporate Director and Interim Chair of the Board of Directors, Atomic Energy of Canada Ltd.
Steve Liang, Associate Professor, Geomatics Engineering, University of Calgary; Director, GeoSensorWeb Laboratory; CEO, SensorUp Inc.
Robert Luke, Vice-President, Research and Innovation, OCAD University
Douglas Peers, Professor, Dean of Arts, Department of History, University of Waterloo
John M. Thompson, O.C., FCAE, Retired Executive Vice-Chairman, IBM Corporation
Anne Whitelaw, Associate Dean Research, Faculty of Fine Arts and Associate Professor, Department of Art History, Concordia University
David A. Wolfe, Professor, Political Science and Co-Director, Innovation Policy Lab, Munk School of Global Affairs, University of Toronto

You can find more information about the expert panel here and about this assessment and its predecesors here.

A few observations, given the size of the task this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

Dear Science Minister Kirsty Duncan and Science, Innovation and Economic Development Minister Navdeep Bains: a Happy Canada Day! open letter

Dear Minister of Science Kirsty Duncan and Minister of Science, Innovation and Economic Development Navdeep Bains,

Thank you both. It’s been heartening to note some of the moves you’ve made since entering office. Taking the muzzles off Environment Canada and Natural Resources Canada scientists was a big relief and it was wonderful to hear that the mandatory longform census was reinstated along with the Experimental Lakes Area programme. (Btw, I can’t be the only one who’s looking forward to hearing the news once Canada’s Chief Science Officer is appointed. In the fall, eh?)

Changing the National Science and Technology week by giving it a news name “Science Odyssey” and rescheduling it from the fall to the spring seems to have revitalized the effort. Then, there was the news about a review focused on fundamental science (see my June 16, 2016 post). It seems as if the floodgates have opened or at least communication about what’s going on has become much freer. Brava and Bravo!

The recently announced (June 29, 2016) third assessment on the State of S&T (Science and Technology) and IR&D (Industrial Research and Development; my July 1, 2016 post features the announcement) by the Council of Canadian Academies adds to the impression that you both have adopted a dizzying pace for science of all kinds in Canada.

With the initiatives I’ve just mentioned in mind, it would seem that encouraging a more vital science culture and and re-establishing science as a fundamental part of Canadian society is your aim.

Science education and outreach as a whole population effort

It’s facey to ask for more but that’s what I’m going to do.

In general, the science education and outreach efforts in Canada have focused on children. This is wonderful but not likely to be as successful as we would hope when a significant and influential chunk of the population is largely ignored: adults. (There is a specific situation where outreach to adults is undertaken but more about that later.)

There is research suggesting that children’s attitudes to science and future careers is strongly influenced by their family. From my Oct. 9, 2013 posting,

One of the research efforts in the UK is the ASPIRES research project at King’s College London (KCL), which is examining children’s attitudes to science and future careers. Their latest report, Ten Science Facts and Fictions: the case for early education about STEM careers (PDF), is profiled in a Jan. 11, 2012 news item on physorg.com (from the news item),

Professor Archer [Louise Archer, Professor of Sociology of Education at King’s] said: “Children and their parents hold quite complex views of science and scientists and at age 10 or 11 these views are largely positive. The vast majority of children at this age enjoy science at school, have parents who are supportive of them studying science and even undertake science-related activities in their spare time. They associate scientists with important work, such as finding medical cures, and with work that is well paid.

“Nevertheless, less than 17 per cent aspire to a career in science. These positive impressions seem to lead to the perception that science offers only a very limited range of careers, for example doctor, scientist or science teacher. It appears that this positive stereotype is also problematic in that it can lead people to view science as out of reach for many, only for exceptional or clever people, and ‘not for me’. [emphases mine]

Family as a bigger concept

I suggest that ‘family’ be expanded to include the social environment in which children operate. When I was a kid no one in our family or extended group of friends had been to university let alone become a scientist. My parents had aspirations for me but when it came down to brass tacks, even though I was encouraged to go to university, they were much happier when I dropped out and got a job.

It’s very hard to break out of the mold. The odd thing about it all? I had two uncles who were electricians which when you think about it means they were working in STEM (science, technology,engineering, mathematics) jobs. Electricians, then and now. despite their technical skills, are considered tradespeople.

It seems to me that if more people saw themselves as having STEM or STEM-influenced occupations: hairdressers, artists, automechanics, plumbers, electricians, musicians, etc., we might find more children willing to engage directly in STEM opportunities. We might also find there’s more public support for science in all its guises.

That situation where adults are targeted for science outreach? It’s when the science is considered controversial or problematic and, suddenly, public (actually they mean voter) engagement or outreach is considered vital.

Suggestion

Given the initiatives you both have undertaken and Prime Minister Trudeau’s recent public outbreak of enthusiasm for and interest in quantum computing (my April 18, 2016 posting), I’m hopeful that you will consider the notion and encourage (fund?) science promotion programmes aimed at adults. Preferably attention-grabbing and imaginative programmes.

Should you want to discuss the matter further (I have some suggestions), please feel free to contact me.

Regardless, I’m very happy to see the initiatives that have been undertaken and, just as importantly, the communication about science.

Yours sincerely,

Maryse de la Giroday
(FrogHeart blog)

P.S. I very much enjoyed the June 22, 2016 interview with Léo Charbonneau for University Affairs,

UA: Looking ahead, where would you like Canada to be in terms of research in five to 10 years?

Dr. Duncan: Well, I’ll tell you, it breaks my heart that in a 10-year period we fell from third to eighth place among OECD countries in terms of HERD [government expenditures on higher education research and development as a percentage of gross domestic product]. That should never have happened. That’s why it was so important for me to get that big investment in the granting councils.

Do we have a strong vision for science? Do we have the support of the research community? Do we have the funding systems that allow our world-class researchers to do the work they want do to? And, with the chief science officer, are we building a system where we have the evidence to inform decision-making? My job is to support research and to make sure evidence makes its way to the cabinet table.

As stated earlier, I’m hoping you will expand your vision to include Canadian society, not forgetting seniors (being retired or older doesn’t mean that you’re senile and/or incapable of public participation), and supporting Canada’s emerging science media environment.

P.P.S. As a longstanding observer of the interplay between pop culture, science, and society I was much amused and inspired by news of Justin Trudeau’s emergence as a character in a Marvel comic book (from a June 28, 2016 CBC [Canadian Broadcasting Corporation] news online item),

Trudeau Comic Cover 20160628

The variant cover of the comic Civil War II: Choosing Sides #5, featuring Prime Minister Justin Trudeau surrounded by the members of Alpha Flight: Sasquatch, top, Puck, bottom left, Aurora, right, and Iron Man in the background. (The Canadian Press/Ramon Perez)

Make way, Liberal cabinet: Prime Minister Justin Trudeau will have another all-Canadian crew in his corner as he suits up for his latest feature role — comic book character.

Trudeau will grace the variant cover of issue No. 5 of Marvel’s “Civil War II: Choosing Sides,” due out Aug. 31 [2016].

Trudeau is depicted smiling, sitting relaxed in the boxing ring sporting a Maple Leaf-emblazoned tank, black shorts and red boxing gloves. Standing behind him are Puck, Sasquatch and Aurora, who are members of Canadian superhero squad Alpha Flight. In the left corner, Iron Man is seen with his arms crossed.

“I didn’t want to do a stuffy cover — just like a suit and tie — put his likeness on the cover and call it a day,” said award-winning Toronto-based cartoonist Ramon Perez.

“I wanted to kind of evoke a little bit of what’s different about him than other people in power right now. You don’t see (U.S. President Barack) Obama strutting around in boxing gear, doing push-ups in commercials or whatnot. Just throwing him in his gear and making him almost like an everyday person was kind of fun.”

The variant cover featuring Trudeau will be an alternative to the main cover in circulation showcasing Aurora, Puck, Sasquatch and Nick Fury.

It’s not the first time a Canadian Prime Minister has been featured in a Marvel comic book (from the CBC news item),

Trudeau Comic Cover 20160628

Prime Minister Pierre Trudeau in 1979’s Volume 120 of The Uncanny X-Men. (The Canadian Press/Marvel)

Trudeau follows in the prime ministerial footsteps of his late father, Pierre, who graced the pages of “Uncanny X-Men” in 1979.

The news item goes on to describe artist/writer Chip Zdarsky’s (Edmonton-born) ideas for the 2016 story.

h/t to Reva Seth’s June 29, 2016 article for Fast Company for pointing me to Justin Trudeau’s comic book cover.

Third assessment of The State of Science and Technology and Industrial Research and Development in Canada announced

The last State of Science and Technology and Industrial Research and Development in Canada assessments were delivered in 2006* and 2013 respectively, which seems a shortish gap between assessments, as these things go. On a positive note, this may mean that the government has seen the importance of a more agile approach as the pace of new discoveries is ever quickening. Here’s more from a June 29, 2016 announcement from the Canadian Council of Academies (CCA; received via email),

CCA to undertake third assessment on the State of S&T and IR&D

June 29, 2016 (Ottawa, ON) – The Council of Canadian Academies (CCA) is pleased to announce the launch of a new assessment on the state of science and technology (S&T) and industrial research and development (IR&D) in Canada. This assessment, referred by Innovation, Science and Economic Development Canada (ISED), will be the third installment in the state of S&T and IR&D series by the CCA.

“I’m delighted the government continues to recognize the value of the CCA’s state of S&T and IR&D reports,” said Eric M. Meslin, President and CEO of the Council of Canadian Academies. “An updated assessment will enable policy makers, and others, such as industry leaders, universities, and the private sector, to draw on current Canadian S&T and IR&D data to make evidence-informed decisions.”

The CCA’s reports on the state of S&T and state of IR&D provide valuable data and analysis documenting Canada’s S&T and IR&D strengths and weaknesses. New data will help identify trends that have emerged in the Canadian S&T and IR&D environment in the past four to five years.

Under the guidance of the CCA’s Scientific Advisory Committee, a multidisciplinary, multi-sectoral expert panel is being assembled. It is anticipated that the final report will be released in a two-part sequence, with an interim report released in late 2016 and a final report released in 2017.

To learn more about this and the CCA’s other active assessments, visit Assessments in Progress.

The announcement offers information about the series of assessments,

About the State of S&T and IR&D Assessment Series

Current charge: What is the current state of science and technology and industrial research and development in Canada?

Sponsor: Innovation, Science and Economic Development Canada (ISED)

This assessment will be the third edition in the State of S&T and Industrial R&D assessment series.

Background on the Series

  • In 2006, the CCA completed its first report on The State of Science and Technology in Canada. The findings were integral to the identification of S&T priority areas in the federal government’s 2007 S&T strategy,  Mobilizing Science and Technology to Canada’s Advantage [the original link was not functional; I found the report on an archived page].
  • In 2010 the CCA was again asked to assess the state of S&T in Canada.  The State of Science and Technology in Canada, 2012 updated the 2006 report and provided a thorough analysis of the scientific disciplines and technological applications where Canada excelled in a global context. It also identified Canada’s S&T strengths, regional specializations, and emerging research areas.
  • In 2013, the CCA published The State of Industrial R&D in Canada. This report provided an in-depth analysis of research and development activities in Canadian industries and is one of the most detailed and systematic studies of the state of IR&D ever undertaken in Canada.

I wrote three posts after the second assessment was delivered in 2012. My Sept. 27, 2012 posting was an announcement of its launch and then I offered a two-part critique: part 1 was in a Dec. 28, 2012 posting and part 2 was in a second Dec. 28, 2012 posting. I did not write about the 2013 report on Canada’s industrial research and development efforts.

Given the size of the 2012 assessment of science and technology at 232 pp. (PDF) and the 2013 assessment of industrial research and development at 220 pp. (PDF) with two expert panels, the imagination boggles at the potential size of the 2016 expert panel and of the 2016 assessment combining the two areas.

Given the timing for the interim report (late 2016), I wonder if they are planning to release at the 2016 Canadian Science Policy Conference, which is being held in Ottawa from Nov. 8 – 10, 2016 (for the second year in a row and, I believe, the third time in eight conferences).

*’2012′ changed to ‘2006’ on Oct. 17, 2016.