Tag Archives: University of New Brunswick

2018 Canadian Science Policy Conference (Nov. 7 – 9, 2018) highlights and Council of Canadian Academies: a communications job, a report, and more

This is a going to a science policy heavy posting with both a conference and the latest report from the Canadian Council of Academies (CCA).

2018 Canadian Science Policy Conference

As I noted in my March 1, 2018 posting, this is the fourth year in a row that the conference is being held in Ottawa and the theme for this 10th edition is ‘Building Bridges Between Science, Policy and Society‘.

The dates are November 7 -9, 2018 and as the opening draws closer I’m getting more ‘breathlessly enthusiastic’ announcements. Here are a few highlights from an October 23, 2018 announcement received via email,

CSPC 2018 is honoured to announce that the Honourable Kirsty Duncan, Minister of Science and Sport, will be delivering the keynote speech of the Gala Dinner on Thursday, November 8 at 7:00 PM. Minister Duncan will also hand out the 4th Science Policy Award of Excellence to the winner of this year’s competition.

CSPC 2018 features 250 speakers, a record number, and above is the breakdown of the positions they hold, over 43% of them being at the executive level and 57% of our speakers being women.

*All information as of October 15, 2018

If you think that you will not meet any new people at CSPC and all of the registrants are the same as last year, think again!

Over 57% of  registrants are attending the conference for the FIRST TIME!

Secure your spot today!

*All information as of October 15, 2018

Here’s more from an October 31, 2018 announcement received via email,

One year after her appointment as Canada’s Chief Science Advisor, Dr. Mona Nemer will discuss her experience with the community. Don’t miss this opportunity.

[Canadian Science Policy Centre editorials in advance of conference]

Paul Dufour
“Evidence and Science in Parliament–Looking Back at CSPC and Moving Forward”

Dr. Tom Corr
“Commercializing Innovation in Canada: Advancing in the Right Direction”

Joseph S Sparling, PhD
“Reimagining the Canadian Postdoctoral Training System”

Milton Friesen
“Conspiring Together for Good: Institutional Science and Religion”

Joseph Tafese
“Science and the Next Generation : Science and Inclusivity, Going beyond the Slogans”

Eva Greyeyes
“Opinion Editorial for CSPC, November 2018”

Monique Crichlow
Chris Loken

“Policy Considerations Towards Converged HPC-AI Platforms”

Should you be in the Ottawa area November 7 – 9, 2018, it’s still possible to register.

**Update November 6, 2018: The 2018 CSPC is Sold Out!**

Council of Canadian Academies: job and the ‘managing innovation’ report

Let’s start with the job (from the posting),

October 17, 2018

Role Title:      Director of Communications
Deadline:       November 5, 2018
Salary:            $115,000 to $165,000

About the Council of Canadian Academies
The Council of Canadian Academies (CCA) is a not-for-profit organization that conducts assessments of evidence on scientific topics of public interest to inform decision-making in Canada.

Role Summary
The CCA is seeking an experienced communications professional to join its senior management team as Director of Communications. Reporting to the President and CEO, the Director is responsible for developing and implementing a communications plan for the organization that promotes and highlights the CCA’s work, brand, and overall mission to a variety of potential users and stakeholders; overseeing the publication and dissemination of high-quality hard copy and online products; and providing strategic advice to the President and CCA’s Board, Committees, and Panels. In fulfilling these responsibilities, the Director of Communications is expected to work with a variety of interested groups including the media, the broad policy community, government, and non-governmental organizations.

Key Responsibilities and Accountabilities
Under the direction of the President and CEO, the Director leads a small team of communications and publishing professionals to meet the responsibilities and accountabilities outlined below.

Strategy Development and External Communications
• Develop and execute an overall strategic communications plan for the organization that promotes and highlights the CCA’s work, brand, and overall mission.
• Oversee the CCA’s presence and influence on digital and social platforms including the development and execution of a comprehensive content strategy for linking CCA’s work with the broader science and policy ecosystem with a focus on promoting and disseminating the findings of the CCA’s expert panel reports.
• Provide support, as needed for relevant government relations activities including liaising with communications counterparts, preparing briefing materials, responding to requests to share CCA information, and coordinating any appearances before Parliamentary committees or other bodies.
• Harness opportunities for advancing the uptake and use of CCA assessments, including leveraging the strengths of key partners particularly the founding Academies.

Publication and Creative Services
• Oversee the creative services, quality control, and publication of all CCA’s expert panel reports including translation, layout, quality assurance, graphic design, proofreading, and printing processes.
• Oversee the creative development and publication of all CCA’s corporate materials including the Annual Report and Corporate Plan through content development, editing, layout, translation, graphic design, proofreading, and printing processes.

Advice and Issues Management
• Provide strategic advice and support to the President’s Office, Board of Directors, Committees, and CCA staff about increasing the overall impact of CCA expert panel reports, brand awareness, outreach opportunities, and effective science communication.
• Provide support to the President by anticipating project-based or organizational issues, understanding potential implications, and suggesting strategic management solutions.
• Ensure consistent messages, style, and approaches in the delivery of all internal and external communications across the organization.

Leadership
• Mentor, train, and advise up to five communications and publishing staff on a day-to-day basis and complete annual performance reviews and planning.
• Lead the development and implementation of all CCA-wide policy and procedures relating to all aspects of communications and publishing.
• Represent the issues, needs, and ongoing requirements for the communications and publishing staff as a member of the CCA senior management team.

Knowledge Requirements
The Director of Communications requires:
• Superior knowledge of communications and public relations principles – preferably as it applies in a non-profit or academic setting;
• Extensive experience in communications planning and issues management;
• Knowledge of current research, editorial, and publication production standards and procedures including but not limited to: translation, copy-editing, layout/design, proofreading and publishing;
• Knowledge of evaluating impact of reports and assessments;
• Knowledge in developing content strategy, knowledge mobilization techniques, and creative services and design;
• Knowledge of human resource management techniques and experience managing a team;
• Experience in coordinating, organizing and implementing communications activities including those involving sensitive topics;
• Knowledge of the relationships and major players in Canada’s intramural and extramural science and public policy ecosystem, including awareness of federal science departments and Parliamentary committees, funding bodies, and related research groups;
• Knowledge of Microsoft Office Suite, Adobe Creative Suite, WordPress and other related programs;
• Knowledge of a variety of social media platforms and measurement tools.

Skills Requirements
The Director of Communications must have:
• Superior time and project management skills
• Superior writing skills
• Superior ability to think strategically regarding how best to raise the CCA’s profile and ensure impact of the CCA’s expert panel reports
• Ability to be flexible and adaptable; able to respond quickly to unanticipated demands
• Strong advisory, negotiation, and problem-solving skills
• Strong skills in risk mitigation
• Superior ability to communicate in both written and oral forms, effectively and diplomatically
• Ability to mentor, train, and provide constructive feedback to direct reports

Education and Experience
This knowledge and skillset is typically obtained through the completion of a post-secondary degree in Journalism, Communications, Public Affairs or a related field, and/or a minimum of 10
years of progressive and related experience. Experience in an organization that has addressed topics in public policy would be valuable.

Language Requirements: This position is English Essential. Fluency in French is a strong asset.

To apply to this position please send your CV and cover letter to careers@scienceadvice.ca before November 5, 2018. The cover letter should answer the following questions in 1,000 words or less:

1. How does your background and work experience make you well-suited for the position of Director of Communications at CCA?
2. What trends do you see emerging in the communications field generally, and in science and policy communications more specifically? How might CCA take advantage of these trends and developments?
3. Knowing that CCA is in the business of conducting assessments of evidence on important policy topics, how do you feel communicating this type of science differs from communicating other types of information and knowledge?

Improving Innovation Through Better Management

The Council of Canadian Academies released their ‘Improving Innovation Through Better Management‘ report on October 18, 2018..As some of my regular readers (assuming there are some) might have predicted, I have issues.

There’s a distinct disconnection between the described problem and the questions to be answered. From the ‘Improving Innovation Through Better Management‘ summary webpage,

While research is world-class and technology start-ups are thriving, few companies grow and mature in Canada. This cycle — invent and sell, invent and sell — allows other countries to capture much of the economic and social benefits of Canadian-invented products, processes, marketing methods, and business models. …

So, the problem is ‘invent and sell’. Leaving aside the questionable conclusion that other countries are reaping the benefits of Canadian innovation (I’ll get back to that shortly), what questions could you ask about how to break the ‘invent and sell, invent and sell’ cycle? Hmm, maybe we should ask, How do we break the ‘invent and sell’ cycle in Canada?

The government presented two questions to deal with the problem and no, how to break the cycle is not one of the questions. From the ‘Improving Innovation Through Better Management‘ summary webpage,

… Escaping this cycle may be aided through education and training of innovation managers who can systematically manage ideas for commercial success and motivate others to reimagine innovation in Canada.

To understand how to better support innovation management in Canada, Innovation, Science and Economic Development Canada (ISED) asked the CCA two critical questions: What are the key skills required to manage innovation? And, what are the leading practices for teaching these skills in business schools, other academic departments, colleges/polytechnics, and industry?

As lawyers, journalists, scientists, doctors, librarians, and anyone who’s ever received misinformation can tell you, asking the right questions can make a big difference.

As for the conclusion that other countries are reaping the benefits of Canadian innovation, is there any supporting data? We enjoy a very high standard of living and have done so for at least a couple of generations. The Organization for Economic Cooperation and Development (OECD) has a Better Life Index, which ranks well-being on these 11 dimensions (from the OECD Better Life Index entry on Wikipedia), Note: Links have been removed,

  1. Housing: housing conditions and spendings (e.g. real estate pricing)
  2. Income: household income and financial wealth
  3. Jobs: earnings, job security and unemployment
  4. Community: quality of social support network
  5. Education: education and what you get out of it
  6. Environment: quality of environment (e.g. environmental health)
  7. Governance: involvement in democracy
  8. Health
  9. Life Satisfaction: level of happiness
  10. Safety: murder and assault rates
  11. Work-life balance

In 2017, the index ranked Canada as fifth in the world while the US appears to have slipped from a previous ranking of 7th to 8th. (See these Wikipedia entries with relevant subsections for rankings:  OECD Better Life Index; Rankings, 2017 ranking and Standard of living in the United States, Measures, 3rd paragraph.)

This notion that other countries are profiting from Canadian innovation while we lag behind has been repeated so often that it’s become an article of faith and I never questioned it until someone else challenged me. This article of faith is repeated internationally and sometimes seems that every country in the world is worried that someone else will benefit from their national innovation.

Getting back to the Canadian situation, we’ve decided to approach the problem by not asking questions about our article of faith or how to break the ‘invent and sell’ cycle. Instead of questioning an assumption and producing an open-ended question, we have these questions (1) What are the key skills required to manage innovation? (2) And, what are the leading practices for teaching these skills in business schools, other academic departments, colleges/polytechnics, and industry?

in my world that first question, would be a second tier question, at best. The second question, presupposes the answer: more training in universities and colleges. I took a look at the report’s Expert Panel webpage and found it populated by five individuals who are either academics or have strong ties to academe. They did have a workshop and the list of participants does include people who run businesses, from the Improving Innovation Through Better Management‘ report (Note: Formatting has not been preserved),

Workshop Participants

Max Blouw,
Former President and Vice-Chancellor of
Wilfrid Laurier University (Waterloo, ON)

Richard Boudreault, FCAE,
Chairman, Sigma Energy
Storage (Montréal, QC)

Judy Fairburn, FCAE,
Past Board Chair, Alberta Innovates;
retired EVP Business Innovation & Chief Digital Officer,
Cenovus Energy Inc. (Calgary, AB)

Tom Jenkins, O.C., FCAE,
Chair of the Board, OpenText
(Waterloo, ON)

Sarah Kaplan,
Director of the Institute for Gender and the
Economy and Distinguished Professor, Rotman School of
Management, University of Toronto (Toronto, ON)

Jean-Michel Lemieux,
Senior Vice President of Engineering,
Shopify Inc. (Ottawa, ON)

Elicia Maine,
Academic Director and Professor, i2I, Beedie
School of Business, Simon Fraser University (Vancouver, BC)

Kathy Malas,
Innovation Platform Manager, CHU
Sainte Justine (Montréal, QC)

John L. Mann, FCAE,
Owner, Mann Consulting
(Blenheim, ON)

Jesse Rodgers,
CEO, Volta Labs (Halifax, NS)

Creso Sá,
Professor of Higher Education and Director of
the Centre for the Study of Canadian and International
Higher Education, Ontario Institute for Studies in Education,
University of Toronto (Toronto, ON)

Dhirendra Shukla,
Professor and Chair, J. Herbert Smith
Centre for Technology Management & Entrepreneurship,
Faculty of Engineering, University of New Brunswick
(Fredericton, NB)

Dan Sinai,
Senior Executive, Innovation, IBM Canada
(Toronto, ON)

Valerie Walker,
Executive Director, Business/Higher
Education Roundtable (Ottawa, ON)

J. Mark Weber,
Eyton Director, Conrad School of
Entrepreneurship & Business, University of Waterloo
(Waterloo, ON)

I am a little puzzled by the IBM executive’s presence (Dan Sinai) on this list. Wouldn’t Canadians holding onto their companies be counterproductive to IBM’s interests? As for John L. Mann, I’ve not been able to find him or his consulting company online. it’s unusual not to find any trace of an individual or company online these days.

In all there were nine individuals representing academic or government institutions in this list. The gender balance is 10 males and five females for the workshop participants and three males and two females for the expert panel. There is no representation from the North or from Manitoba, Saskatchewan, Prince Edward Island, or Newfoundland.

If they’re serious about looking at how to use innovation to drive higher standards of living, why aren’t there any people from Asian countries where they have been succeeding at that very project? South Korea and China come to mind.

I’m sure there are some excellent ideas in the report, I just wish they’d taken their topic to heart and actually tried to approach innovation in Canada in an innovative fashion.

Meanwhile, Vancouver gets another technology hub, from an October 30, 2018 article by Kenneth Chan for the Daily Hive (Vancouver [Canada]), Note: Links have been removed,

Vancouver’s rapidly growing virtual reality (VR) and augmented reality (AR) tech sectors will greatly benefit from a new VR and AR hub created by Launch Academy.

The technology incubator has opened a VR and AR hub at its existing office at 300-128 West Hastings Street in downtown, in partnership with VR/AR Association Vancouver. Immersive tech companies have access to desk space, mentorship programs, VR/AR equipment rentals, investor relations connected to Silicon Valley [emphasis mine], advisory services, and community events and workshops.

Within the Vancouver tech industry, the immersive sector has grown from 15 companies working in VR and AR in 2015 to 220 organizations today.

Globally, the VR and AR market is expected to hit a value of $108 billion by 2021, with tech giants like Amazon, Apple, Facebook, Google, and Microsoft [emphasis mine] investing billions into product development.

In the Vancouver region, the ‘invent and sell’ cycle can be traced back to the 19th century.

One more thing, as I was writing this piece I tripped across this news: “$7.7-billion pact makes Encana more American than Canadian‘ by Geoffrey Morgan. It’s in the Nov. 2, 2018 print edition of the Vancouver Sun’s front page for business. “Encana Corp., the storied Canadian company that had been slowly transitioning away from Canada and natural gas over the past few years under CEO [Chief Executive Officer] Doug Suttles, has pivoted aggressively to US shale basins. … Suttles, formerly as BP Plc. executive, moved from Calgary [Alberta, Canada] to Denver [Colorado, US], though the company said that was for personal reasons and not a precursor to relocation of Encana’s headquarters.”  Yes, that’s quite believable. By the way, Suttles has spent* most of his life in the US (Wikipedia entry).

In any event, it’s not just Canadian emerging technology companies that get sold or somehow shifted out of Canada.

So, should we break the cycle and, if so, how are we going to do it?

*’spend’ corrected to ‘spent’ on November 6, 2018.

Canadian science: a new writing guide and a new open access journal

The book
The Scientist’s Guide to Writing: How to Write More Easily and Effectively Throughout Your Scientific Career by Stephen Heard (professor at the University of New Brunswick, Canada) was published today, April 12, 2016. Heard has written up his book and experiences in an April 12, 2016 posting on his blog, Scientist Sees Squirrel,

It’s been almost five years since I started work on what became The Scientist’s Guide to Writing. I’m absolutely thrilled to announce that as of today, the book is officially published!  The Scientist’s Guide is now available from your local or internet bookseller (links below) or, of course, from your local library. …

All scientists are writers – we have to be, or our work will be lost.  But many of us don’t find writing easy.  I wrote The Scientist’s Guide to tell you some of things I wish someone had told me when I was beginning to practice the craft.  Actually (and somewhat to my surprise), in writing it I learned new things that are helping me even this late in my career.  I think the book can help any writer; as of today, you can grab a copy and see whether I’m right.

I have taken a look at the Table of Contents, as usual with Amazon’s previews (thank you for the preview but sigh), I can’t copy and paste it here. Briefly, the book has 28 chapters and is split into seven parts: What Writing Is, Behavior, Content and Structure, Style, Revision, Some Loose Threads, and Final Thoughts. Should this whet your appetite, the paperback book is priced at $27.67 CAD.

The open access journal

An April 12, 2016 post by Dr. Jules Blais on the Canadian Science Publishing blog announces a new journal,

It is my distinct pleasure to introduce FACETS, an open access, multidisciplinary and interdisciplinary science journal that will offer new approaches to publishing original research and perspectives, with a focus on multidisciplinary and interdisciplinary science and engineering.

… It is widely recognized that multidisciplinary and interdisciplinary approaches will be increasingly required to face the challenges of the twenty-first century. Developments to improve and sustain essential aspects of modern society, such as health, energy, environment, and technology, will require a multidisciplinary and interdisciplinary perspective. Although the two terms are often used interchangeably, multidisciplinary approaches refer to independent research leading to a common goal, whereas interdisciplinary research refers to a sharing of methods or concepts among participants. FACETS intends to promote both of these approaches. We believe FACETS is timely because we anticipate that the major research breakthroughs in the coming decades will be made at the interfaces of traditional fields of inquiry. …

Blais goes on to discuss whys of the open access policy, the types of manuscripts they will be accepting, and the journal’s bilingual language policy,

… Open access is still a relatively new concept and online journals have only existed for 20 years. Before this time, research was printed on paper and hand delivered to libraries, making it an exclusive enterprise accessible to the privileged few. There has now been a seismic shift in the research landscape with open access becoming more prevalent in publishing spheres, and in a growing number of cases, a requirement of funding agencies. Open access can serve to expand the reach, influence, and openness of research, making research accessible to those whose public funds have largely paid for it. Funding agency requirements for publishing open access research are now being seen across much of the world, which should put to rest any questions about the future of open access publishing – it is here to stay.

… We will accept a wide variety of paper types that represent the full coverage of research communication, including Research Articles, Review Articles, Perspectives, Communications, Notes, Comments, Editorials, and Science Applications Forum articles focusing on sound science that advances knowledge. An exciting aspect of our journal will be its Integrative Sciences section, which will feature topics at the interface between science and the humanities, including Science Communication, Science and Policy, Science Education, Science and Society, Conservation and Sustainability, Science and Ethics, and Public Health. … Another novel feature of FACETS is that we will accept submissions in either English or French to serve the research landscape in Canada and other francophone countries. …

You can find FACETS here and there’s a special deal available until June 30, 2016 where you can submit your piece free-of-processing-charge until then.

University of New Brunswick (Canada), ‘sun in a can’, and buckyballs

Cutting the cost for making solar cells could be a step in the right direction for more widespread adoption. At any rate, that seems to be the motivation for Dr. Felipe Chibante of the University of New Brunswick  and his team as they’ve worked for the past three years or so on cutting production costs for fullerenes (also known as, buckminsterfullerenes, C60, and buckyballs). From a Dec. 23, 2015 article by Michael Tutton for Canadian Press,

A heating system so powerful it gave its creator a sunburn from three metres away is being developed by a New Brunswick engineering professor as a method to sharply reduce the costs of making the carbon used in some solar cells.

Felipe Chibante says his “sun in a can” method of warming carbon at more than 5,000 degrees Celsius helps create the stable carbon 60 needed in more flexible forms of photovoltaic panels.

Tutton includes some technical explanations in his article,

Chibante and senior students at the University of New Brunswick created the system to heat baseball-sized lumps of plasma — a form of matter composed of positively charged gas particles and free-floating negatively charged electrons — at his home and later in a campus lab.

According to a May 22, 2012 University of New Brunswick news release received funding of almost $1.5M from the Atlantic Canada Opportunities Agency for his work with fullerenes,

Dr. Felipe Chibante, associate professor in UNB’s department of chemical engineering, and his team at the Applied Nanotechnology Lab received nearly $1.5 million to lower the cost of fullerenes, which is the molecular form of pure carbon and is a critical ingredient for the plastic solar cell market.

Dr. Chibante and the collaborators on the project have developed fundamental synthesis methods that will be integrated in a unique plasma reactor to result in a price reduction of 50-75 per cent.

Dr. Chibante and his work were also featured in a June 10, 2013 news item on CBC (Canadian Broadcasting Corporation) news online,

Judges with the New Brunswick Innovation Fund like the idea and recently awarded Chibante $460,000 to continue his research at the university’s Fredericton campus.

Chibante has a long history of working with fullerenes — carbon molecules that can store the sun’s energy. He was part of the research team that discovered fullerenes in 1985 [the three main researchers at Rice University, Texas, received Nobel Prizes for the work].

He says they can be added to liquid, spread over plastic and shingles and marketed as a cheaper way to convert sunlight into electricity.

“What we’re trying to do in New Brunswick with the science research and innovation is we’re really trying to get the maximum bang for the buck,” said Chibante.

As it stands, fullerenes cost about $15,000 per kilogram. Chibante hopes to lower the cost by a factor of 10.

The foundation investment brings Chibante’s research funding to about $6.2 million.

Not everyone is entirely sold on this approach to encouraging solar energy adoption (from the CBC news item),

The owner of Urban Pioneer, a Fredericton [New Brunswick] company that sells alternative energy products, likes the concept, but doubts there’s much of a market in New Brunswick.

“We have conventional solar panels right now and they’re not that popular,” said Tony Craft.

“So I can’t imagine, like, when you throw something completely brand new into it, I don’t know how people are going to respond to that even, so it may be a very tough sell,” he said.

Getting back to Chibante’s breakthrough (from Tutton’s Dec. 23, 2015 article),

The 52-year-old researcher says he first set up the system to operate in his garage.

He installed optical filters to watch the melting process but said the light from the plasma was so intense that he later noticed a sunburn on his neck.

The plasma is placed inside a container that can contain and cool the extremely hot material without exposing it to the air.

The conversion technology has the advantage of not using solvents and doesn’t produce the carbon dioxide that other baking systems use, says Chibante.

He says the next stage is finding commercial partners who can help his team further develop the system, which was originally designed and patented by French researcher Laurent Fulcheri.

Chibante said he doesn’t believe the carbon-based, thin-film solar cells will displace the silicon-based cells because they capture less energy.

But he nonetheless sees a future for the more flexible sheets of solar cells.

“You can make fibres, you can make photovoltaic threads and you get into wearable, portable forms of power that makes it more ubiquitous rather than having to carry a big, rigid structure,” he said.

The researcher says the agreement earlier this month [Nov. 30 – Dec. 12, 2015] in Paris among 200 countries to begin reducing the use of fossil fuels and slow global warming may help his work.

By the way,  Chibante estimates production costs for fullerenes, when using his system, would be less that $50/kilogram for what is now the highest priced component of carbon-based solar cells.

There is another researcher in Canada who works in the field of solar energy, Dr. Ted Sargent at the University of Toronto (Ontario). He largely focuses on harvesting solar energy by using quantum dots. I last featured Sargent’s quantum dot work in a Dec. 9, 2014 posting.

Atlantic Canada’s Lamda Guard signs deal to test nanocomposite windshield film with Airbus

This story comes from Nova Scotia although you wouldn’t know it if you’d only read the June 5, 2014 news item on Azonano,

Lamda Guard, a company based in Atlantic Canada, has signed an agreement with leading aircraft manufacturer Airbus to test a breakthrough innovation designed to deflect unwanted bright light or laser sources from impacting jetliner flight paths, and causing pilot disorientation or injury.

A June 4, 2014 news release (either from Lamda Guard.com or MTI [metamaterial.com]; Note: More about the multiple webspaces later] and there’s a PDF version here), which originated the news item, provides a little more information about the technology and the perspectives from various stakeholders

Lamda Guard’s innovative thin films utilize metamaterial technology on cockpit windscreens to selectively block and control light coming from any angle even at the highest power levels. “Today marks a milestone in optical applications of nano-composites,” said George Palikaras, President and CEO of Lamda Guard. “Through our collaboration with Airbus we are working to introduce our metamaterial technology, for the first time, as a solution to laser interference in the aviation industry.” The announcement today comes within weeks of the release of an FBI [US Federal Bureau of Investigation] report citing 3,960 aircraft laser strikes in the US in 2013 according to the Federal Aviation Authority (FAA).

Senior Vice President of Innovation Yann Barbaux stated: “At Airbus, we are always on the lookout for new ideas coming from innovative SMEs [small to medium enterprises], such as Lamda Guard. We are very pleased to explore together the potential application of this solution to our aircraft, for the benefit of our customers.”

Over the past year Lamda Guard has been working with the research community at the University of Moncton and the University of New Brunswick, as well as stakeholders, investors and funders to highlight the benefits of nano-composites. The Atlantic Canada Opportunities Agency (ACOA) in particular has played an important role in Lamda Guard’s research and development efforts. In 2012, ACOA assisted Lamda Guard with technology commercialization and recently upgraded its contribution to $500,000 to further assist the company in developing and manufacturing its products for the aviation industry.

The Lamda Guard Airbus partnership marks the first time an optical metamaterial nano-composite has been applied on a large-scale surface.

I tried to find more information about the technology and tracked down this tiny bit, from the What are MetaMaterials? webpage on the MTI website,

A metamaterial typically consists of a multitude of structured unit cells that are comprised of multiple individual elements, which are referred to as meta-atoms. The individual elements are assembled from conventional microscopic materials such as metals and/or plastics, which are arranged in periodic patterns.

MTI’s precisely designed structures are developed with proprietary algorithms, producing a new generation of optical products that are built in state-of-the-art thin film nano-fabrication labs. MTI’s proprietary software accurately predicts the desired design pattern to generate a unique material that meets customer specifications. MTI’s sleek designs mean manufacturers can reduce their cost of materials significantly while increasing performance, e.g. by increasing the light output of an LED bulb or increasing the absorption of light in a solar panel.

Multiple webspaces and presences

While Lamda Guard has a .com presence, you will find yourself on the metamaterial.com website in the Lamda Guard webspace (I suppose you could also call it a subsite) once you start clicking for more information.  In fact, MTI owns three Lamda companies as per this description from the Our Company webpage on the MTI (metamaterial.com) website (Note: Links have been removed),

MTI is an advanced materials and systems engineering company developing and commercializing innovative optical solutions. The company’s core team has over 200 years of combined experience at the forefront of the design and implementation of metamaterials, making MTI a pioneer in bridging the gap between the theoretical and the possible.

MTI specializes in metamaterials, nanotechnology, theoretical and computational electromagnetics. The company’s in-house expertise enables the rapid development of a wide array of metamaterial applications, covering a diverse range of markets.

MTI’s technologies are adaptable and can be custom-designed to suit an industry manufacturer’s specifications allowing for scalability and rapid prototyping with minimum overheads. MTI provides access to world class nano-composite research and development, including specialty, as well as customized, products and licensing of its proprietary solutions to customers ranging from government to private companies.

MTI has three wholly owned subsidiaries:

Lamda Guard Inc. which develops advanced filters to block out selected parts of the light spectrum, protecting the eyes from lasers or other sources of hazardous light.

Lamda Solar Inc. products increase the efficiency of solar panel cells by absorbing more light.

Lamda Lux Inc. technology increases the delivered lumens and reduces the cost of thermal management of LED lighting.

Interestingly, the Lamda Guard Management team‘s (in the Lamda Guard webspace) Chief Science Officer, Dr. Themos Kallos, and Chief Intellectual Property Officer, Dr. Quinton Fivelman, both appear to reside in the UK (assuming I looked at the correct LinkedIn profiles).  Coincidentally, MTI’s contact page lists the company’s headquarters as being in Nova Scotia but Sales, Research and Development would seem to be located in the UK.

Presumably, this company is maximizing its access to government grants and tax incentives in both the UK and Canada. The deal with the Airbus suggests that this has been a successful strategy possibly leading to commercialized technology and, hopefully, jobs.