Tag Archives: University of Alberta

Truth and Reconciliation Day Sept. 30, 2021

Years ago I came across a newspaper article where the writer had interviewed some Chiefs. I can’t remember what occasioned the article but the quotes about land rights could have been taken from one of today’s newspapers. The article was written in 1925.

In hearing the stories of what Indigenous Peoples in Canada have had to endure such as the loss of their land and rights, horrific living conditions on the reserves, the Residential schools, and more, our failure to act is impossible to understand.

The perseverance over generations is remarkable.

For anyone who may want to find out more about why there is a Truth and Reconciliation Day there is a September 28, 2021 article (Why Canada is marking the 1st National Day for Truth and Reconciliation this year) by Michelle Ghoussoub for Canadian Broadcasting Corporation (CBC) news online. The Canadian federal government has this National Day for Truth and Reconciliation webpage, which provides information about events being held across the country. APTN (once called Aboriginal Peoples Television Network) lists a special 24 hour schedule on their National Day for Truth and Reconciliation webpage.

I’d like to end on a note of hope and given that this is a science blog, these two endeavours stand out.

First Nations University

Here’s more from the About Us webpage,

First Nations University of Canada seeks to have an ongoing transformative impact through education based on a foundation of Indigenous Knowledge. The Regina campus is situated on the atim kâ-mihkosit (Red Dog) Urban Reserve, Star Blanket Cree Nation and Treaty 4 Territory. Star Blanket is the first First Nation in Canada to create an urban reserve specifically dedicated to the advancement of education.

They offer undergraduate and graduate programmes and appear to have some sort of partnership with the University of Regina (Saskatchewan). Their Indigenous Knowledge & Science undergraduate programme description can be found here.

Indigenous science, technology, and society (Indigenous STS)

I have two different webspaces for this. First, the Indigenous Science, Technology, and Society webpage on the University of Alberta, Faculty of Native Studies,

About Indigenous STS

Indigenous Science, Technology, and Society (Indigenous STS) is an international research and teaching hub, housed at the University of Alberta, for the burgeoning sub-field of Indigenous STS.

Our mission is two-fold: 1) To build Indigenous scientific literacy by training graduate students, postdoctoral, and community fellows to grapple expertly with techno-scientific projects and topics that affect their territories, peoples, economies, and institutions; and 2) To produce research and public intellectual outputs with the goal to inform national, global, and Indigenous thought and policymaking related to science and technology. Indigenous STS is committed to building and supporting techno-scientific projects and ways of thinking that promote Indigenous self-determination.

Learn more about Indigenous STS.

Principal Investigator

Kim TallBear

Kim TallBear is an Associate Professor, Faculty of Native Studies, Canada Research Chair in Indigenous Peoples, Technoscience & Environment, University of Alberta, and a 2018 Pierre Elliott Trudeau Foundation Fellow. She is a graduate of the University of California, Santa Cruz and of the Massachusetts Institute of Technology. Professor TallBear is the author of one monograph, Native American DNA: Tribal Belonging and the False Promise of Genetic Science (Minneapolis: University of Minnesota Press, 2013), which won the Native American and Indigenous Studies Association First Book Prize. She is the co-editor of a collection of essays published by the Oak Lake Writers, a Dakota and Lakota tribal writers’ society in the USA. Professor TallBear has written nearly two-dozen academic articles and chapters published in the United States, Canada, Australia, and Sweden. She also writes for the popular press and has published in venues such as BuzzFeed, Indian Country Today, and GeneWatch. She is a frequent blogger on issues related to Indigenous peoples, science, and technology. Professor TallBear is a frequent commentator in the media on issues related to Indigenous peoples and genomics including interviews in New Scientist, New York Times, Native America Calling, National Geographic, Scientific American, The Atlantic, and on NPR, CBC News and BBC World Service. Professor TallBear has advised science museums across the United States on issues related to race and science. She also advised the former President of the American Society for Human Genetics on issues related to genetic research ethics with Indigenous populations. She is a founding ethics faculty member in the Summer internship for Indigenous Peoples in Genomics (SING), and has served as an advisor to programs at genome ethics centres at Duke University and Stanford University. She is also an advisory board member of the Science & Justice Research Centre at the University of California, Santa Cruz. Professor TallBear was an elected council member of the Native American and Indigenous Studies Association (NAISA) from 2010-2013. She is co-producer of an Edmonton sexy storytelling show, Tipi Confessions, which serves as a research-creation laboratory at the University of Alberta on issues related to decolonization and Indigenous sexualities. She is a citizen of the Sisseton-Wahpeton Oyate in South Dakota and is also descended from the Cheyenne & Arapaho Tribes of Oklahoma.

Learn more about Kim TallBear

You may have already discovered the second webspace, it’s the Indigenous Science, Technology, and Society (Indigenous STS) website. There are other programmes but the one that most interested me is the Summer Internship for Indigenous Peoples in Genomics Canada (SING Canada),

About

The Summer internship for INdigenous peoples in Genomics Canada (SING Canada) is an initiative associated with the Indigenous Science, Technology, and Society Research and Training Program (Indigenous STS) at the University of Alberta, Faculty of Native Studies. Building on the success of SING US and SING AotearoaSING Canada is an annual one-week intensive workshop designed to build Indigenous capacity and scientific literacy by training undergraduate and graduate students, postdoctoral, and community fellows in the basic of genomics, bioinformatics, and Indigenous and decolonial bioethics. This week-long, all expenses paid residential program invites Indigenous participants to engage in hands-on classroom, lab, and field training in genomic sciences and Indigenous knowledge. The curriculum includes an introduction to leading advances in and Indigenous approaches to genomics and its the ethical, environmental, economic, legal, and social (GE3LS) implications. Participants gain an awareness of the uses, misuses, opportunities, and limitations of genomics as a tool for Indigenous peoples’ governance. SING Canada is distinguished by its dedication to critical Indigenous theory and an emphasis on discussing the local contexts (i.e. political, legal, biological, and Indigenous) where the workshops take place, including the human and other-than-human relations that have implications variously for human and non-human health, environments, and societies. This is not your average summer science training program!

Sponsors

Our SING Canada regular sponsors include the University of Alberta Faculty of Native Studies, Genome CanadaSilent Genomes and LifeLabs.

SING Canada seems to have originated in 2018 and one was planned for 2021. I imagine they’ll update the information when they prepare for the 2022 edition.

University of Alberta researchers 3D print nose cartilage

A May 4, 2021 news item on ScienceDaily announced work that may result the restoration of nasal cartilage for skin cancer patients,

A team of University of Alberta researchers has discovered a way to use 3-D bioprinting technology to create custom-shaped cartilage for use in surgical procedures. The work aims to make it easier for surgeons to safely restore the features of skin cancer patients living with nasal cartilage defects after surgery.

The researchers used a specially designed hydrogel — a material similar to Jell-O — that could be mixed with cells harvested from a patient and then printed in a specific shape captured through 3-D imaging. Over a matter of weeks, the material is cultured in a lab to become functional cartilage.

“It takes a lifetime to make cartilage in an individual, while this method takes about four weeks. So you still expect that there will be some degree of maturity that it has to go through, especially when implanted in the body. But functionally it’s able to do the things that cartilage does,” said Adetola Adesida, a professor of surgery in the Faculty of Medicine & Dentistry.

“It has to have certain mechanical properties and it has to have strength. This meets those requirements with a material that (at the outset) is 92 per cent water,” added Yaman Boluk, a professor in the Faculty of Engineering.

Who would have thought that nose cartilage would look like a worm?

Caption: 3-D printed cartilage is shaped into a curve suitable for use in surgery to rebuild a nose. The technology could eventually replace the traditional method of taking cartilage from the patient’s rib, a procedure that comes with complications. Credit: University of Alberta

A May 4, 2021 University of Alberta news release (also on EurekAlert) by Ross Neitz, which originated the news item, details why this research is important,

Adesida, Boluk and graduate student Xiaoyi Lan led the project to create the 3-D printed cartilage in hopes of providing a better solution for a clinical problem facing many patients with skin cancer.

Each year upwards of three million people in North America are diagnosed with non-melanoma skin cancer. Of those, 40 per cent will have lesions on their noses, with many requiring surgery to remove them. As part of the procedure, many patients may have cartilage removed, leaving facial disfiguration.

Traditionally, surgeons would take cartilage from one of the patient’s ribs and reshape it to fit the needed size and shape for reconstructive surgery. But the procedure comes with complications.

“When the surgeons restructure the nose, it is straight. But when it adapts to its new environment, it goes through a period of remodelling where it warps, almost like the curvature of the rib,” said Adesida. “Visually on the face, that’s a problem.

“The other issue is that you’re opening the rib compartment, which protects the lungs, just to restructure the nose. It’s a very vital anatomical location. The patient could have a collapsed lung and has a much higher risk of dying,” he added.

The researchers say their work is an example of both precision medicine and regenerative medicine. Lab-grown cartilage printed specifically for the patient can remove the risk of lung collapse, infection in the lungs and severe scarring at the site of a patient’s ribs.

“This is to the benefit of the patient. They can go on the operating table, have a small biopsy taken from their nose in about 30 minutes, and from there we can build different shapes of cartilage specifically for them,” said Adesida. “We can even bank the cells and use them later to build everything needed for the surgery. This is what this technology allows you to do.”

The team is continuing its research and is now testing whether the lab-grown cartilage retains its properties after transplantation in animal models. The team hopes to move the work to a clinical trial within the next two to three years.

Here’s a link to and a citation for the paper,

Bioprinting of human nasoseptal chondrocytes-laden collagen hydrogel for cartilage tissue engineering by Xiaoyi Lan, Yan Liang, Esra J. N. Erkut, Melanie Kunze, Aillette Mulet-Sierra, Tianxing Gong, Martin Osswald, Khalid Ansari, Hadi Seikaly, Yaman Boluk, Adetola B. Adesida. The FASEB Journal Volume 35, Issue 3 March 2021 e21191 DOI: https://doi.org/10.1096/fj.202002081R First published online: 17 February 2021

This paper is open access.

Want a free course in science literacy? The University of Alberta has one for you

The folks at the University of Alberta have created a course for learning critical thinking skills where science is concerned. An Oct. 24, 2020 article by Nicole Bergot for the Edmonton Journal describes the course,

“The purpose of this course is to teach people about the process of science and how it is used to acquire knowledge,” course host Claire Scavuzzo, researcher in the Department of Psychology, said in a release. “By the end of the course, learners will be able to understand and use scientific evidence to challenge claims based on misinformation and engage the process of science to ask questions to build our knowledge.”

“With the uncertainty that comes with the current global COVID-19 pandemic we are seeing a general public distrust in science; ironically because of its self-correcting process,” said Scavuzzo.

The online course has no prerequisites, features guest lecturers, and can be completed at the learner’s own pace — roughly five weeks, with five to seven hours per week of study.

The five modules of the course are presented with practice quizzes, reflective quizzes, and interactive learning objects that are all available for free.

A University of Alberta Oct. 13, 2020 news release provides more detail,

We are often told not to believe everything we read online or see on TV—but how do we tell the difference between sensationalized statistics and a real scientific study? A new online course in Science Literacy offered by the University of Alberta is ready to help learners spot sound science—an increasingly relevant skill in today’s world of social media.

The course covers a variety of topics, Scavuzzo explained, and students will have the opportunity to learn how holistic wisdom is gained and practiced by Canadian First Nations, Indigenous, and Metis peoples, compared to the westernized process of science. They will also learn how to think critically about scientific claims from a variety of sources, learning how to differentiate science from pseudoscience.

“Students can expect to finish this course with well-polished critical thinking skills. Rather than ‘science knowledge’ students will build the skill of thinking scientifically, so they are ready to engage in the process of science,” said Scavuzzo. “It may expose some of your biases and it may also help you recognize the value of challenging your biases by being skeptical, asking questions, and evaluating evidence. It will change the way you interact with and absorb content on social media. It will make you realize that these skills can—and should—be used every day.”

Here’s the list of guest lecturers (from the University of Alberta Oct. 13, 2020 news release),

  • Timothy Caulfield, Canada Research Chair in Health Law and Policy and star of Netflix’s “A User’s Guide to Cheating Death” on pseudoscience
  • Dr. Torah Kachur, Scientist and CBC journalist on science communication (and miscommunication!)
  • Christian Nelson, citizen scientist and creator of Edmonton Weather Nerdery, on experimental design
  • Cree Elder Kokum Rose Wabasca on how traditional knowledge is used in indigenous practices.
  • Métis Elder Elmer Ghostkeeper on how indigenous knowledge informs scientific discovery.
  • Dr. David Rast, scientist and psychology expert, on uncertainty and decision making

You can get more details about this Science Literacy Massive Online Open Course (MOOC) here (scroll down to the bottom of the page for the Module Overview) and to click on the registration link. There’s one other thing, you can get certified in Science Literacy should you choose that option.

Comfortable, bulletproof clothing for Canada’s Department of National Defence

h/t to Miriam Halpenny’s October 14, 2019 Castanet article as seen on the Vancouverisawesome website for this news about bulletproof clothing being developed for Canada’s National Department of Defence. I found a September 4, 2019 University of British Columbia Okanagan news release describing the research and the funds awarded to it,

The age-old technique of dressing in layers is a tried and tested way to protect from the elements. Now thanks to $1.5 million in new funding for UBC’s Okanagan campus, researchers are pushing the practice to new limits by creating a high-tech body armour solution with multiple layers of protection against diverse threats.

“Layers are great for regulating body heat, protecting us from inclement weather and helping us to survive in extreme conditions,” says Keith Culver, director of UBC’s Survive and Thrive Applied Research (STAR) initiative, which is supporting the network of researchers who will be working together over the next three years. “The idea is to design and integrate some of the most advanced fabrics and materials into garments that are comfortable, practical and can even stop a bullet.”

The research network working to develop these new Comfort-Optimized Materials For Operational Resilience, Thermal-transport and Survivability (COMFORTS) aims to create a futuristic new body armour solution by combining an intelligent, moisture-wicking base layer that has insulating properties with a layer of lightweight, ballistic-resistant material using cross-linker technology. It will also integrate a water, dust and gas repellent outer layer and will be equipped with comfort sensors to monitor the wearer’s response to extreme conditions.

“Although the basic idea seems simple, binding all these different materials and technologies together into a smart armour solution that is durable, reliable and comfortable is incredibly complex,” says Kevin Golovin, assistant professor of mechanical engineering at UBCO and principal investigator of the COMFORTS research network. “We’re putting into practice years of research and expertise in materials science to turn the concept into reality.”

The COMFORTS network is a collaboration between the University of British Columbia, the University of Alberta and the University of Victoria and is supported by a number of industrial partners. The network has received a $1.5M contribution agreement from the Department of National Defence through its Innovation for Defence Excellence and Security (IDEaS) program, designed to support innovation in defence and security.

“The safety and security threats faced by our military are ever-changing,” says Culver. “Hazards extend beyond security threats from foreign forces to natural disasters now occurring more frequently than ever before. Almost every year we’re seeing natural disasters, forest fires and floods that put not just ordinary Canadians at risk but also the personnel that respond directly to those threats. Our goal is to better protect those who put their lives on the line to protect the rest of us.”

While the initial COMFORTS technologies developed will be for defence and security applications, Culver says the potential extends well beyond the military.

“Imagine a garment that could keep its users comfortable and safe as they explore the tundra of the Canadian arctic, fight a raging forest fire or respond to a corrosive chemical spill,” says Culver. “I imagine everyone from first responders to soldiers to extreme athletes being impacted by this kind of innovation in protective clothing.”

The research will be ongoing with eight projects planned over the next three years. Some of the protective materials testing will take place at UBC’s STAR Impact Research Facility (SIRF), located just north of UBC’s Okanagan campus. The ballistic and blast simulation facility is the only one of its kind in Canada—it supports research and testing of ballistic and blast-resistant armour, ceramic and other composite materials, as well as helmets and other protective gear.

“I anticipate we will see some exciting new, field-tested technologies developed within the next few years,” says Culver. “I look forward to seeing where this collaboration will lead us.”

To learn more about the COMFORTS project, visit: ok.ubc.ca/okanagan-stories/textile-tech

UBC Expert Q&A

Western Canada primed to be defense and security research hotspot

World-class vineyards and sunny lakeside resorts have long been the reputation for BC’s Okanagan Valley. That reputation has expanded with Kelowna’s growth as a tech hub, according to Professor Keith Culver, director of UBC’s Survive and Thrive Research (STAR) initiative, but core expertise in defense and security research has also been rapidly expanding since UBC launched the STAR initiative five years ago.

Culver is a professor, legal theorist, self-described convener and coach with proven expertise assembling multi-disciplinary research teams working at the vanguard of innovation. One of these teams, led by Assistant Professor of Mechanical Engineering Kevin Golovin, was recently awarded a $1.5 million contract by the Department of National Defense to develop next-generation, high-performance body armour that increases the safety and comfort of Canadian soldiers.

What is UBC’s STAR initiative?

UBC STAR is a group of researchers and partners working together to solve human performance challenges. We know that solving complex problems requires a multi-disciplinary approach, so we build teams with specialized expertise from across both our campuses and other Western Canadian universities. Then we blend that expertise with the know-how and production capabilities of private and public sector partners to put solutions into practice. Above all, STAR helps university researchers and partners to work together in new, more productive ways.

You recently received considerable new funding from the Department of National Defence. Can you tell us about that research

A team of researchers from UBC, the University of Alberta and the University of Victoria have established a research network to invent and test new materials for the protection of humans operating in extreme environments – in this case, soldiers doing their jobs on foot. Assistant Professor Kevin Golovin of UBC Okanagan’s School of Engineering is leading the network with support from UBC STAR. The network brings together three leading Western Canadian universities to work together with industry to develop new technologies for the defence and security sector.

The network is developing several kinds of protective materials and hazard sensors for use in protective armour for soldiers and first responders. The name of the network captures its focus nicely: Comfort-Optimized Materials For Operational Resilience, Thermal-transport and Survivabilty (COMFORTS). Researchers in engineering, chemistry and other disciplines are developing new textile technologies and smart armour solutions that will be rigorously tested for thermal resistance to increase soldier comfort. We’re fortunate to be working with a great group of companies ready to turn our research into solutions ready for use. We’ll help to solve the challenges facing Canadian first responders and soldiers while enabling Canadian companies to sell those solutions to international markets.

What does the safety and security landscape look like in Western Canada?

I think there’s a perception out there that this kind of research is only happening in places like Halifax, Toronto or Waterloo. Western Canadian expertise is sometimes overlooked by Ottawa and Toronto, but there’s incredible expertise and cutting-edge research happening here in the west, and we are fortunate to have a strong private sector partner community that understands safety and security problems in military contexts, and in forestry, mining and wildfire and flood response. Our understanding of hazardous environments gives us a head start in putting technologies and strategies to work safely in extreme conditions, and we’re coming to realize that our creative solutions can both help Canadians and others around the world.

Why do companies want to work with UBC STAR and its Western Canadian partners?

We have great researchers and great facilities – our blast simulator and ballistics range are second to none – but we offer much more than expertise and equipment. UBC STAR is fundamentally about making the most of collaboration. We work together with our partners to understand the nature of problems and what could contribute to a solution. We readily draw on expertise from multiple universities and firms to assemble the right team. And we know that we are in the middle of a great living lab for testing solutions –with rural and urban areas of varying sizes, climates and terrains. We’re situated in an ideal place to work through technology development, while identifying the strategies and standards needed to put innovative technology to good use.

How do you expect this sector to develop over the next decade?

I see a boom coming in this sector. In Canada, and around the world, we are witnessing a rise in natural disasters that put first responders and others at risk, and our research can help improve their safety. At the same time, we are seeing a rise in global political tensions calling for Canadian military deployment in peacekeeping and other support roles. Our military needs help protecting its members so they can do their jobs in dangerous places. And, of course, when we develop protective materials for first responders and soldiers, the same solutions can be easily adapted for use in sport and health – such as protecting children playing contact sports or our aging population from slip and fall injuries. I think I speak for everyone involved in this research when I say that it’s incredibly rewarding to see how solutions found addressing one question often have far broader benefits for Canadians in every walk of life.

To learn more about STAR, visit: star.ubc.ca

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning in the heart of British Columbia’s stunning Okanagan Valley. Ranked among the top 20 public universities in the world, UBC is home to bold thinking and discoveries that make a difference. Established in 2005, the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world.

To find out more, visit: ok.ubc.ca

Courtesy: UBC Okanagan

I have mentioned* bulletproof clothing here in a November 4, 2013 posting featuring a business suit that included carbon nanotubes providing protection from bullets. Here’s where you can order one.

*’mentioned’ was substituted for ‘featured’ as a grammar correction on July 6, 2020.

Heart and mind: Dr. Paolo Raggi speaks about cardiovascular health and its links to mental health on April 16, 2019 in Vancouver (Canada)

ARPICO, the Embassy of Italy in Ottawa, the Consulate General of Italy in Vancouver, and Paolo Raggi on April 16, 2019, Italian Research Day in the World

I love this image with the brain and heart as plants rooted in the earth for this upcoming ARPICO (Society of Italian Researchers & Professionals in Western Canada) event. I received a March 19, 2019 announcement (via email) from ARPICO about their latest Vancouver event, which is celebrating the 2019 Italian Research Day in the World,

… we are pleased to announce our next event in celebration of Italian Research of the World Day. On April 16th, 2019 at the Italian Cultural Centre, we will have the privilege of hosting the distinguished Dr. Paolo Raggi to present on the topic of mental disorders and cardiovascular health.  Dr. Raggi is a pioneer and luminary in the field of heart health, especially for his approach of considering heart disease not as an isolated condition, but in relation to the health of many other organs, an important one among them being our brain.

This event is organized in collaboration with the Embassy of Italy in Ottawa and with the Consulate General of Italy in Vancouver to celebrate the Italian Research in the World Day, instituted starting in 2018 as part of the Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo. The celebration day was chosen by government decree to be every year on April 15 on the anniversary of the birth of Leonardo da Vinci.

The main objective of the Italian Research Day in the World is to value the quality and competencies of Italian researchers abroad, but also to promote concrete actions and investments to allow Italian researchers to continue pursuing their careers in their homeland. Italy wishes to enable Italian talents to return from abroad as well as to become an attractive environment for foreign researchers.

We look forward to seeing everyone there.
The evening agenda is as follows:
6:30 pm – Doors Open for Registration
7:00 pm – Start of the evening event with introductions & lecture by Dr. Paolo Raggi
~8:00 pm – Q & A Period
to follow – Mingling & Refreshments until about 9:30 pm
If you have not already done so, please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.
Further details are also available at arpico.ca and Eventbrite.

Mental Disorders and Cardiovascular Health: A Critical, if Overlooked, Connection
Despite extraordinary advances in the diagnosis and care of heart disease, this ailment continues to affect a very large portion of the North American population and its related costs keep climbing. Reducing morbidity and mortality from heart disease will require a strong and integrated approach involving both research and clinical efforts aimed at prevention of disease rather than delayed care of its advanced complications. Dr. Raggi’s research investigates the mechanisms and prevention of heart disease and includes, among many other facets of this complex condition, the impact of mental stress disorders on coronary artery disease.

Paolo Raggi, MD, is a Professor of Medicine at the University of Alberta in Edmonton, AB and he is the former Director of the Mazankowski Alberta Heart Institute and Chair of Cardiac Research at the University of Alberta, in Edmonton AB, Canada. He is also an Adjunct Professor of Radiology as well as Professor of Population Health and Epidemiology at Emory University in Atlanta, GA, USA.

Dr. Raggi has been involved in research in the following fields: atherosclerosis imaging, vascular calcification, lipid metabolism, cardiovascular disease associated with: chronic kidney disease, rheumatological disorders, HIV infection, diabetes mellitus, the metabolic syndrome and the impact of mental stress disorders on coronary artery disease. He regularly engages in the interpretation of echocardiography, computed tomography, magnetic resonance and nuclear cardiology imaging studies for the diagnosis of coronary artery disease, subclinical atherosclerosis and evaluation of left ventricular function and viability.

He lectured extensively both nationally and internationally and has been a research mentor for numerous trainees. The results of his work have been published in the New England Journal of Medicine, The Lancet, Archives of Internal Medicine, Circulation, Journal of the American College of Cardiology, European Heart Journal, Kidney International, American Journal of Kidney Diseases, Radiology, Chest and several others. He has contributed over 350 publications to major peer-reviewed journals and 30 chapters for books on cardiovascular imaging and preventive cardiology.

Dr. Raggi has received numerous awards as best teaching attending and best clinical investigator nationally and internationally. He serves as a consultant for 30 scientific medical publications, he is Co-Editor of Atherosclerosis, and sits on the Board of 3 peer-reviewed medical journals. He is a fellow of the American College of Physicians, the American College of Cardiology, the American Heart Association, the Canadian Cardiovascular Society, the American Society of Nuclear Cardiology and the Society of Cardiac Computed Tomography of which he was a co-founder. Dr. Raggi received the highest honours from the President of Italy in October 2017 and was named Knight of the Order of Stars, typically bestowed upon Italian citizens who have distinguished themselves for their service to the Country of origin and/or adoptive countries.
 
WHEN: Tuesday, April 16th, 2019 at 7:00pm (doors open at 6:30pm)
WHERE: Italian Cultural Centre – Museum & Art Gallery – 3075 Slocan St, Vancouver, BC, V5M 3E4
RSVP: Please RSVP at EventBrite (https://mentaldisorderscardiovascularhealth.eventbrite.ca) or email info@arpico.ca
 
Tickets are Needed
Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.

All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.
 
FAQs
Where can I contact the organizer with any questions? info@arpico.ca
Do I have to bring my printed ticket to the event? No, you do not. Your name will be on our Registration List at the Check-in Desk.
Is my registration/ticket transferrable? If you are unable to attend, another person may use your ticket. Please send us an email at info@arpico.ca of this substitution to correct our audience Registration List and to prepare guest name tags.
Can I update my registration information? Yes. If you have any questions, contact us at info@arpico.ca
I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation? Of course, simply send your ticket request to us at info@arpico.ca so we help you.
 
What are my transport/parking options?
Bus/Train: The Millenium Line Renfrew Skytrain station is a 5 minute walk from the Italian Cultural Centre.
Parking: Free Parking is vastly available at the ICC’s own parking lot.

I’m a sucker for any reference to the ancient Romans, which can be found on the event announcement on ARPICO’s homepage and on the EventBrite registration page for the event,

The ancient Romans believed that a healthy body and mind go hand in hand: mens sana in corpore sano! During the American Civil War physicians described the Soldier’s Heart as a syndrome that occurred on the battlefield that involved symptoms very similar to modern day posttraumatic stress disorder (PTSD). They also noted that these soldiers manifested exaggerated cardiovascular reactivity and “abnormalities of the heart”. Interventions were developed to reduce the damage on the cardiovascular system and included surgical interventions to neutralize the sympathetic nervous system hyper-activity. With the advent of modern psychoanalysis, psychiatric symptoms became divorced from the body and were re-located to unconscious systems.

More recently, advancements in psychosomatic medicine and related fields clarified the complexity of the interaction between central and peripheral nervous system disorders, inflammation and cardiovascular diseases. This field of research has witnessed a quick expansion that brought to the discovery of important mechanisms of cardiovascular disease and potential therapeutic advances.

Happy Italian Research Day in the World (Giornata della ricerca Italiana nel mondo) which is held on April 15, 2019 (da Vinci’s birthday) as noted in the ARPICO announcement! If you’re planning to attend, don’t forget to register for Dr. Raggi’s talk at EventBrite (https://mentaldisorderscardiovascularhealth.eventbrite.ca) or email info@arpico.ca.

Summer (2019) Institute on AI (artificial intelligence) Societal Impacts, Governance, and Ethics. Summer Institute In Alberta, Canada

The deadline for applications is April 7, 2019. As for whether or not you might like to attend, here’s more from a joint March 11, 2019 Alberta Machine Intelligence Institute (Amii)/
Canadian Institute for Advanced Research (CIFAR)/University of California at Los Angeles (UCLA) Law School news release
(also on globalnewswire.com),

What will Artificial Intelligence (AI) mean for society? That’s the question scholars from a variety of disciplines will explore during the inaugural Summer Institute on AI Societal Impacts, Governance, and Ethics. Summer Institute, co-hosted by the Alberta Machine Intelligence Institute (Amii) and CIFAR, with support from UCLA School of Law, takes place July 22-24, 2019 in Edmonton, Canada.

“Recent advances in AI have brought a surge of attention to the field – both excitement and concern,” says co-organizer and UCLA professor, Edward Parson. “From algorithmic bias to autonomous vehicles, personal privacy to automation replacing jobs. Summer Institute will bring together exceptional people to talk about how humanity can receive the benefits and not get the worst harms from these rapid changes.”

Summer Institute brings together experts, grad students and researchers from multiple backgrounds to explore the societal, governmental, and ethical implications of AI. A combination of lectures, panels, and participatory problem-solving, this comprehensive interdisciplinary event aims to build understanding and action around these high-stakes issues.

“Machine intelligence is opening transformative opportunities across the world,” says John Shillington, CEO of Amii, “and Amii is excited to bring together our own world-leading researchers with experts from areas such as law, philosophy and ethics for this important discussion. Interdisciplinary perspectives will be essential to the ongoing development of machine intelligence and for ensuring these opportunities have the broadest reach possible.”

Over the three-day program, 30 graduate-level students and early-career researchers will engage with leading experts and researchers including event co-organizers: Western University’s Daniel Lizotte, Amii’s Alona Fyshe and UCLA’s Edward Parson. Participants will also have a chance to shape the curriculum throughout this uniquely interactive event.

Summer Institute takes place prior to Deep Learning and Reinforcement Learning Summer School, and includes a combined event on July 24th [2019] for both Summer Institute and Summer School participants.

Visit dlrlsummerschool.ca/the-summer-institute to apply; applications close April 7, 2019.

View our Summer Institute Biographies & Boilerplates for more information on confirmed faculty members and co-hosting organizations. Follow the conversation through social media channels using the hashtag #SI2019.

Media Contact: Spencer Murray, Director of Communications & Public Relations, Amii
t: 587.415.6100 | c: 780.991.7136 | e: spencer.murray@amii.ca

There’s a bit more information on The Summer Institute on AI and Society webpage (on the Deep Learning and Reinforcement Learning Summer School 2019 website) such as this more complete list of speakers,

Confirmed speakers at Summer Institute include:

Alona Fyshe, University of Alberta/Amii (SI co-organizer)
Edward Parson, UCLA (SI co-organizer)
Daniel Lizotte, Western University (SI co-organizer)
Geoffrey Rockwell, University of Alberta
Graham Taylor, University of Guelph/Vector Institute
Rob Lempert, Rand Corporation
Gary Marchant, Arizona State University
Richard Re, UCLA
Evan Selinger, Rochester Institute of Technology
Elana Zeide, UCLA

Two questions, why are all the summer school faculty either Canada- or US-based? What about South American, Asian, Middle Eastern, etc. thinkers?

One last thought, I wonder if this ‘AI & ethics summer institute’ has anything to do with the Pan-Canadian Artificial Intelligence Strategy, which CIFAR administers and where both the University of Alberta and Vector Institute are members.

‘Superconductivity: The Musical!’ wins the 2018 Dance Your Ph.D. competition

I can’t believe that October 24, 2011 was the last time the Dance Your Ph.D. competition was featured here. Time flies, eh? Here’s the 2018 contest winner’s submission, Superconductivity: The Musical!, (Note: This video is over 11 mins. long),

A February 17, 2019 CBC (Canadian Broadcasting Corporation) news item introduces the video’s writer, producer,s musician, and scientist,

Swing dancing. Songwriting. And theoretical condensed matter physics.

It’s a unique person who can master all three, but a University of Alberta PhD student has done all that and taken it one step further by making a rollicking music video about his academic pursuits — and winning an international competition for his efforts.

Pramodh Senarath Yapa is the winner of the 2018 Dance Your PhD contest, which challenges scientists around the world to explain their research through a jargon-free medium: dance.

The prize is $1,000 and “immortal geek fame.”

Yapa’s video features his friends twirling, swinging and touch-stepping their way through an explanation of his graduate research, called “Non-Local Electrodynamics of Superconducting Wires: Implications for Flux Noise and Inductance.”

Jennifer Ouelette’s February 17, 2019 posting for the ars Technica blog offers more detail (Note: A link has been removed),

Yapa’s research deals with how matter behaves when it’s cooled to very low temperatures, when quantum effects kick in—such as certain metals becoming superconductive, or capable of conducting electricity with zero resistance. That’s useful for any number of practical applications. D-Wave Systems [a company located in metro Vancouver {Canada}], for example, is building quantum computers using loops of superconducting wire. For his thesis, “I had to use the theory of superconductivity to figure out how to build a better quantum computer,” said Yapa.

Condensed matter theory (the precise description of Yapa’s field of research) is a notoriously tricky subfield to make palatable for a non-expert audience. “There isn’t one unifying theory or a single tool that we use,” he said. “Condensed matter theorists study a million different things using a million different techniques.”

His conceptual breakthrough came about when he realized electrons were a bit like “unsociable people” who find joy when they pair up with other electrons. “You can imagine electrons as a free gas, which means they don’t interact with each other,” he said. “The theory of superconductivity says they actually form pairs when cooled below a certain temperature. That was the ‘Eureka!’ moment, when I realized I could totally use swing dancing.”

John Bohannon’s Feb. 15, 2019 article for Science (magazine) offers an update on Yapa’s research interests (it seems that Yapa was dancing his Masters degree) and more information about the contest itself ,

..

“I remember hearing about Dance Your Ph.D. many years ago and being amazed at all the entries,” Yapa says. “This is definitely a longtime dream come true.” His research, meanwhile, has evolved from superconductivity—which he pursued at the University of Victoria in Canada, where he completed a master’s degree—to the physics of superfluids, the focus of his Ph.D. research at the University of Alberta.

This is the 11th year of Dance Your Ph.D. hosted by Science and AAAS. The contest challenges scientists around the world to explain their research through the most jargon-free medium available: interpretive dance.

“Most people would not normally think of interpretive dance as a tool for scientific communication,” says artist Alexa Meade, one of the judges of the contest. “However, the body can express conceptual thoughts through movement in ways that words and data tables cannot. The results are both artfully poetic and scientifically profound.”

Getting back to the February 17, 2019 CBC news item,

Yapa describes his video, filmed in Victoria where he earned his master’s degree, as a “three act, mini-musical.”

“I envisioned it as talking about the social lives of electrons,” he said. “The electrons starts out in a normal metal, at normal temperatures….We say these electrons are non-interacting. They don’t talk to each other. Electrons ignore each other and are very unsociable.”

The electrons — represented by dancers wearing saddle oxfords, poodle skirts, vests and suspenders — shuffle up the dance floor by themselves.

In the second act, the metal is cooled.

“The electrons become very unhappy about being alone. They want to find a partner, some companionship for the cold times,” he said

That’s when the electrons join up into something called Cooper pairs.

The dancers join together, moving to lyrics like, “If we peek/the Coopers are cheek-to-cheek.

In the final act, Yapa gets his dancers to demonstrate what happens when the Cooper pairs meet the impurities of the materials they’re moving in. All of a sudden, a group of black-leather-clad thugs move onto the dance floor.

“The Cooper pairs come dancing near these impurities and they’re like these crotchety old people yelling and shaking their fists at these young dancers,” Yapa explained.

Yapa’s entry to the annual contest swept past 49 other contestants to earn him the win. The competition is sponsored by Science magazine and the American Association for the Advancement of Science.

Congratulations to Pramodh Senarath Yapa.

More memory, less space and a walk down the cryptocurrency road

Libraries, archives, records management, oral history, etc. there are many institutions and names for how we manage collective and personal memory. You might call it a peculiarly human obsession stretching back into antiquity. For example, there’s the Library of Alexandria (Wikipedia entry) founded in the third, or possibly 2nd, century BCE (before the common era) and reputed to store all the knowledge in the world. It was destroyed although accounts differ as to when and how but its loss remains a potent reminder of memory’s fragility.

These days, the technology community is terribly concerned with storing ever more bits of data on materials that are reaching their limits for storage.I have news of a possible solution,  an interview of sorts with the researchers working on this new technology, and some very recent research into policies for cryptocurrency mining and development. That bit about cryptocurrency makes more sense when you read what the response to one of the interview questions.

Memory

It seems University of Alberta researchers may have found a way to increase memory exponentially, from a July 23, 2018 news item on ScienceDaily,

The most dense solid-state memory ever created could soon exceed the capabilities of current computer storage devices by 1,000 times, thanks to a new technique scientists at the University of Alberta have perfected.

“Essentially, you can take all 45 million songs on iTunes and store them on the surface of one quarter,” said Roshan Achal, PhD student in Department of Physics and lead author on the new research. “Five years ago, this wasn’t even something we thought possible.”

A July 23, 2018 University of Alberta news release (also on EurekAlert) by Jennifer-Anne Pascoe, which originated the news item, provides more information,

Previous discoveries were stable only at cryogenic conditions, meaning this new finding puts society light years closer to meeting the need for more storage for the current and continued deluge of data. One of the most exciting features of this memory is that it’s road-ready for real-world temperatures, as it can withstand normal use and transportation beyond the lab.

“What is often overlooked in the nanofabrication business is actual transportation to an end user, that simply was not possible until now given temperature restrictions,” continued Achal. “Our memory is stable well above room temperature and precise down to the atom.”

Achal explained that immediate applications will be data archival. Next steps will be increasing readout and writing speeds, meaning even more flexible applications.

More memory, less space

Achal works with University of Alberta physics professor Robert Wolkow, a pioneer in the field of atomic-scale physics. Wolkow perfected the art of the science behind nanotip technology, which, thanks to Wolkow and his team’s continued work, has now reached a tipping point, meaning scaling up atomic-scale manufacturing for commercialization.

“With this last piece of the puzzle now in-hand, atom-scale fabrication will become a commercial reality in the very near future,” said Wolkow. Wolkow’s Spin-off [sic] company, Quantum Silicon Inc., is hard at work on commercializing atom-scale fabrication for use in all areas of the technology sector.

To demonstrate the new discovery, Achal, Wolkow, and their fellow scientists not only fabricated the world’s smallest maple leaf, they also encoded the entire alphabet at a density of 138 terabytes, roughly equivalent to writing 350,000 letters across a grain of rice. For a playful twist, Achal also encoded music as an atom-sized song, the first 24 notes of which will make any video-game player of the 80s and 90s nostalgic for yesteryear but excited for the future of technology and society.

As noted in the news release, there is an atom-sized song, which is available in this video,

As for the nano-sized maple leaf, I highlighted that bit of whimsy in a June 30, 2017 posting.

Here’s a link to and a citation for the paper,

Lithography for robust and editable atomic-scale silicon devices and memories by Roshan Achal, Mohammad Rashidi, Jeremiah Croshaw, David Churchill, Marco Taucer, Taleana Huff, Martin Cloutier, Jason Pitters, & Robert A. Wolkow. Nature Communicationsvolume 9, Article number: 2778 (2018) DOI: https://doi.org/10.1038/s41467-018-05171-y Published 23 July 2018

This paper is open access.

For interested parties, you can find Quantum Silicon (QSI) here. My Edmonton geography is all but nonexistent, still, it seems to me the company address on Saskatchewan Drive is a University of Alberta address. It’s also the address for the National Research Council of Canada. Perhaps this is a university/government spin-off company?

The ‘interview’

I sent some questions to the researchers at the University of Alberta who very kindly provided me with the following answers. Roshan Achal passed on one of the questions to his colleague Taleana Huff for her response. Both Achal and Huff are associated with QSI.

Unfortunately I could not find any pictures of all three researchers (Achal, Huff, and Wolkow) together.

Roshan Achal (left) used nanotechnology perfected by his PhD supervisor, Robert Wolkow (right) to create atomic-scale computer memory that could exceed the capacity of today’s solid-state storage drives by 1,000 times. (Photo: Faculty of Science)

(1) SHRINKING THE MANUFACTURING PROCESS TO THE ATOMIC SCALE HAS
ATTRACTED A LOT OF ATTENTION OVER THE YEARS STARTING WITH SCIENCE
FICTION OR RICHARD FEYNMAN OR K. ERIC DREXLER, ETC. IN ANY EVENT, THE
ORIGINS ARE CONTESTED SO I WON’T PUT YOU ON THE SPOT BY ASKING WHO
STARTED IT ALL INSTEAD ASKING HOW DID YOU GET STARTED?

I got started in this field about 6 years ago, when I undertook a MSc
with Dr. Wolkow here at the University of Alberta. Before that point, I
had only ever heard of a scanning tunneling microscope from what was
taught in my classes. I was aware of the famous IBM logo made up from
just a handful of atoms using this machine, but I didn’t know what
else could be done. Here, Dr. Wolkow introduced me to his line of
research, and I saw the immense potential for growth in this area and
decided to pursue it further. I had the chance to interact with and
learn from nanofabrication experts and gain the skills necessary to
begin playing around with my own techniques and ideas during my PhD.

(2) AS I UNDERSTAND IT, THESE ARE THE PIECES YOU’VE BEEN
WORKING ON: (1) THE TUNGSTEN MICROSCOPE TIP, WHICH MAKE[s] (2) THE SMALLEST
QUANTUM DOTS (SINGLE ATOMS OF SILICON), (3) THE AUTOMATION OF THE
QUANTUM DOT PRODUCTION PROCESS, AND (4) THE “MOST DENSE SOLID-STATE
MEMORY EVER CREATED.” WHAT’S MISSING FROM THE LIST AND IS THAT WHAT
YOU’RE WORKING ON NOW?

One of the things missing from the list, that we are currently working
on, is the ability to easily communicate (electrically) from the
macroscale (our world) to the nanoscale, without the use of a scanning
tunneling microscope. With this, we would be able to then construct
devices using the other pieces we’ve developed up to this point, and
then integrate them with more conventional electronics. This would bring
us yet another step closer to the realization of atomic-scale
electronics.

(3) PERHAPS YOU COULD CLARIFY SOMETHING FOR ME. USUALLY WHEN SOLID STATE
MEMORY IS MENTIONED, THERE’S GREAT CONCERN ABOUT MOORE’S LAW. IS
THIS WORK GOING TO CREATE A NEW LAW? AND, WHAT IF ANYTHING DOES
;YOUR MEMORY DEVICE HAVE TO DO WITH QUANTUM COMPUTING?

That is an interesting question. With the density we’ve achieved,
there are not too many surfaces where atomic sites are more closely
spaced to allow for another factor of two improvement. In that sense, it
would be difficult to improve memory densities further using these
techniques alone. In order to continue Moore’s law, new techniques, or
storage methods would have to be developed to move beyond atomic-scale
storage.

The memory design itself does not have anything to do with quantum
computing, however, the lithographic techniques developed through our
work, may enable the development of certain quantum-dot-based quantum
computing schemes.

(4) THIS MAY BE A LITTLE OUT OF LEFT FIELD (OR FURTHER OUT THAN THE
OTHERS), COULD;YOUR MEMORY DEVICE HAVE AN IMPACT ON THE
DEVELOPMENT OF CRYPTOCURRENCY AND BLOCKCHAIN? IF SO, WHAT MIGHT THAT
IMPACT BE?

I am not very familiar with these topics, however, co-author Taleana
Huff has provided some thoughts:

Taleana Huff (downloaded from https://ca.linkedin.com/in/taleana-huff]

“The memory, as we’ve designed it, might not have too much of an
impact in and of itself. Cryptocurrencies fall into two categories.
Proof of Work and Proof of Stake. Proof of Work relies on raw
computational power to solve a difficult math problem. If you solve it,
you get rewarded with a small amount of that coin. The problem is that
it can take a lot of power and energy for your computer to crunch
through that problem. Faster access to memory alone could perhaps
streamline small parts of this slightly, but it would be very slight.
Proof of Stake is already quite power efficient and wouldn’t really
have a drastic advantage from better faster computers.

Now, atomic-scale circuitry built using these new lithographic
techniques that we’ve developed, which could perform computations at
significantly lower energy costs, would be huge for Proof of Work coins.
One of the things holding bitcoin back, for example, is that mining it
is now consuming power on the order of the annual energy consumption
required by small countries. A more efficient way to mine while still
taking the same amount of time to solve the problem would make bitcoin
much more attractive as a currency.”

Thank you to Roshan Achal and Taleana Huff for helping me to further explore the implications of their work with Dr. Wolkow.

Comments

As usual, after receiving the replies I have more questions but these people have other things to do so I’ll content myself with noting that there is something extraordinary in the fact that we can imagine a near future where atomic scale manufacturing is possible and where as Achal says, ” … storage methods would have to be developed to move beyond atomic-scale [emphasis mine] storage”. In decades past it was the stuff of science fiction or of theorists who didn’t have the tools to turn the idea into a reality. With Wolkow’s, Achal’s, Hauff’s, and their colleagues’ work, atomic scale manufacturing is attainable in the foreseeable future.

Hopefully we’ll be wiser than we have been in the past in how we deploy these new manufacturing techniques. Of course, before we need the wisdom, scientists, as  Achal notes,  need to find a new way to communicate between the macroscale and the nanoscale.

As for Huff’s comments about cryptocurrencies and cyptocurrency and blockchain technology, I stumbled across this very recent research, from a July 31, 2018 Elsevier press release (also on EurekAlert),

A study [behind a paywall] published in Energy Research & Social Science warns that failure to lower the energy use by Bitcoin and similar Blockchain designs may prevent nations from reaching their climate change mitigation obligations under the Paris Agreement.

The study, authored by Jon Truby, PhD, Assistant Professor, Director of the Centre for Law & Development, College of Law, Qatar University, Doha, Qatar, evaluates the financial and legal options available to lawmakers to moderate blockchain-related energy consumption and foster a sustainable and innovative technology sector. Based on this rigorous review and analysis of the technologies, ownership models, and jurisdictional case law and practices, the article recommends an approach that imposes new taxes, charges, or restrictions to reduce demand by users, miners, and miner manufacturers who employ polluting technologies, and offers incentives that encourage developers to create less energy-intensive/carbon-neutral Blockchain.

“Digital currency mining is the first major industry developed from Blockchain, because its transactions alone consume more electricity than entire nations,” said Dr. Truby. “It needs to be directed towards sustainability if it is to realize its potential advantages.

“Many developers have taken no account of the environmental impact of their designs, so we must encourage them to adopt consensus protocols that do not result in high emissions. Taking no action means we are subsidizing high energy-consuming technology and causing future Blockchain developers to follow the same harmful path. We need to de-socialize the environmental costs involved while continuing to encourage progress of this important technology to unlock its potential economic, environmental, and social benefits,” explained Dr. Truby.

As a digital ledger that is accessible to, and trusted by all participants, Blockchain technology decentralizes and transforms the exchange of assets through peer-to-peer verification and payments. Blockchain technology has been advocated as being capable of delivering environmental and social benefits under the UN’s Sustainable Development Goals. However, Bitcoin’s system has been built in a way that is reminiscent of physical mining of natural resources – costs and efforts rise as the system reaches the ultimate resource limit and the mining of new resources requires increasing hardware resources, which consume huge amounts of electricity.

Putting this into perspective, Dr. Truby said, “the processes involved in a single Bitcoin transaction could provide electricity to a British home for a month – with the environmental costs socialized for private benefit.

“Bitcoin is here to stay, and so, future models must be designed without reliance on energy consumption so disproportionate on their economic or social benefits.”

The study evaluates various Blockchain technologies by their carbon footprints and recommends how to tax or restrict Blockchain types at different phases of production and use to discourage polluting versions and encourage cleaner alternatives. It also analyzes the legal measures that can be introduced to encourage technology innovators to develop low-emissions Blockchain designs. The specific recommendations include imposing levies to prevent path-dependent inertia from constraining innovation:

  • Registration fees collected by brokers from digital coin buyers.
  • “Bitcoin Sin Tax” surcharge on digital currency ownership.
  • Green taxes and restrictions on machinery purchases/imports (e.g. Bitcoin mining machines).
  • Smart contract transaction charges.

According to Dr. Truby, these findings may lead to new taxes, charges or restrictions, but could also lead to financial rewards for innovators developing carbon-neutral Blockchain.

The press release doesn’t fully reflect Dr. Truby’s thoughtfulness or the incentives he has suggested. it’s not all surcharges, taxes, and fees constitute encouragement.  Here’s a sample from the conclusion,

The possibilities of Blockchain are endless and incentivisation can help solve various climate change issues, such as through the development of digital currencies to fund climate finance programmes. This type of public-private finance initiative is envisioned in the Paris Agreement, and fiscal tools can incentivize innovators to design financially rewarding Blockchain technology that also achieves environmental goals. Bitcoin, for example, has various utilitarian intentions in its White Paper, which may or may not turn out to be as envisioned, but it would not have been such a success without investors seeking remarkable returns. Embracing such technology, and promoting a shift in behaviour with such fiscal tools, can turn the industry itself towards achieving innovative solutions for environmental goals.

I realize Wolkow, et. al, are not focused on cryptocurrency and blockchain technology per se but as Huff notes in her reply, “… new lithographic techniques that we’ve developed, which could perform computations at significantly lower energy costs, would be huge for Proof of Work coins.”

Whether or not there are implications for cryptocurrencies, energy needs, climate change, etc., it’s the kind of innovative work being done by scientists at the University of Alberta which may have implications in fields far beyond the researchers’ original intentions such as more efficient computation and data storage.

ETA Aug. 6, 2018: Dexter Johnson weighed in with an August 3, 2018 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website),

Researchers at the University of Alberta in Canada have developed a new approach to rewritable data storage technology by using a scanning tunneling microscope (STM) to remove and replace hydrogen atoms from the surface of a silicon wafer. If this approach realizes its potential, it could lead to a data storage technology capable of storing 1,000 times more data than today’s hard drives, up to 138 terabytes per square inch.

As a bit of background, Gerd Binnig and Heinrich Rohrer developed the first STM in 1986 for which they later received the Nobel Prize in physics. In the over 30 years since an STM first imaged an atom by exploiting a phenomenon known as tunneling—which causes electrons to jump from the surface atoms of a material to the tip of an ultrasharp electrode suspended a few angstroms above—the technology has become the backbone of so-called nanotechnology.

In addition to imaging the world on the atomic scale for the last thirty years, STMs have been experimented with as a potential data storage device. Last year, we reported on how IBM (where Binnig and Rohrer first developed the STM) used an STM in combination with an iron atom to serve as an electron-spin resonance sensor to read the magnetic pole of holmium atoms. The north and south poles of the holmium atoms served as the 0 and 1 of digital logic.

The Canadian researchers have taken a somewhat different approach to making an STM into a data storage device by automating a known technique that uses the ultrasharp tip of the STM to apply a voltage pulse above an atom to remove individual hydrogen atoms from the surface of a silicon wafer. Once the atom has been removed, there is a vacancy on the surface. These vacancies can be patterned on the surface to create devices and memories.

If you have the time, I recommend reading Dexter’s posting as he provides clear explanations, additional insight into the work, and more historical detail.