Tag Archives: Pan-Canadian Artificial Intelligence Strategy

Canada’s voluntary code of conduct relating to advanced generative AI (artificial intelligence) systems

These days there’s a lot of international interest in policy and regulation where AI is concerned. So even though this is a little late, here’s what happened back in September 2023, the Canadian government came to an agreement with various technology companies about adopting a new voluntary code. Quinn Henderson’s September 28, 2023 article for the Daily Hive starts in a typically Canadian fashion, Note: Links have been removed,

While not quite as star-studded [emphasis mine] at the [US] White House’s AI summit, the who’s who of Canadian tech companies have agreed to new rules concerning AI.

What happened: A handful of Canada’s biggest tech companies, including Blackberry, OpenText, and Cohere, agreed to sign on to new voluntary government guidelines for the development of AI technologies and a “robust, responsible AI ecosystem in Canada.”

What’s next: The code of conduct is something of a stopgap until the government’s *real* AI regulation, the Artificial Intelligence and Data Act (AIDA), comes into effect in two years.

The regulation race is on around the globe. The EU is widely viewed as leading the way with the world’s first comprehensive regulatory AI framework set to take effect in 2026. The US is also hard at work but only has a voluntary code in place.

Henderson’s September 28, 2023 article offers a good, brief summary of the situation regarding regulation and self-regulation of AI here in Canada and elsewhere around the world, albeit, from a few months ago. Oddly, there’s no mention of what was then an upcoming international AI summit in the UK (see my November 2, 2023 posting, “UK AI Summit (November 1 – 2, 2023) at Bletchley Park finishes“).

Getting back to Canada’s voluntary code of conduct. here’s the September 27, 2023 Innovation, Science and Economic Development Canada (ISED) news release about it, Note: Links have been removed,

Today [September 27, 2023], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, announced Canada’s Voluntary Code of Conduct on the Responsible Development and Management of Advanced Generative AI Systems, which is effective immediately. The code identifies measures that organizations are encouraged to apply to their operations when they are developing and managing general-purpose generative artificial intelligence (AI) systems. The Government of Canada has already taken significant steps toward ensuring that AI technology evolves responsibly and safely through the proposed Artificial Intelligence and Data Act (AIDA), which was introduced as part of Bill C-27 in June 2022. This code is a critical bridge between now and when that legislation would be coming into force.The code outlines measures that are aligned with six core principles:

Accountability: Organizations will implement a clear risk management framework proportionate to the scale and impact of their activities.

Safety: Organizations will perform impact assessments and take steps to mitigate risks to safety, including addressing malicious or inappropriate uses.

Fairness and equity: Organizations will assess and test systems for biases throughout the lifecycle.

Transparency: Organizations will publish information on systems and ensure that AI systems and AI-generated content can be identified.

Human oversight and monitoring: Organizations will ensure that systems are monitored and that incidents are reported and acted on.

Validity and robustness: Organizations will conduct testing to ensure that systems operate effectively and are appropriately secured against attacks.

This code is based on the input received from a cross-section of stakeholders, including the Government of Canada’s Advisory Council on Artificial Intelligence, through the consultation on the development of a Canadian code of practice for generative AI systems. The government will publish a summary of feedback received during the consultation in the coming days. The code will also help reinforce Canada’s contributions to ongoing international deliberations on proposals to address common risks encountered with large-scale deployment of generative AI, including at the G7 and among like-minded partners.

Quotes

“Advances in AI have captured the world’s attention with the immense opportunities they present. Canada is a global AI leader, among the top countries in the world, and Canadians have created many of the world’s top AI innovations. At the same time, Canada takes the potential risks of AI seriously. The government is committed to ensuring Canadians can trust AI systems used across the economy, which in turn will accelerate AI adoption. Through our Voluntary Code of Conduct on the Responsible Development and Management of

Advanced Generative AI Systems, leading Canadian companies will adopt responsible guardrails for advanced generative AI systems in order to build safety and trust as the technology spreads. We will continue to ensure Canada’s AI policies are fit for purpose in a fast-changing world.”
– The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry

“We are very pleased to see the Canadian government taking a strong leadership role in building a regulatory framework that will help society maximize the benefits of AI, while addressing the many legitimate concerns that exist. It is essential that we, as an industry, address key issues like bias and ensure that humans maintain a clear role in oversight and monitoring of this incredibly exciting technology.”
– Aidan Gomez, CEO and Co-founder, Cohere

“AI technologies represent immense opportunities for every citizen and business in Canada. The societal impacts of AI are profound across education, biotech, climate and the very nature of work. Canada’s AI Code of Conduct will help accelerate innovation and citizen adoption by setting the standard on how to do it best. As Canada’s largest software company, we are honoured to partner with Minister Champagne and the Government of Canada in supporting this important step forward.”
– Mark J. Barrenechea, CEO and CTO, OpenText

“CCI has been calling for Canada to take a leadership role on AI regulation, and this should be done in the spirit of collaboration between government and industry leaders. The AI Code of Conduct is a meaningful step in the right direction and marks the beginning of an ongoing conversation about how to build a policy ecosystem for AI that fosters public trust and creates the conditions for success among Canadian companies. The global landscape for artificial intelligence regulation and adoption will evolve, and we are optimistic to see future collaboration to adapt to the emerging technological reality.”
– Benjamin Bergen, President, Council of Canadian Innovators

Quick facts

*The proposed Artificial Intelligence and Data Act (AIDA), part of Bill C-27, is designed to promote the responsible design, development and use of AI systems in Canada’s private sector, with a focus on systems with the greatest impact on health, safety and human rights (high-impact systems).

*Since the introduction of the bill, the government has engaged extensively with stakeholders on AIDA and will continue to seek the advice of Canadians, experts—including the government’s Advisory Council on AI—and international partners on the novel challenges posed by generative AI, as outlined in the Artificial Intelligence and Data Act (AIDA) – Companion document.

*Bill C-27 was adopted at second reading in the House of Commons in April 2023 and was referred to the House of Commons Standing Committee on Industry and Technology for study.

You can read more about Canada’s regulation efforts (Bill C-27) and some of the critiques in my May 1, 2023 posting, “Canada, AI regulation, and the second reading of the Digital Charter Implementation Act, 2022 (Bill C-27).”

For now, the “Voluntary Code of Conduct on the Responsible Development and Management of Advanced Generative AI Systems” can be found on this ISED September 2023 webpage.

Other Canadian AI policy bits and bobs

Back in 2016, shiny new Prime Minister Justin Trudeau announced the Pan-Canadian Artificial Intelligence Strategy (you can find out more about the strategy (Pillar 1: Commercialization) from this ISED Pan-Canadian Artificial Intelligence Strategy webpage, which was last updated July 20, 2022).

More recently, the Canadian Institute for Advanced Research (CIFAR), a prominent player in the Pan-Canadian AI strategy, published a report about regulating AI, from a November 21, 2023 CIFAR news release by Kathleen Sandusky, Note: Links have been removed,

New report from the CIFAR AI Insights Policy Briefs series cautions that current efforts to regulate AI are doomed to fail if they ignore a crucial aspect: the transformative impact of AI on regulatory processes themselves.

As rapid advances in artificial intelligence (AI) continue to reshape our world, global legislators and policy experts are working full-tilt to regulate this transformative technology. A new report, part of the CIFAR AI Insights Policy Briefs series, provides novel tools and strategies for a new way of thinking about regulation.

“Regulatory Transformation in the Age of AI” was authored by members of the Schwartz Reisman Institute for Technology and Society at the University of Toronto: Director and Chair Gillian Hadfield, who is also a Canada CIFAR AI Chair at the Vector Institute; Policy Researcher Jamie Amarat Sandhu; and Graduate Affiliate Noam Kolt.

The report challenges the current regulatory focus, arguing that the standard “harms paradigm” of regulating AI is necessary but incomplete. For example, current car safety regulations were not developed to address the advent of autonomous vehicles. In this way, the introduction of AI into vehicles has made some existing car safety regulations inefficient or irrelevant.

Through three Canadian case studies—in healthcare, financial services, and nuclear energy—the report illustrates some of the ways in which the targets and tools of regulation could be reconsidered for a world increasingly shaped by AI.

The brief proposes a novel concept—Regulatory Impacts Analysis (RIA)—as a means to evaluate the impact of AI on regulatory regimes. RIA aims to assess the likely impact of AI on regulatory targets and tools, helping policymakers adapt governance institutions to the changing conditions brought about by AI. The authors provide a real-world adaptable tool—a sample questionnaire—for policymakers to identify potential gaps in their domain as AI becomes more prevalent.

This report also highlights the need for a comprehensive regulatory approach that goes beyond mitigating immediate harms, recognizing AI as a “general-purpose technology” with far-reaching implications, including on the very act of regulation itself.

As AI is expected to play a pivotal role in the global economy, the authors emphasize the need for regulators to go beyond traditional approaches. The evolving landscape requires a more flexible and adaptive playbook, with tools like RIA helping to shape strategies to harness the benefits of AI, address associated risks, and prepare for the technology’s transformative impact.

You can find CIFAR’s November 2023 report, “Regulatory Transformation in the Age of AI” (PDF) here.

I have two more AI bits and these concern provincial AI policies, one from Ontario and the other from British Columbia (BC),

Stay tuned, there will be more about AI policy throughout 2024.

Are we spending money on the right research? Government of Canada launches Advisory Panel

it’s a little surprising that this is not being managed by the Council of Canadian Academies (CCA) but perhaps their process is not quite nimble enough (from an October 6, 2022 Innovation, Science and Economic Development Canada news release),

Government of Canada launches Advisory Panel on the Federal Research Support System

Members to recommend enhancements to system to position Canadian researchers for success

October 6, 2022 – Ottawa, Ontario

Canada’s success is in large part due to our world-class researchers and their teams who are globally recognized for unleashing bold new ideas, driving technological breakthroughs and addressing complex societal challenges. The Government of Canada recognizes that for Canada to achieve its full potential, support for science and research must evolve as Canadians push beyond what is currently imaginable and continue to find Canadian-made solutions to the world’s toughest problems.

Today [October 6, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, launched the Advisory Panel on the Federal Research Support System. Benefiting from the insights of leaders in the science, research and innovation ecosystem, the panel will provide independent, expert policy advice on the structure, governance and management of the federal system supporting research and talent. This will ensure that Canadian researchers are positioned for even more success now and in the future.

The panel will focus on the relationships among the federal research granting agencies—the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada and the Canadian Institutes of Health Research—and the relationship between these agencies and the Canada Foundation for Innovation.

As the COVID-19 pandemic and climate crisis have shown, addressing the world’s most pressing challenges requires greater collaboration within the Canadian research community, government and industry, as well as with the international community. A cohesive and agile research support system will ensure Canadian researchers can quickly and effectively respond to the questions of today and tomorrow. Optimizing Canada’s research support system will equip researchers to transcend disciplines and borders, seize new opportunities and be responsive to emerging needs and interests to improve Canadians’ health, well-being and prosperity.

Quotes

“Canada is known for world-class research thanks to the enormous capabilities of our researchers. Canadian researchers transform curiosity into bold new ideas that can significantly enhance Canadians’ lives and well-being. With this advisory panel, our government will ensure our support for their research is just as cutting-edge as Canada’s science and research community.”
– The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry

“Our priority is to support Canada’s world-class scientific community so it can respond effectively to the challenges of today and the future. That’s why we are leveraging the expertise and perspectives of a newly formed advisory panel to maximize the impact of research and downstream innovation, which contributes significantly to Canadians’ well-being and prosperity.”
– The Honourable Jean-Yves Duclos, Minister of Health

Quick facts

The Advisory Panel on the Federal Research Support System has seven members, including the Chair. The members were selected by the Minister of Innovation, Science and Industry and the Minister of Health. The panel will consult with experts and stakeholders to draw on their diverse experiences, expertise and opinions. 

Since 2016, the Government of Canada has committed more than $14 billion to support research and science across Canada. 

Here’s a list of advisory panel members I’ve assembled from the Advisory Panel on the Federal Research Support System: Member biographies webpage,

  • Frédéric Bouchard (Chair) is Dean of the Faculty of Arts and Sciences at the Université de Montréal, where he has been a professor of philosophy of science since 2005.
  • Janet Rossant is a Senior Scientist Emeritus in the Developmental and Stem Cell Biology Program, the Hospital for Sick Children and a Professor Emeritus at the University of Toronto’s Department of Molecular Genetics.
  • [Gilles Patry] is Professor Emeritus and President Emeritus at the University of Ottawa. Following a distinguished career as a consulting engineer, researcher and university administrator, Gilles Patry is now a consultant and board director [Royal Canadian Mint].
  • Yolande E. Chan joined McGill University’s Desautels Faculty of Management as Dean and James McGill Professor in 2021. Her research focuses on innovation, knowledge strategy, digital strategy, digital entrepreneurship, and business-IT alignment.
  • Laurel Schafer is a Professor at the Department of Chemistry at the University of British Columbia. Her research focuses on developing novel organometallic catalysts to carry out difficult transformations in small molecule organic chemistry.
  • Vianne Timmons is the President and Vice-Chancellor of Memorial University of Newfoundland since 2020. She is a nationally and internationally recognized researcher and advocate in the field of inclusive education.
  • Dr. Baljit Singh is a highly accomplished researcher, … . He began his role as Vice-President Research at the University of Saskatchewan in 2021, after serving as Dean of the University of Calgary Faculty of Veterinary Medicine (2016 – 2020), and as Associate Dean of Research at the Western College of Veterinary Medicine at the University of Saskatchewan (2010 – 2016).

Nobody from the North. Nobody who’s worked there or lived there or researched there. It’s not the first time I’ve noticed a lack of representation for the North.

Canada’s golden triangle (Montréal, Toronto, Ottawa) is well represented and, as is often the case, there’s representation for other regions: one member from the Prairies, one member from the Maritimes or Atlantic provinces, and one member from the West.

The mandate indicates they could have five to eight members. With seven spots filled, they could include one more member, one from the North.

Even if they don’t add an eighth member, I’m not ready to abandon all hope for involvement from the North when there’s this, from the mandate,

Communications and deliverables

In pursuing its mandate, and to strengthen its advice, the panel may engage with experts and stakeholders to expand access [emphasis mine] to diverse experience, expertise and opinion, and enhance members’ understanding of the topics at hand.

To allow for frank and open discussion, internal panel deliberations among members will be closed.

The panel will deliver a final confidential report by December 2022 [emphasis mine] to the Ministers including recommendations and considerations regarding the modernization of the research support system. A summary of the panel’s observations on the state of the federal research support system may be made public once its deliberations have concluded. The Ministers may also choose to seek confidential advice and/or feedback from the panel on other issues related to the research system.

The panel may also be asked to deliver an interim confidential report to the Ministers by November 2022 [emphases mine], which will provide the panel’s preliminary observations up to that point.

it seems odd there’s no mention of the Pan-Canadian Artificial Intelligence Strategy. It’s my understanding that the funding goes directly from the federal government to the Canadian Institute for Advanced Research (CIFAR), which then distributes the funds. There are other unmentioned science funding agencies, e.g., the National Research Council of Canada and Genome Canada, which (as far as I know) also receive direct funding. It seems that the panel will not be involved in a comprehensive review of Canada’s research support ecosystem.

Plus, I wonder why everything is being kept ‘confidential’. According the government news release, the panel is tasked with finding ways of “optimizing Canada’s research support system.” Do they have security concerns or is this a temporary state of affairs while the government analysts examine the panel’s report?

Age of AI and Big Data – Impact on Justice, Human Rights and Privacy Zoom event on September 28, 2022 at 12 – 1:30 pm EDT

The Canadian Science Policy Centre (CSPC) in a September 15, 2022 announcement (received via email) announced an event (Age of AI and Big Data – Impact on Justice, Human Rights and Privacy) centered on some of the latest government doings on artificial intelligence and privacy (Bill C-27),

In an increasingly connected world, we share a large amount of our data in our daily lives without our knowledge while browsing online, traveling, shopping, etc. More and more companies are collecting our data and using it to create algorithms or AI. The use of our data against us is becoming more and more common. The algorithms used may often be discriminatory against racial minorities and marginalized people.

As technology moves at a high pace, we have started to incorporate many of these technologies into our daily lives without understanding its consequences. These technologies have enormous impacts on our very own identity and collectively on civil society and democracy. 

Recently, the Canadian Government introduced the Artificial Intelligence and Data Act (AIDA) and Bill C-27 [which includes three acts in total] in parliament regulating the use of AI in our society. In this panel, we will discuss how our AI and Big data is affecting us and its impact on society, and how the new regulations affect us. 

Date: Sep 28 Time: 12:00 pm – 1:30 pm EDT Event Category: Virtual Session

Register Here

For some reason, there was no information about the moderator and panelists, other than their names, titles, and affiliations. Here’s a bit more:

Moderator: Yuan Stevens (from her eponymous website’s About page), Note: Links have been removed,

Yuan (“You-anne”) Stevens (she/they) is a legal and policy expert focused on sociotechnical security and human rights.

She works towards a world where powerful actors—and the systems they build—are held accountable to the public, especially when it comes to marginalized communities. 

She brings years of international experience to her role at the Leadership Lab at Toronto Metropolitan University [formerly Ryerson University], having examined the impacts of technology on vulnerable populations in Canada, the US and Germany. 

Committed to publicly accessible legal and technical knowledge, Yuan has written for popular media outlets such as the Toronto Star and Ottawa Citizen and has been quoted in news stories by the New York Times, the CBC and the Globe & Mail.

Yuan is a research fellow at the Centre for Law, Technology and Society at the University of Ottawa and a research affiliate at Data & Society Research Institute. She previously worked at Harvard University’s Berkman Klein Center for Internet & Society during her studies in law at McGill University.

She has been conducting research on artificial intelligence since 2017 and is currently exploring sociotechnical security as an LL.M candidate at University of Ottawa’s Faculty of Law working under Florian Martin-Bariteau.

Panelist: Brenda McPhail (from her Centre for International Governance Innovation profile page),

Brenda McPhail is the director of the Canadian Civil Liberties Association’s Privacy, Surveillance and Technology Project. Her recent work includes guiding the Canadian Civil Liberties Association’s interventions in key court cases that raise privacy issues, most recently at the Supreme Court of Canada in R v. Marakah and R v. Jones, which focused on privacy rights in sent text messages; research into surveillance of dissent, government information sharing, digital surveillance capabilities and privacy in relation to emergent technologies; and developing resources and presentations to drive public awareness about the importance of privacy as a social good.

Panelist: Nidhi Hegde (from her University of Alberta profile page),

My research has spanned many areas such as resource allocation in networking, smart grids, social information networks, machine learning. Broadly, my interest lies in gaining a fundamental understanding of a given system and the design of robust algorithms.

More recently my research focus has been in privacy in machine learning. I’m interested in understanding how robust machine learning methods are to perturbation, and privacy and fairness constraints, with the goal of designing practical algorithms that achieve privacy and fairness.

Bio

Before joining the University of Alberta, I spent many years in industry research labs. Most recently, I was a Research team lead at Borealis AI (a research institute at Royal Bank of Canada), where my team worked on privacy-preserving methods for machine learning models and other applied problems for RBC. Prior to that, I spent many years in research labs in Europe working on a variety of interesting and impactful problems. I was a researcher at Bell Labs, Nokia, in France from January 2015 to March 2018, where I led a new team focussed on Maths and Algorithms for Machine Learning in Networks and Systems, in the Maths and Algorithms group of Bell Labs. I also spent a few years at the Technicolor Paris Research Lab working on social network analysis, smart grids, and privacy in recommendations.

Panelist: Benjamin Faveri (from his LinkedIn page),

About

Benjamin Faveri is a Research and Policy Analyst at the Responsible AI Institute (RAII) [headquarted in Austin, Texas]. Currently, he is developing their Responsible AI Certification Program and leading it through Canada’s national accreditation process. Over the last several years, he has worked on numerous certification program-related research projects such as fishery economics and certification programs, police body-worn camera policy certification, and emerging AI certifications and assurance systems. Before his work at RAII, Benjamin completed a Master of Public Policy and Administration at Carleton University, where he was a Canada Graduate Scholar, Ontario Graduate Scholar, Social Innovation Fellow, and Visiting Scholar at UC Davis School of Law. He holds undergraduate degrees in criminology and psychology, finishing both with first class standing. Outside of work, Benjamin reads about how and why certification and private governance have been applied across various industries.

Panelist: Ori Freiman (from his eponymous website’s About page)

I research at the forefront of technological innovation. This website documents some of my academic activities.

My formal background is in Analytic Philosophy, Library and Information Science, and Science & Technology Studies. Until September 22′ [September 2022], I was a Post-Doctoral Fellow at the Ethics of AI Lab, at the University of Toronto’s Centre for Ethics. Before joining the Centre, I submitted my dissertation, about trust in technology, to The Graduate Program in Science, Technology and Society at Bar-Ilan University.

I have also found a number of overviews and bits of commentary about the Canadian federal government’s proposed Bill C-27, which I think of as an omnibus bill as it includes three proposed Acts.

The lawyers are excited but I’m starting with the Responsible AI Institute’s (RAII) response first as one of the panelists (Benjamin Faveri) works for them and it’s a view from a closely neighbouring country, from a June 22, 2022 RAII news release, Note: Links have been removed,

Business Implications of Canada’s Draft AI and Data Act

On June 16 [2022], the Government of Canada introduced the Artificial Intelligence and Data Act (AIDA), as part of the broader Digital Charter Implementation Act 2022 (Bill C-27). Shortly thereafter, it also launched the second phase of the Pan-Canadian Artificial Intelligence Strategy.

Both RAII’s Certification Program, which is currently under review by the Standards Council of Canada, and the proposed AIDA legislation adopt the same approach of gauging an AI system’s risk level in context; identifying, assessing, and mitigating risks both pre-deployment and on an ongoing basis; and pursuing objectives such as safety, fairness, consumer protection, and plain-language notification and explanation.

Businesses should monitor the progress of Bill C-27 and align their AI governance processes, policies, and controls to its requirements. Businesses participating in RAII’s Certification Program will already be aware of requirements, such as internal Algorithmic Impact Assessments to gauge risk level and Responsible AI Management Plans for each AI system, which include system documentation, mitigation measures, monitoring requirements, and internal approvals.

The AIDA draft is focused on the impact of any “high-impact system”. Companies would need to assess whether their AI systems are high-impact; identify, assess, and mitigate potential harms and biases flowing from high-impact systems; and “publish on a publicly available website a plain-language description of the system” if making a high-impact system available for use. The government elaborated in a press briefing that it will describe in future regulations the classes of AI systems that may have high impact.

The AIDA draft also outlines clear criminal penalties for entities which, in their AI efforts, possess or use unlawfully obtained personal information or knowingly make available for use an AI system that causes serious harm or defrauds the public and causes substantial economic loss to an individual.

If enacted, AIDA would establish the Office of the AI and Data Commissioner, to support Canada’s Minister of Innovation, Science and Economic Development, with powers to monitor company compliance with the AIDA, to order independent audits of companies’ AI activities, and to register compliance orders with courts. The Commissioner would also help the Minister ensure that standards for AI systems are aligned with international standards.

Apart from being aligned with the approach and requirements of Canada’s proposed AIDA legislation, RAII is also playing a key role in the Standards Council of Canada’s AI  accreditation pilot. The second phase of the Pan-Canadian includes funding for the Standards Council of Canada to “advance the development and adoption of standards and a conformity assessment program related to AI/”

The AIDA’s introduction shows that while Canada is serious about governing AI systems, its approach to AI governance is flexible and designed to evolve as the landscape changes.

Charles Mandel’s June 16, 2022 article for Betakit (Canadian Startup News and Tech Innovation) provides an overview of the government’s overall approach to data privacy, AI, and more,

The federal Liberal government has taken another crack at legislating privacy with the introduction of Bill C-27 in the House of Commons.

Among the bill’s highlights are new protections for minors as well as Canada’s first law regulating the development and deployment of high-impact AI systems.

“It [Bill C-27] will address broader concerns that have been expressed since the tabling of a previous proposal, which did not become law,” a government official told a media technical briefing on the proposed legislation.

François-Philippe Champagne, the Minister of Innovation, Science and Industry, together with David Lametti, the Minister of Justice and Attorney General of Canada, introduced the Digital Charter Implementation Act, 2022. The ministers said Bill C-27 will significantly strengthen Canada’s private sector privacy law, create new rules for the responsible development and use of artificial intelligence (AI), and continue to put in place Canada’s Digital Charter.

The Digital Charter Implementation Act includes three proposed acts: the Consumer Privacy Protection Act, the Personal Information and Data Protection Tribunal Act, and the Artificial Intelligence and Data Act (AIDA)- all of which have implications for Canadian businesses.

Bill C-27 follows an attempt by the Liberals to introduce Bill C-11 in 2020. The latter was the federal government’s attempt to reform privacy laws in Canada, but it failed to gain passage in Parliament after the then-federal privacy commissioner criticized the bill.

The proposed Artificial Intelligence and Data Act is meant to protect Canadians by ensuring high-impact AI systems are developed and deployed in a way that identifies, assesses and mitigates the risks of harm and bias.

For businesses developing or implementing AI this means that the act will outline criminal prohibitions and penalties regarding the use of data obtained unlawfully for AI development or where the reckless deployment of AI poses serious harm and where there is fraudulent intent to cause substantial economic loss through its deployment.

..

An AI and data commissioner will support the minister of innovation, science, and industry in ensuring companies comply with the act. The commissioner will be responsible for monitoring company compliance, ordering third-party audits, and sharing information with other regulators and enforcers as appropriate.

The commissioner would also be expected to outline clear criminal prohibitions and penalties regarding the use of data obtained unlawfully for AI development or where the reckless deployment of AI poses serious harm and where there is fraudulent intent to cause substantial economic loss through its deployment.

Canada already collaborates on AI standards to some extent with a number of countries. Canada, France, and 13 other countries launched an international AI partnership to guide policy development and “responsible adoption” in 2020.

The federal government also has the Pan-Canadian Artificial Intelligence Strategy for which it committed an additional $443.8 million over 10 years in Budget 2021. Ahead of the 2022 budget, Trudeau [Canadian Prime Minister Justin Trudeau] had laid out an extensive list of priorities for the innovation sector, including tasking Champagne with launching or expanding national strategy on AI, among other things.

Within the AI community, companies and groups have been looking at AI ethics for some time. Scotiabank donated $750,000 in funding to the University of Ottawa in 2020 to launch a new initiative to identify solutions to issues related to ethical AI and technology development. And Richard Zemel, co-founder of the Vector Institute [formed as part of the Pan-Canadian Artificial Intelligence Strategy], joined Integrate.AI as an advisor in 2018 to help the startup explore privacy and fairness in AI.

When it comes to the Consumer Privacy Protection Act, the Liberals said the proposed act responds to feedback received on the proposed legislation, and is meant to ensure that the privacy of Canadians will be protected, and that businesses can benefit from clear rules as technology continues to evolve.

“A reformed privacy law will establish special status for the information of minors so that they receive heightened protection under the new law,” a federal government spokesperson told the technical briefing.

..

The act is meant to provide greater controls over Canadians’ personal information, including how it is handled by organizations as well as giving Canadians the freedom to move their information from one organization to another in a secure manner.

The act puts the onus on organizations to develop and maintain a privacy management program that includes the policies, practices and procedures put in place to fulfill obligations under the act. That includes the protection of personal information, how requests for information and complaints are received and dealt with, and the development of materials to explain an organization’s policies and procedures.

The bill also ensures that Canadians can request that their information be deleted from organizations.

The bill provides the privacy commissioner of Canada with broad powers, including the ability to order a company to stop collecting data or using personal information. The commissioner will be able to levy significant fines for non-compliant organizations—with fines of up to five percent of global revenue or $25 million, whichever is greater, for the most serious offences.

The proposed Personal Information and Data Protection Tribunal Act will create a new tribunal to enforce the Consumer Privacy Protection Act.

Although the Liberal government said it engaged with stakeholders for Bill C-27, the Council of Canadian Innovators (CCI) expressed reservations about the process. Nick Schiavo, CCI’s director of federal affairs, said it had concerns over the last version of privacy legislation, and had hoped to present those concerns when the bill was studied at committee, but the previous bill died before that could happen.

Now the lawyers. Simon Hodgett, Kuljit Bhogal, and Sam Ip have written a June 27, 2022 overview, which highlights the key features from the perspective of Osler, a leading business law firm practising internationally from offices across Canada and in New York.

Maya Medeiros and Jesse Beatson authored a June 23, 2022 article for Norton Rose Fulbright, a global law firm, which notes a few ‘weak’ spots in the proposed legislation,

… While the AIDA is directed to “high-impact” systems and prohibits “material harm,” these and other key terms are not yet defined. Further, the quantum of administrative penalties will be fixed only upon the issuance of regulations. 

Moreover, the AIDA sets out publication requirements but it is unclear if there will be a public register of high-impact AI systems and what level of technical detail about the AI systems will be available to the public. More clarity should come through Bill C-27’s second and third readings in the House of Commons, and subsequent regulations if the bill passes.

The AIDA may have extraterritorial application if components of global AI systems are used, developed, designed or managed in Canada. The European Union recently introduced its Artificial Intelligence Act, which also has some extraterritorial application. Other countries will likely follow. Multi-national companies should develop a coordinated global compliance program.

I have two podcasts from Michael Geist, a lawyer and Canada Research Chair in Internet and E-Commerce Law at the University of Ottawa.

  • June 26, 2022: The Law Bytes Podcast, Episode 132: Ryan Black on the Government’s Latest Attempt at Privacy Law Reform “The privacy reform bill that is really three bills in one: a reform of PIPEDA, a bill to create a new privacy tribunal, and an artificial intelligence regulation bill. What’s in the bill from a privacy perspective and what’s changed? Is this bill any likelier to become law than an earlier bill that failed to even advance to committee hearings? To help sort through the privacy aspects of Bill C-27, Ryan Black, a Vancouver-based partner with the law firm DLA Piper (Canada) …” (about 45 mins.)
  • August 15, 2022: The Law Bytes Podcast, Episode 139: Florian Martin-Bariteau on the Artificial Intelligence and Data Act “Critics argue that regulations are long overdue, but have expressed concern about how much of the substance is left for regulations that are still to be developed. Florian Martin-Bariteau is a friend and colleague at the University of Ottawa, where he holds the University Research Chair in Technology and Society and serves as director of the Centre for Law, Technology and Society. He is currently a fellow at the Harvard’s Berkman Klein Center for Internet and Society …” (about 38 mins.)

AI & creativity events for August and September 2022 (mostly)

This information about these events and papers comes courtesy of the Metacreation Lab for Creative AI (artificial intelligence) at Simon Fraser University and, as usual for the lab, the emphasis is on music.

Music + AI Reading Group @ Mila x Vector Institute

Philippe Pasquier, Metacreation Lab director and professor, is giving a presentation on Friday, August 12, 2022 at 11 am PST (2 pm EST). Here’s more from the August 10, 2022 Metacreation Lab announcement (received via email),

Metacreaton Lab director Philippe Pasquier and PhD researcher Jeff Enns will be presenting next week [tomorrow on August 12 ,2022] at the Music + AI Reading Group hosted by Mila. The presentation will be available as a Zoom meeting. 

Mila is a community of more than 900 researchers specializing in machine learning and dedicated to scientific excellence and innovation. The institute is recognized for its expertise and significant contributions in areas such as modelling language, machine translation, object recognition and generative models.

I believe it’s also possible to view the presentation from the Music + AI Reading Group at MILA: presentation by Dr. Philippe Pasquier webpage on the Simon Fraser University website.

For anyone curious about Mila – Québec Artificial Intelligence Institute (based in Montréal) and the Vector Institute for Artificial Intelligence (based in Toronto), both are part of the Pan-Canadian Artificial Intelligence Strategy (a Canadian federal government funding initiative).

Getting back to the Music + AI Reading Group @ Mila x Vector Institute, there is an invitation to join the group which meets every Friday at 2 pm EST, from the Google group page,

unread,Feb 24, 2022, 2:47:23 PMto Community Announcements🎹🧠🚨Online Music + AI Reading Group @ Mila x Vector Institute 🎹🧠🚨

Dear members of the ISMIR [International Society for Music Information Retrieval] Community,

Together with fellow researchers at Mila (the Québec AI Institute) in Montréal, canada [sic], we have the pleasure of inviting you to join the Music + AI Reading Group @ Mila x Vector Institute. Our reading group gathers every Friday at 2pm Eastern Time. Our purpose is to build an interdisciplinary forum of researchers, students and professors alike, across industry and academia, working at the intersection of Music and Machine Learning. 

During each meeting, a speaker presents a research paper of their choice during 45’, leaving 15 minutes for questions and discussion. The purpose of the reading group is to :
– Gather a group of Music+AI/HCI [human-computer interface]/others people to share their research, build collaborations, and meet peer students. We are not constrained to any specific research directions, and all people are welcome to contribute.
– People share research ideas and brainstorm with others.
– Researchers not actively working on music-related topics but interested in the field can join and keep up with the latest research in the area, sharing their thoughts and bringing in their own backgrounds.

Our topics of interest cover (beware : the list is not exhaustive !) :
🎹 Music Generation
🧠 Music Understanding
📇 Music Recommendation
🗣  Source Separation and Instrument Recognition
🎛  Acoustics
🗿 Digital Humanities …
🙌  … and more (we are waiting for you :]) !


If you wish to attend one of our upcoming meetings, simply join our Google Group : https://groups.google.com/g/music_reading_group. You will automatically subscribe to our weekly mailing list and be able to contact other members of the group.

Here is the link to our Youtube Channel where you’ll find recordings of our past meetings : https://www.youtube.com/channel/UCdrzCFRsIFGw2fiItAk5_Og.
Here are general information about the reading group (presentation slides) : https://docs.google.com/presentation/d/1zkqooIksXDuD4rI2wVXiXZQmXXiAedtsAqcicgiNYLY/edit?usp=sharing.

Finally, if you would like to contribute and give a talk about your own research, feel free to fill in the following spreadhseet in the slot of your choice ! —> https://docs.google.com/spreadsheets/d/1skb83P8I30XHmjnmyEbPAboy3Lrtavt_jHrD-9Q5U44/edit?usp=sharing

Bravo to the two student organizers for putting this together!

Calliope Composition Environment for music makers

From the August 10, 2022 Metacreation Lab announcement,

Calling all music makers! We’d like to share some exciting news on one of the latest music creation tools from its creators, and   .

Calliope is an interactive environment based on MMM for symbolic music generation in computer-assisted composition. Using this environment, the user can generate or regenerate symbolic music from a “seed” MIDI file by using a practical and easy-to-use graphical user interface (GUI). Through MIDI streaming, the  system can interface with your favourite DAW (Digital Audio Workstation) such as Ableton Live, allowing creators to combine the possibilities of generative composition with their preferred virtual instruments sound design environments.

The project has now entered an open beta-testing phase, and inviting music creators to try the compositional system on their own! Head to the metacreation website to learn more and register for the beta testing.

Learn More About Calliope Here

You can also listen to a Calliope piece “the synthrider,” an Italo-disco fantasy of a machine, by Philippe Pasquier and Renaud Bougueng Tchemeube for the 2022 AI Song Contest.

3rd Conference on AI Music Creativity (AIMC 2022)

This in an online conference and it’s free but you do have to register. From the August 10, 2022 Metacreation Lab announcement,

Registration has opened  for the 3rd Conference on AI Music Creativity (AIMC 2022), which will be held 13-15 September, 2022. The conference features 22 accepted papers, 14 music works, and 2 workshops. Registered participants will get full access to the scientific and artistic program, as well as conference workshops and virtual social events. 

The full conference program is now available online

Registration, free but mandatory, is available here:

Free Registration for AIMC 2022 

The conference theme is “The Sound of Future Past — Colliding AI with Music Tradition” and I noticed that a number of the organizers are based in Japan. Often, the organizers’ home country gets some extra time in the spotlight, which is what makes these international conferences so interesting and valuable.

Autolume Live

This concerns generative adversarial networks (GANs) and a paper proposing “… Autolume-Live, the first GAN-based live VJing-system for controllable video generation.”

Here’s more from the August 10, 2022 Metacreation Lab announcement,

Jonas Kraasch & Phiippe Pasquier recently presented their latest work on the Autolume system at xCoAx, the 10th annual Conference on Computation, Communication, Aesthetics & X. Their paper is an in-depth exploration of the ways that creative artificial intelligence is increasingly used to generate static and animated visuals. 

While there are a host of systems to generate images, videos and music videos, there is a lack of real-time video synthesisers for live music performances. To address this gap, Kraasch and Pasquier propose Autolume-Live, the first GAN-based live VJing-system for controllable video generation.

Autolume Live on xCoAx proceedings  

As these things go, the paper is readable even by nonexperts (assuming you have some tolerance for being out of your depth from time to time). Here’s an example of the text and an installation (in Kelowna, BC) from the paper, Autolume-Live: Turning GANsinto a Live VJing tool,

Due to the 2020-2022 situation surrounding COVID-19, we were unable to use
our system to accompany live performances. We have used different iterations
of Autolume-Live to create two installations. We recorded some curated sessions
and displayed them at the Distopya sound art festival in Istanbul 2021 (Dystopia
Sound and Art Festival 2021) and Light-Up Kelowna 2022 (ARTSCO 2022) [emphasis mine]. In both iterations, we let the audio mapping automatically generate the video without using any of the additional image manipulations. These installations show
that the system on its own is already able to generate interesting and responsive
visuals for a musical piece.

For the installation at the Distopya sound art festival we trained a Style-GAN2 (-ada) model on abstract paintings and rendered a video using the de-scribed Latent Space Traversal mapping. For this particular piece we ran a super-resolution model on the final video as the original video output was in 512×512 and the wanted resolution was 4k. For our piece at Light-Up Kelowna [emphasis mine] we ran Autolume-Live with the Latent Space Interpolation mapping. The display included three urban screens, which allowed us to showcase three renders at the same time. We composed a video triptych using a dataset of figure drawings, a dataset of medical sketches and to tie the two videos together a model trained on a mixture of both datasets.

I found some additional information about the installation in Kelowna (from a February 7, 2022 article in The Daily Courier),

The artwork is called ‘Autolume Acedia’.

“(It) is a hallucinatory meditation on the ancient emotion called acedia. Acedia describes a mixture of contemplative apathy, nervous nostalgia, and paralyzed angst,” the release states. “Greek monks first described this emotion two millennia ago, and it captures the paradoxical state of being simultaneously bored and anxious.”

Algorithms created the set-to-music artwork but a team of humans associated with Simon Fraser University, including Jonas Kraasch and Philippe Pasquier, was behind the project.

These are among the artistic images generated by a form of artificial intelligence now showing nightly on the exterior of the Rotary Centre for the Arts in downtown Kelowna. [downloaded from https://www.kelownadailycourier.ca/news/article_6f3cefea-886c-11ec-b239-db72e804c7d6.html]

You can find the videos used in the installation and more information on the Metacreation Lab’s Autolume Acedia webpage.

Movement and the Metacreation Lab

Here’s a walk down memory lane: Tom Calvert, a professor at Simon Fraser University (SFU) and deceased September 28, 2021, laid the groundwork for SFU’s School of Interactive Arts & Technology (SIAT) and, in particular studies in movement. From SFU’s In memory of Tom Calvert webpage,

As a researcher, Tom was most interested in computer-based tools for user interaction with multimedia systems, human figure animation, software for dance, and human-computer interaction. He made significant contributions to research in these areas resulting in the Life Forms system for human figure animation and the DanceForms system for dance choreography. These are now developed and marketed by Credo Interactive Inc., a software company of which he was CEO.

While the Metacreation Lab is largely focused on music, other fields of creativity are also studied, from the August 10, 2022 Metacreation Lab announcement,

MITACS Accelerate award – partnership with Kinetyx

We are excited to announce that the Metacreation Lab researchers will be expanding their work on motion capture and movement data thanks to a new MITACS Accelerate research award. 

The project will focus on ​​body pose estimation using Motion Capture data acquisition through a partnership with Kinetyx, a Calgary-based innovative technology firm that develops in-shoe sensor-based solutions for a broad range of sports and performance applications.

Movement Database – MoDa

On the subject of motion data and its many uses in conjunction with machine learning and AI, we invite you to check out the extensive Movement Database (MoDa), led by transdisciplinary artist and scholar Shannon Cyukendall, and AI Researcher Omid Alemi. 

Spanning a wide range of categories such as dance, affect-expressive movements, gestures, eye movements, and more, this database offers a wealth of experiments and captured data available in a variety of formats.

Explore the MoDa Database

MITACS (originally a federal government mathematics-focused Network Centre for Excellence) is now a funding agency (most of the funds they distribute come from the federal government) for innovation.

As for the Calgary-based company (in the province of Alberta for those unfamiliar with Canadian geography), here they are in their own words (from the Kinetyx About webpage),

Kinetyx® is a diverse group of talented engineers, designers, scientists, biomechanists, communicators, and creators, along with an energy trader, and a medical doctor that all bring a unique perspective to our team. A love of movement and the science within is the norm for the team, and we’re encouraged to put our sensory insoles to good use. We work closely together to make movement mean something.

We’re working towards a future where movement is imperceptibly quantified and indispensably communicated with insights that inspire action. We’re developing sensory insoles that collect high-fidelity data where the foot and ground intersect. Capturing laboratory quality data, out in the real world, unlocking entirely new ways to train, study, compete, and play. The insights we provide will unlock unparalleled performance, increase athletic longevity, and provide a clear path to return from injury. We transform lives by empowering our growing community to remain moved.

We believe that high quality data is essential for us to have a meaningful place in the Movement Metaverse [1]. Our team of engineers, sport scientists, and developers work incredibly hard to ensure that our insoles and the insights we gather from them will meet or exceed customer expectations. The forces that are created and experienced while standing, walking, running, and jumping are inferred by many wearables, but our sensory insoles allow us to measure, in real-time, what’s happening at the foot-ground intersection. Measurements of force and power in addition to other traditional gait metrics, will provide a clear picture of a part of the Kinesome [2] that has been inaccessible for too long. Our user interface will distill enormous amounts of data into meaningful insights that will lead to positive behavioral change. 

[1] The Movement Metaverse is the collection of ever-evolving immersive experiences that seamlessly span both the physical and virtual worlds with unprecedented interoperability.

[2] Kinesome is the dynamic characterization and quantification encoded in an individual’s movement and activity. Broadly; an individual’s unique and dynamic movement profile. View the kinesome nft. [Note: Was not able to successfully open link as of August 11, 2022)

“… make movement mean something … .” Really?

The reference to “… energy trader …” had me puzzled but an August 11, 2022 Google search at 11:53 am PST unearthed this,

An energy trader is a finance professional who manages the sales of valuable energy resources like gas, oil, or petroleum. An energy trader is expected to handle energy production and financial matters in such a fast-paced workplace.May 16, 2022

Perhaps a new meaning for the term is emerging?

AI and visual art show in Vancouver (Canada)

The Vancouver Art Gallery’s (VAG) latest exhibition, “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” is running March 5, 2022 – October 23, 2022. Should you be interested in an exhaustive examination of the exhibit and more, I have a two-part commentary: Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (1 of 2): The Objects and Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations.

Enjoy the show and/or the commentary, as well as, any other of the events and opportunities listed in this post.

Coming soon: Responsible AI at the 35th Canadian Conference on Artificial Intelligence (AI) from 30 May to 3 June, 2022

35 years? How have I not stumbled on this conference before? Anyway, I’m glad to have the news (even if I’m late to the party), from the 35th Canadian Conference on Artificial Intelligence homepage,

The 35th Canadian Conference on Artificial Intelligence will take place virtually in Toronto, Ontario, from 30 May to 3 June, 2022. All presentations and posters will be online, with in-person social events to be scheduled in Toronto for those who are able to attend in-person. Viewing rooms and isolated presentation facilities will be available for all visitors to the University of Toronto during the event.

The event is collocated with the Computer and Robot Vision conferences. These events (AI·CRV 2022) will bring together hundreds of leaders in research, industry, and government, as well as Canada’s most accomplished students. They showcase Canada’s ingenuity, innovation and leadership in intelligent systems and advanced information and communications technology. A single registration lets you attend any session in the two conferences, which are scheduled in parallel tracks.

The conference proceedings are published on PubPub, an open-source, privacy-respecting, and open access online platform. They are submitted to be indexed and abstracted in leading indexing services such as DBLP, ACM, Google Scholar.

You can view last year’s [2021] proceedings here: https://caiac.pubpub.org/ai2021.

The 2021 proceedings appear to be open access.

I can’t tell if ‘Responsible AI’ has been included as a specific topic in previous conferences but 2022 is definitely hosting a couple of sessions based on that theme, from the Responsible AI activities webpage,

Keynote speaker: Julia Stoyanovich

New York University

“Building Data Equity Systems”

Equity as a social concept — treating people differently depending on their endowments and needs to provide equality of outcome rather than equality of treatment — lends a unifying vision for ongoing work to operationalize ethical considerations across technology, law, and society.  In my talk I will present a vision for designing, developing, deploying, and overseeing data-intensive systems that consider equity as an essential objective.  I will discuss ongoing technical work, and will place this work into the broader context of policy, education, and public outreach.

Biography: Julia Stoyanovich is an Institute Associate Professor of Computer Science & Engineering at the Tandon School of Engineering, Associate Professor of Data Science at the Center for Data Science, and Director of the Center for Responsible AI at New York University (NYU).  Her research focuses on responsible data management and analysis: on operationalizing fairness, diversity, transparency, and data protection in all stages of the data science lifecycle.  She established the “Data, Responsibly” consortium and served on the New York City Automated Decision Systems Task Force, by appointment from Mayor de Blasio.  Julia developed and has been teaching courses on Responsible Data Science at NYU, and is a co-creator of an award-winning comic book series on this topic.  In addition to data ethics, Julia works on the management and analysis of preference and voting data, and on querying large evolving graphs. She holds M.S. and Ph.D. degrees in Computer Science from Columbia University, and a B.S. in Computer Science and in Mathematics & Statistics from the University of Massachusetts at Amherst.  She is a recipient of an NSF CAREER award and a Senior Member of the ACM.

Panel on ethical implications of AI

Panelists

Luke Stark, Faculty of Information and Media Studies, Western University

Luke Stark is an Assistant Professor in the Faculty of Information and Media Studies at Western University in London, ON. His work interrogating the historical, social, and ethical impacts of computing and AI technologies has appeared in journals including The Information Society, Social Studies of Science, and New Media & Society, and in popular venues like Slate, The Globe and Mail, and The Boston Globe. Luke was previously a Postdoctoral Researcher in AI ethics at Microsoft Research, and a Postdoctoral Fellow in Sociology at Dartmouth College; he holds a PhD from the Department of Media, Culture, and Communication at New York University, and a BA and MA from the University of Toronto.

Nidhi Hegde, Associate Professor in Computer Science and Amii [Alberta Machine Intelligence Institute] Fellow at the University of Alberta

Nidhi is a Fellow and Canada CIFAR [Canadian Institute for Advanced Research] AI Chair at Amii and an Associate Professor in the Department of Computing Science at the University of Alberta. Before joining UAlberta, she spent many years in industry research labs. Most recently, she was a Research team lead at Borealis AI (a research institute at Royal Bank of Canada), where her team worked on privacy-preserving methods for machine learning models and other applied problems for RBC. Prior to that, she spent many years in research labs in Europe working on a variety of interesting and impactful problems. She was a researcher at Bell Labs, Nokia, in France from January 2015 to March 2018, where she led a new team focussed on Maths and Algorithms for Machine Learning in Networks and Systems, in the Maths and Algorithms group of Bell Labs. She also spent a few years at the Technicolor Paris Research Lab working on social network analysis, smart grids, privacy, and recommendations. Nidhi is an associate editor of the IEEE/ACM Transactions on Networking, and an editor of the Elsevier Performance Evaluation Journal.

Karina Vold, Assistant Professor, Institute for the History and Philosophy of Science and Technology, University of Toronto

Dr. Karina Vold is an Assistant Professor at the Institute for the History and Philosophy of Science and Technology at the University of Toronto. She is also a Faculty Affiliate at the U of T Schwartz Reisman Institute for Technology and Society, a Faculty Associate at the U of T Centre for Ethics, and an Associate Fellow at the University of Cambridge’s Leverhulme Centre for the Future of Intelligence. Vold specialises in Philosophy of Cognitive Science and Philosophy of Artificial Intelligence, and her recent research has focused on human autonomy, cognitive enhancement, extended cognition, and the risks and ethics of AI.

Elissa Strome, Executive Director, Pan-Canadian Artificial Intelligence Strategy at CIFAR

Elissa is Executive Director, Pan-Canadian Artificial Intelligence Strategy at CIFAR, working with research leaders across the country to implement Canada’s national research strategy in AI.  Elissa completed her PhD in Neuroscience from the University of British Columbia in 2006. Following a post-doc at Lund University, in Sweden, she decided to pursue a career in research strategy, policy and leadership. In 2008, she joined the University of Toronto’s Office of the Vice-President, Research and Innovation and was Director of Strategic Initiatives from 2011 to 2015. In that role, she led a small team dedicated to advancing the University’s strategic research priorities, including international institutional research partnerships, the institutional strategy for prestigious national and international research awards, and the establishment of the SOSCIP [Southern Ontario Smart Computing Innovation Platform] research consortium in 2012. From 2015 to 2017, Elissa was Executive Director of SOSCIP, leading the 17-member industry-academic consortium through a major period of growth and expansion, and establishing SOSCIP as Ontario’s leading platform for collaborative research and development in data science and advanced computing.

Tutorial on AI and the Law

Prof. Maura R. Grossman, University of Waterloo, and

Hon. Paul W. Grimm, United States District Court for the District of Maryland

AI applications are becoming more and more ubiquitous in almost every field of endeavor, and the same is true as to the legal industry. This panel, consisting of an experienced lawyer and computer scientist, and a U.S. federal trial court judge, will discuss how AI is currently being used in the legal profession, what adoption has been like since the introduction of AI to law in about 2009, what legal and ethical issues AI applications have raised in the legal system, and how a sitting trial court judge approaches AI evidence, in particular, the determination of whether to admit that AI evidence or not, when they are a non-expert.

How is AI being used in the legal industry today?

What has the legal industry’s reaction been to legal AI applications?

What are some of the biggest legal and ethical issues implicated by legal and other AI applications?

How does a sitting trial court judge evaluate AI evidence when making a determination of whether to admit that AI evidence or not?

What considerations go into the trial judge’s decision?

What happens if the judge is not an expert in AI?  Do they recuse?

You may recognize the name, Julia Stoyanovich, as she was mentioned here in my March 23, 2022 posting titled, The “We are AI” series gives citizens a primer on AI, a series of peer-to-peer workshops aimed at introducing the basics of AI to the public. There’s also a comic book series associated with it and all of the materials are available for free. It’s all there in the posting.

Getting back to the Responsible AI activities webpage,, there’s one more activity and this seems a little less focused on experts,

Virtual Meet and Greet on Responsible AI across Canada

Given the many activities that are fortunately happening around the responsible and ethical aspects of AI here in Canada, we are organizing an event in conjunction with Canadian AI 2022 this year to become familiar with what everyone is doing and what activities they are engaged in.

It would be wonderful to have a unified community here in Canada around responsible AI so we can support each other and find ways to more effectively collaborate and synergize. We are aiming for a casual, discussion-oriented event rather than talks or formal presentations.

The meet and greet will be hosted by Ebrahim Bagheri, Eleni Stroulia and Graham Taylor. If you are interested in participating, please email Ebrahim Bagheri (bagheri@ryerson.ca).

Thank you to the co-chairs for getting the word out about the Responsible AI topic at the conference,

Responsible AI Co-chairs

Ebrahim Bagheri
Professor
Electrical, Computer, and Biomedical Engineering, Ryerson University
Website

Eleni Stroulia
Professor, Department of Computing Science
Acting Vice Dean, Faculty of Science
Director, AI4Society Signature Area
University of Alberta
Website

The organization which hosts these conference has an almost palindromic abbreviation, CAIAC for Canadian Artificial Intelligence Association (CAIA) or Association Intelligence Artificiel Canadien (AIAC). Yes, you do have to read it in English and French and the C at either end gets knocked depending on which language you’re using, which is why it’s almost.

The CAIAC is almost 50 years old (under various previous names) and has its website here.

*April 22, 2022 at 1400 hours PT removed ‘the’ from this section of the headline: “… from 30 May to 3 June, 2022.” and removed period from the end.

Canada’s science and its 2022 federal budget (+ the online April 21, 2022 symposium: Decoding Budget 2022 for Science and Innovation)

Here’s my more or less annual commentary on the newly announced federal budget. This year the 2022/23 Canadian federal budget was presented by Chrystia Freeland, Minister of Finance, on April 7, 2022.

Sadly the budgets never include a section devoted to science and technology, which makes finding the information a hunting exercise.

I found most of my quarry in the 2022 budget’s Chapter 2: A Strong, Growing, and Resilient Economy (Note: I’m picking and choosing items that interest me),

Key Ongoing Actions

  • $8 billion to transform and decarbonize industry and invest in clean technologies and batteries;
  • $4 billion for the Canada Digital Adoption Program, which launched in March 2022 to help businesses move online, boost their e-commerce presence, and digitalize their businesses;
  • $1.2 billion to support life sciences and bio-manufacturing in Canada, including investments in clinical trials, bio-medical research, and research infrastructure;
  • $1 billion to the Strategic Innovation Fund to support life sciences and bio-manufacturing firms in Canada and develop more resilient supply chains. This builds on investments made throughout the pandemic with manufacturers of vaccines and therapeutics like Sanofi, Medicago, and Moderna;
  • $1 billion for the Universal Broadband Fund (UBF), bringing the total available through the UBF to $2.75 billion, to improve high-speed Internet access and support economic development in rural and remote areas of Canada;
  • $1.2 billion to launch the National Quantum Strategy, Pan-Canadian Genomics Strategy, and the next phase of Canada’s Pan-Canadian Artificial Intelligence Strategy to capitalize on emerging technologies of the future [Please see: the ‘I am confused’ subhead for more about the ‘launches’];
  • Helping small and medium-sized businesses to invest in new technologies and capital projects by allowing for the immediate expensing of up to $1.5 million of eligible investments beginning in 2021;

While there are proposed investments in digital adoption and the Universal Broadband Fund, there’s no mention of 5G but perhaps that’s too granular (or specific) for a national budget. I wonder if we’re catching up yet? There have been concerns about our failure to keep pace with telecommunications developments and infrastructure internationally.

Moving on from ‘Key Ongoing Actions’, there are these propositions from Chapter 2: A Strong, Growing, and Resilient Economy (Note: I have not offset the material from the budget in a ‘quote’ form as I want to retain the formatting.),

Creating a Canadian Innovation and Investment Agency

Canadians are a talented, creative, and inventive people. Our country has never been short on good ideas.

But to grow our economy, invention is not enough. Canadians and Canadian companies need to take their new ideas and new technologies and turn them into new products, services, and growing businesses.

However, Canada currently ranks last in the G7 in R&D spending by businesses. This trend has to change. [Note: We’ve been lagging from at least 10 or more years and we keep talking about catching up.]

Solving Canada’s main innovation challenges—a low rate of private business investment in research, development, and the uptake of new technologies—is key to growing our economy and creating good jobs.

A market-oriented innovation and investment agency—one with private sector leadership and expertise—has helped countries like Finland and Israel transform themselves into global innovation leaders. {Note: The 2021 budget also name checked Israel.]

The Israel Innovation Authority has spurred the growth of R&D-intensive sectors, like the information and communications technology and autonomous vehicle sectors. The Finnish TEKES [Tekes – The Finnish Funding Agency for Technology and Innovation] helped transform low-technology sectors like forestry and mining into high technology, prosperous, and globally competitive industries.

In Canada, a new innovation and investment agency will proactively work with new and established Canadian industries and businesses to help them make the investments they need to innovate, grow, create jobs, and be competitive in the changing global economy.

Budget 2022 announces the government’s intention to create an operationally independent federal innovation and investment agency, and proposes $1 billion over five years, starting in 2022-23, to support its initial operations. Final details on the agency’s operating budget are to be determined following further consultation later this year.

Review of Tax Support to R&D and Intellectual Property

The Scientific Research and Experimental Development (SR&ED) program provides tax incentives to encourage Canadian businesses of all sizes and in all sectors to conduct R&D. The SR&ED program has been a cornerstone of Canada’s innovation strategy. The government intends to undertake a review of the program, first to ensure that it is effective in encouraging R&D that benefits Canada, and second to explore opportunities to modernize and simplify it. Specifically, the review will examine whether changes to eligibility criteria would be warranted to ensure adequacy of support and improve overall program efficiency. 

As part of this review, the government will also consider whether the tax system can play a role in encouraging the development and retention of intellectual property stemming from R&D conducted in Canada. In particular, the government will consider, and seek views on, the suitability of adopting a patent box regime [emphasis mine] in order to meet these objectives.

I am confused

Let’s start with the 2022 budget’s $1.2 billion to launch the National Quantum Strategy, Pan-Canadian Genomics Strategy, and the next phase of Canada’s Pan-Canadian Artificial Intelligence Strategy. Here’s what I had in my May 4, 2021 posting about the 2021 budget,

  • Budget 2021 proposes to provide $360 million over seven years, starting in 2021-22, to launch a National Quantum Strategy [emphasis mine]. The strategy will amplify Canada’s significant strength in quantum research; grow our quantum-ready technologies, companies, and talent; and solidify Canada’s global leadership in this area. This funding will also establish a secretariat at the Department of Innovation, Science and Economic Development to coordinate this work.
  • Budget 2021 proposes to provide $400 million over six years, starting in 2021-22, in support of a Pan-Canadian Genomics Strategy [emphasis mine]. This funding would provide $136.7 million over five years, starting in 2022-23, for mission-driven programming delivered by Genome Canada to kick-start the new Strategy and complement the government’s existing genomics research and innovation programming.
  • Budget 2021 proposes to provide up to $443.8 million over ten years, starting in 2021-22, in support of the Pan-Canadian Artificial Intelligence Strategy [emphasis mine], …

How many times can you ‘launch’ a strategy?

A patent box regime

So the government is “… encouraging the development and retention of intellectual property stemming from R&D conducted in Canada” and is examining a “patent box regime” with an eye as to how that will help achieve those ends. Interesting!

Here’s how the patent box is described on Wikipedia (Note: Links have been removed),

A patent box is a special very low corporate tax regime used by several countries to incentivise research and development by taxing patent revenues differently from other commercial revenues.[1] It is also known as intellectual property box regime, innovation box or IP box. Patent boxes have also been used as base erosion and profit shifting (BEPS) tools, to avoid corporate taxes.

Even if they can find a way to “incentivize” R&D, the government has a problem keeping research in the country (see my September 17, 2021 posting (about the Council of Academies CCA’s ‘Public Safety in the Digital Age’ project) and scroll down about 50% of the way to find this,

There appears to be at least one other major security breach; that involving Canada’s only level four laboratory, the Winnipeg-based National Microbiology Lab (NML). (See a June 10, 2021 article by Karen Pauls for Canadian Broadcasting Corporation news online for more details.)

As far as I’m aware, Ortis [very senior civilian RCMP intelligence official Cameron Ortis] is still being held with a trial date scheduled for September 2022 (see Catherine Tunney’s April 9, 2021 article for CBC news online) and, to date, there have been no charges laid in the Winnipeg lab case.

The “security breach” involved sending information and sample viruses to another country, without proper documentation or approvals.

While I delved into a particular aspect of public safety in my posting, the CCA’s ‘Public Safety in the Digital Age’ project was very loosely defined and no mention was made of intellectual property. (You can check the “Exactly how did the question get framed?” subheading in the September 17, 2021 posting.)

Research security

While it might be described as ‘shutting the barn door after the horse got out’, there is provision in the 2022 budget for security vis-à-vis our research, from Chapter 2: A Strong, Growing, and Resilient Economy,

Securing Canada’s Research from Foreign Threats

Canadian research and intellectual property can be an attractive target for foreign intelligence agencies looking to advance their own economic, military, or strategic interests. The National Security Guidelines for Research Partnerships, developed in collaboration with the Government of Canada– Universities Working Group in July 2021, help to protect federally funded research.

  • To implement these guidelines fully, Budget 2022 proposes to provide $159.6 million, starting in 2022-23, and $33.4 million ongoing, as follows:
    • $125 million over five years, starting in 2022-23, and $25 million ongoing, for the Research Support Fund to build capacity within post- secondary institutions to identify, assess, and mitigate potential risks to research security; and
    • $34.6 million over five years, starting in 2022-23, and $8.4 million ongoing, to enhance Canada’s ability to protect our research, and to establish a Research Security Centre that will provide advice and guidance directly to research institutions.

Mining

There’s a reason I’m mentioning the mining industry, from Chapter 2: A Strong, Growing, and Resilient Economy,

Canada’s Critical Minerals and Clean Industrial Strategies

Critical minerals are central to major global industries like clean technology, health care, aerospace, and computing. They are used in phones, computers, and in our cars. [emphases mine] They are already essential to the global economy and will continue to be in even greater demand in the years to come.

Canada has an abundance of a number of valuable critical minerals, but we need to make significant investments to make the most of these resources.

In Budget 2022, the federal government intends to make significant investments that would focus on priority critical mineral deposits, while working closely with affected Indigenous groups and through established regulatory processes. These investments will contribute to the development of a domestic zero-emissions vehicle value chain, including batteries, permanent magnets, and other electric vehicle components. They will also secure Canada’s place in important supply chains with our allies and implement a just and sustainable Critical Minerals Strategy.

In total, Budget 2022 proposes to provide up to $3.8 billion in support over eight years, on a cash basis, starting in 2022-23, to implement Canada’s first Critical Minerals Strategy. This will create thousands of good jobs, grow our economy, and make Canada a vital part of the growing global critical minerals industry.

I don’t recall seeing mining being singled out before and I’m glad to see it now.

A 2022 federal budget commentary from University Affairs

Hannah Liddle’s April 8, 2022 article for University Affairs is focused largely on the budget’s impact on scientific research and she picked up on a few things I missed,

Budget 2022 largely focuses on housing affordability, clean growth and defence, with few targeted investments in scientific research.

The government tabled $1 billion over five years for an innovation and investment agency, designed to boost private sector investments in research and development, and to correct the slow uptake of new technologies across Canadian industries. The new agency represents a “huge evolution” in federal thinking about innovation, according to Higher Education Strategy Associates. The company noted in a budget commentary that Ottawa has shifted to solving the problem of low spending on research and development by working with the private sector, rather than funding universities as an alternative. The budget also indicated that the innovation and investment agency will support the defence sector and boost defence manufacturing, but the promised Canada Advanced Research Projects Agency – which was to be modelled after the famed American DARPA program – was conspicuously missing from the budget. [emphases mine]

However, the superclusters were mentioned and have been rebranded [emphasis mine] and given a funding boost. The five networks are now called “global innovation clusters,” [emphasis mine] and will receive $750 million over six years, which is half of what they had reportedly asked for. Many universities and research institutions are members of the five clusters, which are meant to bring together government, academia, and industry to create new companies, jobs, intellectual property, and boost economic growth.

Other notable innovation-related investments include the launch of a critical minerals strategy, which will give the country’s mining sector $3.8 billion over eight years. The strategy will support the development of a domestic zero-emission vehicle value chain, including for batteries (which are produced using critical minerals). The National Research Council will receive funding through the strategy, shared with Natural Resources Canada, to support new technologies and bolster supply chains of critical minerals such as lithium and cobalt. The government has also targeted investments in the semiconductor industry ($45 million over four years), the CAN Health Network ($40 million over four years), and the Canadian High Arctic Research Station ($14.5 million over five years).

Canada’s higher education institutions did notch a win with a major investment in agriculture research. The government will provide $100 million over six years to support postsecondary research in developing new agricultural technologies and crop varieties, which could push forward net-zero emissions agriculture.

The Canada Excellence Research Chairs program received $38.3 million in funding over four years beginning in 2023-24, with the government stating this could create 12 to 25 new chair positions.

To support Canadian cybersecurity, which is a key priority under the government’s $8 billion defence umbrella, the budget gives $17.7 million over five years and $5.5 million thereafter until 2031-32 for a “unique research chair program to fund academics to conduct research on cutting-edge technologies” relevant to the Communications Security Establishment – the national cryptologic agency. The inaugural chairs will split their time between peer-reviewed and classified research.

The federal granting councils will be given $40.9 million over five years beginning in 2022-23, and $9.7 million ongoing, to support Black “student researchers,” who are among the underrepresented groups in the awarding of scholarships, grants and fellowships. Additionally, the federal government will give $1.5 million to the Jean Augustine Chair in Education, Community and Diaspora, housed at York University, to address systemic barriers and racial inequalities in the Canadian education system and to improve outcomes for Black students.

A pretty comprehensive listing of all the science-related funding in the 2022 budget can be found in an April 7, 2022 posting on the Evidence for Democracy (E4D) blog,

2022 budget symposium

Here’s more about the symposium from the Canadian Science Policy Centre (CSPC), from the Decoding Budget 2022 event page,

Decoding Budget 2022 for Science and Innovation

The CSPC Budget Symposium will be held on Thursday April 21 [2022] at 12:00 pm (EST), and feature numerous speakers from across the country and across different sectors, in two sessions and one keynote presentation by Dave Watters titled: “Decoding Budget 2022 for Science and Innovation”.

Don’t miss this session and all insightful discussions of the Federal Budget 2022.

Register Here

You can see the 2022 symposium poster below,

By the way, David Watters gave the keynote address for the 2021 symposium too. Seeing his name twice now aroused my curiosity. Here’s a little more about David Watters (from a 2013 bio on the Council of Canadian Academies website), Note: He is still president,

David Watters is President of the Global Advantage Consulting Group, a strategic management consulting firm that provides advice to corporate, association, and government clients in Canada and abroad.

Mr. Watters worked for over 30 years in the federal public service in a variety of departments, including Energy Mines and Resources, Consumer and Corporate Affairs, Industry Canada (as Assistant Deputy Minister), Treasury Board Secretariat (in charge of Crown corporations and privatization issues), the Canadian Coast Guard (as its Commissioner) and Finance Canada (as Assistant Deputy Minister for Economic Development and Corporate Finance). He then moved to the Public Policy Forum where he worked on projects dealing with the innovation agenda, particularly in areas such as innovation policy, health reform, transportation, and the telecommunications and information technology sectors. He also developed reports on the impact of the Enron scandal and other corporate and public sector governance problems for Canadian regulators.

Since starting the Global Advantage Consulting Group in 2002, Mr. Watters has assisted a variety of public and private clients. His areas of specialization and talent are in creating visual models for policy development and decision making, and business models for managing research and technology networks. He has also been an adjunct professor at the Telfer School of Management at the University of Ottawa, teaching International Negotiation.

Mr. Watters holds a Bachelor’s degree in Economics from Queen’s University as well as a Law degree in corporate, commercial and tax law from the Faculty of Law at Queen’s University.

So, an economist, lawyer, and government bureaucrat is going to analyze the budget with regard to science and R&D? If I had to guess, I’d say he’s going to focus on** ‘innovation’ which I’m decoding as a synonym for ‘business/commercialization’.

Getting back to the budget, it’s pretty medium where science is concerned with more than one ‘re-announcement’**. As the pundits have noted, the focus is on deficit reduction and propping up the economy.

ETA April 20, 2022: There’s been a keynote speaker change, from an April 20, 2022 CSPC announcement (received via email),

… keynote presentation by Omer Kaya, CEO of Global Advantage Consulting Group. Unfortunately, due to unexpected circumstances, Dave Watters will not be presenting at this session as expected before.

**Two minor changes made, ‘in’ to ‘on’ and a hyphen (-) replaced by a single quote (‘) on March 30, 2023.

True love with AI (artificial intelligence): The Nature of Things explores emotional and creative AI (long read)

The Canadian Broadcasting Corporation’s (CBC) science television series,The Nature of Things, which has been broadcast since November 1960, explored the world of emotional, empathic and creative artificial intelligence (AI) in a Friday, November 19, 2021 telecast titled, The Machine That Feels,

The Machine That Feels explores how artificial intelligence (AI) is catching up to us in ways once thought to be uniquely human: empathy, emotional intelligence and creativity.

As AI moves closer to replicating humans, it has the potential to reshape every aspect of our world – but most of us are unaware of what looms on the horizon.

Scientists see AI technology as an opportunity to address inequities and make a better, more connected world. But it also has the capacity to do the opposite: to stoke division and inequality and disconnect us from fellow humans. The Machine That Feels, from The Nature of Things, shows viewers what they need to know about a field that is advancing at a dizzying pace, often away from the public eye.

What does it mean when AI makes art? Can AI interpret and understand human emotions? How is it possible that AI creates sophisticated neural networks that mimic the human brain? The Machine That Feels investigates these questions, and more.

In Vienna, composer Walter Werzowa has — with the help of AI — completed Beethoven’s previously unfinished 10th symphony. By feeding data about Beethoven, his music, his style and the original scribbles on the 10th symphony into an algorithm, AI has created an entirely new piece of art.

In Atlanta, Dr. Ayanna Howard and her robotics lab at Georgia Tech are teaching robots how to interpret human emotions. Where others see problems, Howard sees opportunity: how AI can help fill gaps in education and health care systems. She believes we need a fundamental shift in how we perceive robots: let’s get humans and robots to work together to help others.

At Tufts University in Boston, a new type of biological robot has been created: the xenobot. The size of a grain of sand, xenobots are grown from frog heart and skin cells, and combined with the “mind” of a computer. Programmed with a specific task, they can move together to complete it. In the future, they could be used for environmental cleanup, digesting microplastics and targeted drug delivery (like releasing chemotherapy compounds directly into tumours).

The film includes interviews with global leaders, commentators and innovators from the AI field, including Geoff Hinton, Yoshua Bengio, Ray Kurzweil and Douglas Coupland, who highlight some of the innovative and cutting-edge AI technologies that are changing our world.

The Machine That Feels focuses on one central question: in the flourishing age of artificial intelligence, what does it mean to be human?

I’ll get back to that last bit, “… what does it mean to be human?” later.

There’s a lot to appreciate in this 44 min. programme. As you’d expect, there was a significant chunk of time devoted to research being done in the US but Poland and Japan also featured and Canadian content was substantive. A number of tricky topics were covered and transitions from one topic to the next were smooth.

In the end credits, I counted over 40 source materials from Getty Images, Google Canada, Gatebox, amongst others. It would have been interesting to find out which segments were produced by CBC.

David Suzuki’s (programme host) script was well written and his narration was enjoyable, engaging, and non-intrusive. That last quality is not always true of CBC hosts who can fall into the trap of overdramatizing the text.

Drilling down

I have followed artificial intelligence stories in a passive way (i.e., I don’t seek them out) for many years. Even so, there was a lot of material in the programme that was new to me.

For example, there was this love story (from the ‘I love her and see her as a real woman.’ Meet a man who ‘married’ an artificial intelligence hologram webpage on the CBC),

In the The Machine That Feels, a documentary from The Nature of Things, we meet Kondo Akihiko, a Tokyo resident who “married” a hologram of virtual pop singer Hatsune Miku using a certificate issued by Gatebox (the marriage isn’t recognized by the state, and Gatebox acknowledges the union goes “beyond dimensions”).

I found Akihiko to be quite moving when he described his relationship, which is not unique. It seems some 4,000 men have ‘wed’ their digital companions, you can read about that and more on the ‘I love her and see her as a real woman.’ Meet a man who ‘married’ an artificial intelligence hologram webpage.

What does it mean to be human?

Overall, this Nature of Things episode embraces certainty, which means the question of what it means to human is referenced rather than seriously discussed. An unanswerable philosophical question, the programme is ill-equipped to address it, especially since none of the commentators are philosophers or seem inclined to philosophize.

The programme presents AI as a juggernaut. Briefly mentioned is the notion that we need to make some decisions about how our juggernaut is developed and utilized. No one discusses how we go about making changes to systems that are already making critical decisions for us. (For more about AI and decision-making, see my February 28, 2017 posting and scroll down to the ‘Algorithms and big data’ subhead for Cathy O’Neil’s description of how important decisions that affect us are being made by AI systems. She is the author of the 2016 book, ‘Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy’; still a timely read.)

In fact, the programme’s tone is mostly one of breathless excitement. A few misgivings are expressed, e.g,, one woman who has an artificial ‘texting friend’ (Replika; a chatbot app) noted that it can ‘get into your head’ when she had a chat where her ‘friend’ told her that all of a woman’s worth is based on her body; she pushed back but intimated that someone more vulnerable could find that messaging difficult to deal with.

The sequence featuring Akihiko and his hologram ‘wife’ is followed by one suggesting that people might become more isolated and emotionally stunted as they interact with artificial friends. It should be noted, Akihiko’s wife is described as ‘perfect’. I gather perfection means that you are always understanding and have no needs of your own. She also seems to be about 18″ high.

Akihiko has obviously been asked about his ‘wife’ before as his answers are ready. They boil down to “there are many types of relationships” and there’s nothing wrong with that. It’s an intriguing thought which is not explored.

Also unexplored, these relationships could be said to resemble slavery. After all, you pay for these friends over which you have control. But perhaps that’s alright since AI friends don’t have consciousness. Or do they? In addition to not being able to answer the question, “what is it to be human?” we still can’t answer the question, “what is consciousness?”

AI and creativity

The Nature of Things team works fast. ‘Beethoven X – The AI Project’ had its first performance on October 9, 2021. (See my October 1, 2021 post ‘Finishing Beethoven’s unfinished 10th Symphony’ for more information from Ahmed Elgammal’s (Director of the Art & AI Lab at Rutgers University) technical perspective on the project.

Briefly, Beethoven died before completing his 10th symphony and a number of computer scientists, musicologists, AI, and musicians collaborated to finish the symphony.)

The one listener (Felix Mayer, music professor at the Technical University Munich) in the hall during a performance doesn’t consider the work to be a piece of music. He does have a point. Beethoven left some notes but this ’10th’ is at least partly mathematical guesswork. A set of probabilities where an algorithm chooses which note comes next based on probability.

There was another artist also represented in the programme. Puzzlingly, it was the still living Douglas Coupland. In my opinion, he’s better known as a visual artist than a writer (his Wikipedia entry lists him as a novelist first) but he has succeeded greatly in both fields.

What makes his inclusion in the Nature of Things ‘The Machine That Feels’ programme puzzling, is that it’s not clear how he worked with artificial intelligence in a collaborative fashion. Here’s a description of Coupland’s ‘AI’ project from a June 29, 2021 posting by Chris Henry on the Google Outreach blog (Note: Links have been removed),

… when the opportunity presented itself to explore how artificial intelligence (AI) inspires artistic expression — with the help of internationally renowned Canadian artist Douglas Coupland — the Google Research team jumped on it. This collaboration, with the support of Google Arts & Culture, culminated in a project called Slogans for the Class of 2030, which spotlights the experiences of the first generation of young people whose lives are fully intertwined with the existence of AI. 

This collaboration was brought to life by first introducing Coupland’s written work to a machine learning language model. Machine learning is a form of AI that provides computer systems the ability to automatically learn from data. In this case, Google research scientists tuned a machine learning algorithm with Coupland’s 30-year body of written work — more than a million words — so it would familiarize itself with the author’s unique style of writing. From there, curated general-public social media posts on selected topics were added to teach the algorithm how to craft short-form, topical statements. [emphases mine]

Once the algorithm was trained, the next step was to process and reassemble suggestions of text for Coupland to use as inspiration to create twenty-five Slogans for the Class of 2030. [emphasis mine]

I would comb through ‘data dumps’ where characters from one novel were speaking with those in other novels in ways that they might actually do. It felt like I was encountering a parallel universe Doug,” Coupland says. “And from these outputs, the statements you see here in this project appeared like gems. Did I write them? Yes. No. Could they have existed without me? No.” [emphases mine]

So, the algorithms crunched through Coupland’s word and social media texts to produce slogans, which Coupland then ‘combed through’ to pick out 25 slogans for the ‘Slogans For The Class of 2030’ project. (Note: In the programme, he says that he started a sentence and then the AI system completed that sentence with material gleaned from his own writings, which brings to Exquisite Corpse, a collaborative game for writers originated by the Surrealists, possibly as early as 1918.)

The ‘slogans’ project also reminds me of William S. Burroughs and the cut-up technique used in his work. From the William S. Burroughs Cut-up technique webpage on the Language is a Virus website (Thank you to Lake Rain Vajra for a very interesting website),

The cutup is a mechanical method of juxtaposition in which Burroughs literally cuts up passages of prose by himself and other writers and then pastes them back together at random. This literary version of the collage technique is also supplemented by literary use of other media. Burroughs transcribes taped cutups (several tapes spliced into each other), film cutups (montage), and mixed media experiments (results of combining tapes with television, movies, or actual events). Thus Burroughs’s use of cutups develops his juxtaposition technique to its logical conclusion as an experimental prose method, and he also makes use of all contemporary media, expanding his use of popular culture.

[Burroughs says] “All writing is in fact cut-ups. A collage of words read heard overheard. What else? Use of scissors renders the process explicit and subject to extension and variation. Clear classical prose can be composed entirely of rearranged cut-ups. Cutting and rearranging a page of written words introduces a new dimension into writing enabling the writer to turn images in cinematic variation. Images shift sense under the scissors smell images to sound sight to sound to kinesthetic. This is where Rimbaud was going with his color of vowels. And his “systematic derangement of the senses.” The place of mescaline hallucination: seeing colors tasting sounds smelling forms.

“The cut-ups can be applied to other fields than writing. Dr Neumann [emphasis mine] in his Theory of Games and Economic behavior introduces the cut-up method of random action into game and military strategy: assume that the worst has happened and act accordingly. … The cut-up method could be used to advantage in processing scientific data. [emphasis mine] How many discoveries have been made by accident? We cannot produce accidents to order. The cut-ups could add new dimension to films. Cut gambling scene in with a thousand gambling scenes all times and places. Cut back. Cut streets of the world. Cut and rearrange the word and image in films. There is no reason to accept a second-rate product when you can have the best. And the best is there for all. Poetry is for everyone . . .”

First, John von Neumann (1902 – 57) is a very important figure in the history of computing. From a February 25, 2017 John von Neumann and Modern Computer Architecture essay on the ncLab website, “… he invented the computer architecture that we use today.”

Here’s Burroughs on the history of writers and cutups (thank you to QUEDEAR for posting this clip),

You can hear Burroughs talk about the technique and how he started using it in 1959.

There is no explanation from Coupland as to how his project differs substantively from Burroughs’ cut-ups or a session of Exquisite Corpse. The use of a computer programme to crunch through data and give output doesn’t seem all that exciting. *(More about computers and chatbots at end of posting).* It’s hard to know if this was an interview situation where he wasn’t asked the question or if the editors decided against including it.

Kazuo Ishiguro?

Given that Ishiguro’s 2021 book (Klara and the Sun) is focused on an artificial friend and raises the question of ‘what does it mean to be human’, as well as the related question, ‘what is the nature of consciousness’, it would have been interesting to hear from him. He spent a fair amount of time looking into research on machine learning in preparation for his book. Maybe he was too busy?

AI and emotions

The work being done by Georgia Tech’s Dr. Ayanna Howard and her robotics lab is fascinating. They are teaching robots how to interpret human emotions. The segment which features researchers teaching and interacting with robots, Pepper and Salt, also touches on AI and bias.

Watching two African American researchers talk about the ways in which AI is unable to read emotions on ‘black’ faces as accurately as ‘white’ faces is quite compelling. It also reinforces the uneasiness you might feel after the ‘Replika’ segment where an artificial friend informs a woman that her only worth is her body.

(Interestingly, Pepper and Salt are produced by Softbank Robotics, part of Softbank, a multinational Japanese conglomerate, [see a June 28, 2021 article by Ian Carlos Campbell for The Verge] whose entire management team is male according to their About page.)

While Howard is very hopeful about the possibilities of a machine that can read emotions, she doesn’t explore (on camera) any means for pushing back against bias other than training AI by using more black faces to help them learn. Perhaps more representative management and coding teams in technology companies?

While the programme largely focused on AI as an algorithm on a computer, robots can be enabled by AI (as can be seen in the segment with Dr. Howard).

My February 14, 2019 posting features research with a completely different approach to emotions and machines,

“I’ve always felt that robots shouldn’t just be modeled after humans [emphasis mine] or be copies of humans,” he [Guy Hoffman, assistant professor at Cornell University)] said. “We have a lot of interesting relationships with other species. Robots could be thought of as one of those ‘other species,’ not trying to copy what we do but interacting with us with their own language, tapping into our own instincts.”

[from a July 16, 2018 Cornell University news release on EurekAlert]

This brings the question back to, what is consciousness?

What scientists aren’t taught

Dr. Howard notes that scientists are not taught to consider the implications of their work. Her comment reminded me of a question I was asked many years ago after a presentation, it concerned whether or not science had any morality. (I said, no.)

My reply angered an audience member (a visual artist who was working with scientists at the time) as she took it personally and started defending scientists as good people who care and have morals and values. She failed to understand that the way in which we teach science conforms to a notion that somewhere there are scientific facts which are neutral and objective. Society and its values are irrelevant in the face of the larger ‘scientific truth’ and, as a consequence, you don’t need to teach or discuss how your values or morals affect that truth or what the social implications of your work might be.

Science is practiced without much if any thought to values. By contrast, there is the medical injunction, “Do no harm,” which suggests to me that someone recognized competing values. E.g., If your important and worthwhile research is harming people, you should ‘do no harm’.

The experts, the connections, and the Canadian content

It’s been a while since I’ve seen Ray Kurzweil mentioned but he seems to be getting more attention these days. (See this November 16, 2021 posting by Jonny Thomson titled, “The Singularity: When will we all become super-humans? Are we really only a moment away from “The Singularity,” a technological epoch that will usher in a new era in human evolution?” on The Big Think for more). Note: I will have a little more about evolution later in this post.

Interestingly, Kurzweil is employed by Google these days (see his Wikipedia entry, the column to the right). So is Geoffrey Hinton, another one of the experts in the programme (see Hinton’s Wikipedia entry, the column to the right, under Institutions).

I’m not sure about Yoshu Bengio’s relationship with Google but he’s a professor at the Université de Montréal, and he’s the Scientific Director for Mila ((Quebec’s Artificial Intelligence research institute)) & IVADO (Institut de valorisation des données), Note: IVADO is not particularly relevant to what’s being discussed in this post.

As for Mila, the Canada Google blog in a November 21, 2016 posting notes a $4.5M grant to the institution,

Google invests $4.5 Million in Montreal AI Research

A new grant from Google for the Montreal Institute for Learning Algorithms (MILA) will fund seven faculty across a number of Montreal institutions and will help tackle some of the biggest challenges in machine learning and AI, including applications in the realm of systems that can understand and generate natural language. In other words, better understand a fan’s enthusiasm for Les Canadien [sic].

Google is expanding its academic support of deep learning at MILA, renewing Yoshua Bengio’s Focused Research Award and offering Focused Research Awards to MILA faculty at University of Montreal and McGill University:

Google reaffirmed their commitment to Mila in 2020 with a grant worth almost $4M (from a November 13, 2020 posting on the Mila website, Note: A link has been removed),

Google Canada announced today [November 13, 2020] that it will be renewing its funding of Mila – Quebec Artificial Intelligence Institute, with a generous pledge of nearly $4M over a three-year period. Google previously invested $4.5M US in 2016, enabling Mila to grow from 25 to 519 researchers.

In a piece written for Google’s Official Canada Blog, Yoshua Bengio, Mila Scientific Director, says that this year marked a “watershed moment for the Canadian AI community,” as the COVID-19 pandemic created unprecedented challenges that demanded rapid innovation and increased interdisciplinary collaboration between researchers in Canada and around the world.

COVID-19 has changed the world forever and many industries, from healthcare to retail, will need to adapt to thrive in our ‘new normal.’ As we look to the future and how priorities will shift, it is clear that AI is no longer an emerging technology but a useful tool that can serve to solve world problems. Google Canada recognizes not only this opportunity but the important task at hand and I’m thrilled they have reconfirmed their support of Mila with an additional $3,95 million funding grant until 22.

– Yoshua Bengio, for Google’s Official Canada Blog

Interesting, eh? Of course, Douglas Coupland is working with Google, presumably for money, and that would connect over 50% of the Canadian content (Douglas Coupland, Yoshua Bengio, and Geoffrey Hinton; Kurzweil is an American) in the programme to Google.

My hat’s off to Google’s marketing communications and public relations teams.

Anthony Morgan of Science Everywhere also provided some Canadian content. His LinkedIn profile indicates that he’s working on a PhD in molecular science, which is described this way, “My work explores the characteristics of learning environments, that support critical thinking and the relationship between critical thinking and wisdom.”

Morgan is also the founder and creative director of Science Everywhere, from his LinkedIn profile, “An events & media company supporting knowledge mobilization, community engagement, entrepreneurship and critical thinking. We build social tools for better thinking.”

There is this from his LinkedIn profile,

I develop, create and host engaging live experiences & media to foster critical thinking.

I’ve spent my 15+ years studying and working in psychology and science communication, thinking deeply about the most common individual and societal barriers to critical thinking. As an entrepreneur, I lead a team to create, develop and deploy cultural tools designed to address those barriers. As a researcher I study what we can do to reduce polarization around science.

There’s a lot more to Morgan (do look him up; he has connections to the CBC and other media outlets). The difficulty is: why was he chosen to talk about artificial intelligence and emotions and creativity when he doesn’t seem to know much about the topic? He does mention GPT-3, an AI programming language. He seems to be acting as an advocate for AI although he offers this bit of almost cautionary wisdom, “… algorithms are sets of instructions.” (You can can find out more about it in my April 27, 2021 posting. There’s also this November 26, 2021 posting [The Inherent Limitations of GPT-3] by Andrey Kurenkov, a PhD student with the Stanford [University] Vision and Learning Lab.)

Most of the cautionary commentary comes from Luke Stark, assistant professor at Western [Ontario] University’s Faculty of Information and Media Studies. He’s the one who mentions stunted emotional growth.

Before moving on, there is another set of connections through the Pan-Canadian Artificial Intelligence Strategy, a Canadian government science funding initiative announced in the 2017 federal budget. The funds allocated to the strategy are administered by the Canadian Institute for Advanced Research (CIFAR). Yoshua Bengio through Mila is associated with the strategy and CIFAR, as is Geoffrey Hinton through his position as Chief Scientific Advisor for the Vector Institute.

Evolution

Getting back to “The Singularity: When will we all become super-humans? Are we really only a moment away from “The Singularity,” a technological epoch that will usher in a new era in human evolution?” Xenobots point in a disconcerting (for some of us) evolutionary direction.

I featured the work, which is being done at Tufts University in the US, in my June 21, 2021 posting, which includes an embedded video,

From a March 31, 2021 news item on ScienceDaily,

Last year, a team of biologists and computer scientists from Tufts University and the University of Vermont (UVM) created novel, tiny self-healing biological machines from frog cells called “Xenobots” that could move around, push a payload, and even exhibit collective behavior in the presence of a swarm of other Xenobots.

Get ready for Xenobots 2.0.

Also from an excerpt in the posting, the team has “created life forms that self-assemble a body from single cells, do not require muscle cells to move, and even demonstrate the capability of recordable memory.”

Memory is key to intelligence and this work introduces the notion of ‘living’ robots which leads to questioning what constitutes life. ‘The Machine That Feels’ is already grappling with far too many questions to address this development but introducing the research here might have laid the groundwork for the next episode, The New Human, telecast on November 26, 2021,

While no one can be certain what will happen, evolutionary biologists and statisticians are observing trends that could mean our future feet only have four toes (so long, pinky toe) or our faces may have new combinations of features. The new humans might be much taller than their parents or grandparents, or have darker hair and eyes.

And while evolution takes a lot of time, we might not have to wait too long for a new version of ourselves.

Technology is redesigning the way we look and function — at a much faster pace than evolution. We are merging with technology more than ever before: our bodies may now have implanted chips, smart limbs, exoskeletons and 3D-printed organs. A revolutionary gene editing technique has given us the power to take evolution into our own hands and alter our own DNA. How long will it be before we are designing our children?

As the story about the xenobots doesn’t say, we could also take the evolution of another species into our hands.

David Suzuki, where are you?

Our programme host, David Suzuki surprised me. I thought that as an environmentalist he’d point out that the huge amounts of computing power needed for artificial intelligence as mentioned in the programme, constitutes an environmental issue. I also would have expected a geneticist like Suzuki might have some concerns with regard to xenobots but perhaps that’s being saved for the next episode (The New Human) of the Nature of Things.

Artificial stupidity

Thanks to Will Knight for introducing me to the term ‘artificial stupidity’. Knight, a senior writer covers artificial intelligence for WIRED magazine. According to its Wikipedia entry,

Artificial stupidity is commonly used as a humorous opposite of the term artificial intelligence (AI), often as a derogatory reference to the inability of AI technology to adequately perform its tasks.[1] However, within the field of computer science, artificial stupidity is also used to refer to a technique of “dumbing down” computer programs in order to deliberately introduce errors in their responses.

Knight was using the term in its humorous, derogatory form.

Finally

The episode certainly got me thinking if not quite in the way producers might have hoped. ‘The Machine That Feels’ is a glossy, pretty well researched piece of infotainment.

To be blunt, I like and have no problems with infotainment but it can be seductive. I found it easier to remember the artificial friends, wife, xenobots, and symphony than the critiques and concerns.

Hopefully, ‘The Machine That Feels’ stimulates more interest in some very important topics. If you missed the telecast, you can catch the episode here.

For anyone curious about predictive policing, which was mentioned in the Ayanna Howard segment, see my November 23, 2017 posting about Vancouver’s plunge into AI and car theft.

*ETA December 6, 2021: One of the first ‘chatterbots’ was ELIZA, a computer programme developed from1964 to 1966. The most famous ELIZA script was DOCTOR, where the programme simulated a therapist. Many early users believed ELIZA understood and could respond as a human would despite Joseph Weizenbaum’s (creator of the programme) insistence otherwise.

A newsletter from the Pan-Canadian AI strategy folks

The AICan (Artificial Intelligence Canada) Bulletin is published by CIFAR (Canadian Institute For Advanced Research) and it is the official newsletter for the Pan-Canadian AI Strategy. This is a joint production from CIFAR, Amii (Alberta Machine Intelligence Institute), Mila (Quebec’s Artificial Intelligence research institute) and the Vector Institute for Artificial Intelligence (Toronto, Ontario).

For anyone curious about the Pan-Canadian Artificial Intelligence Strategy, first announced in the 2017 federal budget, I have a March 31, 2017 post which focuses heavily on the, then new, Vector Institute but it also contains information about the artificial intelligence scene in Canada at the time, which is at least in part still relevant today.

The AICan Bulletin October 2021 issue number 16 (The Energy and Environment Issue) is available for viewing here and includes these articles,

Equity, diversity and inclusion in AI climate change research

The effects of climate change significantly impact our most vulnerable populations. Canada CIFAR AI Chair David Rolnick (Mila) and Tami Vasanthakumaran (Girls Belong Here) share their insights and call to action for the AI research community.

Predicting the perfect storm

Canada CIFAR AI Chair Samira Kahou (Mila) is using AI to detect and predict extreme weather events to aid in disaster management and raise awareness for the climate crisis.

AI in biodiversity is crucial to our survival

Graham Taylor, a Canada CIFAR AI Chair at the Vector Institute, is using machine learning to build an inventory of life on Earth with DNA barcoding.

ISL Adapt uses ML to make water treatment cleaner & greener

Amii, the University of Alberta, and ISL Engineering explores how machine learning can make water treatment more environmentally friendly and cost-effective with the support of Amii Fellows and Canada CIFAR AI Chairs — Adam White, Martha White and Csaba Szepesvári.

This climate does not exist: Picturing impacts of the climate crisis with AI, one address at a time

Immerse yourself into this AI-driven virtual experience based on empathy to visualize the impacts of climate change on places you hold dear with Mila.

The bulletin also features AI stories from Canada and the US, as well as, events and job postings.

I found two different pages where you can subscribe. First, there’s this subscription page (which is at the bottom of the October 2021 bulletin and then, there’s this page, which requires more details from you.

I’ve taken a look at the CIFAR website and can’t find any of the previous bulletins on it, which would seem to make subscription the only means of access.

Canada’s 2021 budget and science

As more than one observer has noted, this April 19, 2021 budget is the first in two years. Predictably, there has been some distress over the copious amounts of money being spent to stimulate/restart the economy whether it needs it or not. Some have described this as a pre-election budget. Overall, there seems to be more satisfaction than criticism.

Maybe a little prescient?

After mentioning some of the government’s issues with money (Phoenix Payroll System debacle and WE Charity scandal) in my April 13, 2021 posting about the then upcoming Canadian Science Policy Centre’s post-budget symposium, I had these comments (which surprise even me),

None of this has anything to do with science funding (as far as I know) but it does set the stage for questions about how science funding is determined and who will be getting it. There are already systems in place for science funding through various agencies but the federal budget often sets special priorities such as the 2017 Pan-Canadian Artificial Intelligence Strategy [emphasis added April 29, 2021] with its attendant $125M. As well,Prime Minister Justin Trudeau likes to use science as a means of enhancing his appeal. [emphasis mine] See my March 16, 2018 posting for a sample of this, scroll down to the “Sunny ways: a discussion between Justin Trudeau and Bill Nye” subhead.

Budget 2021 introduced two new strategies, the first ones since the 2017 budget: the Pan-Canadian Genomics Strategy and the National Quantum Strategy. As for whether this ploy will help enhance Trudeau’s appeal, that seems doubtful given his current plight (see an April 27, 2021 CBC online news item “PM says his office didn’t know Vance allegations were about sexual misconduct” for a description of some of Trudeau’s latest political scandal).

Science in the 2021 budget (a few highlights)

For anyone who wants to take a look at the 2021 Canadian Federal Budget, Chapters Four and Five (in Part Two) seems to contain the bulk of the science funding announcements. Here are the highlights, given my perspective, from Chapter Four (Note: I don’t chime in again until the “A full list …. subhead):

4.6 Investing in World-leading Research and Innovation

A plan for a long-term recovery must look to challenges and opportunities that lie ahead in the years and decades to come. It must be led by a growth strategy that builds on the unique competitive advantages of the Canadian economy, and make sure that Canada is well-positioned to meet the demands of the next century. This work begins with innovation.

To drive growth and create good, well-paying jobs, entrepreneurs and businesses need to be able to translate Canada’s world-class leadership in research into innovative products and services for Canadians, and for the world.

These investments will help cement Canada’s position as a world leader in research and innovation, building a global brand that will attract talent and capital for years to come.

Supporting Innovation and Industrial Transformation

Since its launch in 2017, the Strategic Innovation Fund has been helping businesses invest, grow, and innovate in Canada. Through its efforts to help businesses make the investments they need to succeed, the fund is well-placed to support growth and the creation of good jobs across the Canadian economy—both now and in the future.

  • Budget 2021 proposes to provide the Strategic Innovation Fund with an incremental $7.2 billion over seven years on a cash basis, starting in 2021-22, and $511.4 million ongoing. This funding will be directed as follows:
  • $2.2 billion over seven years, and $511.4 million ongoing to support innovative projects across the economy—including in the life sciences, automotive, aerospace, and agriculture sectors.
  • $5 billion over seven years to increase funding for the Strategic Innovation Fund’s Net Zero Accelerator, as detailed in Chapter 5. Through the Net Zero Accelerator the fund would scale up its support for projects that will help decarbonize heavy industry, support clean technologies and help meaningfully accelerate domestic greenhouse gas emissions reductions by 2030.

The funding proposed in Budget 2021 will build on the Strategic Innovation Fund’s existing resources, including the $3 billion over five years announced in December 2020 for the Net Zero Accelerator. With this additional support, the Strategic Innovation Fund will target investments in important areas of future growth over the coming years to advance multiple strategic objectives for the Canadian economy:

  • $1.75 billion in support over seven years would be targeted toward aerospace in recognition of the longer-lasting impacts to this sector following COVID-19. This is in addition to the $250 million Aerospace Regional Recovery Initiative, outlined in section 4.2, providing a combined support of $2 billion to help this innovative sector recover and grow out of the crisis.
  • $1 billion of support over seven years would be targeted toward growing Canada’s life sciences and bio-manufacturing sector, restoring capabilities that have been lost and supporting the innovative Canadian firms and jobs in this sector. This is an important component of Canada’s plan to build domestic resilience and improve long-term pandemic preparedness proposed in Chapter 1, providing a combined $2.2 billion over seven years.
  • $8 billion over seven years for the Net Zero Accelerator to support projects that will help reduce Canada’s greenhouse gas emissions by expediting decarbonization projects, scaling-up clean technology, and accelerating Canada’s industrial transformation. More details are in Chapter 5.

Renewing the Pan-Canadian Artificial Intelligence Strategy

Artificial intelligence is one of the greatest technological transformations of our age. Canada has communities of research, homegrown talent, and a diverse ecosystem of start-ups and scale-ups. But these Canadian innovators need investment in order to ensure our economy takes advantage of the enormous growth opportunities ahead in this sector. By leveraging our position of strength, we can also ensure that Canadian values are embedded across widely used, global platforms.

  • Budget 2021 proposes to provide up to $443.8 million over ten years, starting in 2021-22, in support of the Pan-Canadian Artificial Intelligence Strategy, including:
  • $185 million over five years, starting in 2021-22, to support the commercialization of artificial intelligence innovations and research in Canada.
  • $162.2 million over ten years, starting in 2021-22, to help retain and attract top academic talent across Canada—including in Alberta, British Columbia, Ontario, and Quebec. This programming will be delivered by the Canadian Institute for Advanced Research.
  • $48 million over five years, starting in 2021-22, for the Canadian Institute for Advanced Research to renew and enhance its research, training, and knowledge mobilization programs.
  • $40 million over five years, starting in 2022-23, to provide dedicated computing capacity for researchers at the national artificial intelligence institutes in Edmonton, Toronto, and Montréal.
  • $8.6 million over five years, starting in 2021-22, to advance the development and adoption of standards related to artificial intelligence.

Launching a National Quantum Strategy

Quantum technology is at the very leading edge of science and innovation today, with enormous potential for commercialization. This emerging field will transform how we develop and design everything from life-saving drugs to next generation batteries, and Canadian scientists and entrepreneurs are well-positioned to take advantage of these opportunities. But they need investments to be competitive in this fast growing global market.

  • Budget 2021 proposes to provide $360 million over seven years, starting in 2021-22, to launch a National Quantum Strategy. The strategy will amplify Canada’s significant strength in quantum research; grow our quantum-ready technologies, companies, and talent; and solidify Canada’s global leadership in this area. This funding will also establish a secretariat at the Department of Innovation, Science and Economic Development to coordinate this work.

The government will provide further details on the rollout of the strategy in the coming months.

Revitalizing the Canadian Photonics Fabrication Centre

Canada is a world leader in photonics, the technology of generating and harnessing the power of light. This is the science behind fibre optics, advanced semi-conductors, and other cutting-edge technologies, and there is a strong history of Canadian companies bringing this expertise to the world. The National Research Council’s Canadian Photonics Fabrication Centre supplies photonics research, testing, prototyping, and pilot-scale manufacturing services to academics and large, small and medium-sized photonics businesses in Canada. But its aging facility puts this critical research and development at risk.

  • Budget 2021 proposes to provide $90 million over five years on a cash basis, starting in 2021-22, to the National Research Council to retool and modernize the Canadian Photonics Fabrication Centre. This would allow the centre to continue helping Canadian researchers and companies grow and support highly skilled jobs.

Launching a Pan-Canadian Genomics Strategy

Genomics research is developing cutting-edge therapeutics and is helping Canada track and fight COVID-19. Canada was an early mover in advancing genomics science and is now a global leader in the field. A national approach to support genomics research can lead to breakthroughs that have real world applications. There is an opportunity to improve Canadians’ health and well-being while also creating good jobs and economic growth. Leveraging and commercializing this advantage will give Canadian companies, researchers, and workers a competitive edge in this growing field.

  • Budget 2021 proposes to provide $400 million over six years, starting in 2021-22, in support of a Pan-Canadian Genomics Strategy. This funding would provide $136.7 million over five years, starting in 2022-23, for mission-driven programming delivered by Genome Canada to kick-start the new Strategy and complement the government’s existing genomics research and innovation programming.

Further investments to grow Canada’s strengths in genomics under the Strategy will be announced in the future.

Conducting Clinical Trials

Canadian scientists are among the best in the world at conducting high-quality clinical trials. Clinical trials lead to the development of new scientifically proven treatments and cures, and improved health outcomes for Canadians. They also create good jobs in the health research sector, including the pharmaceutical sector, and support the creation of new companies, drugs, medical devices, and other health products.

  • Budget 2021 proposes to provide $250 million over three years, starting in 2021-22, to the Canadian Institutes of Health Research to implement a new Clinical Trials Fund.

Supporting the Innovation Superclusters Initiative

Since it was launched in 2017, the Innovation Superclusters Initiative has helped Canada build successful innovation ecosystems in important areas of the economy. Drawing on the strength and breadth of their networks, the superclusters were able to quickly pivot their operations and played an important role in Canada’s COVID-19 response. For example, the Digital Technology Supercluster allocated resources to projects that used digital technologies and artificial intelligence to help facilitate faster, more accurate diagnosis, treatment, and care of COVID-19 patients.

To help ensure those superclusters that made emergency investments to support Canada’s COVID-19 response and others can continue supporting innovative Canadian projects:

  • Budget 2021 proposes to provide $60 million over two years, starting in 2021-22, to the Innovation Superclusters Initiative.

Promoting Canadian Intellectual Property

As the most highly educated country in the OECD, Canada is full of innovative and entrepreneurial people with great ideas. Those ideas are valuable intellectual property that are the seeds of huge growth opportunities. Building on the National Intellectual Property Strategy announced in Budget 2018, the government proposes to further support Canadian innovators, start-ups, and technology-intensive businesses. Budget 2021 proposes:

  • $90 million, over two years, starting in 2022-23, to create ElevateIP, a program to help accelerators and incubators provide start-ups with access to expert intellectual property services.
  • $75 million over three years, starting in 2021-22, for the National Research Council’s Industrial Research Assistance Program to provide high-growth client firms with access to expert intellectual property services.

These direct investments would be complemented by a Strategic Intellectual Property Program Review that will be launched. It is intended as a broad assessment of intellectual property provisions in Canada’s innovation and science programming, from basic research to near-commercial projects. This work will make sure Canada and Canadians fully benefit from innovations and intellectual property.

Capitalizing on Space-based Earth Observation

Earth observation satellites support critical services that Canadians rely on. They provide reliable weather forecasts, support military and transport logistics, help us monitor and fight climate change, and support innovation across sectors, including energy and agriculture. They also create high-quality jobs in Canada and the government will continue to explore opportunities to support Canadian capacity, innovation, and jobs in this sector. To maintain Canada’s capacity to collect and use important data from these satellites, Budget 2021 proposes to provide:

  • $80.2 million over eleven years, starting in 2021-22, with $14.9 million in remaining amortization and $6.2 million per year ongoing, to Natural Resources Canada and Environment and Climate Change Canada to replace and expand critical but aging ground-based infrastructure to receive satellite data.
  • $9.9 million over two years, starting in 2021-22, to the Canadian Space Agency to plan for the next generation of Earth observation satellites.

Science and Technology Collaboration with Israeli Firms

Collaborating with global innovation leaders allows Canadian companies to leverage expertise to create new products and services, support good jobs, and reach new export markets.

  • Budget 2021 proposes to provide additional funding of $10 million over five years, starting in 2021-2022, and $2 million per year ongoing, to expand opportunities for Canadian SMEs to engage in research and development partnerships with Israeli SMEs as part of the Canadian International Innovation Program. This will be sourced from existing Global Affairs Canada resources. The government also intends to implement an enhanced delivery model for this program, including possible legislation.

4.7 Supporting a Digital Economy

More and more of our lives are happening online—from socializing, to our jobs, to commerce. Recognizing the fundamental shifts underway in our society, the government introduced a new Digital Charter in 2020 that seeks to better protect the privacy, security, and personal data of Canadians, building trust and confidence in the digital economy.

To make sure that Canadian businesses can keep pace with this digital transformation and that they are part of this growth, Budget 2021 includes measures to ensure businesses and workers in every region of the country have access to fast, reliable internet. It also has measures to make sure that the digital economy is fair and well reported on.

A digital economy that serves and protects Canadians and Canadian businesses is vital for long-term growth.

Accelerating Broadband for Everyone

The COVID-19 pandemic has shifted much of our lives online and transformed how we live, work, learn, and do business. This makes it more important than ever that Canadians, including Canadian small businesses in every corner of this country, have access to fast and reliable high-speed internet. Canadians and Canadian businesses in many rural and remote communities who still do not have access to high-speed internet face a barrier to equal participation in the economy. Building on the $6.2 billion the federal government and federal agencies have made available for universal broadband since 2015:

  • Budget 2021 proposes to provide an additional $1 billion over six years, starting in 2021-22, to the Universal Broadband Fund to support a more rapid rollout of broadband projects in collaboration with provinces and territories and other partners. This would mean thousands more Canadians and small businesses will have faster, more reliable internet connections.

In total, including proposed Budget 2021 funding, $2.75 billion will be made available through the Universal Broadband Fund to support Canadians in rural and remote communities. Recently, the Universal Broadband Fund provided funding to ensure Quebec could launch Operation High Speed, connecting nearly 150,000 Quebecers to high-speed internet. These continuing investments will help Canada accelerate work to reach its goal of 98 per cent of the country having high-speed broadband by 2026 and 100 per cent by 2030.

Establishing a New Data Commissioner

Digital and data-driven technologies open up new markets for products and services that allow innovative Canadians to create new business opportunities—and high-value jobs. But as the digital and data economy grows, Canadians must be able to trust that their data are protected and being used responsibly.

  • Budget 2021 proposes to provide $17.6 million over five years, starting in 2021-22, and $3.4 million per year ongoing, to create a Data Commissioner. The Data Commissioner would inform government and business approaches to data-driven issues to help protect people’s personal data and to encourage innovation in the digital marketplace.
  • Budget 2021 also proposes to provide $8.4 million over five years, starting in 2021-22, and $2.3 million ongoing, to the Standards Council of Canada to continue its work to advance industry-wide data governance standards.

A full list of science funding highlights from the 2021 federal budget

If you don’t have the time or patience to comb through the budget for all of the science funding announcements, you can find an excellent list in an April 19, 2021posting on Evidence for Democracy (Note: Links have been removed; h/t Science Media Centre of Canada newsletter),

Previously, we saw a landmark budget for science in 2018, which made historic investments in fundamental research totaling more than $1.7 billion. This was followed by additional commitments in 2019 that included expanded support for research trainees and access to post-secondary education. While no federal budget was tabled in 2020, there have been ongoing investments in Canadian science throughout the pandemic.

Budget 2021 attempts to balance the pressing challenges of the pandemic with a long-term view towards recovery and growth. We are pleased to see strategic investments across the Canadian science ecosystem, including targeted research funding in artificial intelligence, quantum technologies, and bioinnovation. There is also a focus on climate action, which outlines a $17.6 billion investment towards green recovery and conservation. There are also noteworthy investments in research and development partnerships, and data capacity. Beyond research, Budget 2021 includes investments in childcare, mental health, Indigenous communities, post-secondary education, and support for gender-based and Black-led initiatives.

We note that this budget does not include significant increases to the federal granting agencies, or legislation to safeguard the Office of the Chief Science Advisor.

Below, we highlight key research-related investments in Budget 2021.

The list is here in the April 19, 2021posting.

Is it magic or how does the federal budget get developed?

I believe most of the priorities are set by power players behind the scenes. We glimpsed some of the dynamics courtesy of the WE Charity scandal 2020/21 and the SNC-Lavalin scandal in 2019.

Access to special meetings and encounters are not likely to be given to any member of the ‘great unwashed’ but we do get to see the briefs that are submitted in anticipation of a new budget. These briefs and meetings with witnesses are available on the Parliament of Canada website (Standing Committee on Finance (FINA) webpage for pre-budget consultations.

For the 2021 federal budget, there are 792 briefs and transcripts of meeting with 52 witnesses. Whoever designed the page decided to make looking at more than one or two briefs onerous. Just click on a brief that interests you and try to get back to the list.

National Quantum Strategy

There is a search function but ‘quantum’ finds only Xanadu Quantum Technologies (more about their brief in a minute) and not D-Wave Systems, which is arguably a more important player in the field. Regardless, both companies presented briefs although the one from Xanadu was of the most interest as it seems to be recommending a national strategy without actually using the term (from the Xanadu Quantum Technologies budget 2021 brief),

Recommendation 1: Quantum Advisory Board

The world is at the beginning of the second Quantum Revolution, which will result in the development and deployment of revolutionary quantum technologies, based upon the scientific discoveries of the past century. Major economies of the world, including the USA, China, Japan, EU, UK and South Korea, have all identified quantum technologies as strategically important, and have adopted national strategies or frameworks. Many of them have dedicated billions of dollars of funding to quantum technology R&D and commercialization. We urge the government to create a Quantum Advisory Board or Task Force, to ensure a coherent national strategy which involves all areas of government:research, education, industry, trade, digital government, transportation, health, defence,etc.

Recommendation 2: Continue Supporting Existing Research Centres

Canada has a long history of nurturing world-class academic research in quantum science at our universities. The CFREF [Canada First Research Excellence Fund {CFREF}] program was a welcome catalyst which solidified the international stature of the quantum research programs at UBC [University of British Columbia], Waterloo [University of Waterloo; Ontario] and Sherbrooke [University of Sherbrooke; Québec]. Many of our highly qualified team members have graduated from these programs and other Canadian universities. We urge the government to continue funding these research centers past the expiration of the CFREF program, to ensure the scientific critical mass is not dissipated, and the highly sought-after talent is not pulled away to other centers around the world.

Recommendation 3: National Quantum Computing Access Centre

Our Canadian competitor, D-Wave Systems, was started in Canada nearly 20 years ago,and has yet to make significant sales or build a strong user base within Canada. At Xanadu we also find that the most ready customers for our computers are researchers in the USA,rather than in Canada, despite the strong interest from many individual professors we speak with at a number of Canadian universities. We urge the government to create a National Quantum Computing Access Centre, through Compute Canada or another similar national organization, which can centralize and coordinate the provision of quantum computing access for the Canadian academic research community. Without access to these new machines, Canadian researchers will lose their ability to innovate new algorithms and applications of this groundbreaking technology. It will be impossible to train the future workforce of quantum programmers, without access to the machines like those of D-Wave and Xanadu.

Recommendation 4: National Quantum Technology Roundtable

Traditional, resource-based Canadian industries are not historically known for the ir innovative adoption of new technology, and the government has created many programs to encourage digitalization of manufacturing and resource industries, and also newer,cleaner technology adoption in the energy and other heavy industries. Quantum technologies in computing, communications and sensing have the potential to make exponential improvements in many industries, including: chemicals, materials, logistics,transportation, electricity grids, transit systems, wireless networks, financial portfolio analysis and optimization, remote sensing, exploration, border security, and improved communication security. We urge the government to convene national roundtable discussions, perhaps led by the NRC, to bring together the Canadian researchers and companies developing these new technologies, along with the traditional industries and government bodies of Canada who stand to benefit from adopting them, for mutual education and information sharing, roadmapping, benchmarking and strategic planning.

Recommendation 5: New Quantum Computing Institute in Toronto

The University of Toronto is the leading research institution in Canada, and one of the top research universities in the world. Many world-class scientists in quantum physics,chemistry, computer science, and electrical engineering are currently part of the Centre for Quantum Information and Quantum Control (CQIQC) at the university [University of Toronto]. British Columbia has recently announced the creation of a new institute dedicated to the study of Quantum Algorithms, and we encourage the government to build upon the existing strengths of the quantum research programs at the CQIQC, through the funding of a new,world-class research institute, focussed on quantum computing. Such an institute will leverage not only the existing quantum expertise, but also the world-class artificial intelligence and machine learning research communities in the city. The tech industry in Toronto is also the fastest growing in North America, hiring more than San Francisco or Boston. We request the government fund the establishment of a new quantum computing institute built on Toronto’s 3 pillars of quantum research, artificial intelligence, and a thriving tech industry, to create a center of excellence with global impact.

Recommendation 6: Dedicated BDC [Business Development Bank of Canada] Quantum Venture Fund

Although there is no major international firm developing and selling quantum-based technology from Canada, a number of the world’s most promising start-ups are based here. Xanadu and our peer firms are now actively shaping our business models; refining our products and services; undertaking research and development; and developing networks of customers.To date, Canadian firms like Xanadu have been successful at raising risk capital from primarily domestic funds like BDC, OMERS, Georgian Partners and Real Ventures,without having to leave the country. In order to ensure a strong “Quantum Startup”ecosystem in Canada, we request that the BDC be mandated to establish a specialist quantum technology venture capital fund. Such a fund will help ensure the ongoing creation of a whole cluster of Canadian startups in all areas of Quantum Technology, and help to keep the technologies and talent coming from our research universities within the country.

Christian Weedbrook, Xanadu Chief Executive Officer, has taken the time to dismiss his chief competitor and managed to ignore the University of Calgary in his Canadian quantum future. (See my September 21, 2016 posting “Teleporting photons in Calgary (Canada) is a step towards a quantum internet,” where that team set a record for distance.)

The D-Wave Systems budget 2021 brief does have some overlapping interests but is largely standalone and more focused on business initiatives and on the US. Both briefs mention the Quantum Algorithms Institute (QAI), which is being established at Simon Fraser University (SFU) with an investment from the government of British Columbia (see this Oct. 2, 2019 SFU press release).

Where Weedbrook is passionately Canadian and signed the Xanadu brief himself, the D-Wave brief is impersonal and anonymous.

Pan-Canadian Genomics Strategy

The Genome Canada brief doesn’t mention a pan-Canadian strategy,

List of Recommendations:

•Recommendation 1: That the government invest in mission-driven research —with line-of-sight to application —to mobilize genomics to drive Canada’s recovery in key sectors.

•Recommendation 2: That the government invest in a national genomics data strategy to drive data generation, analysis, standards, tools, access and usage to derive maximum value and impact from Canada’s genomics data assets.

•Recommendation 3: That the government invest in training of the next generation of genomics researchers, innovators and entrepreneurs to support the development of a genomics-enabled Canadian bioeconomy.

•Recommendation 4: That the government invest in long-term and predictable research and research infrastructure through the federal granting agencies and the Canada Foundation forInnovation to ensure a strong and vibrant knowledge base for recovery.

It’s not an exciting start but if you continue you’ll find a well written and compelling brief.

A happy April 19, 2021 GenomeCanada news release provides an overview of how this affects the Canadian life sciences research effort,

“The federal government announced $400 million for a new Pan-Canadian Genomics Strategy, including $136.7 million for Genome Canada to kickstart the Strategy, with further investments to be announced in the future. The budget recognized the key role genomics plays in developing cutting-edge therapeutics and in helping Canada track and fight COVID-19. It recognizes that Canada is a global leader in the field and that genomics can improve Canadians’ health and wellbeing while also creating good jobs and economic growth. Leveraging and commercializing this advantage will give Canadian companies, researchers, and workers a competitive edge in this growing field.

… Today’s announcement included excellent news for Canada’s long-term sustainable economic growth in biomanufacturing and the life sciences, with a total of $2.2 billion over seven years going toward growing life sciences, building up Canada’s talent pipeline and research systems, and supporting life sciences organizations.
 
Genome Canada welcomes other investments that will strengthen Canada’s research, innovation and talent ecosystem and drive economic growth in sectors of the future, including:

  • $500 million over four years, starting in 2021-22, for the Canada Foundation for Innovation to support the bio-science capital and infrastructure needs of post-secondary institutions and research hospitals;
  • $250 million over four years, starting in 2021-22, for the federal research granting councils to create a new tri-council biomedical research fund;
  • $250 million over three years, starting in 2021-22, to the Canadian Institutes of Health Research to implement a new Clinical Trials Fund;
  • $92 million over four years, starting in 2021-22, for adMare to support company creation, scale up, and training activities in the life sciences sector;
  • $59.2 million over three years, starting in 2021-22, for the Vaccine and Infectious Disease Organization to support the development of its vaccine candidates and expand its facility in Saskatoon;
  • $45 million over three years, starting in 2022-23, to the Stem Cell Network to support stem cell and regenerative medicine research; and
  • $708 million over five years, starting in 2021-22, to Mitacs to create at least 85,000 work-integrated learning placements that provide on-the-job learning and provide businesses with support to develop talent and grow.

The visionary support announced in Budget 2021 puts Canada on competitive footing with other G7 nations that have made major investments in research and innovation to drive high-value growth sectors, while placing bio-innovation at the heart of their COVID-19 recoveries. Genome Canada looks forward to leading the new Pan-Canadian Genomics Strategy and to working with Innovation, Science and Economic Development Canada and other partners on the strategic investments announced today.   

“To solve complex global problems, such as a worldwide pandemic and climate change, we need transdisciplinary approaches. The life sciences will play significant roles within such an approach. The funding announced today will be instrumental in driving Genome Canada’s mission to be Canada’s genomics platform for future pandemic preparedness, its capacity for biomanufacturing, and its bio-economy overall.”

– Dr. Rob Annan, President and CEO, Genome Canada

Canadian business innovation, science, and innovation—oxymoron?

Navdeep Bains was Canada’s Minister of Innovation, Science and Industry (2015-January 12, 2021) and he had a few things to say as he stepped away (from an April 16, 2021 article by Kevin Carmichael for PostMedia on the SaltWire; Atlantic Canada website),

Navdeep Bains earlier this spring [2021] spoke to me about his tenure as industry minister, which inevitably led to questions about Canada’s eroding competitiveness. He said that he thought he’d done a pretty good job of creating the conditions for a more innovative economy. But the corporate elite? Not so much.

“The ball is back in business’s court,” Bains said. “Frankly, if businesses don’t do this, I think in the long run they will struggle. They have to start changing their behaviour significantly.”

How’s that for a parting shot?

Bains wasn’t the first Canadian policy-maker to get frustrated by Corporate Canada’s aversion to risky bets on research and cutting-edge technology [emphasis mine]. But it’s been a long time since anyone in Ottawa tried to coax them to keep up with the times by dangling big sacks of cash in their faces. All they had to do was demonstrate some ambition and be willing to complement the federal government’s contribution with an investment of their own.

“He [Bains] was a great cheerleader,” said Mike Wessinger, chief executive of PointClickCare Technologies Inc., a Mississauga-based developer of software that helps long-term care homes manage data. “He would always proactively reach out. It was great that he cared.”

It’s easy to dismiss the importance of cheerleading. Canada’s digitally native companies were struggling to be taken seriously in Ottawa a decade ago. Former prime minister Stephen Harper pitched in with the Obama administration to save General Motors Co. and Chrysler Group LLC in 2009, but he let Nortel Networks Corp. fail. The technology industry needed a champion, and it found one in Bains.

Bains argued that his programs [legacy assessment] deserve more time. Industrial policy was still derided when he took over the industry department. It’s now mainstream. For now, that’s his legacy. It’s up to his former colleagues to write the final chapter.

I haven’t seen any OECD (Organization for Economic Cooperation and Development) figures recently but Canada’s industrial R&D (research development) has been on a downward slide for several years compared to many ‘developed’ countries.

A few final comments

I am intrigued by the inclusion of science and technology collaboration with Israeli firms (through the Canadian International Innovation Program) in the 2021 budget. It’s the only country to be specifically identified in this budget’s science funding announcements.

In fact, I can’t recall seeing any other budget of the last 10 years or so with mention of a specific country as a focus for Canadian science and technology collaboration. Perhaps Israeli companies are especially focused on industrial R&D and risk taking and they hope some of that will rub off on Canadians?

For anyone who might be curious as to the name difference between the new Pan-Canadian Genomic Strategy and the National Quantum Strategy, it may be due to the maturity (age) associated with the research field and its business efforts.

GenomeCanada (a Canadian government-funded not-for-profit agency founded in 2000) and its regional centres are the outcome of some national strategizing in the 1990s, from the GenomeCanada 20th anniversary webpage,

In the 1990s, the Human Genome Project captivates the world. But Canada doesn’t have a coordinated national approach. A group of determined Canadian scientists convinces the federal government to make a bold investment in genomics to ensure Canada doesn’t miss out on the benefits of this breakthrough science. Genome Canada is established on February 8, 2000.

While the folks in the quantum world are more obviously competitive (if the two briefs are indicative), there is the Quantum Industry Canada consortium, which was announced on October 6, 2020 on the Cision website,

Industry Association will accelerate the commercialization of Canada’s quantum sector – a $142.4B opportunity for Canadians.

TORONTO, Oct. 6, 2020 /CNW/ – A consortium of Canada’s leading quantum technology companies announced today that they are launching Quantum Industry Canada (QIC), an industry association with a mission to ensure that Canadian quantum innovation and talent is translated into Canadian business success and economic prosperity.

The twenty-four founding members represent Canada’s most commercial-ready quantum technologies, covering applications in quantum computing, quantum sensing, quantum communications, and quantum-safe cryptography.

It’s quite possible this National Quantum Strategy will result in a national not-for-profit agency and, eventually, a pan-Canadian strategy of its own. My impression is that competition in the life sciences research and business concerns is just as intense as in the quantum research and business concerns; the difference (as suggested earlier) lies in the maturity of, as well as, cultural differences between the communities.

If you have the time, the briefs offer an fascinating albeit truncated view into the machinations behind a federal budget: Parliament of Canada website (Standing Committee on Finance; FINA) webpage for pre-budget consultations.

The inclusion of a section on intellectual property in the budget could seem peculiar. I would have thought that years ago before I learned that governments measure and compare with other government the success of their science and technology efforts by the number of patents that have been filed. There are other measures but intellectual property is very important, as far as governments are concerned. My “Billions lost to patent trolls; US White House asks for comments on intellectual property (IP) enforcement; and more on IP” June 28, 2012 posting points to some of the shortcomings, with which we still grapple.

To finally finish this off, Canadian Science Policy Centre has a call for 2021 Budget Editorial Call. (600-800 words)

ETA May 6, 2021: Ooops! This is the end: The Canadian Science Policy Centre has posted recordings of their 2021 federal budget symposium here (according to a May 6, 2021 announcement received via email).

ETA May 19, 2021: Well … here’s one more thing. If you’re interested in how basic funding for the sciences fared, check out Jim R. Woodgett’s May 8, 2021 posting on the Piece of Mind blog.