Tag Archives: University of Alberta

Want a free course in science literacy? The University of Alberta has one for you

The folks at the University of Alberta have created a course for learning critical thinking skills where science is concerned. An Oct. 24, 2020 article by Nicole Bergot for the Edmonton Journal describes the course,

“The purpose of this course is to teach people about the process of science and how it is used to acquire knowledge,” course host Claire Scavuzzo, researcher in the Department of Psychology, said in a release. “By the end of the course, learners will be able to understand and use scientific evidence to challenge claims based on misinformation and engage the process of science to ask questions to build our knowledge.”

“With the uncertainty that comes with the current global COVID-19 pandemic we are seeing a general public distrust in science; ironically because of its self-correcting process,” said Scavuzzo.

The online course has no prerequisites, features guest lecturers, and can be completed at the learner’s own pace — roughly five weeks, with five to seven hours per week of study.

The five modules of the course are presented with practice quizzes, reflective quizzes, and interactive learning objects that are all available for free.

A University of Alberta Oct. 13, 2020 news release provides more detail,

We are often told not to believe everything we read online or see on TV—but how do we tell the difference between sensationalized statistics and a real scientific study? A new online course in Science Literacy offered by the University of Alberta is ready to help learners spot sound science—an increasingly relevant skill in today’s world of social media.

The course covers a variety of topics, Scavuzzo explained, and students will have the opportunity to learn how holistic wisdom is gained and practiced by Canadian First Nations, Indigenous, and Metis peoples, compared to the westernized process of science. They will also learn how to think critically about scientific claims from a variety of sources, learning how to differentiate science from pseudoscience.

“Students can expect to finish this course with well-polished critical thinking skills. Rather than ‘science knowledge’ students will build the skill of thinking scientifically, so they are ready to engage in the process of science,” said Scavuzzo. “It may expose some of your biases and it may also help you recognize the value of challenging your biases by being skeptical, asking questions, and evaluating evidence. It will change the way you interact with and absorb content on social media. It will make you realize that these skills can—and should—be used every day.”

Here’s the list of guest lecturers (from the University of Alberta Oct. 13, 2020 news release),

  • Timothy Caulfield, Canada Research Chair in Health Law and Policy and star of Netflix’s “A User’s Guide to Cheating Death” on pseudoscience
  • Dr. Torah Kachur, Scientist and CBC journalist on science communication (and miscommunication!)
  • Christian Nelson, citizen scientist and creator of Edmonton Weather Nerdery, on experimental design
  • Cree Elder Kokum Rose Wabasca on how traditional knowledge is used in indigenous practices.
  • Métis Elder Elmer Ghostkeeper on how indigenous knowledge informs scientific discovery.
  • Dr. David Rast, scientist and psychology expert, on uncertainty and decision making

You can get more details about this Science Literacy Massive Online Open Course (MOOC) here (scroll down to the bottom of the page for the Module Overview) and to click on the registration link. There’s one other thing, you can get certified in Science Literacy should you choose that option.

Comfortable, bulletproof clothing for Canada’s Department of National Defence

h/t to Miriam Halpenny’s October 14, 2019 Castanet article as seen on the Vancouverisawesome website for this news about bulletproof clothing being developed for Canada’s National Department of Defence. I found a September 4, 2019 University of British Columbia Okanagan news release describing the research and the funds awarded to it,

The age-old technique of dressing in layers is a tried and tested way to protect from the elements. Now thanks to $1.5 million in new funding for UBC’s Okanagan campus, researchers are pushing the practice to new limits by creating a high-tech body armour solution with multiple layers of protection against diverse threats.

“Layers are great for regulating body heat, protecting us from inclement weather and helping us to survive in extreme conditions,” says Keith Culver, director of UBC’s Survive and Thrive Applied Research (STAR) initiative, which is supporting the network of researchers who will be working together over the next three years. “The idea is to design and integrate some of the most advanced fabrics and materials into garments that are comfortable, practical and can even stop a bullet.”

The research network working to develop these new Comfort-Optimized Materials For Operational Resilience, Thermal-transport and Survivability (COMFORTS) aims to create a futuristic new body armour solution by combining an intelligent, moisture-wicking base layer that has insulating properties with a layer of lightweight, ballistic-resistant material using cross-linker technology. It will also integrate a water, dust and gas repellent outer layer and will be equipped with comfort sensors to monitor the wearer’s response to extreme conditions.

“Although the basic idea seems simple, binding all these different materials and technologies together into a smart armour solution that is durable, reliable and comfortable is incredibly complex,” says Kevin Golovin, assistant professor of mechanical engineering at UBCO and principal investigator of the COMFORTS research network. “We’re putting into practice years of research and expertise in materials science to turn the concept into reality.”

The COMFORTS network is a collaboration between the University of British Columbia, the University of Alberta and the University of Victoria and is supported by a number of industrial partners. The network has received a $1.5M contribution agreement from the Department of National Defence through its Innovation for Defence Excellence and Security (IDEaS) program, designed to support innovation in defence and security.

“The safety and security threats faced by our military are ever-changing,” says Culver. “Hazards extend beyond security threats from foreign forces to natural disasters now occurring more frequently than ever before. Almost every year we’re seeing natural disasters, forest fires and floods that put not just ordinary Canadians at risk but also the personnel that respond directly to those threats. Our goal is to better protect those who put their lives on the line to protect the rest of us.”

While the initial COMFORTS technologies developed will be for defence and security applications, Culver says the potential extends well beyond the military.

“Imagine a garment that could keep its users comfortable and safe as they explore the tundra of the Canadian arctic, fight a raging forest fire or respond to a corrosive chemical spill,” says Culver. “I imagine everyone from first responders to soldiers to extreme athletes being impacted by this kind of innovation in protective clothing.”

The research will be ongoing with eight projects planned over the next three years. Some of the protective materials testing will take place at UBC’s STAR Impact Research Facility (SIRF), located just north of UBC’s Okanagan campus. The ballistic and blast simulation facility is the only one of its kind in Canada—it supports research and testing of ballistic and blast-resistant armour, ceramic and other composite materials, as well as helmets and other protective gear.

“I anticipate we will see some exciting new, field-tested technologies developed within the next few years,” says Culver. “I look forward to seeing where this collaboration will lead us.”

To learn more about the COMFORTS project, visit: ok.ubc.ca/okanagan-stories/textile-tech

UBC Expert Q&A

Western Canada primed to be defense and security research hotspot

World-class vineyards and sunny lakeside resorts have long been the reputation for BC’s Okanagan Valley. That reputation has expanded with Kelowna’s growth as a tech hub, according to Professor Keith Culver, director of UBC’s Survive and Thrive Research (STAR) initiative, but core expertise in defense and security research has also been rapidly expanding since UBC launched the STAR initiative five years ago.

Culver is a professor, legal theorist, self-described convener and coach with proven expertise assembling multi-disciplinary research teams working at the vanguard of innovation. One of these teams, led by Assistant Professor of Mechanical Engineering Kevin Golovin, was recently awarded a $1.5 million contract by the Department of National Defense to develop next-generation, high-performance body armour that increases the safety and comfort of Canadian soldiers.

What is UBC’s STAR initiative?

UBC STAR is a group of researchers and partners working together to solve human performance challenges. We know that solving complex problems requires a multi-disciplinary approach, so we build teams with specialized expertise from across both our campuses and other Western Canadian universities. Then we blend that expertise with the know-how and production capabilities of private and public sector partners to put solutions into practice. Above all, STAR helps university researchers and partners to work together in new, more productive ways.

You recently received considerable new funding from the Department of National Defence. Can you tell us about that research

A team of researchers from UBC, the University of Alberta and the University of Victoria have established a research network to invent and test new materials for the protection of humans operating in extreme environments – in this case, soldiers doing their jobs on foot. Assistant Professor Kevin Golovin of UBC Okanagan’s School of Engineering is leading the network with support from UBC STAR. The network brings together three leading Western Canadian universities to work together with industry to develop new technologies for the defence and security sector.

The network is developing several kinds of protective materials and hazard sensors for use in protective armour for soldiers and first responders. The name of the network captures its focus nicely: Comfort-Optimized Materials For Operational Resilience, Thermal-transport and Survivabilty (COMFORTS). Researchers in engineering, chemistry and other disciplines are developing new textile technologies and smart armour solutions that will be rigorously tested for thermal resistance to increase soldier comfort. We’re fortunate to be working with a great group of companies ready to turn our research into solutions ready for use. We’ll help to solve the challenges facing Canadian first responders and soldiers while enabling Canadian companies to sell those solutions to international markets.

What does the safety and security landscape look like in Western Canada?

I think there’s a perception out there that this kind of research is only happening in places like Halifax, Toronto or Waterloo. Western Canadian expertise is sometimes overlooked by Ottawa and Toronto, but there’s incredible expertise and cutting-edge research happening here in the west, and we are fortunate to have a strong private sector partner community that understands safety and security problems in military contexts, and in forestry, mining and wildfire and flood response. Our understanding of hazardous environments gives us a head start in putting technologies and strategies to work safely in extreme conditions, and we’re coming to realize that our creative solutions can both help Canadians and others around the world.

Why do companies want to work with UBC STAR and its Western Canadian partners?

We have great researchers and great facilities – our blast simulator and ballistics range are second to none – but we offer much more than expertise and equipment. UBC STAR is fundamentally about making the most of collaboration. We work together with our partners to understand the nature of problems and what could contribute to a solution. We readily draw on expertise from multiple universities and firms to assemble the right team. And we know that we are in the middle of a great living lab for testing solutions –with rural and urban areas of varying sizes, climates and terrains. We’re situated in an ideal place to work through technology development, while identifying the strategies and standards needed to put innovative technology to good use.

How do you expect this sector to develop over the next decade?

I see a boom coming in this sector. In Canada, and around the world, we are witnessing a rise in natural disasters that put first responders and others at risk, and our research can help improve their safety. At the same time, we are seeing a rise in global political tensions calling for Canadian military deployment in peacekeeping and other support roles. Our military needs help protecting its members so they can do their jobs in dangerous places. And, of course, when we develop protective materials for first responders and soldiers, the same solutions can be easily adapted for use in sport and health – such as protecting children playing contact sports or our aging population from slip and fall injuries. I think I speak for everyone involved in this research when I say that it’s incredibly rewarding to see how solutions found addressing one question often have far broader benefits for Canadians in every walk of life.

To learn more about STAR, visit: star.ubc.ca

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning in the heart of British Columbia’s stunning Okanagan Valley. Ranked among the top 20 public universities in the world, UBC is home to bold thinking and discoveries that make a difference. Established in 2005, the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world.

To find out more, visit: ok.ubc.ca

Courtesy: UBC Okanagan

I have mentioned* bulletproof clothing here in a November 4, 2013 posting featuring a business suit that included carbon nanotubes providing protection from bullets. Here’s where you can order one.

*’mentioned’ was substituted for ‘featured’ as a grammar correction on July 6, 2020.

Heart and mind: Dr. Paolo Raggi speaks about cardiovascular health and its links to mental health on April 16, 2019 in Vancouver (Canada)

ARPICO, the Embassy of Italy in Ottawa, the Consulate General of Italy in Vancouver, and Paolo Raggi on April 16, 2019, Italian Research Day in the World

I love this image with the brain and heart as plants rooted in the earth for this upcoming ARPICO (Society of Italian Researchers & Professionals in Western Canada) event. I received a March 19, 2019 announcement (via email) from ARPICO about their latest Vancouver event, which is celebrating the 2019 Italian Research Day in the World,

… we are pleased to announce our next event in celebration of Italian Research of the World Day. On April 16th, 2019 at the Italian Cultural Centre, we will have the privilege of hosting the distinguished Dr. Paolo Raggi to present on the topic of mental disorders and cardiovascular health.  Dr. Raggi is a pioneer and luminary in the field of heart health, especially for his approach of considering heart disease not as an isolated condition, but in relation to the health of many other organs, an important one among them being our brain.

This event is organized in collaboration with the Embassy of Italy in Ottawa and with the Consulate General of Italy in Vancouver to celebrate the Italian Research in the World Day, instituted starting in 2018 as part of the Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo. The celebration day was chosen by government decree to be every year on April 15 on the anniversary of the birth of Leonardo da Vinci.

The main objective of the Italian Research Day in the World is to value the quality and competencies of Italian researchers abroad, but also to promote concrete actions and investments to allow Italian researchers to continue pursuing their careers in their homeland. Italy wishes to enable Italian talents to return from abroad as well as to become an attractive environment for foreign researchers.

We look forward to seeing everyone there.
The evening agenda is as follows:
6:30 pm – Doors Open for Registration
7:00 pm – Start of the evening event with introductions & lecture by Dr. Paolo Raggi
~8:00 pm – Q & A Period
to follow – Mingling & Refreshments until about 9:30 pm
If you have not already done so, please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.
Further details are also available at arpico.ca and Eventbrite.

Mental Disorders and Cardiovascular Health: A Critical, if Overlooked, Connection
Despite extraordinary advances in the diagnosis and care of heart disease, this ailment continues to affect a very large portion of the North American population and its related costs keep climbing. Reducing morbidity and mortality from heart disease will require a strong and integrated approach involving both research and clinical efforts aimed at prevention of disease rather than delayed care of its advanced complications. Dr. Raggi’s research investigates the mechanisms and prevention of heart disease and includes, among many other facets of this complex condition, the impact of mental stress disorders on coronary artery disease.

Paolo Raggi, MD, is a Professor of Medicine at the University of Alberta in Edmonton, AB and he is the former Director of the Mazankowski Alberta Heart Institute and Chair of Cardiac Research at the University of Alberta, in Edmonton AB, Canada. He is also an Adjunct Professor of Radiology as well as Professor of Population Health and Epidemiology at Emory University in Atlanta, GA, USA.

Dr. Raggi has been involved in research in the following fields: atherosclerosis imaging, vascular calcification, lipid metabolism, cardiovascular disease associated with: chronic kidney disease, rheumatological disorders, HIV infection, diabetes mellitus, the metabolic syndrome and the impact of mental stress disorders on coronary artery disease. He regularly engages in the interpretation of echocardiography, computed tomography, magnetic resonance and nuclear cardiology imaging studies for the diagnosis of coronary artery disease, subclinical atherosclerosis and evaluation of left ventricular function and viability.

He lectured extensively both nationally and internationally and has been a research mentor for numerous trainees. The results of his work have been published in the New England Journal of Medicine, The Lancet, Archives of Internal Medicine, Circulation, Journal of the American College of Cardiology, European Heart Journal, Kidney International, American Journal of Kidney Diseases, Radiology, Chest and several others. He has contributed over 350 publications to major peer-reviewed journals and 30 chapters for books on cardiovascular imaging and preventive cardiology.

Dr. Raggi has received numerous awards as best teaching attending and best clinical investigator nationally and internationally. He serves as a consultant for 30 scientific medical publications, he is Co-Editor of Atherosclerosis, and sits on the Board of 3 peer-reviewed medical journals. He is a fellow of the American College of Physicians, the American College of Cardiology, the American Heart Association, the Canadian Cardiovascular Society, the American Society of Nuclear Cardiology and the Society of Cardiac Computed Tomography of which he was a co-founder. Dr. Raggi received the highest honours from the President of Italy in October 2017 and was named Knight of the Order of Stars, typically bestowed upon Italian citizens who have distinguished themselves for their service to the Country of origin and/or adoptive countries.
 
WHEN: Tuesday, April 16th, 2019 at 7:00pm (doors open at 6:30pm)
WHERE: Italian Cultural Centre – Museum & Art Gallery – 3075 Slocan St, Vancouver, BC, V5M 3E4
RSVP: Please RSVP at EventBrite (https://mentaldisorderscardiovascularhealth.eventbrite.ca) or email info@arpico.ca
 
Tickets are Needed
Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.

All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.
 
FAQs
Where can I contact the organizer with any questions? info@arpico.ca
Do I have to bring my printed ticket to the event? No, you do not. Your name will be on our Registration List at the Check-in Desk.
Is my registration/ticket transferrable? If you are unable to attend, another person may use your ticket. Please send us an email at info@arpico.ca of this substitution to correct our audience Registration List and to prepare guest name tags.
Can I update my registration information? Yes. If you have any questions, contact us at info@arpico.ca
I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation? Of course, simply send your ticket request to us at info@arpico.ca so we help you.
 
What are my transport/parking options?
Bus/Train: The Millenium Line Renfrew Skytrain station is a 5 minute walk from the Italian Cultural Centre.
Parking: Free Parking is vastly available at the ICC’s own parking lot.

I’m a sucker for any reference to the ancient Romans, which can be found on the event announcement on ARPICO’s homepage and on the EventBrite registration page for the event,

The ancient Romans believed that a healthy body and mind go hand in hand: mens sana in corpore sano! During the American Civil War physicians described the Soldier’s Heart as a syndrome that occurred on the battlefield that involved symptoms very similar to modern day posttraumatic stress disorder (PTSD). They also noted that these soldiers manifested exaggerated cardiovascular reactivity and “abnormalities of the heart”. Interventions were developed to reduce the damage on the cardiovascular system and included surgical interventions to neutralize the sympathetic nervous system hyper-activity. With the advent of modern psychoanalysis, psychiatric symptoms became divorced from the body and were re-located to unconscious systems.

More recently, advancements in psychosomatic medicine and related fields clarified the complexity of the interaction between central and peripheral nervous system disorders, inflammation and cardiovascular diseases. This field of research has witnessed a quick expansion that brought to the discovery of important mechanisms of cardiovascular disease and potential therapeutic advances.

Happy Italian Research Day in the World (Giornata della ricerca Italiana nel mondo) which is held on April 15, 2019 (da Vinci’s birthday) as noted in the ARPICO announcement! If you’re planning to attend, don’t forget to register for Dr. Raggi’s talk at EventBrite (https://mentaldisorderscardiovascularhealth.eventbrite.ca) or email info@arpico.ca.

Summer (2019) Institute on AI (artificial intelligence) Societal Impacts, Governance, and Ethics. Summer Institute In Alberta, Canada

The deadline for applications is April 7, 2019. As for whether or not you might like to attend, here’s more from a joint March 11, 2019 Alberta Machine Intelligence Institute (Amii)/
Canadian Institute for Advanced Research (CIFAR)/University of California at Los Angeles (UCLA) Law School news release
(also on globalnewswire.com),

What will Artificial Intelligence (AI) mean for society? That’s the question scholars from a variety of disciplines will explore during the inaugural Summer Institute on AI Societal Impacts, Governance, and Ethics. Summer Institute, co-hosted by the Alberta Machine Intelligence Institute (Amii) and CIFAR, with support from UCLA School of Law, takes place July 22-24, 2019 in Edmonton, Canada.

“Recent advances in AI have brought a surge of attention to the field – both excitement and concern,” says co-organizer and UCLA professor, Edward Parson. “From algorithmic bias to autonomous vehicles, personal privacy to automation replacing jobs. Summer Institute will bring together exceptional people to talk about how humanity can receive the benefits and not get the worst harms from these rapid changes.”

Summer Institute brings together experts, grad students and researchers from multiple backgrounds to explore the societal, governmental, and ethical implications of AI. A combination of lectures, panels, and participatory problem-solving, this comprehensive interdisciplinary event aims to build understanding and action around these high-stakes issues.

“Machine intelligence is opening transformative opportunities across the world,” says John Shillington, CEO of Amii, “and Amii is excited to bring together our own world-leading researchers with experts from areas such as law, philosophy and ethics for this important discussion. Interdisciplinary perspectives will be essential to the ongoing development of machine intelligence and for ensuring these opportunities have the broadest reach possible.”

Over the three-day program, 30 graduate-level students and early-career researchers will engage with leading experts and researchers including event co-organizers: Western University’s Daniel Lizotte, Amii’s Alona Fyshe and UCLA’s Edward Parson. Participants will also have a chance to shape the curriculum throughout this uniquely interactive event.

Summer Institute takes place prior to Deep Learning and Reinforcement Learning Summer School, and includes a combined event on July 24th [2019] for both Summer Institute and Summer School participants.

Visit dlrlsummerschool.ca/the-summer-institute to apply; applications close April 7, 2019.

View our Summer Institute Biographies & Boilerplates for more information on confirmed faculty members and co-hosting organizations. Follow the conversation through social media channels using the hashtag #SI2019.

Media Contact: Spencer Murray, Director of Communications & Public Relations, Amii
t: 587.415.6100 | c: 780.991.7136 | e: spencer.murray@amii.ca

There’s a bit more information on The Summer Institute on AI and Society webpage (on the Deep Learning and Reinforcement Learning Summer School 2019 website) such as this more complete list of speakers,

Confirmed speakers at Summer Institute include:

Alona Fyshe, University of Alberta/Amii (SI co-organizer)
Edward Parson, UCLA (SI co-organizer)
Daniel Lizotte, Western University (SI co-organizer)
Geoffrey Rockwell, University of Alberta
Graham Taylor, University of Guelph/Vector Institute
Rob Lempert, Rand Corporation
Gary Marchant, Arizona State University
Richard Re, UCLA
Evan Selinger, Rochester Institute of Technology
Elana Zeide, UCLA

Two questions, why are all the summer school faculty either Canada- or US-based? What about South American, Asian, Middle Eastern, etc. thinkers?

One last thought, I wonder if this ‘AI & ethics summer institute’ has anything to do with the Pan-Canadian Artificial Intelligence Strategy, which CIFAR administers and where both the University of Alberta and Vector Institute are members.

‘Superconductivity: The Musical!’ wins the 2018 Dance Your Ph.D. competition

I can’t believe that October 24, 2011 was the last time the Dance Your Ph.D. competition was featured here. Time flies, eh? Here’s the 2018 contest winner’s submission, Superconductivity: The Musical!, (Note: This video is over 11 mins. long),

A February 17, 2019 CBC (Canadian Broadcasting Corporation) news item introduces the video’s writer, producer,s musician, and scientist,

Swing dancing. Songwriting. And theoretical condensed matter physics.

It’s a unique person who can master all three, but a University of Alberta PhD student has done all that and taken it one step further by making a rollicking music video about his academic pursuits — and winning an international competition for his efforts.

Pramodh Senarath Yapa is the winner of the 2018 Dance Your PhD contest, which challenges scientists around the world to explain their research through a jargon-free medium: dance.

The prize is $1,000 and “immortal geek fame.”

Yapa’s video features his friends twirling, swinging and touch-stepping their way through an explanation of his graduate research, called “Non-Local Electrodynamics of Superconducting Wires: Implications for Flux Noise and Inductance.”

Jennifer Ouelette’s February 17, 2019 posting for the ars Technica blog offers more detail (Note: A link has been removed),

Yapa’s research deals with how matter behaves when it’s cooled to very low temperatures, when quantum effects kick in—such as certain metals becoming superconductive, or capable of conducting electricity with zero resistance. That’s useful for any number of practical applications. D-Wave Systems [a company located in metro Vancouver {Canada}], for example, is building quantum computers using loops of superconducting wire. For his thesis, “I had to use the theory of superconductivity to figure out how to build a better quantum computer,” said Yapa.

Condensed matter theory (the precise description of Yapa’s field of research) is a notoriously tricky subfield to make palatable for a non-expert audience. “There isn’t one unifying theory or a single tool that we use,” he said. “Condensed matter theorists study a million different things using a million different techniques.”

His conceptual breakthrough came about when he realized electrons were a bit like “unsociable people” who find joy when they pair up with other electrons. “You can imagine electrons as a free gas, which means they don’t interact with each other,” he said. “The theory of superconductivity says they actually form pairs when cooled below a certain temperature. That was the ‘Eureka!’ moment, when I realized I could totally use swing dancing.”

John Bohannon’s Feb. 15, 2019 article for Science (magazine) offers an update on Yapa’s research interests (it seems that Yapa was dancing his Masters degree) and more information about the contest itself ,

..

“I remember hearing about Dance Your Ph.D. many years ago and being amazed at all the entries,” Yapa says. “This is definitely a longtime dream come true.” His research, meanwhile, has evolved from superconductivity—which he pursued at the University of Victoria in Canada, where he completed a master’s degree—to the physics of superfluids, the focus of his Ph.D. research at the University of Alberta.

This is the 11th year of Dance Your Ph.D. hosted by Science and AAAS. The contest challenges scientists around the world to explain their research through the most jargon-free medium available: interpretive dance.

“Most people would not normally think of interpretive dance as a tool for scientific communication,” says artist Alexa Meade, one of the judges of the contest. “However, the body can express conceptual thoughts through movement in ways that words and data tables cannot. The results are both artfully poetic and scientifically profound.”

Getting back to the February 17, 2019 CBC news item,

Yapa describes his video, filmed in Victoria where he earned his master’s degree, as a “three act, mini-musical.”

“I envisioned it as talking about the social lives of electrons,” he said. “The electrons starts out in a normal metal, at normal temperatures….We say these electrons are non-interacting. They don’t talk to each other. Electrons ignore each other and are very unsociable.”

The electrons — represented by dancers wearing saddle oxfords, poodle skirts, vests and suspenders — shuffle up the dance floor by themselves.

In the second act, the metal is cooled.

“The electrons become very unhappy about being alone. They want to find a partner, some companionship for the cold times,” he said

That’s when the electrons join up into something called Cooper pairs.

The dancers join together, moving to lyrics like, “If we peek/the Coopers are cheek-to-cheek.

In the final act, Yapa gets his dancers to demonstrate what happens when the Cooper pairs meet the impurities of the materials they’re moving in. All of a sudden, a group of black-leather-clad thugs move onto the dance floor.

“The Cooper pairs come dancing near these impurities and they’re like these crotchety old people yelling and shaking their fists at these young dancers,” Yapa explained.

Yapa’s entry to the annual contest swept past 49 other contestants to earn him the win. The competition is sponsored by Science magazine and the American Association for the Advancement of Science.

Congratulations to Pramodh Senarath Yapa.

More memory, less space and a walk down the cryptocurrency road

Libraries, archives, records management, oral history, etc. there are many institutions and names for how we manage collective and personal memory. You might call it a peculiarly human obsession stretching back into antiquity. For example, there’s the Library of Alexandria (Wikipedia entry) founded in the third, or possibly 2nd, century BCE (before the common era) and reputed to store all the knowledge in the world. It was destroyed although accounts differ as to when and how but its loss remains a potent reminder of memory’s fragility.

These days, the technology community is terribly concerned with storing ever more bits of data on materials that are reaching their limits for storage.I have news of a possible solution,  an interview of sorts with the researchers working on this new technology, and some very recent research into policies for cryptocurrency mining and development. That bit about cryptocurrency makes more sense when you read what the response to one of the interview questions.

Memory

It seems University of Alberta researchers may have found a way to increase memory exponentially, from a July 23, 2018 news item on ScienceDaily,

The most dense solid-state memory ever created could soon exceed the capabilities of current computer storage devices by 1,000 times, thanks to a new technique scientists at the University of Alberta have perfected.

“Essentially, you can take all 45 million songs on iTunes and store them on the surface of one quarter,” said Roshan Achal, PhD student in Department of Physics and lead author on the new research. “Five years ago, this wasn’t even something we thought possible.”

A July 23, 2018 University of Alberta news release (also on EurekAlert) by Jennifer-Anne Pascoe, which originated the news item, provides more information,

Previous discoveries were stable only at cryogenic conditions, meaning this new finding puts society light years closer to meeting the need for more storage for the current and continued deluge of data. One of the most exciting features of this memory is that it’s road-ready for real-world temperatures, as it can withstand normal use and transportation beyond the lab.

“What is often overlooked in the nanofabrication business is actual transportation to an end user, that simply was not possible until now given temperature restrictions,” continued Achal. “Our memory is stable well above room temperature and precise down to the atom.”

Achal explained that immediate applications will be data archival. Next steps will be increasing readout and writing speeds, meaning even more flexible applications.

More memory, less space

Achal works with University of Alberta physics professor Robert Wolkow, a pioneer in the field of atomic-scale physics. Wolkow perfected the art of the science behind nanotip technology, which, thanks to Wolkow and his team’s continued work, has now reached a tipping point, meaning scaling up atomic-scale manufacturing for commercialization.

“With this last piece of the puzzle now in-hand, atom-scale fabrication will become a commercial reality in the very near future,” said Wolkow. Wolkow’s Spin-off [sic] company, Quantum Silicon Inc., is hard at work on commercializing atom-scale fabrication for use in all areas of the technology sector.

To demonstrate the new discovery, Achal, Wolkow, and their fellow scientists not only fabricated the world’s smallest maple leaf, they also encoded the entire alphabet at a density of 138 terabytes, roughly equivalent to writing 350,000 letters across a grain of rice. For a playful twist, Achal also encoded music as an atom-sized song, the first 24 notes of which will make any video-game player of the 80s and 90s nostalgic for yesteryear but excited for the future of technology and society.

As noted in the news release, there is an atom-sized song, which is available in this video,

As for the nano-sized maple leaf, I highlighted that bit of whimsy in a June 30, 2017 posting.

Here’s a link to and a citation for the paper,

Lithography for robust and editable atomic-scale silicon devices and memories by Roshan Achal, Mohammad Rashidi, Jeremiah Croshaw, David Churchill, Marco Taucer, Taleana Huff, Martin Cloutier, Jason Pitters, & Robert A. Wolkow. Nature Communicationsvolume 9, Article number: 2778 (2018) DOI: https://doi.org/10.1038/s41467-018-05171-y Published 23 July 2018

This paper is open access.

For interested parties, you can find Quantum Silicon (QSI) here. My Edmonton geography is all but nonexistent, still, it seems to me the company address on Saskatchewan Drive is a University of Alberta address. It’s also the address for the National Research Council of Canada. Perhaps this is a university/government spin-off company?

The ‘interview’

I sent some questions to the researchers at the University of Alberta who very kindly provided me with the following answers. Roshan Achal passed on one of the questions to his colleague Taleana Huff for her response. Both Achal and Huff are associated with QSI.

Unfortunately I could not find any pictures of all three researchers (Achal, Huff, and Wolkow) together.

Roshan Achal (left) used nanotechnology perfected by his PhD supervisor, Robert Wolkow (right) to create atomic-scale computer memory that could exceed the capacity of today’s solid-state storage drives by 1,000 times. (Photo: Faculty of Science)

(1) SHRINKING THE MANUFACTURING PROCESS TO THE ATOMIC SCALE HAS
ATTRACTED A LOT OF ATTENTION OVER THE YEARS STARTING WITH SCIENCE
FICTION OR RICHARD FEYNMAN OR K. ERIC DREXLER, ETC. IN ANY EVENT, THE
ORIGINS ARE CONTESTED SO I WON’T PUT YOU ON THE SPOT BY ASKING WHO
STARTED IT ALL INSTEAD ASKING HOW DID YOU GET STARTED?

I got started in this field about 6 years ago, when I undertook a MSc
with Dr. Wolkow here at the University of Alberta. Before that point, I
had only ever heard of a scanning tunneling microscope from what was
taught in my classes. I was aware of the famous IBM logo made up from
just a handful of atoms using this machine, but I didn’t know what
else could be done. Here, Dr. Wolkow introduced me to his line of
research, and I saw the immense potential for growth in this area and
decided to pursue it further. I had the chance to interact with and
learn from nanofabrication experts and gain the skills necessary to
begin playing around with my own techniques and ideas during my PhD.

(2) AS I UNDERSTAND IT, THESE ARE THE PIECES YOU’VE BEEN
WORKING ON: (1) THE TUNGSTEN MICROSCOPE TIP, WHICH MAKE[s] (2) THE SMALLEST
QUANTUM DOTS (SINGLE ATOMS OF SILICON), (3) THE AUTOMATION OF THE
QUANTUM DOT PRODUCTION PROCESS, AND (4) THE “MOST DENSE SOLID-STATE
MEMORY EVER CREATED.” WHAT’S MISSING FROM THE LIST AND IS THAT WHAT
YOU’RE WORKING ON NOW?

One of the things missing from the list, that we are currently working
on, is the ability to easily communicate (electrically) from the
macroscale (our world) to the nanoscale, without the use of a scanning
tunneling microscope. With this, we would be able to then construct
devices using the other pieces we’ve developed up to this point, and
then integrate them with more conventional electronics. This would bring
us yet another step closer to the realization of atomic-scale
electronics.

(3) PERHAPS YOU COULD CLARIFY SOMETHING FOR ME. USUALLY WHEN SOLID STATE
MEMORY IS MENTIONED, THERE’S GREAT CONCERN ABOUT MOORE’S LAW. IS
THIS WORK GOING TO CREATE A NEW LAW? AND, WHAT IF ANYTHING DOES
;YOUR MEMORY DEVICE HAVE TO DO WITH QUANTUM COMPUTING?

That is an interesting question. With the density we’ve achieved,
there are not too many surfaces where atomic sites are more closely
spaced to allow for another factor of two improvement. In that sense, it
would be difficult to improve memory densities further using these
techniques alone. In order to continue Moore’s law, new techniques, or
storage methods would have to be developed to move beyond atomic-scale
storage.

The memory design itself does not have anything to do with quantum
computing, however, the lithographic techniques developed through our
work, may enable the development of certain quantum-dot-based quantum
computing schemes.

(4) THIS MAY BE A LITTLE OUT OF LEFT FIELD (OR FURTHER OUT THAN THE
OTHERS), COULD;YOUR MEMORY DEVICE HAVE AN IMPACT ON THE
DEVELOPMENT OF CRYPTOCURRENCY AND BLOCKCHAIN? IF SO, WHAT MIGHT THAT
IMPACT BE?

I am not very familiar with these topics, however, co-author Taleana
Huff has provided some thoughts:

Taleana Huff (downloaded from https://ca.linkedin.com/in/taleana-huff]

“The memory, as we’ve designed it, might not have too much of an
impact in and of itself. Cryptocurrencies fall into two categories.
Proof of Work and Proof of Stake. Proof of Work relies on raw
computational power to solve a difficult math problem. If you solve it,
you get rewarded with a small amount of that coin. The problem is that
it can take a lot of power and energy for your computer to crunch
through that problem. Faster access to memory alone could perhaps
streamline small parts of this slightly, but it would be very slight.
Proof of Stake is already quite power efficient and wouldn’t really
have a drastic advantage from better faster computers.

Now, atomic-scale circuitry built using these new lithographic
techniques that we’ve developed, which could perform computations at
significantly lower energy costs, would be huge for Proof of Work coins.
One of the things holding bitcoin back, for example, is that mining it
is now consuming power on the order of the annual energy consumption
required by small countries. A more efficient way to mine while still
taking the same amount of time to solve the problem would make bitcoin
much more attractive as a currency.”

Thank you to Roshan Achal and Taleana Huff for helping me to further explore the implications of their work with Dr. Wolkow.

Comments

As usual, after receiving the replies I have more questions but these people have other things to do so I’ll content myself with noting that there is something extraordinary in the fact that we can imagine a near future where atomic scale manufacturing is possible and where as Achal says, ” … storage methods would have to be developed to move beyond atomic-scale [emphasis mine] storage”. In decades past it was the stuff of science fiction or of theorists who didn’t have the tools to turn the idea into a reality. With Wolkow’s, Achal’s, Hauff’s, and their colleagues’ work, atomic scale manufacturing is attainable in the foreseeable future.

Hopefully we’ll be wiser than we have been in the past in how we deploy these new manufacturing techniques. Of course, before we need the wisdom, scientists, as  Achal notes,  need to find a new way to communicate between the macroscale and the nanoscale.

As for Huff’s comments about cryptocurrencies and cyptocurrency and blockchain technology, I stumbled across this very recent research, from a July 31, 2018 Elsevier press release (also on EurekAlert),

A study [behind a paywall] published in Energy Research & Social Science warns that failure to lower the energy use by Bitcoin and similar Blockchain designs may prevent nations from reaching their climate change mitigation obligations under the Paris Agreement.

The study, authored by Jon Truby, PhD, Assistant Professor, Director of the Centre for Law & Development, College of Law, Qatar University, Doha, Qatar, evaluates the financial and legal options available to lawmakers to moderate blockchain-related energy consumption and foster a sustainable and innovative technology sector. Based on this rigorous review and analysis of the technologies, ownership models, and jurisdictional case law and practices, the article recommends an approach that imposes new taxes, charges, or restrictions to reduce demand by users, miners, and miner manufacturers who employ polluting technologies, and offers incentives that encourage developers to create less energy-intensive/carbon-neutral Blockchain.

“Digital currency mining is the first major industry developed from Blockchain, because its transactions alone consume more electricity than entire nations,” said Dr. Truby. “It needs to be directed towards sustainability if it is to realize its potential advantages.

“Many developers have taken no account of the environmental impact of their designs, so we must encourage them to adopt consensus protocols that do not result in high emissions. Taking no action means we are subsidizing high energy-consuming technology and causing future Blockchain developers to follow the same harmful path. We need to de-socialize the environmental costs involved while continuing to encourage progress of this important technology to unlock its potential economic, environmental, and social benefits,” explained Dr. Truby.

As a digital ledger that is accessible to, and trusted by all participants, Blockchain technology decentralizes and transforms the exchange of assets through peer-to-peer verification and payments. Blockchain technology has been advocated as being capable of delivering environmental and social benefits under the UN’s Sustainable Development Goals. However, Bitcoin’s system has been built in a way that is reminiscent of physical mining of natural resources – costs and efforts rise as the system reaches the ultimate resource limit and the mining of new resources requires increasing hardware resources, which consume huge amounts of electricity.

Putting this into perspective, Dr. Truby said, “the processes involved in a single Bitcoin transaction could provide electricity to a British home for a month – with the environmental costs socialized for private benefit.

“Bitcoin is here to stay, and so, future models must be designed without reliance on energy consumption so disproportionate on their economic or social benefits.”

The study evaluates various Blockchain technologies by their carbon footprints and recommends how to tax or restrict Blockchain types at different phases of production and use to discourage polluting versions and encourage cleaner alternatives. It also analyzes the legal measures that can be introduced to encourage technology innovators to develop low-emissions Blockchain designs. The specific recommendations include imposing levies to prevent path-dependent inertia from constraining innovation:

  • Registration fees collected by brokers from digital coin buyers.
  • “Bitcoin Sin Tax” surcharge on digital currency ownership.
  • Green taxes and restrictions on machinery purchases/imports (e.g. Bitcoin mining machines).
  • Smart contract transaction charges.

According to Dr. Truby, these findings may lead to new taxes, charges or restrictions, but could also lead to financial rewards for innovators developing carbon-neutral Blockchain.

The press release doesn’t fully reflect Dr. Truby’s thoughtfulness or the incentives he has suggested. it’s not all surcharges, taxes, and fees constitute encouragement.  Here’s a sample from the conclusion,

The possibilities of Blockchain are endless and incentivisation can help solve various climate change issues, such as through the development of digital currencies to fund climate finance programmes. This type of public-private finance initiative is envisioned in the Paris Agreement, and fiscal tools can incentivize innovators to design financially rewarding Blockchain technology that also achieves environmental goals. Bitcoin, for example, has various utilitarian intentions in its White Paper, which may or may not turn out to be as envisioned, but it would not have been such a success without investors seeking remarkable returns. Embracing such technology, and promoting a shift in behaviour with such fiscal tools, can turn the industry itself towards achieving innovative solutions for environmental goals.

I realize Wolkow, et. al, are not focused on cryptocurrency and blockchain technology per se but as Huff notes in her reply, “… new lithographic techniques that we’ve developed, which could perform computations at significantly lower energy costs, would be huge for Proof of Work coins.”

Whether or not there are implications for cryptocurrencies, energy needs, climate change, etc., it’s the kind of innovative work being done by scientists at the University of Alberta which may have implications in fields far beyond the researchers’ original intentions such as more efficient computation and data storage.

ETA Aug. 6, 2018: Dexter Johnson weighed in with an August 3, 2018 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website),

Researchers at the University of Alberta in Canada have developed a new approach to rewritable data storage technology by using a scanning tunneling microscope (STM) to remove and replace hydrogen atoms from the surface of a silicon wafer. If this approach realizes its potential, it could lead to a data storage technology capable of storing 1,000 times more data than today’s hard drives, up to 138 terabytes per square inch.

As a bit of background, Gerd Binnig and Heinrich Rohrer developed the first STM in 1986 for which they later received the Nobel Prize in physics. In the over 30 years since an STM first imaged an atom by exploiting a phenomenon known as tunneling—which causes electrons to jump from the surface atoms of a material to the tip of an ultrasharp electrode suspended a few angstroms above—the technology has become the backbone of so-called nanotechnology.

In addition to imaging the world on the atomic scale for the last thirty years, STMs have been experimented with as a potential data storage device. Last year, we reported on how IBM (where Binnig and Rohrer first developed the STM) used an STM in combination with an iron atom to serve as an electron-spin resonance sensor to read the magnetic pole of holmium atoms. The north and south poles of the holmium atoms served as the 0 and 1 of digital logic.

The Canadian researchers have taken a somewhat different approach to making an STM into a data storage device by automating a known technique that uses the ultrasharp tip of the STM to apply a voltage pulse above an atom to remove individual hydrogen atoms from the surface of a silicon wafer. Once the atom has been removed, there is a vacancy on the surface. These vacancies can be patterned on the surface to create devices and memories.

If you have the time, I recommend reading Dexter’s posting as he provides clear explanations, additional insight into the work, and more historical detail.

Better motor control for prosthetic hands (the illusion of feeling) and a discussion of superprostheses and reality

I have two bits about prosthetics, one which focuses on how most of us think of them and another about science fiction fantasies.

Better motor control

This new technology comes via a collaboration between the University of Alberta, the University of New Brunswick (UNB) and Ohio’s Cleveland Clinic, from a March 18, 2018 article by Nicole Ireland for the Canadian Broadcasting Corporation’s (CBC) news online,

Rob Anderson was fighting wildfires in Alberta when the helicopter he was in crashed into the side of a mountain. He survived, but lost his left arm and left leg.

More than 10 years after that accident, Anderson, now 39, says prosthetic limb technology has come a long way, and he feels fortunate to be using “top of the line stuff” to help him function as normally as possible. In fact, he continues to work for the Alberta government’s wildfire fighting service.

His powered prosthetic hand can do basic functions like opening and closing, but he doesn’t feel connected to it — and has limited ability to perform more intricate movements with it, such as shaking hands or holding a glass.

Anderson, who lives in Grande Prairie, Alta., compares its function to “doing things with a long pair of pliers.”

“There’s a disconnect between what you’re physically touching and what your body is doing,” he told CBC News.

Anderson is one of four Canadian participants in a study that suggests there’s a way to change that. …

Six people, all of whom had arm amputations from below the elbow or higher, took part in the research. It found that strategically placed vibrating “robots” made them “feel” the movements of their prosthetic hands, allowing them to grasp and grip objects with much more control and accuracy.

All of the participants had all previously undergone a specialized surgical procedure called “targeted re-innervation.” The nerves that had connected to their hands before they were amputated were rewired to link instead to muscles (including the biceps and triceps) in their remaining upper arms and in their chests.

For the study, researchers placed the robotic devices on the skin over those re-innervated muscles and vibrated them as the participants opened, closed, grasped or pinched with their prosthetic hands.

While the vibration was turned on, the participants “felt” their artificial hands moving and could adjust their grip based on the sensation. …

I have an April 24, 2017 posting about a tetraplegic patient who had a number of electrodes implanted in his arms and hands linked to a brain-machine interface and which allowed him to move his hands and arms; the implants were later removed. It is a different problem with a correspondingly different technological solution but there does seem to be increased interest in implanting sensors and electrodes into the human body to increase mobility and/or sensation.

Anderson describes how it ‘feels,

“It was kind of surreal,” Anderson said. “I could visually see the hand go out, I would touch something, I would squeeze it and my phantom hand felt like it was being closed and squeezing on something and it was sending the message back to my brain.

“It was a very strange sensation to actually be able to feel that feedback because I hadn’t in 10 years.”

The feeling of movement in the prosthetic hand is an illusion, the researchers say, since the vibration is actually happening to a muscle elsewhere in the body. But the sensation appeared to have a real effect on the participants.

“They were able to control their grasp function and how much they were opening the hand, to the same degree that someone with an intact hand would,” said study co-author Dr. Jacqueline Hebert, an associate professor in the Faculty of Rehabilitation Medicine at the University of Alberta.

Although the researchers are encouraged by the study findings, they acknowledge that there was a small number of participants, who all had access to the specialized re-innervation surgery to redirect the nerves from their amputated hands to other parts of their body.

The next step, they say, is to see if they can also simulate the feeling of movement in a broader range of people who have had other types of amputations, including legs, and have not had the re-innervation surgery.

Here’s a March 15, 2018  CBC New Brunswick radio interview about the work,

This is a bit longer than most of the embedded audio pieces that I have here but it’s worth it. Sadly, I can’t identify the interviewer who did a very good job with Jon Sensinger, associate director of UNB’s Institute of Biomedical Engineering. One more thing, I noticed that the interviewer made no mention of the University of Alberta in her introduction or in the subsequent interview. I gather regionalism reigns supreme everywhere in Canada. Or, maybe she and Sensinger just forgot. It happens when you’re excited. Also, there were US institutions in Ohio and Virginia that participated in this work.

Here’s a link to and a citation for the team’s paper,

Illusory movement perception improves motor control for prosthetic hands by Paul D. Marasco, Jacqueline S. Hebert, Jon W. Sensinger, Courtney E. Shell, Jonathon S. Schofield, Zachary C. Thumser, Raviraj Nataraj, Dylan T. Beckler, Michael R. Dawson, Dan H. Blustein, Satinder Gill, Brett D. Mensh, Rafael Granja-Vazquez, Madeline D. Newcomb, Jason P. Carey, and Beth M. Orzell. Science Translational Medicine 14 Mar 2018: Vol. 10, Issue 432, eaao6990 DOI: 10.1126/scitranslmed.aao6990

This paper is open access.

Superprostheses and our science fiction future

A March 20, 2018 news item on phys.org features an essay on about superprostheses and/or assistive devices,

Assistive devices may soon allow people to perform virtually superhuman feats. According to Robert Riener, however, there are more pressing goals than developing superhumans.

What had until recently been described as a futuristic vision has become a reality: the first self-declared “cyborgs” have had chips implanted in their bodies so that they can open doors and make cashless payments. The latest robotic hand prostheses succeed in performing all kinds of grips and tasks requiring dexterity. Parathletes fitted with running and spring prostheses compete – and win – against the best, non-impaired athletes. Then there are robotic pets and talking humanoid robots adding a bit of excitement to nursing homes.

Some media are even predicting that these high-tech creations will bring about forms of physiological augmentation overshadowing humans’ physical capabilities in ways never seen before. For instance, hearing aids are eventually expected to offer the ultimate in hearing; retinal implants will enable vision with a sharpness rivalling that of any eagle; motorised exoskeletons will transform soldiers into tireless fighting machines.

Visions of the future: the video game Deus Ex: Human Revolution highlights the emergence of physiological augmentation. (Visualisations: Square Enix) Courtesy: ETH Zurich

Professor Robert Riener uses the image above to illustrate the notion of superprosthese in his March 20, 2018 essay on the ETH Zurich website,

All of these prophecies notwithstanding, our robotic transformation into superheroes will not be happening in the immediate future and can still be filed under Hollywood hero myths. Compared to the technology available today, our bodies are a true marvel whose complexity and performance allows us to perform an extremely wide spectrum of tasks. Hundreds of efficient muscles, thousands of independently operating motor units along with millions of sensory receptors and billions of nerve cells allow us to perform delicate and detailed tasks with tweezers or lift heavy loads. Added to this, our musculoskeletal system is highly adaptable, can partly repair itself and requires only minimal amounts of energy in the form of relatively small amounts of food consumed.

Machines will not be able to match this any time soon. Today’s assistive devices are still laboratory experiments or niche products designed for very specific tasks. Markus Rehm, an athlete with a disability, does not use his innovative spring prosthesis to go for walks or drive a car. Nor can today’s conventional arm prostheses help a person tie their shoes or button up their shirt. Lifting devices used for nursing care are not suitable for helping with personal hygiene tasks or in psychotherapy. And robotic pets quickly lose their charm the moment their batteries die.

Solving real problems

There is no denying that advances continue to be made. Since the scientific and industrial revolutions, we have become dependent on relentless progress and growth, and we can no longer separate today’s world from this development. There are, however, more pressing issues to be solved than creating superhumans.

On the one hand, engineers need to dedicate their efforts to solving the real problems of patients, the elderly and people with disabilities. Better technical solutions are needed to help them lead normal lives and assist them in their work. We need motorised prostheses that also work in the rain and wheelchairs that can manoeuvre even with snow on the ground. Talking robotic nurses also need to be understood by hard-of-hearing pensioners as well as offer simple and dependable interactivity. Their batteries need to last at least one full day to be recharged overnight.

In addition, financial resources need to be available so that all people have access to the latest technologies, such as a high-quality household prosthesis for the family man, an extra prosthesis for the avid athlete or a prosthesis for the pensioner. [emphasis mine]

Breaking down barriers

What is just as important as the ongoing development of prostheses and assistive devices is the ability to minimise or eliminate physical barriers. Where there are no stairs, there is no need for elaborate special solutions like stair lifts or stairclimbing wheelchairs – or, presumably, fully motorised exoskeletons.

Efforts also need to be made to transform the way society thinks about people with disabilities. More acknowledgement of the day-to-day challenges facing patients with disabilities is needed, which requires that people be confronted with the topic of disability when they are still children. Such projects must be promoted at home and in schools so that living with impairments can also attain a state of normality and all people can partake in society. It is therefore also necessary to break down mental barriers.

The road to a virtually superhuman existence is still far and long. Anyone reading this text will not live to see it. In the meantime, the task at hand is to tackle the mundane challenges in order to simplify people’s daily lives in ways that do not require technology, that allow people to be active participants and improve their quality of life – instead of wasting our time getting caught up in cyborg euphoria and digital mania.

I’m struck by Riener’s reference to financial resources and access. Sensinger mentions financial resources in his CBC radio interview although his concern is with convincing funders that prostheses that mimic ‘feeling’ are needed.

I’m also struck by Riener’s discussion about nontechnological solutions for including people with all kinds of abilities and disabilities.

There was no grand plan for combining these two news bits; I just thought they were interesting together.

Canada’s National Institute of Nanotechnology and cellphone breathalyzers

First a soap opera, of sorts and then the science.

Canada’s ‘morphing’ National Institute of Nanotechnology

It seems we in Canada no longer have a National Institute of Nanotechnology (NINT) as such. (sigh) The NINT been downsized and rebranded. Always part of Canada’s National Research Council (NRC), the NINT has been languishing for a number of years. The downsizing/rebranding has resulted in two new ‘entities’: the NRC Nanotechnology Research Centre and the NRC-UAlberta [University of Alberta] Nanotechnology Initiative. The original NINT was a joint venture between the Canadian federal government’s NRC and the province of Alberta, which was a co-funder with the institute (now initiative/research centre) itself being located at the University of Alberta. You can see the latest description of these agencies on this NRC Nanotechnology webpage.

For scandal mongers, the date the NRC Nanotechnology webpage was last updated is an interesting one:  March 14, 2018. My first posting about the ‘Montemagno affair’ was on March 5, 2018. Briefly, Carlo Montemagno was a US ressearcher and academic who was enticed to work at the University of Alberta with $100M of federal and provincial funding to be paid out over a 10-year period. His salary when he left about 1/2 way through his term was approximately $500,00 CAD per year. Departing in July/August 2017, Dr. Montemagno who headed up the “ingenuity Lab,” a kind of nanotechnology research and incubator project, moved to the Southern Illinois University (SIU) where he ran into some problems some of which seemed to stretch backwards to his time in Alberta. I did a followup two-part posting (April 26, 201 8 (part 1) after a student reporter from SIU dug up more material. This downsizing/rebranding seems to have been quite the cleanup job. By the way, Canada’s NanoPortal (mentioned in the March 5, 2018 posting) has currently ‘disappeared’.

Finally, the science

There is finally (it has been years) some sort of nanotechnology research from Alberta and the ‘initiative’. From a June 15, 2018 article by Jamie Sarkonak for the Edmonton Herald (in Alberta),

Cellphone breathalyzers may be on the horizon with the breakthrough by an Edmonton-based nanotechnology team.

The special sensors, called nano-optomechanical systems, are normally studied in airtight conditions. But the research of nanotechnologist Wayne Hiebert, published in the journal Science on Friday [June 15, 2018], has found the sensors work better in the open air — making them candidates for everyday use.

Hiebert, a researcher at the Nanotechnology Research Centre [emphasis mine] at the University of Alberta, said this means the sensors may one day run metabolic readings, cancer screenings and other tests that currently have to be done in laboratories. The sensors could also improve GPS and clock accuracy once the technology is more developed, Hiebert said.

Scientists have always believed that sensors on the nanoscale work better when they’re in a space sealed off from any air, Hiebert said. Readings taken in vacuums are much “sharper” than readings taken in regular air, which was always thought to be more useful in nanotechnology.

Four years of Hiebert’s work has found the opposite. The “duller” readings taken in the open gave the scientists a more accurate reading of what was in the air.

For the interested, there are more details in Sarkonak’s article.

For those who can read the science, here’s a link to and a citation for the paper,

Improving mechanical sensor performance through larger damping by Swapan K. Roy, Vincent T. K. Sauer, Jocelyn N. Westwood-Bachman, Anandram Venkatasubramanian, Wayne K. Hiebert. Science 15 Jun 2018: Vol. 360, Issue 6394, eaar5220 DOI: 10.1126/science.aar5220

This paper is behind a paywall.

Ingenuity Lab (a nanotechnology initiative), the University of Alberta, and Carlo Montemagno—what is happening in Canadian universities? (2 of 2)

You can find Part 1 of the latest installment in this sad story here.

Who says Carlo Montemagno is a star nanotechnology researcher?

Unusually and despite his eminent stature, Dr. Montemagno does not rate a Wikipedia entry. Luckily, his CV (curriculum vitae) is online (placed there by SIU) so we can get to know a bit more (the CV is a 63 pp. document) about the man’s accomplishments (Note: There are some formatting differences), Note: Unusually, I will put my comments into the excerpted CV using [] i.e., square brackets to signify my input,

Carlo Montemagno, PhD
University of Alberta
Department of Chemical and Materials Engineering
and
NRC/CNRC National Institute for Nanotechnology
Edmonton, AB T6G 2V4
Canada

 

Educational Background

1995, Ph.D., Department of Civil Engineering and Geological Sciences, College of Earth and Mineral Sciences University of Notre Dame

1990, M.S., Petroleum and Natural Gas Engineering, College of Earth and Mineral Sciences, Pennsylvania State University

1980, B.S., Agricultural and Biological Engineering, College of Engineering, Cornell University

Supplemental Education

1986, Practical Environmental Law, Federal Publications, Washington, DC

1985, Effective Executive Training Program, Wharton Business School, University of Pennsylvannia, Philadelphia, PA

1980, Civil Engineer Corp Officer Project, CECOS & General Management School, Port Hueneme, CA

[He doesn’t seem to have taken any courses in the last 30 years.]

Professional Experience

(Select Achievements)

Over three decades of experience in shepherding complex organizations both inside and outside academia. Working as a builder, I have led organizations in government, industry and higher education during periods of change and challenge to achieved goals that many perceived to be unattainable.

University of Alberta, Edmonton AB 9/12 to present

9/12 to present, Founding Director, Ingenuity Lab [largely defunct as of April 18, 2018], Province of Alberta

8/13 to present, Director Biomaterials Program, NRC/CNRC National Institute for Nanotechnology [It’s not clear if this position still exists.]

10/13 to present, Canada Research Chair, Government of Canada in Intelligent Nanosystems [Canadian universities receive up to $200,000 for an individual Canada research chair. The money can be used to fund the chair in its entirety or it can be added to other monies., e.g., faculty salary. There are two tiers, one for established researchers and one for new researchers. Montemagno would have been a Tier 1 Canada Research Chair. At McGill University {a major Canadian educational institution} for example, total compensation including salary, academic stipend, benefits, X-coded research funds would be a maximum of $200,000 at Montemagno’s Tier 1 level. See: here scroll down about 90% of the way).

3/13 to present, AITF iCORE Strategic Chair, Province of Alberta in BioNanotechnology and Biomimetic Systems [I cannot find this position in the current list of the University of Alberta Faculty of Science’s research chairs.]

9/12 to present, Professor, Faculty of Engineering, Chemical and Materials Engineering

Crafted and currently lead an Institute that bridges multiple organizations named Ingenuity Lab (www.ingenuitylab.ca). This Institute is a truly integrated multidisciplinary organization comprised of dedicated researchers from STEM, medicine, and the social sciences. Ingenuity Lab leverages Alberta’s strengths in medicine, engineering, science and, agriculture that are present in multiple academic enterprises across the province to solve grand challenges in the areas of energy, environment, and health and rapidly translate the solutions to the economy.

The exciting and relevant feature of Ingenuity Lab is that support comes from resources outside the normal academic funding streams. Core funding of approximately $8.6M/yr emerged by working and communicating a compelling vision directly with the Provincial Executive and Legislative branches of government. [In the material I’ve read, the money for the research was part of how Dr. Montemagno was wooed by the University of Alberta. My understanding is that he himself did not obtain the funding, which in CAD was $100M over 10 years. Perhaps the university was able to attract the funding based on Dr. Montemagno’s reputation and it was contingent on his acceptance?] I significantly augmented these base resources by developing Federal Government, and Industry partnership agreements with a suite of multinational corporations and SME’s across varied industry sectors.

Collectively, this effort is generating enhanced resource streams that support innovative academic programming, builds new research infrastructure, and enables high risk/high reward research. Just as important, it established new pathways to interact meaningfully with local and global communities.

Strategic Leadership

•Created the Ingenuity Lab organization including a governing board representing multiple academic institutions, government and industry sectors.

•Developed and executed a strategic plan to achieve near and long-term strategic objectives.

•Recruited~100 researchers representing a wide range disciplnes.[sic] [How hard can it be to attract researchers in this job climate?]

•Built out ~36,000 S.F. of laboratory and administrative space.

•Crafted operational policy and procedures.

•Developed and implemented a unique stakeholder inclusive management strategy focused on the rapid translation of solutions to the economy.

Innovation and Economic Engagement

•Member of the Expert Panel on innovation, commissioned by the Government of Alberta, to assess opportunities, challenges and design and implementation options for Alberta’s multi-billion dollar investment to drive long-term economic growth and diversification. The developed strategy is currently being implemented. [Details?]

•Served as a representive [sic] on multiple Canadian national trade missions to Asia, United States and the Middle East. [Sounds like he got to enjoy some nice trips.]

•Instituted formal development partnerships with several multi-national corporations including Johnson & Johnson, Cenovus and Sabuto Inc. [Details?]

•Launched multiple for-profit joint ventures founded on technologies collaboratively developed with industry with funding from both private and public sources. [Details?]

Branding

•Developed and implement a communication program focused on branding of Ingenuity Lab’s unique mission, both regionally and globally, to the lay public, academia, government, and industry. [Why didn’t the communication specialist do this? ]

This effort employs traditional paper, online, and social media outlets to effectively reach different demographics.

•Awarded “Best Nanotechnology Research Organization–2014” by The New Economy. [What is the New Economy? The Economist, yes. New Economy, no.]

Global Development

•Executed formal research and education partnerships with the Yonsei Institute of Convergence Technology and the Yonsei Bio-IT MicroFab Center in Korea, Mahatma Gandhi University in India. and the Italian Institute of Technology. [{1}The Yonsei Institute of Convergence Technology doesn’t have any news items prior to 2015 or after 2016. The Ingenuity Lab and/or Carlo Montemagno did not feature in them. {2} There are six Mahatma Ghandi Universities in India. {3} The Italian Institute of Technology does not have any news listings on the English language version of its site.]

•Opened Ingenuity Lab, India in May 2015. Focused on translating 21st-century technology to enable solutions appropriate for developing nations in the Energy, Agriculture, and Health economic sectors. [Found this May 9, 2016 notice on the Asia Pacific Foundation of Canada website, noting this: “… opening of the Ingenuity Lab Research Hub at Mahatma Gandhi University in Kottayam, in the Indian state of Kerala.” There’s also this May 6, 2016 news release. I can’t find anything on the Mahatma Ghandi University Kerala website.]

•Established partnership research and development agreements with SME’s in both Israel and India.

•Developed active research collaborations with medical and educational institutions in Nepal, Qatar, India, Israel, India and the United States.

Community Outreach

•Created Young Innovators research experience program to educate, support and nurture tyro undergraduate researchers and entrepreneurs.

•Developed an educational game, “Scopey’s Nano Adventure” for iOS and Android platforms to educate 6yr to 10yr olds about Nanotechnology. [What did the children learn? Was this really part of the mandate?]

•Delivered educational science programs to the lay public at multiple, high profile events. [Which events? The ones on the trade junkets?]

University of Cincinnati, Cincinnati OH 7/06 to 8/12

7/10 to 8/12 Founding Dean, College of Engineering and Applied Science

7/09 to 6/10 Dean, College of Applied Science

7/06 to 6/10 Dean, College of Engineering

7/06 to 8/12 Geier Professor of College of Engineering Engineering Education

7/06 to 8/12, Professor of Bioengineering, College of Engineering & College of Medicine

University of California, Los Angeles 7/01 to 6/06

5/03 to 6/06, Associate Director California Nanosystems Institute

7/02 to 6/06, Co-Director NASA Center for Cell Mimetic Space Exploration

7/02 to 6/06, Founding Department Chair, Department of Bioengineering

7/02 to 6/06, Chair Biomedical Engineering IDP

7/01 to 6/02, Chair of Academic Biomedical Engineering IDP Affairs

7/01 to 6/06, Carol and Roy College of Engineering and Applied Doumani Professor of Sciences Biomedical Engineering

7/01 to 6/06, Professor Mechanical and Aerospace Engineering

Recommending Montemagno

Presumably the folks at Southern Illinois University asked for recommendations from Montemagno’s previous employers. So, how did he get a recommendation from the folks in Alberta when according to Spoerre’s April 10, 2018 article the Ingenuity Lab was undergoing a review as of June 2017 by the province of Alberta’s Alberta Innovates programme? I find it hard to believe that the folks at the University of Alberta were unaware of the review.

When you’re trying to get rid of someone, it’s pretty much standard practice that once they’ve gotten the message, you give a good recommendation to their prospective employer. The question begs to be asked, how many times have employers done this for Montemagno?

Stars in their eyes

Every one exaggerates a bit on their résumé or CV. One of my difficulties with this whole affair lies in how Montemagno can be described as a ‘nanotechnology star’. The accomplishments foregrounded on Montemagno’s CV are administrative and if memory serves, the University of Cincinnati too. Given the situation with the Ingenuity Lab, I’m wondering about these accomplishments.

Was due diligence performed by SIU, the University of the Alberta, or anywhere else that Montemagno worked? I realize that you’re not likely to get much information from calling up the universities where he worked previously, especially if there was a problem and they wanted to get rid of him. Still, did someone check out his degrees, his start-ups,  dig a little deeper into some of his claims?

His credentials and stated accomplishments are quite impressive and I, too,  would have been dazzled. (He also lists positions at the Argonne National Laboratory and at Cornell University.) I’ve picked at some bits but one thing that stands out to me is the move from UCLA to the University of Cincinnati. It’s all big names: UCLA, Cornell, NASA, Argonne and then, not: University of Cincinnati, University of Alberta, Southern Illinois University—what happened?

(If anyone better versed in the world of academe and career has answers, please do add them to the comments.)

It’s tempting to think the Peter Principle (one of them) was at work here. In brief, this principle states that as you keep getting better jobs on based on past performance you reach a point where you can’t manage the new challenges having risen to your level of incompetence.In accepting the offer from the University of Alberta had Dr. Montemagno risen to his level of incompetence? Or, perhaps it was just one big failure. Unfortunately, any excuses don’t hold up under the weight of a series of misjudgments and ethical failures. Still, I’m guessing that Dr. Montemagno was hoping for a big win on a project such as this (from an Oct. 19, 2016 news release on MarketWired),

Ingenuity Lab Carbon Solutions announced today that it has been named as one of the 27 teams advancing in the $20M NRG COSIA Carbon XPRIZE. The competition sees scientists develop technologies to convert carbon dioxide emissions into products with high net value.

The Ingenuity Lab Carbon Solutions team – headquartered in Edmonton of Alberta, Canada – has made it to the second round of competition. Its team of 14 has proposed to convert CO2 waste emitted from a natural gas power plant into usable chemical products.

Ingenuity Lab Carbon Solutions is comprised of a multidisciplinary group of scientists and engineers, and was formed in the winter of 2012 to develop new approaches for the chemical industry. Ingenuity Lab Carbon Solutions is sponsored by CCEMC, and has also partnered with Ensovi for access to intellectual property and know how.

I can’t identify CCEMC with any certainty but Ensovi is one of Montemagno’s six start-up companies, as listed in his CV,

Founder and Chief Technical Officer, Ensovi, LLC., Focused on the production of low-cost bioenergy and high-value added products from sunlight using bionanotechnology, Total Funding; ~$10M, November 2010-present.

Sadly the April 9,2018 NRG COSIA Carbon XPRIZE news release  announcing the finalists in round 3 of the competition includes an Alberta track of five teams from which the Ingenuity Lab is notably absent.

The Montemagno affair seems to be a story of hubris, greed, and good intentions. Finally, the issues associated with Dr. Montemagno give rise to another, broader question.

Is something rotten in Canada’s higher education establishment?

Starting with the University of Alberta:

it would seem pretty obvious that if you’re hiring family member(s) as part of the deal to secure a new member of faculty that you place and follow very stringent rules. No rewriting of the job descriptions, no direct role in hiring or supervising, no extra benefits, no inflated salaries in other words, no special treatment for your family as they know at the University of Alberta since they have policies for this very situation.

Yes, universities do hire spouses (although a daughter, a nephew, and a son-in-law seems truly excessive) and even when the university follows all of the rules, there’s resentment from staff (I know because I worked in a university). There is a caveat to the rule, there’s resentment unless that spouse is a ‘star’ in his or her own right or an exceptionally pleasant person. It’s also very helpful if the spouse is both.

I have to say I loved Fraser Forbes that crazy University of Alberta engineer who thought he’d make things better by telling us that the family’s salaries had been paid out of federal and provincial funds rather than university funds. (sigh) Forbes was the new dean of engineering at the time of his interview in the CBC’s April 10, 2018 online article but that no longer seems to be the case as of April 19, 2018.

Given Montemagno’s misjudgments, it seems cruel that Forbes was removed after one foolish interview. But, perhaps he didn’t want the job after all. Regardless, those people who were afraid to speak out about Dr. Montemagno cannot feel reassured by Forbes’ apparent removal.

Money, money, money

Anyone who has visited a university in Canada (and presumably the US too) has to have noticed the number of ‘sponsored’ buildings and rooms. The hunger for money seems insatiable and any sensible person knows it’s unsupportable over the long term.

The scramble for students

Mel Broitman in a Sept. 22, 2016 article for Higher Education lays out some harsh truths,

Make no mistake. It is a stunning condemnation and a “wakeup call to higher education worldwide”. The recent UNESCO report states that academic institutions are rife with corruption and turning a blind eye to malpractice right under their noses. When UNESCO, a United Nations organization created after the chaos of World War II to focus on moral and intellectual solidarity, makes such an alarming allegation, it’s sobering and not to be dismissed.

So although Canadians typically think of their society and themselves as among the more honest and transparent found anywhere, how many Canadian institutions are engaging in activities that border on dishonest and are not entirely transparent around the world?

It is overwhelmingly evident that in the last two decades we have witnessed first-hand a remarkable and callous disregard for academic ethics and standards in a scramble by Canadian universities and colleges to sign up foreign students, who represent tens of millions of dollars to their bottom lines.

We have been in a school auditorium in China and listened to the school owner tell prospective parents that the Grade 12 marks from the Canadian provincial school board program can be manipulated to secure admission for their children into Canadian universities. This, while the Canadian teachers sat oblivious to the presentation in Chinese.

In hundreds of our own interaction with students who completed the Canadian provincial school board’s curriculum in China and who achieved grades of 70% and higher in their English class have been unable to achieve even a basic level of English literacy in the written tests we have administered.   But when the largest country of origin for incoming international students and revenue is China – the Canadian universities admitting these students salivate over the dollars and focus less on due diligence.

We were once asked by a university on Canada’s west coast to review 200 applications from Saudi Arabia, in order to identify the two or three Saudi students who were actually eligible for conditional admission to that university’s undergraduate engineering program. But the proposal was scuttled by the university’s ESL department that wanted all 200 to enroll in its language courses. It insisted on and managed conditional admissions for all 200. It’s common at Canadian universities for the ESL program “tail” to wag the campus “dog” when it comes to admissions. In fact, recent Canadian government regulations have been proposed to crack down on this practice as it is an affront to academic integrity.

If you have time, do read the rest as it’s eye-opening. As for the report Broitman cites, I was not able to find it. Broitman gives a link to the report in response to one of the later comments and there’s a link in Tony Bates’s July 31, 2016 posting but you will get a “too bad, so sad” message should you follow either link.The closed I can get to it is this Advisory Statement for Effective International Practice; Combatting Corruption and Enhancing Integrity: A Contemporary Challenge for the Quality and Credibility of Higher Education (PDF). The ‘note’ was jointly published by the (US) Council for Higher Education (CHEA) and UNESCO.

What about the professors?

As they scramble for students, the universities appear to be cutting their ‘teaching costs’, from an April 18, 2018 article by Charles Menzies (professor of anthropology and an elected member of the UBC [University of British Columbia] Board)  for THE UBYSSEY (UBC) student newspaper,

For the first time ever at UBC the contributions of student tuition fees exceeded provincial government contributions to UBC’s core budget. This startling fact was the backdrop to a strenuous grilling of UBC’s VP Finance and Provost Peter Smailes by governors at the Friday the 13 meeting of UBC’s Board of Governors’ standing committee for finance.

Given the fact students contribute more to UBC’s budget than the provincial government, governors asked why more wasn’t being done to enhance the student experience. By way of explanation the provost reiterated UBC’s commitment to the student experience. In a back-and-forth with a governor the provost outlined a range of programs that focus on enhancing the student experience. At several points the chair of the Board would intervene and press the provost for more explanations and elaboration. For his part the provost responded in a measured and deliberate tone outlining the programs in play, conceding more could be done, and affirming the importance of students in the overall process.

As a faculty member listening to this, I wondered about the background discourse undergirding the discussion. How is focussing on a student’s experience at UBC related to our core mission: education and research? What is actually being meant by experience? Why is no one questioning the inadequacy of the government’s core contribution? What about our contingent colleagues? Our part-time precarious colleagues pick up a great deal of the teaching responsibilities across our campuses. Is there not something we can do to improve their working conditions? Remember, faculty working conditions are student learning conditions. From my perspective all these questions received short shrift.

I did take the opportunity to ask the provost, given how financially sound our university is, why more funds couldn’t be directed toward improving the living and working conditions of contingent faculty. However, this was never elaborated upon after the fact.

There is much about the university as a total institution that seems driven to cultivate experiences. A lot of Board discussion circles around ideas of reputation and brand. Who pays and how much they pay (be they governments, donors, or students) is also a big deal. Cultivating a good experience for students is central to many of these discussions.

What is this experience that everyone is talking about? I hear about classroom experience, residence experience, and student experience writ large. Very little of it seems to be specifically tied to learning (unless it’s about more engaging, entertaining, learning with technology). While I’m sure some Board colleagues will disagree with this conclusion, it does seem to me that the experience being touted is really the experience of a customer seeking fulfilment through the purchase of a service. What is seen as important is not what is learned, but the grade; not the productive struggle of learning but the validation of self in a great experience as a member of an imagined community. A good student experience very likely leads to a productive alumni relationship — one where the alumni feels good about giving money.

Inside UBC’s Board of Governors

Should anyone be under illusions as to what goes on at the highest levels of university governance, there is the telling description from Professor Jennifer Berdahl about her experience on a ‘search committee for a new university president’ of the shameful treatment of previous president, Arvind Gupta (from Berdahl’s April 25, 2018 posting on her eponymous blog),

If Prof. Chaudhry’s [Canada Research Chair and Professor Ayesha Chaudhry’s resignation was announced in an April 25, 2018 UBYSSEY article by Alex Nguyen and Zak Vescera] experience was anything like mine on the UBC Presidential Search Committee, she quickly realized how alienating it is to be one of only three faculty members on a 21-person corporate-controlled Board. It was likely even worse for Chaudhry as a woman of color. Combining this with the Board’s shenanigans that are designed to manipulate information and process to achieve desired decisions and minimize academic voices, a sense of helpless futility can set in. [emphasis mine]

These shenanigans include [emphasis mine] strategic seating arrangements, sudden breaks during meetings when conversation veers from the desired direction, hand-written notes from the secretary to speaking members, hundreds of pages of documents sent the night before a meeting, private tête-à-têtes arranged between a powerful board member and a junior or more vulnerable one, portals for community input vetted before sharing, and planning op-eds to promote preferred perspectives. These are a few of many tricks employed to sideline unpopular voices, mostly academic ones.

It’s impossible to believe that UBC’s BoG is the site for these shenanigans take place. The question I have is how many BoGs and how much damage are they inflicting?

Finally getting back to my point, simultaneous with cutting back on teaching and other associated costs and manipulative, childish behaviour at BoG meetings, large amounts of money are being spent to attract ‘stars’ such as Dr. Montemagno. The idea is to attract students (and their money) to the institution where they can network with the ‘stars’. What the student actually learns does not seem to be the primary interest.

So, what kind of deals are the universities making with the ‘stars’?

The Montemagno affair provides a few hints but, in the end,I don’t know and I don’t think anyone outside the ‘sacred circle’ does either. UBC, for example,is quite secretive and, seemingly, quite liberal in its use of nondisclosure agreements (NDA). There was the scandal a few years ago when president Arvind Gupta abruptly resigned after one year in his position. As far as I know, no one has ever gotten to the bottom of this mystery although there certainly seems to have been a fair degree skullduggery involved.

After a previous president, Martha Cook Piper took over the reigns in an interim arrangement, Dr. Santa J. Ono (his Wikipedia entry) was hired.  Interestingly, he was previously at the University of Cincinnati, one of Montemagno’s previous employers. That university’s apparent eagerness to treat Montemagno’s extras seems to have led to the University of Alberta’s excesses.  So, what deal did UBC make with Dr. Ono? I’m pretty sure both he and the university are covered by an NDA but there is this about his tenure as president at the University of Cincinnati (from a June 14, 2016 article by Jack Hauen for THE UBYSSEY),

… in exchange for UC not raising undergraduate tuition, he didn’t accept a salary increase or bonus for two years. And once those two years were up, he kept going: his $200,000 bonus in 2015 went to “14 different organizations and scholarships, including a campus LGBTQ centre, a local science and technology-focused high school and a program for first-generation college students,” according to the Vancouver Sun.

In 2013 he toured around the States promoting UC with a hashtag of his own creation — #HottestCollegeInAmerica — while answering anything and everything asked of him during fireside chats.

He describes himself as a “servant leader,” which is a follower of a philosophy of leadership focused primarily on “the growth and well-being of people and the communities to which they belong.”

“I see my job as working on behalf of the entire UBC community. I am working to serve you, and not vice-versa,” he said in his announcement speech this morning.

Thank goodness it’s possible to end this piece on a more or less upbeat note. Ono seems to be what my father would have called ‘a decent human being’. It’s nice to be able to include a ‘happyish’ note.

Plea

There is huge money at stake where these ‘mega’ science and technology projects are concerned. The Ingenuity Lab was $100M investment to be paid out over 10 years and some basic questions don’t seem to have been asked. How does this person manage money? Leaving aside any issues with an individual’s ethics and moral compass, scientists don’t usually take any courses in business and yet they are expected to manage huge budgets. Had Montemagno handled a large budget or any budget? It’s certainly not foregrounded (and I’d like to see dollar amounts) in his CV.

As well, the Ingenuity Lab was funded as a 10 year project. Had Montemagno ever stayed in one job for 10 years? Not according to his CV. His longest stint was approximately eight years when he was in the US Navy in the 1980s. Otherwise, it was five to six years, including the Ingenuity Lab stint.

Meanwhile, our universities don’t appear to be applying the rules and protocols we have in place to ensure fairness. This unseemly rush for money seems to have infected how Canadian universities attract (local, interprovincial, and, especially, international) students to pay for their education. The infection also seems to have spread into the ways ‘star’ researchers and faculty members are recruited to Canadian universities while the bulk of the teaching staff are ‘starved’ under one pretext or another while a BoG may or may not be indulging in shenanigans designed to drive decision-making to a preordained outcome. And, for the most part, this is occurring under terms of secrecy that our intelligence agencies must envy.

In the end, I can’t be the only person wondering how all this affects our science.