Tag Archives: Yoshua Bengio

UK AI Summit (November 1 – 2, 2023) at Bletchley Park finishes

This is the closest I’ve ever gotten to writing a gossip column (see my October 18, 2023 posting and scroll down to the “Insight into political jockeying [i.e., some juicy news bits]” subhead )for the first half.

Given the role that Canadian researchers (for more about that see my May 25, 2023 posting and scroll down to “The Panic” subhead) have played in the development of artificial intelligence (AI), it’s been surprising that the Canadian Broadcasting Corporation (CBC) has given very little coverage to the event in the UK. However, there is an October 31, 2023 article by Kelvin Chang and Jill Lawless for the Associated Press posted on the CBC website,

Digital officials, tech company bosses and researchers are converging Wednesday [November 1, 2023] at a former codebreaking spy base [Bletchley Park] near London [UK] to discuss and better understand the extreme risks posed by cutting-edge artificial intelligence.

The two-day summit focusing on so-called frontier AI notched up an early achievement with officials from 28 nations and the European Union signing an agreement on safe and responsible development of the technology.

Frontier AI is shorthand for the latest and most powerful general purpose systems that take the technology right up to its limits, but could come with as-yet-unknown dangers. They’re underpinned by foundation models, which power chatbots like OpenAI’s ChatGPT and Google’s Bard and are trained on vast pools of information scraped from the internet.

The AI Safety Summit is a labour of love for British Prime Minister Rishi Sunak, a tech-loving former banker who wants the U.K. to be a hub for computing innovation and has framed the summit as the start of a global conversation about the safe development of AI.[emphasis mine]

But U.S. Vice President Kamala Harris may divert attention Wednesday [November 1, 2023] with a separate speech in London setting out the Biden administration’s more hands-on approach.

Canada’s Minister of Innovation, Science and Industry Francois-Philippe Champagne said AI would not be constrained by national borders, and therefore interoperability between different regulations being put in place was important.

As the meeting began, U.K. Technology Secretary Michelle Donelan announced that the 28 countries and the European Union had signed the Bletchley Declaration on AI Safety. It outlines the “urgent need to understand and collectively manage potential risks through a new joint global effort.”

South Korea has agreed to host a mini virtual AI summit in six months, followed by an in-person one in France in a year’s time, the U.K. government said.

Chris Stokel-Walker’s October 31, 2023 article for Fast Company presents a critique of the summit prior to the opening, Note: Links have been removed,

… one problem, critics say: The summit, which begins on November 1, is too insular and its participants are homogeneous—an especially damning critique for something that’s trying to tackle the huge, possibly intractable questions around AI. The guest list is made up of 100 of the great and good of governments, including representatives from China, Europe, and Vice President Kamala Harris. And it also includes luminaries within the tech sector. But precious few others—which means a lack of diversity in discussions about the impact of AI.

“Self-regulation didn’t work for social media companies, it didn’t work for the finance sector, and it won’t work for AI,” says Carsten Jung, a senior economist at the Institute for Public Policy Research, a progressive think tank that recently published a report advising on key policy pillars it believes should be discussed at the summit. (Jung isn’t on the guest list.) “We need to learn lessons from our past mistakes and create a strong supervisory hub for all things AI, right from the start.”

Kriti Sharma, chief product officer for legal tech at Thomson Reuters, who will be watching from the wings, not receiving an invite, is similarly circumspect about the goals of the summit. “I hope to see leaders moving past the doom to take practical steps to address known issues and concerns in AI, giving businesses the clarity they urgently need,” she says. “Ideally, I’d like to see movement towards putting some fundamental AI guardrails in place, in the form of a globally aligned, cross-industry regulatory framework.”

But it’s uncertain whether the summit will indeed discuss the more practical elements of AI. Already it seems as if the gathering is designed to quell public fears around AI while convincing those developing AI products that the U.K. will not take too strong an approach in regulating the technology, perhaps in contrasts to near neighbors in the European Union, who have been open about their plans to ensure the technology is properly fenced in to ensure user safety.

Already, there are suggestions that the summit has been drastically downscaled in its ambitions, with others, including the United States, where President Biden just announced a sweeping executive order on AI, and the United Nations, which announced its AI advisory board last week.

Ingrid Lunden in her October 31, 2023 article for TechCrunch is more blunt,

As we wrote yesterday, the U.K. is partly using this event — the first of its kind, as it has pointed out — to stake out a territory for itself on the AI map — both as a place to build AI businesses, but also as an authority in the overall field.

That, coupled with the fact that the topics and approach are focused on potential issues, the affair feel like one very grand photo opportunity and PR exercise, a way for the government to show itself off in the most positive way at the same time that it slides down in the polls and it also faces a disastrous, bad-look inquiry into how it handled the COVID-19 pandemic. On the other hand, the U.K. does have the credentials for a seat at the table, so if the government is playing a hand here, it’s able to do it because its cards are strong.

The subsequent guest list, predictably, leans more toward organizations and attendees from the U.K. It’s also almost as revealing to see who is not participating.

Lunden’s October 30, 2023 article “Existential risk? Regulatory capture? AI for one and all? A look at what’s going on with AI in the UK” includes a little ‘inside’ information,

That high-level aspiration is also reflected in who is taking part: top-level government officials, captains of industry, and notable thinkers in the space are among those expected to attend. (Latest late entry: Elon Musk; latest no’s reportedly include President Biden, Justin Trudeau and Olaf Scholz.) [Scholz’s no was mentioned in my my October 18, 2023 posting]

It sounds exclusive, and it is: “Golden tickets” (as Azeem Azhar, a London-based tech founder and writer, describes them) to the Summit are in scarce supply. Conversations will be small and mostly closed. So because nature abhors a vacuum, a whole raft of other events and news developments have sprung up around the Summit, looping in the many other issues and stakeholders at play. These have included talks at the Royal Society (the U.K.’s national academy of sciences); a big “AI Fringe” conference that’s being held across multiple cities all week; many announcements of task forces; and more.

Earlier today, a group of 100 trade unions and rights campaigners sent a letter to the prime minister saying that the government is “squeezing out” their voices in the conversation by not having them be a part of the Bletchley Park event. (They may not have gotten their golden tickets, but they were definitely canny how they objected: The group publicized its letter by sharing it with no less than the Financial Times, the most elite of economic publications in the country.)

And normal people are not the only ones who have been snubbed. “None of the people I know have been invited,” Carissa Véliz, a tutor in philosophy at the University of Oxford, said during one of the AI Fringe events today [October 30, 2023].

More broadly, the summit has become an anchor and only one part of the bigger conversation going on right now. Last week, U.K. prime minister Rishi Sunak outlined an intention to launch a new AI safety institute and a research network in the U.K. to put more time and thought into AI implications; a group of prominent academics, led by Yoshua Bengio [University of Montreal, Canada) and Geoffrey Hinton [University of Toronto, Canada], published a paper called “Managing AI Risks in an Era of Rapid Progress” to put their collective oar into the the waters; and the UN announced its own task force to explore the implications of AI. Today [October 30, 2023], U.S. president Joe Biden issued the country’s own executive order to set standards for AI security and safety.

There are a couple more articles* from the BBC (British Broadcasting Corporation) covering the start of the summit, a November 1, 2023 article by Zoe Kleinman & Tom Gerken, “King Charles: Tackle AI risks with urgency and unity” and another November 1, 2023 article this time by Tom Gerken & Imran Rahman-Jones, “Rishi Sunak: AI firms cannot ‘mark their own homework‘.”

Politico offers more US-centric coverage of the event with a November 1, 2023 article by Mark Scott, Tom Bristow and Gian Volpicelli, “US and China join global leaders to lay out need for AI rulemaking,” a November 1, 2023 article by Vincent Manancourt and Eugene Daniels, “Kamala Harris seizes agenda as Rishi Sunak’s AI summit kicks off,” and a November 1, 2023 article by Vincent Manancourt, Eugene Daniels and Brendan Bordelon, “‘Existential to who[m]?’ US VP Kamala Harris urges focus on near-term AI risks.”

I want to draw special attention to the second Politico article,

Kamala just showed Rishi who’s boss.

As British Prime Minister Rishi Sunak’s showpiece artificial intelligence event kicked off in Bletchley Park on Wednesday, 50 miles south in the futuristic environs of the American Embassy in London, U.S. Vice President Kamala Harris laid out her vision for how the world should govern artificial intelligence.

It was a raw show of U.S. power on the emerging technology.

Did she or was this an aggressive interpretation of events?

*’article’ changed to ‘articles’ on January 17, 2024.

Non-human authors (ChatGPT or others) of scientific and medical studies and the latest AI panic!!!

It’s fascinating to see all the current excitement (distressed and/or enthusiastic) around the act of writing and artificial intelligence. Easy to forget that it’s not new. First, the ‘non-human authors’ and then the panic(s). *What follows the ‘nonhuman authors’ is essentially a survey of situation/panic.*

How to handle non-human authors (ChatGPT and other AI agents)—the medical edition

The first time I wrote about the incursion of robots or artificial intelligence into the field of writing was in a July 16, 2014 posting titled “Writing and AI or is a robot writing this blog?” ChatGPT (then known as GPT-2) first made its way onto this blog in a February 18, 2019 posting titled “AI (artificial intelligence) text generator, too dangerous to release?

The folks at the Journal of the American Medical Association (JAMA) have recently adopted a pragmatic approach to the possibility of nonhuman authors of scientific and medical papers, from a January 31, 2022 JAMA editorial,

Artificial intelligence (AI) technologies to help authors improve the preparation and quality of their manuscripts and published articles are rapidly increasing in number and sophistication. These include tools to assist with writing, grammar, language, references, statistical analysis, and reporting standards. Editors and publishers also use AI-assisted tools for myriad purposes, including to screen submissions for problems (eg, plagiarism, image manipulation, ethical issues), triage submissions, validate references, edit, and code content for publication in different media and to facilitate postpublication search and discoverability..1

In November 2022, OpenAI released a new open source, natural language processing tool called ChatGPT.2,3 ChatGPT is an evolution of a chatbot that is designed to simulate human conversation in response to prompts or questions (GPT stands for “generative pretrained transformer”). The release has prompted immediate excitement about its many potential uses4 but also trepidation about potential misuse, such as concerns about using the language model to cheat on homework assignments, write student essays, and take examinations, including medical licensing examinations.5 In January 2023, Nature reported on 2 preprints and 2 articles published in the science and health fields that included ChatGPT as a bylined author.6 Each of these includes an affiliation for ChatGPT, and 1 of the articles includes an email address for the nonhuman “author.” According to Nature, that article’s inclusion of ChatGPT in the author byline was an “error that will soon be corrected.”6 However, these articles and their nonhuman “authors” have already been indexed in PubMed and Google Scholar.

Nature has since defined a policy to guide the use of large-scale language models in scientific publication, which prohibits naming of such tools as a “credited author on a research paper” because “attribution of authorship carries with it accountability for the work, and AI tools cannot take such responsibility.”7 The policy also advises researchers who use these tools to document this use in the Methods or Acknowledgment sections of manuscripts.7 Other journals8,9 and organizations10 are swiftly developing policies that ban inclusion of these nonhuman technologies as “authors” and that range from prohibiting the inclusion of AI-generated text in submitted work8 to requiring full transparency, responsibility, and accountability for how such tools are used and reported in scholarly publication.9,10 The International Conference on Machine Learning, which issues calls for papers to be reviewed and discussed at its conferences, has also announced a new policy: “Papers that include text generated from a large-scale language model (LLM) such as ChatGPT are prohibited unless the produced text is presented as a part of the paper’s experimental analysis.”11 The society notes that this policy has generated a flurry of questions and that it plans “to investigate and discuss the impact, both positive and negative, of LLMs on reviewing and publishing in the field of machine learning and AI” and will revisit the policy in the future.11

This is a link to and a citation for the JAMA editorial,

Nonhuman “Authors” and Implications for the Integrity of Scientific Publication and Medical Knowledge by Annette Flanagin, Kirsten Bibbins-Domingo, Michael Berkwits, Stacy L. Christiansen. JAMA. 2023;329(8):637-639. doi:10.1001/jama.2023.1344

The editorial appears to be open access.

ChatGPT in the field of education

Dr. Andrew Maynard (scientist, author, and professor of Advanced Technology Transitions in the Arizona State University [ASU] School for the Future if Innovation in Society and founder of the ASU Future of Being Human initiative and Director of the ASU Risk Innovation Nexus) also takes a pragmatic approach in a March 14, 2023 posting on his eponymous blog,

Like many of my colleagues, I’ve been grappling with how ChatGPT and other Large Language Models (LLMs) are impacting teaching and education — especially at the undergraduate level.

We’re already seeing signs of the challenges here as a growing divide emerges between LLM-savvy students who are experimenting with novel ways of using (and abusing) tools like ChatGPT, and educators who are desperately trying to catch up. As a result, educators are increasingly finding themselves unprepared and poorly equipped to navigate near-real-time innovations in how students are using these tools. And this is only exacerbated where their knowledge of what is emerging is several steps behind that of their students.

To help address this immediate need, a number of colleagues and I compiled a practical set of Frequently Asked Questions on ChatGPT in the classroom. These covers the basics of what ChatGPT is, possible concerns over use by students, potential creative ways of using the tool to enhance learning, and suggestions for class-specific guidelines.

Dr. Maynard goes on to offer the FAQ/practical guide here. Prior to issuing the ‘guide’, he wrote a December 8, 2022 essay on Medium titled “I asked Open AI’s ChatGPT about responsible innovation. This is what I got.”

Crawford Kilian, a longtime educator, author, and contributing editor to The Tyee, expresses measured enthusiasm for the new technology (as does Dr. Maynard), in a December 13, 2022 article for thetyee.ca, Note: Links have been removed,

ChatGPT, its makers tell us, is still in beta form. Like a million other new users, I’ve been teaching it (tuition-free) so its answers will improve. It’s pretty easy to run a tutorial: once you’ve created an account, you’re invited to ask a question or give a command. Then you watch the reply, popping up on the screen at the speed of a fast and very accurate typist.

Early responses to ChatGPT have been largely Luddite: critics have warned that its arrival means the end of high school English, the demise of the college essay and so on. But remember that the Luddites were highly skilled weavers who commanded high prices for their products; they could see that newfangled mechanized looms would produce cheap fabrics that would push good weavers out of the market. ChatGPT, with sufficient tweaks, could do just that to educators and other knowledge workers.

Having spent 40 years trying to teach my students how to write, I have mixed feelings about this prospect. But it wouldn’t be the first time that a technological advancement has resulted in the atrophy of a human mental skill.

Writing arguably reduced our ability to memorize — and to speak with memorable and persuasive coherence. …

Writing and other technological “advances” have made us what we are today — powerful, but also powerfully dangerous to ourselves and our world. If we can just think through the implications of ChatGPT, we may create companions and mentors that are not so much demonic as the angels of our better nature.

More than writing: emergent behaviour

The ChatGPT story extends further than writing and chatting. From a March 6, 2023 article by Stephen Ornes for Quanta Magazine, Note: Links have been removed,

What movie do these emojis describe?

That prompt was one of 204 tasks chosen last year to test the ability of various large language models (LLMs) — the computational engines behind AI chatbots such as ChatGPT. The simplest LLMs produced surreal responses. “The movie is a movie about a man who is a man who is a man,” one began. Medium-complexity models came closer, guessing The Emoji Movie. But the most complex model nailed it in one guess: Finding Nemo.

“Despite trying to expect surprises, I’m surprised at the things these models can do,” said Ethan Dyer, a computer scientist at Google Research who helped organize the test. It’s surprising because these models supposedly have one directive: to accept a string of text as input and predict what comes next, over and over, based purely on statistics. Computer scientists anticipated that scaling up would boost performance on known tasks, but they didn’t expect the models to suddenly handle so many new, unpredictable ones.

“That language models can do these sort of things was never discussed in any literature that I’m aware of,” said Rishi Bommasani, a computer scientist at Stanford University. Last year, he helped compile a list of dozens of emergent behaviors [emphasis mine], including several identified in Dyer’s project. That list continues to grow.

Now, researchers are racing not only to identify additional emergent abilities but also to figure out why and how they occur at all — in essence, to try to predict unpredictability. Understanding emergence could reveal answers to deep questions around AI and machine learning in general, like whether complex models are truly doing something new or just getting really good at statistics. It could also help researchers harness potential benefits and curtail emergent risks.

Biologists, physicists, ecologists and other scientists use the term “emergent” to describe self-organizing, collective behaviors that appear when a large collection of things acts as one. Combinations of lifeless atoms give rise to living cells; water molecules create waves; murmurations of starlings swoop through the sky in changing but identifiable patterns; cells make muscles move and hearts beat. Critically, emergent abilities show up in systems that involve lots of individual parts. But researchers have only recently been able to document these abilities in LLMs as those models have grown to enormous sizes.

But the debut of LLMs also brought something truly unexpected. Lots of somethings. With the advent of models like GPT-3, which has 175 billion parameters — or Google’s PaLM, which can be scaled up to 540 billion — users began describing more and more emergent behaviors. One DeepMind engineer even reported being able to convince ChatGPT that it was a Linux terminal and getting it to run some simple mathematical code to compute the first 10 prime numbers. Remarkably, it could finish the task faster than the same code running on a real Linux machine.

As with the movie emoji task, researchers had no reason to think that a language model built to predict text would convincingly imitate a computer terminal. Many of these emergent behaviors illustrate “zero-shot” or “few-shot” learning, which describes an LLM’s ability to solve problems it has never — or rarely — seen before. This has been a long-time goal in artificial intelligence research, Ganguli [Deep Ganguli, a computer scientist at the AI startup Anthropic] said. Showing that GPT-3 could solve problems without any explicit training data in a zero-shot setting, he said, “led me to drop what I was doing and get more involved.”

There is an obvious problem with asking these models to explain themselves: They are notorious liars. [emphasis mine] “We’re increasingly relying on these models to do basic work,” Ganguli said, “but I do not just trust these. I check their work.” As one of many amusing examples, in February [2023] Google introduced its AI chatbot, Bard. The blog post announcing the new tool shows Bard making a factual error.

If you have time, I recommend reading Omes’s March 6, 2023 article.

The panic

Perhaps not entirely unrelated to current developments, there was this announcement in a May 1, 2023 article by Hannah Alberga for CTV (Canadian Television Network) news, Note: Links have been removed,

Toronto’s pioneer of artificial intelligence quits Google to openly discuss dangers of AI

Geoffrey Hinton, professor at the University of Toronto and the “godfather” of deep learning – a field of artificial intelligence that mimics the human brain – announced his departure from the company on Monday [May 1, 2023] citing the desire to freely discuss the implications of deep learning and artificial intelligence, and the possible consequences if it were utilized by “bad actors.”

Hinton, a British-Canadian computer scientist, is best-known for a series of deep neural network breakthroughs that won him, Yann LeCun and Yoshua Bengio the 2018 Turing Award, known as the Nobel Prize of computing. 

Hinton has been invested in the now-hot topic of artificial intelligence since its early stages. In 1970, he got a Bachelor of Arts in experimental psychology from Cambridge, followed by his Ph.D. in artificial intelligence in Edinburgh, U.K. in 1978.

He joined Google after spearheading a major breakthrough with two of his graduate students at the University of Toronto in 2012, in which the team uncovered and built a new method of artificial intelligence: neural networks. The team’s first neural network was  incorporated and sold to Google for $44 million.

Neural networks are a method of deep learning that effectively teaches computers how to learn the way humans do by analyzing data, paving the way for machines to classify objects and understand speech recognition.

There’s a bit more from Hinton in a May 3, 2023 article by Sheena Goodyear for the Canadian Broadcasting Corporation’s (CBC) radio programme, As It Happens (the 10 minute radio interview is embedded in the article), Note: A link has been removed,

There was a time when Geoffrey Hinton thought artificial intelligence would never surpass human intelligence — at least not within our lifetimes.

Nowadays, he’s not so sure.

“I think that it’s conceivable that this kind of advanced intelligence could just take over from us,” the renowned British-Canadian computer scientist told As It Happens host Nil Köksal. “It would mean the end of people.”

For the last decade, he [Geoffrey Hinton] divided his career between teaching at the University of Toronto and working for Google’s deep-learning artificial intelligence team. But this week, he announced his resignation from Google in an interview with the New York Times.

Now Hinton is speaking out about what he fears are the greatest dangers posed by his life’s work, including governments using AI to manipulate elections or create “robot soldiers.”

But other experts in the field of AI caution against his visions of a hypothetical dystopian future, saying they generate unnecessary fear, distract from the very real and immediate problems currently posed by AI, and allow bad actors to shirk responsibility when they wield AI for nefarious purposes. 

Ivana Bartoletti, founder of the Women Leading in AI Network, says dwelling on dystopian visions of an AI-led future can do us more harm than good. 

“It’s important that people understand that, to an extent, we are at a crossroads,” said Bartoletti, chief privacy officer at the IT firm Wipro.

“My concern about these warnings, however, is that we focus on the sort of apocalyptic scenario, and that takes us away from the risks that we face here and now, and opportunities to get it right here and now.”

Ziv Epstein, a PhD candidate at the Massachusetts Institute of Technology who studies the impacts of technology on society, says the problems posed by AI are very real, and he’s glad Hinton is “raising the alarm bells about this thing.”

“That being said, I do think that some of these ideas that … AI supercomputers are going to ‘wake up’ and take over, I personally believe that these stories are speculative at best and kind of represent sci-fi fantasy that can monger fear” and distract from more pressing issues, he said.

He especially cautions against language that anthropomorphizes — or, in other words, humanizes — AI.

“It’s absolutely possible I’m wrong. We’re in a period of huge uncertainty where we really don’t know what’s going to happen,” he [Hinton] said.

Don Pittis in his May 4, 2022 business analysis for CBC news online offers a somewhat jaundiced view of Hinton’s concern regarding AI, Note: Links have been removed,

As if we needed one more thing to terrify us, the latest warning from a University of Toronto scientist considered by many to be the founding intellect of artificial intelligence, adds a new layer of dread.

Others who have warned in the past that thinking machines are a threat to human existence seem a little miffed with the rock-star-like media coverage Geoffrey Hinton, billed at a conference this week as the Godfather of AI, is getting for what seems like a last minute conversion. Others say Hinton’s authoritative voice makes a difference.

Not only did Hinton tell an audience of experts at Wednesday’s [May 3, 2023] EmTech Digital conference that humans will soon be supplanted by AI — “I think it’s serious and fairly close.” — he said that due to national and business competition, there is no obvious way to prevent it.

“What we want is some way of making sure that even if they’re smarter than us, they’re going to do things that are beneficial,” said Hinton on Wednesday [May 3, 2023] as he explained his change of heart in detailed technical terms. 

“But we need to try and do that in a world where there’s bad actors who want to build robot soldiers that kill people and it seems very hard to me.”

“I wish I had a nice and simple solution I could push, but I don’t,” he said. “It’s not clear there is a solution.”

So when is all this happening?

“In a few years time they may be significantly more intelligent than people,” he told Nil Köksal on CBC Radio’s As It Happens on Wednesday [May 3, 2023].

While he may be late to the party, Hinton’s voice adds new clout to growing anxiety that artificial general intelligence, or AGI, has now joined climate change and nuclear Armageddon as ways for humans to extinguish themselves.

But long before that final day, he worries that the new technology will soon begin to strip away jobs and lead to a destabilizing societal gap between rich and poor that current politics will be unable to solve.

The EmTech Digital conference is a who’s who of AI business and academia, fields which often overlap. Most other participants at the event were not there to warn about AI like Hinton, but to celebrate the explosive growth of AI research and business.

As one expert I spoke to pointed out, the growth in AI is exponential and has been for a long time. But even knowing that, the increase in the dollar value of AI to business caught the sector by surprise.

Eight years ago when I wrote about the expected increase in AI business, I quoted the market intelligence group Tractica that AI spending would “be worth more than $40 billion in the coming decade,” which sounded like a lot at the time. It appears that was an underestimate.

“The global artificial intelligence market size was valued at $428 billion U.S. in 2022,” said an updated report from Fortune Business Insights. “The market is projected to grow from $515.31 billion U.S. in 2023.”  The estimate for 2030 is more than $2 trillion. 

This week the new Toronto AI company Cohere, where Hinton has a stake of his own, announced it was “in advanced talks” to raise $250 million. The Canadian media company Thomson Reuters said it was planning “a deeper investment in artificial intelligence.” IBM is expected to “pause hiring for roles that could be replaced with AI.” The founders of Google DeepMind and LinkedIn have launched a ChatGPT competitor called Pi.

And that was just this week.

“My one hope is that, because if we allow it to take over it will be bad for all of us, we could get the U.S. and China to agree, like we did with nuclear weapons,” said Hinton. “We’re all the in same boat with respect to existential threats, so we all ought to be able to co-operate on trying to stop it.”

Interviewer and moderator Will Douglas Heaven, an editor at MIT Technology Review finished Hinton’s sentence for him: “As long as we can make some money on the way.”

Hinton has attracted some criticism himself. Wilfred Chan writing for Fast Company has two articles, “‘I didn’t see him show up’: Ex-Googlers blast ‘AI godfather’ Geoffrey Hinton’s silence on fired AI experts” on May 5, 2023, Note: Links have been removed,

Geoffrey Hinton, the 75-year-old computer scientist known as the “Godfather of AI,” made headlines this week after resigning from Google to sound the alarm about the technology he helped create. In a series of high-profile interviews, the machine learning pioneer has speculated that AI will surpass humans in intelligence and could even learn to manipulate or kill people on its own accord.

But women who for years have been speaking out about AI’s problems—even at the expense of their jobs—say Hinton’s alarmism isn’t just opportunistic but also overshadows specific warnings about AI’s actual impacts on marginalized people.

“It’s disappointing to see this autumn-years redemption tour [emphasis mine] from someone who didn’t really show up” for other Google dissenters, says Meredith Whittaker, president of the Signal Foundation and an AI researcher who says she was pushed out of Google in 2019 in part over her activism against the company’s contract to build machine vision technology for U.S. military drones. (Google has maintained that Whittaker chose to resign.)

Another prominent ex-Googler, Margaret Mitchell, who co-led the company’s ethical AI team, criticized Hinton for not denouncing Google’s 2020 firing of her coleader Timnit Gebru, a leading researcher who had spoken up about AI’s risks for women and people of color.

“This would’ve been a moment for Dr. Hinton to denormalize the firing of [Gebru],” Mitchell tweeted on Monday. “He did not. This is how systemic discrimination works.”

Gebru, who is Black, was sacked in 2020 after refusing to scrap a research paper she coauthored about the risks of large language models to multiply discrimination against marginalized people. …

… An open letter in support of Gebru was signed by nearly 2,700 Googlers in 2020, but Hinton wasn’t one of them. 

Instead, Hinton has used the spotlight to downplay Gebru’s voice. In an appearance on CNN Tuesday [May 2, 2023], for example, he dismissed a question from Jake Tapper about whether he should have stood up for Gebru, saying her ideas “aren’t as existentially serious as the idea of these things getting more intelligent than us and taking over.” [emphasis mine]

Gebru has been mentioned here a few times. She’s mentioned in passing in a June 23, 2022 posting “Racist and sexist robots have flawed AI” and in a little more detail in an August 30, 2022 posting “Should AI algorithms get patents for their inventions and is anyone talking about copyright for texts written by AI algorithms?” scroll down to the ‘Consciousness and ethical AI’ subhead

Chan has another Fast Company article investigating AI issues also published on May 5, 2023, “Researcher Meredith Whittaker says AI’s biggest risk isn’t ‘consciousness’—it’s the corporations that control them.”

The last two existential AI panics

The term “autumn-years redemption tour”is striking and while the reference to age could be viewed as problematic, it also hints at the money, honours, and acknowledgement that Hinton has enjoyed as an eminent scientist. I’ve covered two previous panics set off by eminent scientists. “Existential risk” is the title of my November 26, 2012 posting which highlights Martin Rees’ efforts to found the Centre for Existential Risk at the University of Cambridge.

Rees is a big deal. From his Wikipedia entry, Note: Links have been removed,

Martin John Rees, Baron Rees of Ludlow OM FRS FREng FMedSci FRAS HonFInstP[10][2] (born 23 June 1942) is a British cosmologist and astrophysicist.[11] He is the fifteenth Astronomer Royal, appointed in 1995,[12][13][14] and was Master of Trinity College, Cambridge, from 2004 to 2012 and President of the Royal Society between 2005 and 2010.[15][16][17][18][19][20]

The Centre for Existential Risk can be found here online (it is located at the University of Cambridge). Interestingly, Hinton who was born in December 1947 will be giving a lecture “Digital versus biological intelligence: Reasons for concern about AI” in Cambridge on May 25, 2023.

The next panic was set off by Stephen Hawking (1942 – 2018; also at the University of Cambridge, Wikipedia entry) a few years before he died. (Note: Rees, Hinton, and Hawking were all born within five years of each other and all have/had ties to the University of Cambridge. Interesting coincidence, eh?) From a January 9, 2015 article by Emily Chung for CBC news online,

Machines turning on their creators has been a popular theme in books and movies for decades, but very serious people are starting to take the subject very seriously. Physicist Stephen Hawking says, “the development of full artificial intelligence could spell the end of the human race.” Tesla Motors and SpaceX founder Elon Musk suggests that AI is probably “our biggest existential threat.”

Artificial intelligence experts say there are good reasons to pay attention to the fears expressed by big minds like Hawking and Musk — and to do something about it while there is still time.

Hawking made his most recent comments at the beginning of December [2014], in response to a question about an upgrade to the technology he uses to communicate, He relies on the device because he has amyotrophic lateral sclerosis, a degenerative disease that affects his ability to move and speak.

Popular works of science fiction – from the latest Terminator trailer, to the Matrix trilogy, to Star Trek’s borg – envision that beyond that irreversible historic event, machines will destroy, enslave or assimilate us, says Canadian science fiction writer Robert J. Sawyer.

Sawyer has written about a different vision of life beyond singularity [when machines surpass humans in general intelligence,] — one in which machines and humans work together for their mutual benefit. But he also sits on a couple of committees at the Lifeboat Foundation, a non-profit group that looks at future threats to the existence of humanity, including those posed by the “possible misuse of powerful technologies” such as AI. He said Hawking and Musk have good reason to be concerned.

To sum up, the first panic was in 2012, the next in 2014/15, and the latest one began earlier this year (2023) with a letter. A March 29, 2023 Thompson Reuters news item on CBC news online provides information on the contents,

Elon Musk and a group of artificial intelligence experts and industry executives are calling for a six-month pause in developing systems more powerful than OpenAI’s newly launched GPT-4, in an open letter citing potential risks to society and humanity.

Earlier this month, Microsoft-backed OpenAI unveiled the fourth iteration of its GPT (Generative Pre-trained Transformer) AI program, which has wowed users with its vast range of applications, from engaging users in human-like conversation to composing songs and summarizing lengthy documents.

The letter, issued by the non-profit Future of Life Institute and signed by more than 1,000 people including Musk, called for a pause on advanced AI development until shared safety protocols for such designs were developed, implemented and audited by independent experts.

Co-signatories included Stability AI CEO Emad Mostaque, researchers at Alphabet-owned DeepMind, and AI heavyweights Yoshua Bengio, often referred to as one of the “godfathers of AI,” and Stuart Russell, a pioneer of research in the field.

According to the European Union’s transparency register, the Future of Life Institute is primarily funded by the Musk Foundation, as well as London-based effective altruism group Founders Pledge, and Silicon Valley Community Foundation.

The concerns come as EU police force Europol on Monday {March 27, 2023] joined a chorus of ethical and legal concerns over advanced AI like ChatGPT, warning about the potential misuse of the system in phishing attempts, disinformation and cybercrime.

Meanwhile, the U.K. government unveiled proposals for an “adaptable” regulatory framework around AI.

The government’s approach, outlined in a policy paper published on Wednesday [March 29, 2023], would split responsibility for governing artificial intelligence (AI) between its regulators for human rights, health and safety, and competition, rather than create a new body dedicated to the technology.

The engineers have chimed in, from an April 7, 2023 article by Margo Anderson for the IEEE (institute of Electrical and Electronics Engineers) Spectrum magazine, Note: Links have been removed,

The open letter [published March 29, 2023], titled “Pause Giant AI Experiments,” was organized by the nonprofit Future of Life Institute and signed by more than 27,565 people (as of 8 May). It calls for cessation of research on “all AI systems more powerful than GPT-4.”

It’s the latest of a host of recent “AI pause” proposals including a suggestion by Google’s François Chollet of a six-month “moratorium on people overreacting to LLMs” in either direction.

In the news media, the open letter has inspired straight reportage, critical accounts for not going far enough (“shut it all down,” Eliezer Yudkowsky wrote in Time magazine), as well as critical accounts for being both a mess and an alarmist distraction that overlooks the real AI challenges ahead.

IEEE members have expressed a similar diversity of opinions.

There was an earlier open letter in January 2015 according to Wikipedia’s “Open Letter on Artificial Intelligence” entry, Note: Links have been removed,

In January 2015, Stephen Hawking, Elon Musk, and dozens of artificial intelligence experts[1] signed an open letter on artificial intelligence calling for research on the societal impacts of AI. The letter affirmed that society can reap great potential benefits from artificial intelligence, but called for concrete research on how to prevent certain potential “pitfalls”: artificial intelligence has the potential to eradicate disease and poverty, but researchers must not create something which is unsafe or uncontrollable.[1] The four-paragraph letter, titled “Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter”, lays out detailed research priorities in an accompanying twelve-page document.

As for ‘Mr. ChatGPT’ or Sam Altman, CEO of OpenAI, while he didn’t sign the March 29, 2023 letter, he appeared before US Congress suggesting AI needs to be regulated according to May 16, 2023 news article by Mohar Chatterjee for Politico.

You’ll notice I’ve arbitrarily designated three AI panics by assigning their origins to eminent scientists. In reality, these concerns rise and fall in ways that don’t allow for such a tidy analysis. As Chung notes, science fiction regularly addresses this issue. For example, there’s my October 16, 2013 posting, “Wizards & Robots: a comic book encourages study in the sciences and maths and discussions about existential risk.” By the way, will.i.am (of the Black Eyed Peas band was involved in the comic book project and he us a longtime supporter of STEM (science, technology, engineering, and mathematics) initiatives.

Finally (but not quite)

Puzzling, isn’t it? I’m not sure we’re asking the right questions but it’s encouraging to see that at least some are being asked.

Dr. Andrew Maynard in a May 12, 2023 essay for The Conversation (h/t May 12, 2023 item on phys.org) notes that ‘Luddites’ questioned technology’s inevitable progress and were vilified for doing so, Note: Links have been removed,

The term “Luddite” emerged in early 1800s England. At the time there was a thriving textile industry that depended on manual knitting frames and a skilled workforce to create cloth and garments out of cotton and wool. But as the Industrial Revolution gathered momentum, steam-powered mills threatened the livelihood of thousands of artisanal textile workers.

Faced with an industrialized future that threatened their jobs and their professional identity, a growing number of textile workers turned to direct action. Galvanized by their leader, Ned Ludd, they began to smash the machines that they saw as robbing them of their source of income.

It’s not clear whether Ned Ludd was a real person, or simply a figment of folklore invented during a period of upheaval. But his name became synonymous with rejecting disruptive new technologies – an association that lasts to this day.

Questioning doesn’t mean rejecting

Contrary to popular belief, the original Luddites were not anti-technology, nor were they technologically incompetent. Rather, they were skilled adopters and users of the artisanal textile technologies of the time. Their argument was not with technology, per se, but with the ways that wealthy industrialists were robbing them of their way of life

In December 2015, Stephen Hawking, Elon Musk and Bill Gates were jointly nominated for a “Luddite Award.” Their sin? Raising concerns over the potential dangers of artificial intelligence.

The irony of three prominent scientists and entrepreneurs being labeled as Luddites underlines the disconnect between the term’s original meaning and its more modern use as an epithet for anyone who doesn’t wholeheartedly and unquestioningly embrace technological progress.

Yet technologists like Musk and Gates aren’t rejecting technology or innovation. Instead, they’re rejecting a worldview that all technological advances are ultimately good for society. This worldview optimistically assumes that the faster humans innovate, the better the future will be.

In an age of ChatGPT, gene editing and other transformative technologies, perhaps we all need to channel the spirit of Ned Ludd as we grapple with how to ensure that future technologies do more good than harm.

In fact, “Neo-Luddites” or “New Luddites” is a term that emerged at the end of the 20th century.

In 1990, the psychologist Chellis Glendinning published an essay titled “Notes toward a Neo-Luddite Manifesto.”

Then there are the Neo-Luddites who actively reject modern technologies, fearing that they are damaging to society. New York City’s Luddite Club falls into this camp. Formed by a group of tech-disillusioned Gen-Zers, the club advocates the use of flip phones, crafting, hanging out in parks and reading hardcover or paperback books. Screens are an anathema to the group, which sees them as a drain on mental health.

I’m not sure how many of today’s Neo-Luddites – whether they’re thoughtful technologists, technology-rejecting teens or simply people who are uneasy about technological disruption – have read Glendinning’s manifesto. And to be sure, parts of it are rather contentious. Yet there is a common thread here: the idea that technology can lead to personal and societal harm if it is not developed responsibly.

Getting back to where this started with nonhuman authors, Amelia Eqbal has written up an informal transcript of a March 16, 2023 CBC radio interview (radio segment is embedded) about ChatGPT-4 (the latest AI chatbot from OpenAI) between host Elamin Abdelmahmoud and tech journalist, Alyssa Bereznak.

I was hoping to add a little more Canadian content, so in March 2023 and again in April 2023, I sent a question about whether there were any policies regarding nonhuman or AI authors to Kim Barnhardt at the Canadian Medical Association Journal (CMAJ). To date, there has been no reply but should one arrive, I will place it here.

In the meantime, I have this from Canadian writer, Susan Baxter in her May 15, 2023 blog posting “Coming soon: Robot Overlords, Sentient AI and more,”

The current threat looming (Covid having been declared null and void by the WHO*) is Artificial Intelligence (AI) which, we are told, is becoming too smart for its own good and will soon outsmart humans. Then again, given some of the humans I’ve met along the way that wouldn’t be difficult.

All this talk of scary-boo AI seems to me to have become the worst kind of cliché, one that obscures how our lives have become more complicated and more frustrating as apps and bots and cyber-whatsits take over.

The trouble with clichés, as Alain de Botton wrote in How Proust Can Change Your Life, is not that they are wrong or contain false ideas but more that they are “superficial articulations of good ones”. Cliches are oversimplifications that become so commonplace we stop noticing the more serious subtext. (This is rife in medicine where metaphors such as talk of “replacing” organs through transplants makes people believe it’s akin to changing the oil filter in your car. Or whatever it is EV’s have these days that needs replacing.)

Should you live in Vancouver (Canada) and are attending a May 28, 2023 AI event, you may want to read Susan Baxter’s piece as a counterbalance to, “Discover the future of artificial intelligence at this unique AI event in Vancouver,” a May 19, 2023 sponsored content by Katy Brennan for the Daily Hive,

If you’re intrigued and eager to delve into the rapidly growing field of AI, you’re not going to want to miss this unique Vancouver event.

On Sunday, May 28 [2023], a Multiplatform AI event is coming to the Vancouver Playhouse — and it’s set to take you on a journey into the future of artificial intelligence.

The exciting conference promises a fusion of creativity, tech innovation, and thought–provoking insights, with talks from renowned AI leaders and concept artists, who will share their experiences and opinions.

Guests can look forward to intense discussions about AI’s pros and cons, hear real-world case studies, and learn about the ethical dimensions of AI, its potential threats to humanity, and the laws that govern its use.

Live Q&A sessions will also be held, where leading experts in the field will address all kinds of burning questions from attendees. There will also be a dynamic round table and several other opportunities to connect with industry leaders, pioneers, and like-minded enthusiasts. 

This conference is being held at The Playhouse, 600 Hamilton Street, from 11 am to 7:30 pm, ticket prices range from $299 to $349 to $499 (depending on when you make your purchase, From the Multiplatform AI Conference homepage,

Event Speakers

Max Sills
General Counsel at Midjourney

From Jan 2022 – present (Advisor – now General Counsel) – Midjourney – An independent research lab exploring new mediums of thought and expanding the imaginative powers of the human species (SF) Midjourney – a generative artificial intelligence program and service created and hosted by a San Francisco-based independent research lab Midjourney, Inc. Midjourney generates images from natural language descriptions, called “prompts”, similar to OpenAI’s DALL-E and Stable Diffusion. For now the company uses Discord Server as a source of service and, with huge 15M+ members, is the biggest Discord server in the world. In the two-things-at-once department, Max Sills also known as an owner of Open Advisory Services, firm which is set up to help small and medium tech companies with their legal needs (managing outside counsel, employment, carta, TOS, privacy). Their clients are enterprise level, medium companies and up, and they are here to help anyone on open source and IP strategy. Max is an ex-counsel at Block, ex-general manager of the Crypto Open Patent Alliance. Prior to that Max led Google’s open source legal group for 7 years.

So, the first speaker listed is a lawyer associated with Midjourney, a highly controversial generative artificial intelligence programme used to generate images. According to their entry on Wikipedia, the company is being sued, Note: Links have been removed,

On January 13, 2023, three artists – Sarah Andersen, Kelly McKernan, and Karla Ortiz – filed a copyright infringement lawsuit against Stability AI, Midjourney, and DeviantArt, claiming that these companies have infringed the rights of millions of artists, by training AI tools on five billion images scraped from the web, without the consent of the original artists.[32]

My October 24, 2022 posting highlights some of the issues with generative image programmes and Midjourney is mentioned throughout.

As I noted earlier, I’m glad to see more thought being put into the societal impact of AI and somewhat disconcerted by the hyperbole from the like of Geoffrey Hinton and the like of Vancouver’s Multiplatform AI conference organizers. Mike Masnick put it nicely in his May 24, 2023 posting on TechDirt (Note 1: I’ve taken a paragraph out of context, his larger issue is about proposals for legislation; Note 2: Links have been removed),

Honestly, this is partly why I’ve been pretty skeptical about the “AI Doomers” who keep telling fanciful stories about how AI is going to kill us all… unless we give more power to a few elite people who seem to think that it’s somehow possible to stop AI tech from advancing. As I noted last month, it is good that some in the AI space are at least conceptually grappling with the impact of what they’re building, but they seem to be doing so in superficial ways, focusing only on the sci-fi dystopian futures they envision, and not things that are legitimately happening today from screwed up algorithms.

For anyone interested in the Canadian government attempts to legislate AI, there’s my May 1, 2023 posting, “Canada, AI regulation, and the second reading of the Digital Charter Implementation Act, 2022 (Bill C-27).”

Addendum (June 1, 2023)

Another statement warning about runaway AI was issued on Tuesday, May 30, 2023. This was far briefer than the previous March 2023 warning, from the Center for AI Safety’s “Statement on AI Risk” webpage,

Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war [followed by a list of signatories] …

Vanessa Romo’s May 30, 2023 article (with contributions from Bobby Allyn) for NPR ([US] National Public Radio) offers an overview of both warnings. Rae Hodge’s May 31, 2023 article for Salon offers a more critical view, Note: Links have been removed,

The artificial intelligence world faced a swarm of stinging backlash Tuesday morning, after more than 350 tech executives and researchers released a public statement declaring that the risks of runaway AI could be on par with those of “nuclear war” and human “extinction.” Among the signatories were some who are actively pursuing the profitable development of the very products their statement warned about — including OpenAI CEO Sam Altman and Google DeepMind CEO Demis Hassabis.

“Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war,” the statement from the non-profit Center for AI Safety said.

But not everyone was shaking in their boots, especially not those who have been charting AI tech moguls’ escalating use of splashy language — and those moguls’ hopes for an elite global AI governance board.

TechCrunch’s Natasha Lomas, whose coverage has been steeped in AI, immediately unravelled the latest panic-push efforts with a detailed rundown of the current table stakes for companies positioning themselves at the front of the fast-emerging AI industry.

“Certainly it speaks volumes about existing AI power structures that tech execs at AI giants including OpenAI, DeepMind, Stability AI and Anthropic are so happy to band and chatter together when it comes to publicly amplifying talk of existential AI risk. And how much more reticent to get together to discuss harms their tools can be seen causing right now,” Lomas wrote.

“Instead of the statement calling for a development pause, which would risk freezing OpenAI’s lead in the generative AI field, it lobbies policymakers to focus on risk mitigation — doing so while OpenAI is simultaneously crowdfunding efforts to shape ‘democratic processes for steering AI,'” Lomas added.

The use of scary language and fear as a marketing tool has a long history in tech. And, as the LA Times’ Brian Merchant pointed out in an April column, OpenAI stands to profit significantly from a fear-driven gold rush of enterprise contracts.

“[OpenAI is] almost certainly betting its longer-term future on more partnerships like the one with Microsoft and enterprise deals serving large companies,” Merchant wrote. “That means convincing more corporations that if they want to survive the coming AI-led mass upheaval, they’d better climb aboard.”

Fear, after all, is a powerful sales tool.

Romo’s May 30, 2023 article for NPR offers a good overview and, if you have the time, I recommend reading Hodge’s May 31, 2023 article for Salon in its entirety.

*ETA June 8, 2023: This sentence “What follows the ‘nonhuman authors’ is essentially a survey of situation/panic.” was added to the introductory paragraph at the beginning of this post.

Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations

Dear friend,

I thought it best to break this up a bit. There are a couple of ‘objects’ still to be discussed but this is mostly the commentary part of this letter to you. (Here’s a link for anyone who stumbled here but missed Part 1.)

Ethics, the natural world, social justice, eeek, and AI

Dorothy Woodend in her March 10, 2022 review for The Tyee) suggests some ethical issues in her critique of the ‘bee/AI collaboration’ and she’s not the only one with concerns. UNESCO (United Nations Educational, Scientific and Cultural Organization) has produced global recommendations for ethical AI (see my March 18, 2022 posting). More recently, there’s “Racist and sexist robots have flawed AI,” a June 23, 2022 posting, where researchers prepared a conference presentation and paper about deeply flawed AI still being used in robots.

Ultimately, the focus is always on humans and Woodend has extended the ethical AI conversation to include insects and the natural world. In short, something less human-centric.

My friend, this reference to the de Young exhibit may seem off topic but I promise it isn’t in more ways than one. The de Young Museum in San Francisco (February 22, 2020 – June 27, 2021) also held and AI and art show called, “Uncanny Valley: Being Human in the Age of AI”), from the exhibitions page,

In today’s AI-driven world, increasingly organized and shaped by algorithms that track, collect, and evaluate our data, the question of what it means to be human [emphasis mine] has shifted. Uncanny Valley is the first major exhibition to unpack this question through a lens of contemporary art and propose new ways of thinking about intelligence, nature, and artifice. [emphasis mine]

Courtesy: de Young Museum [downloaded from https://deyoung.famsf.org/exhibitions/uncanny-valley]

As you can see, it hinted (perhaps?) at an attempt to see beyond human-centric AI. (BTW, I featured this ‘Uncanny Valley’ show in my February 25, 2020 posting where I mentioned Stephanie Dinkins [featured below] and other artists.)

Social justice

While the VAG show doesn’t see much past humans and AI, it does touch on social justice. In particular there’s Pod 15 featuring the Algorithmic Justice League (AJL). The group “combine[s] art and research to illuminate the social implications and harms of AI” as per their website’s homepage.

In Pod 9, Stephanie Dinkins’ video work with a robot (Bina48), which was also part of the de Young Museum ‘Uncanny Valley’ show, addresses some of the same issues.

Still of Stephanie Dinkins, “Conversations with Bina48,” 2014–present. Courtesy of the artist [downloaded from https://deyoung.famsf.org/stephanie-dinkins-conversations-bina48-0]

From the the de Young Museum’s Stephanie Dinkins “Conversations with Bina48” April 23, 2020 article by Janna Keegan (Dinkins submitted the same work you see at the VAG show), Note: Links have been removed,

Transdisciplinary artist and educator Stephanie Dinkins is concerned with fostering AI literacy. The central thesis of her social practice is that AI, the internet, and other data-based technologies disproportionately impact people of color, LGBTQ+ people, women, and disabled and economically disadvantaged communities—groups rarely given a voice in tech’s creation. Dinkins strives to forge a more equitable techno-future by generating AI that includes the voices of multiple constituencies …

The artist’s ongoing Conversations with Bina48 takes the form of a series of interactions with the social robot Bina48 (Breakthrough Intelligence via Neural Architecture, 48 exaflops per second). The machine is the brainchild of Martine Rothblatt, an entrepreneur in the field of biopharmaceuticals who, with her wife, Bina, cofounded the Terasem Movement, an organization that seeks to extend human life through cybernetic means. In 2007 Martine commissioned Hanson Robotics to create a robot whose appearance and consciousness simulate Bina’s. The robot was released in 2010, and Dinkins began her work with it in 2014.

Part psychoanalytical discourse, part Turing test, Conversations with Bina48 also participates in a larger dialogue regarding bias and representation in technology. Although Bina Rothblatt is a Black woman, Bina48 was not programmed with an understanding of its Black female identity or with knowledge of Black history. Dinkins’s work situates this omission amid the larger tech industry’s lack of diversity, drawing attention to the problems that arise when a roughly homogenous population creates technologies deployed globally. When this occurs, writes art critic Tess Thackara, “the unconscious biases of white developers proliferate on the internet, mapping our social structures and behaviors onto code and repeating imbalances and injustices that exist in the real world.” One of the most appalling and public of these instances occurred when a Google Photos image-recognition algorithm mislabeled the faces of Black people as “gorillas.”

Eeek

You will find as you go through the ‘imitation game’ a pod with a screen showing your movements through the rooms in realtime on a screen. The installation is called “Creepers” (2021-22). The student team from Vancouver’s Centre for Digital Media (CDM) describes their project this way, from the CDM’s AI-driven Installation Piece for the Vancouver Art Gallery webpage,

Project Description

Kaleidoscope [team name] is designing an installation piece that harnesses AI to collect and visualize exhibit visitor behaviours, and interactions with art, in an impactful and thought-provoking way.

There’s no warning that you’re being tracked and you can see they’ve used facial recognition software to track your movements through the show. It’s claimed on the pod’s signage that they are deleting the data once you’ve left.

‘Creepers’ is an interesting approach to the ethics of AI. The name suggests that even the student designers were aware it was problematic.

For the curious, there’s a description of the other VAG ‘imitation game’ installations provided by CDM students on the ‘Master of Digital Media Students Develop Revolutionary Installations for Vancouver Art Gallery AI Exhibition‘ webpage.

In recovery from an existential crisis (meditations)

There’s something greatly ambitious about “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” and walking up the VAG’s grand staircase affirms that ambition. Bravo to the two curators, Grenville and Entis for an exhibition.that presents a survey (or overview) of artificial intelligence, and its use in and impact on creative visual culture.

I’ve already enthused over the history (specifically Turing, Lovelace, Ovid), admitted to being mesmerized by Scott Eaton’s sculpture/AI videos, and confessed to a fascination (and mild repulsion) regarding Oxman’s honeycombs.

It’s hard to remember all of the ‘objects’ as the curators have offered a jumble of work, almost all of them on screens. Already noted, there’s Norbert Wiener’s The Moth (1949) and there are also a number of other computer-based artworks from the 1960s and 1970s. Plus, you’ll find works utilizing a GAN (generative adversarial network), an AI agent that is explained in the exhibit.

It’s worth going more than once to the show as there is so much to experience.

Why did they do that?

Dear friend, I’ve already commented on the poor flow through the show and It’s hard to tell if the curators intended the experience to be disorienting but this is to the point of chaos, especially when the exhibition is crowded.

I’ve seen Grenville’s shows before. In particular there was “MashUp: The Birth of Modern Culture, a massive survey documenting the emergence of a mode of creativity that materialized in the late 1800s and has grown to become the dominant model of cultural production in the 21st century” and there was “KRAZY! The Delirious World of Anime + Manga + Video Games + Art.” As you can see from the description, he pulls together disparate works and ideas into a show for you to ‘make sense’ of them.

One of the differences between those shows and the “imitation Game: …” is that most of us have some familiarity, whether we like it or not, with modern art/culture and anime/manga/etc. and can try to ‘make sense’ of it.

By contrast, artificial intelligence (which even experts have difficulty defining) occupies an entirely different set of categories; all of them associated with science/technology. This makes for a different kind of show so the curators cannot rely on the audience’s understanding of basics. It’s effectively an art/sci or art/tech show and, I believe, the first of its kind at the Vancouver Art Gallery. Unfortunately, the curators don’t seem to have changed their approach to accommodate that difference.

AI is also at the centre of a current panic over job loss, loss of personal agency, automated racism and sexism, etc. which makes the experience of viewing the show a little tense. In this context, their decision to commission and use ‘Creepers’ seems odd.

Where were Ai-Da and Dall-E-2 and the others?

Oh friend, I was hoping for a robot. Those roomba paintbots didn’t do much for me. All they did was lie there on the floor

To be blunt I wanted some fun and perhaps a bit of wonder and maybe a little vitality. I wasn’t necessarily expecting Ai-Da, an artisitic robot, but something three dimensional and fun in this very flat, screen-oriented show would have been nice.

This image has an empty alt attribute; its file name is image-asset.jpeg
Ai-Da was at the Glastonbury Festival in the U from 23-26th June 2022. Here’s Ai-Da and her Billie Eilish (one of the Glastonbury 2022 headliners) portrait. [downloaded from https://www.ai-darobot.com/exhibition]

Ai-Da was first featured here in a December 17, 2021 posting about performing poetry that she had written in honour of the 700th anniversary of poet Dante Alighieri’s death.

Named in honour of Ada Lovelace, Ai-Da visited the 2022 Venice Biennale as Leah Henrickson and Simone Natale describe in their May 12, 2022 article for Fast Company (Note: Links have been removed),

Ai-Da sits behind a desk, paintbrush in hand. She looks up at the person posing for her, and then back down as she dabs another blob of paint onto the canvas. A lifelike portrait is taking shape. If you didn’t know a robot produced it, this portrait could pass as the work of a human artist.

Ai-Da is touted as the “first robot to paint like an artist,” and an exhibition of her work, called Leaping into the Metaverse, opened at the Venice Biennale.

Ai-Da produces portraits of sitting subjects using a robotic hand attached to her lifelike feminine figure. She’s also able to talk, giving detailed answers to questions about her artistic process and attitudes toward technology. She even gave a TEDx talk about “The Intersection of Art and AI” in Oxford a few years ago. While the words she speaks are programmed, Ai-Da’s creators have also been experimenting with having her write and perform her own poetry.

She has her own website.

If not Ai-Da, what about Dall-E-2? Aaron Hertzmann’s June 20, 2022 commentary, “Give this AI a few words of description and it produces a stunning image – but is it art?” investigates for Salon (Note: Links have been removed),

DALL-E 2 is a new neural network [AI] algorithm that creates a picture from a short phrase or sentence that you provide. The program, which was announced by the artificial intelligence research laboratory OpenAI in April 2022, hasn’t been released to the public. But a small and growing number of people – myself included – have been given access to experiment with it.

As a researcher studying the nexus of technology and art, I was keen to see how well the program worked. After hours of experimentation, it’s clear that DALL-E – while not without shortcomings – is leaps and bounds ahead of existing image generation technology. It raises immediate questions about how these technologies will change how art is made and consumed. It also raises questions about what it means to be creative when DALL-E 2 seems to automate so much of the creative process itself.

A July 4, 2022 article “DALL-E, Make Me Another Picasso, Please” by Laura Lane for The New Yorker has a rebuttal to Ada Lovelace’s contention that creativity is uniquely human (Note: A link has been removed),

“There was this belief that creativity is this deeply special, only-human thing,” Sam Altman, OpenAI’s C.E.O., explained the other day. Maybe not so true anymore, he said. Altman, who wore a gray sweater and had tousled brown hair, was videoconferencing from the company’s headquarters, in San Francisco. DALL-E is still in a testing phase. So far, OpenAI has granted access to a select group of people—researchers, artists, developers—who have used it to produce a wide array of images: photorealistic animals, bizarre mashups, punny collages. Asked by a user to generate “a plate of various alien fruits from another planet photograph,” DALL-E returned something kind of like rambutans. “The rest of mona lisa” is, according to DALL-E, mostly just one big cliff. Altman described DALL-E as “an extension of your own creativity.”

There are other AI artists, in my August 16, 2019 posting, I had this,

AI artists first hit my radar in August 2018 when Christie’s Auction House advertised an art auction of a ‘painting’ by an algorithm (artificial intelligence). There’s more in my August 31, 2018 posting but, briefly, a French art collective, Obvious, submitted a painting, “Portrait of Edmond de Belamy,” that was created by an artificial intelligence agent to be sold for an estimated to $7000 – $10,000. They weren’t even close. According to Ian Bogost’s March 6, 2019 article for The Atlantic, the painting sold for $432,500 In October 2018.

That posting also included AI artist, AICAN. Both artist-AI agents (Obvious and AICAN) are based on GANs (generative adversarial networks) for learning and eventual output. Both artist-AI agents work independently or with human collaborators on art works that are available for purchase.

As might be expected not everyone is excited about AI and visual art. Sonja Drimmer, Professor of Medieval Art, University of Massachusetts at Amherst, provides another perspective on AI, visual art, and, her specialty, art history in her November 1, 2021 essay for The Conversation (Note: Links have been removed),

Over the past year alone, I’ve come across articles highlighting how artificial intelligence recovered a “secret” painting of a “lost lover” of Italian painter Modigliani, “brought to life” a “hidden Picasso nude”, “resurrected” Austrian painter Gustav Klimt’s destroyed works and “restored” portions of Rembrandt’s 1642 painting “The Night Watch.” The list goes on.

As an art historian, I’ve become increasingly concerned about the coverage and circulation of these projects.

They have not, in actuality, revealed one secret or solved a single mystery.

What they have done is generate feel-good stories about AI.

Take the reports about the Modigliani and Picasso paintings.

These were projects executed by the same company, Oxia Palus, which was founded not by art historians but by doctoral students in machine learning.

In both cases, Oxia Palus relied upon traditional X-rays, X-ray fluorescence and infrared imaging that had already been carried out and published years prior – work that had revealed preliminary paintings beneath the visible layer on the artists’ canvases.

The company edited these X-rays and reconstituted them as new works of art by applying a technique called “neural style transfer.” This is a sophisticated-sounding term for a program that breaks works of art down into extremely small units, extrapolates a style from them and then promises to recreate images of other content in that same style.

As you can ‘see’ my friend, the topic of AI and visual art is a juicy one. In fact, I have another example in my June 27, 2022 posting, which is titled, “Art appraised by algorithm.” So, Grenville’s and Entis’ decision to focus on AI and its impact on visual culture is quite timely.

Visual culture: seeing into the future

The VAG Imitation Game webpage lists these categories of visual culture “animation, architecture, art, fashion, graphic design, urban design and video games …” as being represented in the show. Movies and visual art, not mentioned in the write up, are represented while theatre and other performing arts are not mentioned or represented. That’ s not a surprise.

In addition to an area of science/technology that’s not well understood even by experts, the curators took on the truly amorphous (and overwhelming) topic of visual culture. Given that even writing this commentary has been a challenge, I imagine pulling the show together was quite the task.

Grenville often grounds his shows in a history of the subject and, this time, it seems especially striking. You’re in a building that is effectively a 19th century construct and in galleries that reflect a 20th century ‘white cube’ aesthetic, while looking for clues into the 21st century future of visual culture employing technology that has its roots in the 19th century and, to some extent, began to flower in the mid-20th century.

Chung’s collaboration is one of the only ‘optimistic’ notes about the future and, as noted earlier, it bears a resemblance to Wiener’s 1949 ‘Moth’

Overall, it seems we are being cautioned about the future. For example, Oxman’s work seems bleak (bees with no flowers to pollinate and living in an eternal spring). Adding in ‘Creepers’ and surveillance along with issues of bias and social injustice reflects hesitation and concern about what we will see, who sees it, and how it will be represented visually.

Learning about robots, automatons, artificial intelligence, and more

I wish the Vancouver Art Gallery (and Vancouver’s other art galleries) would invest a little more in audience education. A couple of tours, by someone who may or may not know what they’re talking, about during the week do not suffice. The extra material about Stephanie Dinkins and her work (“Conversations with Bina48,” 2014–present) came from the de Young Museum’s website. In my July 26, 2021 commentary on North Vancouver’s Polygon Gallery 2021 show “Interior Infinite,” I found background information for artist Zanele Muholi on the Tate Modern’s website. There is nothing on the VAG website that helps you to gain some perspective on the artists’ works.

It seems to me that if the VAG wants to be considered world class, it should conduct itself accordingly and beefing up its website with background information about their current shows would be a good place to start.

Robots, automata, and artificial intelligence

Prior to 1921, robots were known exclusively as automatons. These days, the word ‘automaton’ (or ‘automata’ in the plural) seems to be used to describe purely mechanical representations of humans from over 100 years ago whereas the word ‘robot’ can be either ‘humanlike’ or purely machine, e.g. a mechanical arm that performs the same function over and over. I have a good February 24, 2017 essay on automatons by Miguel Barral for OpenMind BBVA*, which provides some insight into the matter,

The concept of robot is relatively recent. The idea was introduced in 1921 by the Czech writer Karel Capek in his work R.U.R to designate a machine that performs tasks in place of man. But their predecessors, the automatons (from the Greek automata, or “mechanical device that works by itself”), have been the object of desire and fascination since antiquity. Some of the greatest inventors in history, such as Leonardo Da Vinci, have contributed to our fascination with these fabulous creations:

The Al-Jazari automatons

The earliest examples of known automatons appeared in the Islamic world in the 12th and 13th centuries. In 1206, the Arab polymath Al-Jazari, whose creations were known for their sophistication, described some of his most notable automatons: an automatic wine dispenser, a soap and towels dispenser and an orchestra-automaton that operated by the force of water. This latter invention was meant to liven up parties and banquets with music while floating on a pond, lake or fountain.

As the water flowed, it started a rotating drum with pegs that, in turn, moved levers whose movement produced different sounds and movements. As the pegs responsible for the musical notes could be exchanged for different ones in order to interpret another melody, it is considered one of the first programmable machines in history.

If you’re curious about automata, my friend, I found this Sept. 26, 2016 ABC news radio news item about singer Roger Daltrey’s and his wife, Heather’s auction of their collection of 19th century French automata (there’s an embedded video showcasing these extraordinary works of art). For more about automata, robots, and androids, there’s an excellent May 4, 2022 article by James Vincent, ‘A visit to the human factory; How to build the world’s most realistic robot‘ for The Verge; Vincent’s article is about Engineered Arts, the UK-based company that built Ai-Da.

AI is often used interchangeably with ‘robot’ but they aren’t the same. Not all robots have AI integrated into their processes. At its simplest AI is an algorithm or set of algorithms, which may ‘live’ in a CPU and be effectively invisible or ‘live’ in or make use of some kind of machine and/or humanlike body. As the experts have noted, the concept of artificial intelligence is a slippery concept.

*OpenMind BBVA is a Spanish multinational financial services company, Banco Bilbao Vizcaya Argentaria (BBVA), which runs the non-profit project, OpenMind (About us page) to disseminate information on robotics and so much more.*

You can’t always get what you want

My friend,

I expect many of the show’s shortcomings (as perceived by me) are due to money and/or scheduling issues. For example, Ai-Da was at the Venice Biennale and if there was a choice between the VAG and Biennale, I know where I’d be.

Even with those caveats in mind, It is a bit surprising that there were no examples of wearable technology. For example, Toronto’s Tapestry Opera recently performed R.U.R. A Torrent of Light (based on the word ‘robot’ from Karel Čapek’s play, R.U.R., ‘Rossumovi Univerzální Roboti’), from my May 24, 2022 posting,

I have more about tickets prices, dates, and location later in this post but first, here’s more about the opera and the people who’ve created it from the Tapestry Opera’s ‘R.U.R. A Torrent of Light’ performance webpage,

“This stunning new opera combines dance, beautiful multimedia design, a chamber orchestra including 100 instruments creating a unique electronica-classical sound, and wearable technology [emphasis mine] created with OCAD University’s Social Body Lab, to create an immersive and unforgettable science-fiction experience.”

And, from later in my posting,

“Despite current stereotypes, opera was historically a launchpad for all kinds of applied design technologies. [emphasis mine] Having the opportunity to collaborate with OCAD U faculty is an invigorating way to reconnect to that tradition and foster connections between art, music and design, [emphasis mine]” comments the production’s Director Michael Hidetoshi Mori, who is also Tapestry Opera’s Artistic Director. 

That last quote brings me back to the my comment about theatre and performing arts not being part of the show. Of course, the curators couldn’t do it all but a website with my hoped for background and additional information could have helped to solve the problem.

The absence of the theatrical and performing arts in the VAG’s ‘Imitation Game’ is a bit surprising as the Council of Canadian Academies (CCA) in their third assessment, “Competing in a Global Innovation Economy: The Current State of R&D in Canada” released in 2018 noted this (from my April 12, 2018 posting),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphasis mine] It accounts for more than 5% of world research in these fields. Conversely, Canada has lower research output than expected in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]

US-centric

My friend,

I was a little surprised that the show was so centered on work from the US given that Grenville has curated ate least one show where there was significant input from artists based in Asia. Both Japan and Korea are very active with regard to artificial intelligence and it’s hard to believe that their artists haven’t kept pace. (I’m not as familiar with China and its AI efforts, other than in the field of facial recognition, but it’s hard to believe their artists aren’t experimenting.)

The Americans, of course, are very important developers in the field of AI but they are not alone and it would have been nice to have seen something from Asia and/or Africa and/or something from one of the other Americas. In fact, anything which takes us out of the same old, same old. (Luba Elliott wrote this (2019/2020/2021?) essay, “Artificial Intelligence Art from Africa and Black Communities Worldwide” on Aya Data if you want to get a sense of some of the activity on the African continent. Elliott does seem to conflate Africa and Black Communities, for some clarity you may want to check out the Wikipedia entry on Africanfuturism, which contrasts with this August 12, 2020 essay by Donald Maloba, “What is Afrofuturism? A Beginner’s Guide.” Maloba also conflates the two.)

As it turns out, Luba Elliott presented at the 2019 Montréal Digital Spring event, which brings me to Canada’s artificial intelligence and arts scene.

I promise I haven’t turned into a flag waving zealot, my friend. It’s just odd there isn’t a bit more given that machine learning was pioneered at the University of Toronto. Here’s more about that (from Wikipedia entry for Geoffrey Hinston),

Geoffrey Everest HintonCCFRSFRSC[11] (born 6 December 1947) is a British-Canadian cognitive psychologist and computer scientist, most noted for his work on artificial neural networks.

Hinton received the 2018 Turing Award, together with Yoshua Bengio [Canadian scientist] and Yann LeCun, for their work on deep learning.[24] They are sometimes referred to as the “Godfathers of AI” and “Godfathers of Deep Learning“,[25][26] and have continued to give public talks together.[27][28]

Some of Hinton’s work was started in the US but since 1987, he has pursued his interests at the University of Toronto. He wasn’t proven right until 2012. Katrina Onstad’s February 29, 2018 article (Mr. Robot) for Toronto Life is a gripping read about Hinton and his work on neural networks. BTW, Yoshua Bengio (co-Godfather) is a Canadian scientist at the Université de Montréal and Yann LeCun (co-Godfather) is a French scientist at New York University.

Then, there’s another contribution, our government was the first in the world to develop a national artificial intelligence strategy. Adding those developments to the CCA ‘State of Science’ report findings about visual arts and performing arts, is there another word besides ‘odd’ to describe the lack of Canadian voices?

You’re going to point out the installation by Ben Bogart (a member of Simon Fraser University’s Metacreation Lab for Creative AI and instructor at the Emily Carr University of Art + Design (ECU)) but it’s based on the iconic US scifi film, 2001: A Space Odyssey. As for the other Canadian, Sougwen Chung, she left Canada pretty quickly to get her undergraduate degree in the US and has since moved to the UK. (You could describe hers as the quintessential success story, i.e., moving from Canada only to get noticed here after success elsewhere.)

Of course, there are the CDM student projects but the projects seem less like an exploration of visual culture than an exploration of technology and industry requirements, from the ‘Master of Digital Media Students Develop Revolutionary Installations for Vancouver Art Gallery AI Exhibition‘ webpage, Note: A link has been removed,

In 2019, Bruce Grenville, Senior Curator at Vancouver Art Gallery, approached [the] Centre for Digital Media to collaborate on several industry projects for the forthcoming exhibition. Four student teams tackled the project briefs over the course of the next two years and produced award-winning installations that are on display until October 23 [2022].

Basically, my friend, it would have been nice to see other voices or, at the least, an attempt at representing other voices and visual cultures informed by AI. As for Canadian contributions, maybe put something on the VAG website?

Playing well with others

it’s always a mystery to me why the Vancouver cultural scene seems comprised of a set of silos or closely guarded kingdoms. Reaching out to the public library and other institutions such as Science World might have cost time but could have enhanced the show

For example, one of the branches of the New York Public Library ran a programme called, “We are AI” in March 2022 (see my March 23, 2022 posting about the five-week course, which was run as a learning circle). The course materials are available for free (We are AI webpage) and I imagine that adding a ‘visual culture module’ wouldn’t be that difficult.

There is one (rare) example of some Vancouver cultural institutions getting together to offer an art/science programme and that was in 2017 when the Morris and Helen Belkin Gallery (at the University of British Columbia; UBC) hosted an exhibition of Santiago Ramon y Cajal’s work (see my Sept. 11, 2017 posting about the gallery show) along with that show was an ancillary event held by the folks at Café Scientifique at Science World and featuring a panel of professionals from UBC’s Faculty of Medicine and Dept. of Psychology, discussing Cajal’s work.

In fact, where were the science and technology communities for this show?

On a related note, the 2022 ACM SIGGRAPH conference (August 7 – 11, 2022) is being held in Vancouver. (ACM is the Association for Computing Machinery; SIGGRAPH is for Special Interest Group on Computer Graphics and Interactive Techniques.) SIGGRAPH has been holding conferences in Vancouver every few years since at least 2011.

At this year’s conference, they have at least two sessions that indicate interests similar to the VAG’s. First, there’s Immersive Visualization for Research, Science and Art which includes AI and machine learning along with other related topics. There’s also, Frontiers Talk: Art in the Age of AI: Can Computers Create Art?

This is both an international conference and an exhibition (of art) and the whole thing seems to have kicked off on July 25, 2022. If you’re interested, the programme can be found here and registration here.

Last time SIGGRAPH was here the organizers seemed interested in outreach and they offered some free events.

In the end

It was good to see the show. The curators brought together some exciting material. As is always the case, there were some missed opportunities and a few blind spots. But all is not lost.

July 27, 2022, the VAG held a virtual event with an artist,

Gwenyth Chao to learn more about what happened to the honeybees and hives in Oxman’s Synthetic Apiary project. As a transdisciplinary artist herself, Chao will also discuss the relationship between art, science, technology and design. She will then guide participants to create a space (of any scale, from insect to human) inspired by patterns found in nature.

Hopefully there will be more more events inspired by specific ‘objects’. Meanwhile, August 12, 2022, the VAG is hosting,

… in partnership with the Canadian Music Centre BC, New Music at the Gallery is a live concert series hosted by the Vancouver Art Gallery that features an array of musicians and composers who draw on contemporary art themes.

Highlighting a selection of twentieth- and twenty-first-century music compositions, this second concert, inspired by the exhibition The Imitation Game: Visual Culture in the Age of Artificial Intelligence, will spotlight The Iliac Suite (1957), the first piece ever written using only a computer, and Kaija Saariaho’s Terra Memoria (2006), which is in a large part dependent on a computer-generated musical process.

It would be lovely if they could include an Ada Lovelace Day event. This is an international celebration held on October 11, 2022.

Do go. Do enjoy, my friend.

True love with AI (artificial intelligence): The Nature of Things explores emotional and creative AI (long read)

The Canadian Broadcasting Corporation’s (CBC) science television series,The Nature of Things, which has been broadcast since November 1960, explored the world of emotional, empathic and creative artificial intelligence (AI) in a Friday, November 19, 2021 telecast titled, The Machine That Feels,

The Machine That Feels explores how artificial intelligence (AI) is catching up to us in ways once thought to be uniquely human: empathy, emotional intelligence and creativity.

As AI moves closer to replicating humans, it has the potential to reshape every aspect of our world – but most of us are unaware of what looms on the horizon.

Scientists see AI technology as an opportunity to address inequities and make a better, more connected world. But it also has the capacity to do the opposite: to stoke division and inequality and disconnect us from fellow humans. The Machine That Feels, from The Nature of Things, shows viewers what they need to know about a field that is advancing at a dizzying pace, often away from the public eye.

What does it mean when AI makes art? Can AI interpret and understand human emotions? How is it possible that AI creates sophisticated neural networks that mimic the human brain? The Machine That Feels investigates these questions, and more.

In Vienna, composer Walter Werzowa has — with the help of AI — completed Beethoven’s previously unfinished 10th symphony. By feeding data about Beethoven, his music, his style and the original scribbles on the 10th symphony into an algorithm, AI has created an entirely new piece of art.

In Atlanta, Dr. Ayanna Howard and her robotics lab at Georgia Tech are teaching robots how to interpret human emotions. Where others see problems, Howard sees opportunity: how AI can help fill gaps in education and health care systems. She believes we need a fundamental shift in how we perceive robots: let’s get humans and robots to work together to help others.

At Tufts University in Boston, a new type of biological robot has been created: the xenobot. The size of a grain of sand, xenobots are grown from frog heart and skin cells, and combined with the “mind” of a computer. Programmed with a specific task, they can move together to complete it. In the future, they could be used for environmental cleanup, digesting microplastics and targeted drug delivery (like releasing chemotherapy compounds directly into tumours).

The film includes interviews with global leaders, commentators and innovators from the AI field, including Geoff Hinton, Yoshua Bengio, Ray Kurzweil and Douglas Coupland, who highlight some of the innovative and cutting-edge AI technologies that are changing our world.

The Machine That Feels focuses on one central question: in the flourishing age of artificial intelligence, what does it mean to be human?

I’ll get back to that last bit, “… what does it mean to be human?” later.

There’s a lot to appreciate in this 44 min. programme. As you’d expect, there was a significant chunk of time devoted to research being done in the US but Poland and Japan also featured and Canadian content was substantive. A number of tricky topics were covered and transitions from one topic to the next were smooth.

In the end credits, I counted over 40 source materials from Getty Images, Google Canada, Gatebox, amongst others. It would have been interesting to find out which segments were produced by CBC.

David Suzuki’s (programme host) script was well written and his narration was enjoyable, engaging, and non-intrusive. That last quality is not always true of CBC hosts who can fall into the trap of overdramatizing the text.

Drilling down

I have followed artificial intelligence stories in a passive way (i.e., I don’t seek them out) for many years. Even so, there was a lot of material in the programme that was new to me.

For example, there was this love story (from the ‘I love her and see her as a real woman.’ Meet a man who ‘married’ an artificial intelligence hologram webpage on the CBC),

In the The Machine That Feels, a documentary from The Nature of Things, we meet Kondo Akihiko, a Tokyo resident who “married” a hologram of virtual pop singer Hatsune Miku using a certificate issued by Gatebox (the marriage isn’t recognized by the state, and Gatebox acknowledges the union goes “beyond dimensions”).

I found Akihiko to be quite moving when he described his relationship, which is not unique. It seems some 4,000 men have ‘wed’ their digital companions, you can read about that and more on the ‘I love her and see her as a real woman.’ Meet a man who ‘married’ an artificial intelligence hologram webpage.

What does it mean to be human?

Overall, this Nature of Things episode embraces certainty, which means the question of what it means to human is referenced rather than seriously discussed. An unanswerable philosophical question, the programme is ill-equipped to address it, especially since none of the commentators are philosophers or seem inclined to philosophize.

The programme presents AI as a juggernaut. Briefly mentioned is the notion that we need to make some decisions about how our juggernaut is developed and utilized. No one discusses how we go about making changes to systems that are already making critical decisions for us. (For more about AI and decision-making, see my February 28, 2017 posting and scroll down to the ‘Algorithms and big data’ subhead for Cathy O’Neil’s description of how important decisions that affect us are being made by AI systems. She is the author of the 2016 book, ‘Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy’; still a timely read.)

In fact, the programme’s tone is mostly one of breathless excitement. A few misgivings are expressed, e.g,, one woman who has an artificial ‘texting friend’ (Replika; a chatbot app) noted that it can ‘get into your head’ when she had a chat where her ‘friend’ told her that all of a woman’s worth is based on her body; she pushed back but intimated that someone more vulnerable could find that messaging difficult to deal with.

The sequence featuring Akihiko and his hologram ‘wife’ is followed by one suggesting that people might become more isolated and emotionally stunted as they interact with artificial friends. It should be noted, Akihiko’s wife is described as ‘perfect’. I gather perfection means that you are always understanding and have no needs of your own. She also seems to be about 18″ high.

Akihiko has obviously been asked about his ‘wife’ before as his answers are ready. They boil down to “there are many types of relationships” and there’s nothing wrong with that. It’s an intriguing thought which is not explored.

Also unexplored, these relationships could be said to resemble slavery. After all, you pay for these friends over which you have control. But perhaps that’s alright since AI friends don’t have consciousness. Or do they? In addition to not being able to answer the question, “what is it to be human?” we still can’t answer the question, “what is consciousness?”

AI and creativity

The Nature of Things team works fast. ‘Beethoven X – The AI Project’ had its first performance on October 9, 2021. (See my October 1, 2021 post ‘Finishing Beethoven’s unfinished 10th Symphony’ for more information from Ahmed Elgammal’s (Director of the Art & AI Lab at Rutgers University) technical perspective on the project.

Briefly, Beethoven died before completing his 10th symphony and a number of computer scientists, musicologists, AI, and musicians collaborated to finish the symphony.)

The one listener (Felix Mayer, music professor at the Technical University Munich) in the hall during a performance doesn’t consider the work to be a piece of music. He does have a point. Beethoven left some notes but this ’10th’ is at least partly mathematical guesswork. A set of probabilities where an algorithm chooses which note comes next based on probability.

There was another artist also represented in the programme. Puzzlingly, it was the still living Douglas Coupland. In my opinion, he’s better known as a visual artist than a writer (his Wikipedia entry lists him as a novelist first) but he has succeeded greatly in both fields.

What makes his inclusion in the Nature of Things ‘The Machine That Feels’ programme puzzling, is that it’s not clear how he worked with artificial intelligence in a collaborative fashion. Here’s a description of Coupland’s ‘AI’ project from a June 29, 2021 posting by Chris Henry on the Google Outreach blog (Note: Links have been removed),

… when the opportunity presented itself to explore how artificial intelligence (AI) inspires artistic expression — with the help of internationally renowned Canadian artist Douglas Coupland — the Google Research team jumped on it. This collaboration, with the support of Google Arts & Culture, culminated in a project called Slogans for the Class of 2030, which spotlights the experiences of the first generation of young people whose lives are fully intertwined with the existence of AI. 

This collaboration was brought to life by first introducing Coupland’s written work to a machine learning language model. Machine learning is a form of AI that provides computer systems the ability to automatically learn from data. In this case, Google research scientists tuned a machine learning algorithm with Coupland’s 30-year body of written work — more than a million words — so it would familiarize itself with the author’s unique style of writing. From there, curated general-public social media posts on selected topics were added to teach the algorithm how to craft short-form, topical statements. [emphases mine]

Once the algorithm was trained, the next step was to process and reassemble suggestions of text for Coupland to use as inspiration to create twenty-five Slogans for the Class of 2030. [emphasis mine]

I would comb through ‘data dumps’ where characters from one novel were speaking with those in other novels in ways that they might actually do. It felt like I was encountering a parallel universe Doug,” Coupland says. “And from these outputs, the statements you see here in this project appeared like gems. Did I write them? Yes. No. Could they have existed without me? No.” [emphases mine]

So, the algorithms crunched through Coupland’s word and social media texts to produce slogans, which Coupland then ‘combed through’ to pick out 25 slogans for the ‘Slogans For The Class of 2030’ project. (Note: In the programme, he says that he started a sentence and then the AI system completed that sentence with material gleaned from his own writings, which brings to Exquisite Corpse, a collaborative game for writers originated by the Surrealists, possibly as early as 1918.)

The ‘slogans’ project also reminds me of William S. Burroughs and the cut-up technique used in his work. From the William S. Burroughs Cut-up technique webpage on the Language is a Virus website (Thank you to Lake Rain Vajra for a very interesting website),

The cutup is a mechanical method of juxtaposition in which Burroughs literally cuts up passages of prose by himself and other writers and then pastes them back together at random. This literary version of the collage technique is also supplemented by literary use of other media. Burroughs transcribes taped cutups (several tapes spliced into each other), film cutups (montage), and mixed media experiments (results of combining tapes with television, movies, or actual events). Thus Burroughs’s use of cutups develops his juxtaposition technique to its logical conclusion as an experimental prose method, and he also makes use of all contemporary media, expanding his use of popular culture.

[Burroughs says] “All writing is in fact cut-ups. A collage of words read heard overheard. What else? Use of scissors renders the process explicit and subject to extension and variation. Clear classical prose can be composed entirely of rearranged cut-ups. Cutting and rearranging a page of written words introduces a new dimension into writing enabling the writer to turn images in cinematic variation. Images shift sense under the scissors smell images to sound sight to sound to kinesthetic. This is where Rimbaud was going with his color of vowels. And his “systematic derangement of the senses.” The place of mescaline hallucination: seeing colors tasting sounds smelling forms.

“The cut-ups can be applied to other fields than writing. Dr Neumann [emphasis mine] in his Theory of Games and Economic behavior introduces the cut-up method of random action into game and military strategy: assume that the worst has happened and act accordingly. … The cut-up method could be used to advantage in processing scientific data. [emphasis mine] How many discoveries have been made by accident? We cannot produce accidents to order. The cut-ups could add new dimension to films. Cut gambling scene in with a thousand gambling scenes all times and places. Cut back. Cut streets of the world. Cut and rearrange the word and image in films. There is no reason to accept a second-rate product when you can have the best. And the best is there for all. Poetry is for everyone . . .”

First, John von Neumann (1902 – 57) is a very important figure in the history of computing. From a February 25, 2017 John von Neumann and Modern Computer Architecture essay on the ncLab website, “… he invented the computer architecture that we use today.”

Here’s Burroughs on the history of writers and cutups (thank you to QUEDEAR for posting this clip),

You can hear Burroughs talk about the technique and how he started using it in 1959.

There is no explanation from Coupland as to how his project differs substantively from Burroughs’ cut-ups or a session of Exquisite Corpse. The use of a computer programme to crunch through data and give output doesn’t seem all that exciting. *(More about computers and chatbots at end of posting).* It’s hard to know if this was an interview situation where he wasn’t asked the question or if the editors decided against including it.

Kazuo Ishiguro?

Given that Ishiguro’s 2021 book (Klara and the Sun) is focused on an artificial friend and raises the question of ‘what does it mean to be human’, as well as the related question, ‘what is the nature of consciousness’, it would have been interesting to hear from him. He spent a fair amount of time looking into research on machine learning in preparation for his book. Maybe he was too busy?

AI and emotions

The work being done by Georgia Tech’s Dr. Ayanna Howard and her robotics lab is fascinating. They are teaching robots how to interpret human emotions. The segment which features researchers teaching and interacting with robots, Pepper and Salt, also touches on AI and bias.

Watching two African American researchers talk about the ways in which AI is unable to read emotions on ‘black’ faces as accurately as ‘white’ faces is quite compelling. It also reinforces the uneasiness you might feel after the ‘Replika’ segment where an artificial friend informs a woman that her only worth is her body.

(Interestingly, Pepper and Salt are produced by Softbank Robotics, part of Softbank, a multinational Japanese conglomerate, [see a June 28, 2021 article by Ian Carlos Campbell for The Verge] whose entire management team is male according to their About page.)

While Howard is very hopeful about the possibilities of a machine that can read emotions, she doesn’t explore (on camera) any means for pushing back against bias other than training AI by using more black faces to help them learn. Perhaps more representative management and coding teams in technology companies?

While the programme largely focused on AI as an algorithm on a computer, robots can be enabled by AI (as can be seen in the segment with Dr. Howard).

My February 14, 2019 posting features research with a completely different approach to emotions and machines,

“I’ve always felt that robots shouldn’t just be modeled after humans [emphasis mine] or be copies of humans,” he [Guy Hoffman, assistant professor at Cornell University)] said. “We have a lot of interesting relationships with other species. Robots could be thought of as one of those ‘other species,’ not trying to copy what we do but interacting with us with their own language, tapping into our own instincts.”

[from a July 16, 2018 Cornell University news release on EurekAlert]

This brings the question back to, what is consciousness?

What scientists aren’t taught

Dr. Howard notes that scientists are not taught to consider the implications of their work. Her comment reminded me of a question I was asked many years ago after a presentation, it concerned whether or not science had any morality. (I said, no.)

My reply angered an audience member (a visual artist who was working with scientists at the time) as she took it personally and started defending scientists as good people who care and have morals and values. She failed to understand that the way in which we teach science conforms to a notion that somewhere there are scientific facts which are neutral and objective. Society and its values are irrelevant in the face of the larger ‘scientific truth’ and, as a consequence, you don’t need to teach or discuss how your values or morals affect that truth or what the social implications of your work might be.

Science is practiced without much if any thought to values. By contrast, there is the medical injunction, “Do no harm,” which suggests to me that someone recognized competing values. E.g., If your important and worthwhile research is harming people, you should ‘do no harm’.

The experts, the connections, and the Canadian content

It’s been a while since I’ve seen Ray Kurzweil mentioned but he seems to be getting more attention these days. (See this November 16, 2021 posting by Jonny Thomson titled, “The Singularity: When will we all become super-humans? Are we really only a moment away from “The Singularity,” a technological epoch that will usher in a new era in human evolution?” on The Big Think for more). Note: I will have a little more about evolution later in this post.

Interestingly, Kurzweil is employed by Google these days (see his Wikipedia entry, the column to the right). So is Geoffrey Hinton, another one of the experts in the programme (see Hinton’s Wikipedia entry, the column to the right, under Institutions).

I’m not sure about Yoshu Bengio’s relationship with Google but he’s a professor at the Université de Montréal, and he’s the Scientific Director for Mila ((Quebec’s Artificial Intelligence research institute)) & IVADO (Institut de valorisation des données), Note: IVADO is not particularly relevant to what’s being discussed in this post.

As for Mila, the Canada Google blog in a November 21, 2016 posting notes a $4.5M grant to the institution,

Google invests $4.5 Million in Montreal AI Research

A new grant from Google for the Montreal Institute for Learning Algorithms (MILA) will fund seven faculty across a number of Montreal institutions and will help tackle some of the biggest challenges in machine learning and AI, including applications in the realm of systems that can understand and generate natural language. In other words, better understand a fan’s enthusiasm for Les Canadien [sic].

Google is expanding its academic support of deep learning at MILA, renewing Yoshua Bengio’s Focused Research Award and offering Focused Research Awards to MILA faculty at University of Montreal and McGill University:

Google reaffirmed their commitment to Mila in 2020 with a grant worth almost $4M (from a November 13, 2020 posting on the Mila website, Note: A link has been removed),

Google Canada announced today [November 13, 2020] that it will be renewing its funding of Mila – Quebec Artificial Intelligence Institute, with a generous pledge of nearly $4M over a three-year period. Google previously invested $4.5M US in 2016, enabling Mila to grow from 25 to 519 researchers.

In a piece written for Google’s Official Canada Blog, Yoshua Bengio, Mila Scientific Director, says that this year marked a “watershed moment for the Canadian AI community,” as the COVID-19 pandemic created unprecedented challenges that demanded rapid innovation and increased interdisciplinary collaboration between researchers in Canada and around the world.

COVID-19 has changed the world forever and many industries, from healthcare to retail, will need to adapt to thrive in our ‘new normal.’ As we look to the future and how priorities will shift, it is clear that AI is no longer an emerging technology but a useful tool that can serve to solve world problems. Google Canada recognizes not only this opportunity but the important task at hand and I’m thrilled they have reconfirmed their support of Mila with an additional $3,95 million funding grant until 22.

– Yoshua Bengio, for Google’s Official Canada Blog

Interesting, eh? Of course, Douglas Coupland is working with Google, presumably for money, and that would connect over 50% of the Canadian content (Douglas Coupland, Yoshua Bengio, and Geoffrey Hinton; Kurzweil is an American) in the programme to Google.

My hat’s off to Google’s marketing communications and public relations teams.

Anthony Morgan of Science Everywhere also provided some Canadian content. His LinkedIn profile indicates that he’s working on a PhD in molecular science, which is described this way, “My work explores the characteristics of learning environments, that support critical thinking and the relationship between critical thinking and wisdom.”

Morgan is also the founder and creative director of Science Everywhere, from his LinkedIn profile, “An events & media company supporting knowledge mobilization, community engagement, entrepreneurship and critical thinking. We build social tools for better thinking.”

There is this from his LinkedIn profile,

I develop, create and host engaging live experiences & media to foster critical thinking.

I’ve spent my 15+ years studying and working in psychology and science communication, thinking deeply about the most common individual and societal barriers to critical thinking. As an entrepreneur, I lead a team to create, develop and deploy cultural tools designed to address those barriers. As a researcher I study what we can do to reduce polarization around science.

There’s a lot more to Morgan (do look him up; he has connections to the CBC and other media outlets). The difficulty is: why was he chosen to talk about artificial intelligence and emotions and creativity when he doesn’t seem to know much about the topic? He does mention GPT-3, an AI programming language. He seems to be acting as an advocate for AI although he offers this bit of almost cautionary wisdom, “… algorithms are sets of instructions.” (You can can find out more about it in my April 27, 2021 posting. There’s also this November 26, 2021 posting [The Inherent Limitations of GPT-3] by Andrey Kurenkov, a PhD student with the Stanford [University] Vision and Learning Lab.)

Most of the cautionary commentary comes from Luke Stark, assistant professor at Western [Ontario] University’s Faculty of Information and Media Studies. He’s the one who mentions stunted emotional growth.

Before moving on, there is another set of connections through the Pan-Canadian Artificial Intelligence Strategy, a Canadian government science funding initiative announced in the 2017 federal budget. The funds allocated to the strategy are administered by the Canadian Institute for Advanced Research (CIFAR). Yoshua Bengio through Mila is associated with the strategy and CIFAR, as is Geoffrey Hinton through his position as Chief Scientific Advisor for the Vector Institute.

Evolution

Getting back to “The Singularity: When will we all become super-humans? Are we really only a moment away from “The Singularity,” a technological epoch that will usher in a new era in human evolution?” Xenobots point in a disconcerting (for some of us) evolutionary direction.

I featured the work, which is being done at Tufts University in the US, in my June 21, 2021 posting, which includes an embedded video,

From a March 31, 2021 news item on ScienceDaily,

Last year, a team of biologists and computer scientists from Tufts University and the University of Vermont (UVM) created novel, tiny self-healing biological machines from frog cells called “Xenobots” that could move around, push a payload, and even exhibit collective behavior in the presence of a swarm of other Xenobots.

Get ready for Xenobots 2.0.

Also from an excerpt in the posting, the team has “created life forms that self-assemble a body from single cells, do not require muscle cells to move, and even demonstrate the capability of recordable memory.”

Memory is key to intelligence and this work introduces the notion of ‘living’ robots which leads to questioning what constitutes life. ‘The Machine That Feels’ is already grappling with far too many questions to address this development but introducing the research here might have laid the groundwork for the next episode, The New Human, telecast on November 26, 2021,

While no one can be certain what will happen, evolutionary biologists and statisticians are observing trends that could mean our future feet only have four toes (so long, pinky toe) or our faces may have new combinations of features. The new humans might be much taller than their parents or grandparents, or have darker hair and eyes.

And while evolution takes a lot of time, we might not have to wait too long for a new version of ourselves.

Technology is redesigning the way we look and function — at a much faster pace than evolution. We are merging with technology more than ever before: our bodies may now have implanted chips, smart limbs, exoskeletons and 3D-printed organs. A revolutionary gene editing technique has given us the power to take evolution into our own hands and alter our own DNA. How long will it be before we are designing our children?

As the story about the xenobots doesn’t say, we could also take the evolution of another species into our hands.

David Suzuki, where are you?

Our programme host, David Suzuki surprised me. I thought that as an environmentalist he’d point out that the huge amounts of computing power needed for artificial intelligence as mentioned in the programme, constitutes an environmental issue. I also would have expected a geneticist like Suzuki might have some concerns with regard to xenobots but perhaps that’s being saved for the next episode (The New Human) of the Nature of Things.

Artificial stupidity

Thanks to Will Knight for introducing me to the term ‘artificial stupidity’. Knight, a senior writer covers artificial intelligence for WIRED magazine. According to its Wikipedia entry,

Artificial stupidity is commonly used as a humorous opposite of the term artificial intelligence (AI), often as a derogatory reference to the inability of AI technology to adequately perform its tasks.[1] However, within the field of computer science, artificial stupidity is also used to refer to a technique of “dumbing down” computer programs in order to deliberately introduce errors in their responses.

Knight was using the term in its humorous, derogatory form.

Finally

The episode certainly got me thinking if not quite in the way producers might have hoped. ‘The Machine That Feels’ is a glossy, pretty well researched piece of infotainment.

To be blunt, I like and have no problems with infotainment but it can be seductive. I found it easier to remember the artificial friends, wife, xenobots, and symphony than the critiques and concerns.

Hopefully, ‘The Machine That Feels’ stimulates more interest in some very important topics. If you missed the telecast, you can catch the episode here.

For anyone curious about predictive policing, which was mentioned in the Ayanna Howard segment, see my November 23, 2017 posting about Vancouver’s plunge into AI and car theft.

*ETA December 6, 2021: One of the first ‘chatterbots’ was ELIZA, a computer programme developed from1964 to 1966. The most famous ELIZA script was DOCTOR, where the programme simulated a therapist. Many early users believed ELIZA understood and could respond as a human would despite Joseph Weizenbaum’s (creator of the programme) insistence otherwise.

AI (artificial intelligence) for Good Global Summit from May 15 – 17, 2018 in Geneva, Switzerland: details and an interview with Frederic Werner

With all the talk about artificial intelligence (AI), a lot more attention seems to be paid to apocalyptic scenarios: loss of jobs, financial hardship, loss of personal agency and privacy, and more with all of these impacts being described as global. Still, there are some folks who are considering and working on ‘AI for good’.

If you’d asked me, the International Telecommunications Union (ITU) would not have been my first guess (my choice would have been United Nations Educational, Scientific and Cultural Organization [UNESCO]) as an agency likely to host the 2018 AI for Good Global Summit. But, it turns out the ITU is a UN (United Nations agency) and, according to its Wikipedia entry, it’s an intergovernmental public-private partnership, which may explain the nature of the participants in the upcoming summit.

The news

First, there’s a May 4, 2018 ITU media advisory (received via email or you can find the full media advisory here) about the upcoming summit,

Artificial Intelligence (AI) is now widely identified as being able to address the greatest challenges facing humanity – supporting innovation in fields ranging from crisis management and healthcare to smart cities and communications networking.

The second annual ‘AI for Good Global Summit’ will take place 15-17 May [2018] in Geneva, and seeks to leverage AI to accelerate progress towards the United Nations’ Sustainable Development Goals and ultimately benefit humanity.

WHAT: Global event to advance ‘AI for Good’ with the participation of internationally recognized AI experts. The programme will include interactive high-level panels, while ‘AI Breakthrough Teams’ will propose AI strategies able to create impact in the near term, guided by an expert audience of mentors representing government, industry, academia and civil society – through interactive sessions. The summit will connect AI innovators with public and private-sector decision-makers, building collaboration to take promising strategies forward.

A special demo & exhibit track will feature innovative applications of AI designed to: protect women from sexual violence, avoid infant crib deaths, end child abuse, predict oral cancer, and improve mental health treatments for depression – as well as interactive robots including: Alice, a Dutch invention designed to support the aged; iCub, an open-source robot; and Sophia, the humanoid AI robot.

WHEN: 15-17 May 2018, beginning daily at 9 AM

WHERE: ITU Headquarters, 2 Rue de Varembé, Geneva, Switzerland (Please note: entrance to ITU is now limited for all visitors to the Montbrillant building entrance only on rue Varembé).

WHO: Confirmed participants to date include expert representatives from: Association for Computing Machinery, Bill and Melinda Gates Foundation, Cambridge University, Carnegie Mellon, Chan Zuckerberg Initiative, Consumer Trade Association, Facebook, Fraunhofer, Google, Harvard University, IBM Watson, IEEE, Intellectual Ventures, ITU, Microsoft, Massachusetts Institute of Technology (MIT), Partnership on AI, Planet Labs, Shenzhen Open Innovation Lab, University of California at Berkeley, University of Tokyo, XPRIZE Foundation, Yale University – and the participation of “Sophia” the humanoid robot and “iCub” the EU open source robotcub.

The interview

Frederic Werner, Senior Communications Officer at the International Telecommunication Union and** one of the organizers of the AI for Good Global Summit 2018 kindly took the time to speak to me and provide a few more details about the upcoming event.

Werner noted that the 2018 event grew out of a much smaller 2017 ‘workshop’ and first of its kind, about beneficial AI which this year has ballooned in size to 91 countries (about 15 participants are expected from Canada), 32 UN agencies, and substantive representation from the private sector. The 2017 event featured Dr. Yoshua Bengio of the University of Montreal  (Université de Montréal) was a featured speaker.

“This year, we’re focused on action-oriented projects that will help us reach our Sustainable Development Goals (SDGs) by 2030. We’re looking at near-term practical AI applications,” says Werner. “We’re matchmaking problem-owners and solution-owners.”

Academics, industry professionals, government officials, and representatives from UN agencies are gathering  to work on four tracks/themes:

In advance of this meeting, the group launched an AI repository (an action item from the 2017 meeting) on April 25, 2018 inviting people to list their AI projects (from the ITU’s April 25, 2018? AI repository news announcement),

ITU has just launched an AI Repository where anyone working in the field of artificial intelligence (AI) can contribute key information about how to leverage AI to help solve humanity’s greatest challenges.

This is the only global repository that identifies AI-related projects, research initiatives, think-tanks and organizations that aim to accelerate progress on the 17 United Nations’ Sustainable Development Goals (SDGs).

To submit a project, just press ‘Submit’ on the AI Repository site and fill in the online questionnaire, providing all relevant details of your project. You will also be asked to map your project to the relevant World Summit on the Information Society (WSIS) action lines and the SDGs. Approved projects will be officially registered in the repository database.

Benefits of participation on the AI Repository include:

WSIS Prizes recognize individuals, governments, civil society, local, regional and international agencies, research institutions and private-sector companies for outstanding success in implementing development oriented strategies that leverage the power of AI and ICTs.

Creating the AI Repository was one of the action items of last year’s AI for Good Global Summit.

We are looking forward to your submissions.

If you have any questions, please send an email to: ai@itu.int

“Your project won’t be visible immediately as we have to vet the submissions to weed out spam-type material and projects that are not in line with our goals,” says Werner. That said, there are already 29 projects in the repository. As you might expect, the UK, China, and US are in the repository but also represented are Egypt, Uganda, Belarus, Serbia, Peru, Italy, and other countries not commonly cited when discussing AI research.

Werner also pointed out in response to my surprise over the ITU’s role with regard to this AI initiative that the ITU is the only UN agency which has 192* member states (countries), 150 universities, and over 700 industry members as well as other member entities, which gives them tremendous breadth of reach. As well, the organization, founded originally in 1865 as the International Telegraph Convention, has extensive experience with global standardization in the information technology and telecommunications industries. (See more in their Wikipedia entry.)

Finally

There is a bit more about the summit on the ITU’s AI for Good Global Summit 2018 webpage,

The 2nd edition of the AI for Good Global Summit will be organized by ITU in Geneva on 15-17 May 2018, in partnership with XPRIZE Foundation, the global leader in incentivized prize competitions, the Association for Computing Machinery (ACM) and sister United Nations agencies including UNESCO, UNICEF, UNCTAD, UNIDO, Global Pulse, UNICRI, UNODA, UNIDIR, UNODC, WFP, IFAD, UNAIDS, WIPO, ILO, UNITAR, UNOPS, OHCHR, UN UniversityWHO, UNEP, ICAO, UNDP, The World Bank, UN DESA, CTBTOUNISDRUNOG, UNOOSAUNFPAUNECE, UNDPA, and UNHCR.

The AI for Good series is the leading United Nations platform for dialogue on AI. The action​​-oriented 2018 summit will identify practical applications of AI and supporting strategies to improve the quality and sustainability of life on our planet. The summit will continue to formulate strategies to ensure trusted, safe and inclusive development of AI technologies and equitable access to their benefits.

While the 2017 summit sparked the first ever inclusive global dialogue on beneficial AI, the action-oriented 2018 summit will focus on impactful AI solutions able to yield long-term benefits and help achieve the Sustainable Development Goals. ‘Breakthrough teams’ will demonstrate the potential of AI to map poverty and aid with natural disasters using satellite imagery, how AI could assist the delivery of citizen-centric services in smart cities, and new opportunities for AI to help achieve Universal Health Coverage, and finally to help achieve transparency and explainability in AI algorithms.

Teams will propose impactful AI strategies able to be enacted in the near term, guided by an expert audience of mentors representing government, industry, academia and civil society. Strategies will be evaluated by the mentors according to their feasibility and scalability, potential to address truly global challenges, degree of supporting advocacy, and applicability to market failures beyond the scope of government and industry. The exercise will connect AI innovators with public and private-sector decision-makers, building collaboration to take promising strategies forward.

“As the UN specialized agency for information and communication technologies, ITU is well placed to guide AI innovation towards the achievement of the UN Sustainable Development ​Goals. We are providing a neutral close quotation markplatform for international dialogue aimed at ​building a ​common understanding of the capabilities of emerging AI technologies.​​” Houlin Zhao, Secretary General ​of ITU​

Should you be close to Geneva, it seems that registration is still open. Just go to the ITU’s AI for Good Global Summit 2018 webpage, scroll the page down to ‘Documentation’ and you will find a link to the invitation and a link to online registration. Participation is free but I expect that you are responsible for your travel and accommodation costs.

For anyone unable to attend in person, the summit will be livestreamed (webcast in real time) and you can watch the sessions by following the link below,

https://www.itu.int/en/ITU-T/AI/2018/Pages/webcast.aspx

For those of us on the West Coast of Canada and other parts distant to Geneva, you will want to take the nine hour difference between Geneva (Switzerland) and here into account when viewing the proceedings. If you can’t manage the time difference, the sessions are being recorded and will be posted at a later date.

*’132 member states’ corrected to ‘192 member states’ on May 11, 2018 at 1500 hours PDT.

*Redundant ‘and’ removed on July 19, 2018.

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (2 of 2)

Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).

Is it possible to get past Hedy?

Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.

Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an  answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.

I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.

On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),

3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]

Before I forget, there was mention of the international research scene,

Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]

Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).

As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.

Patents and intellectual property

As an inventor, Hedy got more than one patent. Much has been made of the fact that  despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.

Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.

The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

As for the patent situation in Canada (from the report released April 10, 2018),

Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.

This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]

Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)

One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.

Boxed text

While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items.  One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),

Box 4.2
The FinTech Revolution

Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%

of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.

AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).

I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),

AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).

The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.

As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]

The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too.  ’nuff said.

Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),

The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]

It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.

There is one other piece of boxed text I want to highlight (from the report released April 10, 2018),

Box 6.3
Open Science: An Emerging Approach to Create New Linkages

Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.

Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).

This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)

More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),

The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.

The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.

The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.

Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.

What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)

The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….

For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.

Subregional R&D

I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.

Here’s the conclusion (from the report released April 10, 2018),

Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.

Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.

Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp.  132-133 Print; pp. 170-171 PDF]

Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).

As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.

Final comments

My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).

While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)

Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.

***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***

There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.

More stuff

For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.

The report can be found here.

For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,

For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,

Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation,  …

There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,

6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.

There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.

Artificial intelligence (AI) company (in Montréal, Canada) attracts $135M in funding from Microsoft, Intel, Nvidia and others

It seems there’s a push on to establish Canada as a centre for artificial intelligence research and, if the federal and provincial governments have their way, for commercialization of said research. As always, there seems to be a bit of competition between Toronto (Ontario) and Montréal (Québec) as to which will be the dominant hub for the Canadian effort if one is to take Braga’s word for the situation.

In any event, Toronto seemed to have a mild advantage over Montréal initially with the 2017 Canadian federal government  budget announcement that the Canadian Institute for Advanced Research (CIFAR), based in Toronto, would launch a Pan-Canadian Artificial Intelligence Strategy and with an announcement from the University of Toronto shortly after (from my March 31, 2017 posting),

On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),

A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.

Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.

“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”

As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.

However, Montréal and the province of Québec are no slouches when it comes to supporting to technology. From a June 14, 2017 article by Matthew Braga for CBC (Canadian Broadcasting Corporation) news online (Note: Links have been removed),

One of the most promising new hubs for artificial intelligence research in Canada is going international, thanks to a $135 million investment with contributions from some of the biggest names in tech.

The company, Montreal-based Element AI, was founded last October [2016] to help companies that might not have much experience in artificial intelligence start using the technology to change the way they do business.

It’s equal parts general research lab and startup incubator, with employees working to develop new and improved techniques in artificial intelligence that might not be fully realized for years, while also commercializing products and services that can be sold to clients today.

It was co-founded by Yoshua Bengio — one of the pioneers of a type of AI research called machine learning — along with entrepreneurs Jean-François Gagné and Nicolas Chapados, and the Canadian venture capital fund Real Ventures.

In an interview, Bengio and Gagné said the money from the company’s funding round will be used to hire 250 new employees by next January. A hundred will be based in Montreal, but an additional 100 employees will be hired for a new office in Toronto, and the remaining 50 for an Element AI office in Asia — its first international outpost.

They will join more than 100 employees who work for Element AI today, having left jobs at Amazon, Uber and Google, among others, to work at the company’s headquarters in Montreal.

The expansion is a big vote of confidence in Element AI’s strategy from some of the world’s biggest technology companies. Microsoft, Intel and Nvidia all contributed to the round, and each is a key player in AI research and development.

The company has some not unexpected plans and partners (from the Braga, article, Note: A link has been removed),

The Series A round was led by Data Collective, a Silicon Valley-based venture capital firm, and included participation by Fidelity Investments Canada, National Bank of Canada, and Real Ventures.

What will it help the company do? Scale, its founders say.

“We’re looking at domain experts, artificial intelligence experts,” Gagné said. “We already have quite a few, but we’re looking at people that are at the top of their game in their domains.

“And at this point, it’s no longer just pure artificial intelligence, but people who understand, extremely well, robotics, industrial manufacturing, cybersecurity, and financial services in general, which are all the areas we’re going after.”

Gagné says that Element AI has already delivered 10 projects to clients in those areas, and have many more in development. In one case, Element AI has been helping a Japanese semiconductor company better analyze the data collected by the assembly robots on its factory floor, in a bid to reduce manufacturing errors and improve the quality of the company’s products.

There’s more to investment in Québec’s AI sector than Element AI (from the Braga article; Note: Links have been removed),

Element AI isn’t the only organization in Canada that investors are interested in.

In September, the Canadian government announced $213 million in funding for a handful of Montreal universities, while both Google and Microsoft announced expansions of their Montreal AI research groups in recent months alongside investments in local initiatives. The province of Quebec has pledged $100 million for AI initiatives by 2022.

Braga goes on to note some other initiatives but at that point the article’s focus is exclusively Toronto.

For more insight into the AI situation in Québec, there’s Dan Delmar’s May 23, 2017 article for the Montreal Express (Note: Links have been removed),

Advocating for massive government spending with little restraint admittedly deviates from the tenor of these columns, but the AI business is unlike any other before it. [emphasis misn] Having leaders acting as fervent advocates for the industry is crucial; resisting the coming technological tide is, as the Borg would say, futile.

The roughly 250 AI researchers who call Montreal home are not simply part of a niche industry. Quebec’s francophone character and Montreal’s multilingual citizenry are certainly factors favouring the development of language technology, but there’s ample opportunity for more ambitious endeavours with broader applications.

AI isn’t simply a technological breakthrough; it is the technological revolution. [emphasis mine] In the coming decades, modern computing will transform all industries, eliminating human inefficiencies and maximizing opportunities for innovation and growth — regardless of the ethical dilemmas that will inevitably arise.

“By 2020, we’ll have computers that are powerful enough to simulate the human brain,” said (in 2009) futurist Ray Kurzweil, author of The Singularity Is Near, a seminal 2006 book that has inspired a generation of AI technologists. Kurzweil’s projections are not science fiction but perhaps conservative, as some forms of AI already effectively replace many human cognitive functions. “By 2045, we’ll have expanded the intelligence of our human-machine civilization a billion-fold. That will be the singularity.”

The singularity concept, borrowed from physicists describing event horizons bordering matter-swallowing black holes in the cosmos, is the point of no return where human and machine intelligence will have completed their convergence. That’s when the machines “take over,” so to speak, and accelerate the development of civilization beyond traditional human understanding and capability.

The claims I’ve highlighted in Delmar’s article have been made before for other technologies, “xxx is like no other business before’ and “it is a technological revolution.”  Also if you keep scrolling down to the bottom of the article, you’ll find Delmar is a ‘public relations consultant’ which, if you look at his LinkedIn profile, you’ll find means he’s a managing partner in a PR firm known as Provocateur.

Bertrand Marotte’s May 20, 2017 article for the Montreal Gazette offers less hyperbole along with additional detail about the Montréal scene (Note: Links have been removed),

It might seem like an ambitious goal, but key players in Montreal’s rapidly growing artificial-intelligence sector are intent on transforming the city into a Silicon Valley of AI.

Certainly, the flurry of activity these days indicates that AI in the city is on a roll. Impressive amounts of cash have been flowing into academia, public-private partnerships, research labs and startups active in AI in the Montreal area.

…, researchers at Microsoft Corp. have successfully developed a computing system able to decipher conversational speech as accurately as humans do. The technology makes the same, or fewer, errors than professional transcribers and could be a huge boon to major users of transcription services like law firms and the courts.

Setting the goal of attaining the critical mass of a Silicon Valley is “a nice point of reference,” said tech entrepreneur Jean-François Gagné, co-founder and chief executive officer of Element AI, an artificial intelligence startup factory launched last year.

The idea is to create a “fluid, dynamic ecosystem” in Montreal where AI research, startup, investment and commercialization activities all mesh productively together, said Gagné, who founded Element with researcher Nicolas Chapados and Université de Montréal deep learning pioneer Yoshua Bengio.

“Artificial intelligence is seen now as a strategic asset to governments and to corporations. The fight for resources is global,” he said.

The rise of Montreal — and rival Toronto — as AI hubs owes a lot to provincial and federal government funding.

Ottawa promised $213 million last September to fund AI and big data research at four Montreal post-secondary institutions. Quebec has earmarked $100 million over the next five years for the development of an AI “super-cluster” in the Montreal region.

The provincial government also created a 12-member blue-chip committee to develop a strategic plan to make Quebec an AI hub, co-chaired by Claridge Investments Ltd. CEO Pierre Boivin and Université de Montréal rector Guy Breton.

But private-sector money has also been flowing in, particularly from some of the established tech giants competing in an intense AI race for innovative breakthroughs and the best brains in the business.

Montreal’s rich talent pool is a major reason Waterloo, Ont.-based language-recognition startup Maluuba decided to open a research lab in the city, said the company’s vice-president of product development, Mohamed Musbah.

“It’s been incredible so far. The work being done in this space is putting Montreal on a pedestal around the world,” he said.

Microsoft struck a deal this year to acquire Maluuba, which is working to crack one of the holy grails of deep learning: teaching machines to read like the human brain does. Among the company’s software developments are voice assistants for smartphones.

Maluuba has also partnered with an undisclosed auto manufacturer to develop speech recognition applications for vehicles. Voice recognition applied to cars can include such things as asking for a weather report or making remote requests for the vehicle to unlock itself.

Marotte’s Twitter profile describes him as a freelance writer, editor, and translator.

Vector Institute and Canada’s artificial intelligence sector

On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),

A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.

Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.

“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”

As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.

In addition, Vector is expected to receive funding from the Province of Ontario and more than 30 top Canadian and global companies eager to tap this pool of talent to grow their businesses. The institute will also work closely with other Ontario universities with AI talent.

(See my March 24, 2017 posting; scroll down about 25% for the science part, including the Pan-Canadian Artificial Intelligence Strategy of the budget.)

Not obvious in last week’s coverage of the Pan-Canadian Artificial Intelligence Strategy is that the much lauded Hinton has been living in the US and working for Google. These latest announcements (Pan-Canadian AI Strategy and Vector Institute) mean that he’s moving back.

A March 28, 2017 article by Kate Allen for TorontoStar.com provides more details about the Vector Institute, Hinton, and the Canadian ‘brain drain’ as it applies to artificial intelligence, (Note:  A link has been removed)

Toronto will host a new institute devoted to artificial intelligence, a major gambit to bolster a field of research pioneered in Canada but consistently drained of talent by major U.S. technology companies like Google, Facebook and Microsoft.

The Vector Institute, an independent non-profit affiliated with the University of Toronto, will hire about 25 new faculty and research scientists. It will be backed by more than $150 million in public and corporate funding in an unusual hybridization of pure research and business-minded commercial goals.

The province will spend $50 million over five years, while the federal government, which announced a $125-million Pan-Canadian Artificial Intelligence Strategy in last week’s budget, is providing at least $40 million, backers say. More than two dozen companies have committed millions more over 10 years, including $5 million each from sponsors including Google, Air Canada, Loblaws, and Canada’s five biggest banks [Bank of Montreal (BMO). Canadian Imperial Bank of Commerce ({CIBC} President’s Choice Financial},  Royal Bank of Canada (RBC), Scotiabank (Tangerine), Toronto-Dominion Bank (TD Canada Trust)].

The mode of artificial intelligence that the Vector Institute will focus on, deep learning, has seen remarkable results in recent years, particularly in image and speech recognition. Geoffrey Hinton, considered the “godfather” of deep learning for the breakthroughs he made while a professor at U of T, has worked for Google since 2013 in California and Toronto.

Hinton will move back to Canada to lead a research team based at the tech giant’s Toronto offices and act as chief scientific adviser of the new institute.

Researchers trained in Canadian artificial intelligence labs fill the ranks of major technology companies, working on tools like instant language translation, facial recognition, and recommendation services. Academic institutions and startups in Toronto, Waterloo, Montreal and Edmonton boast leaders in the field, but other researchers have left for U.S. universities and corporate labs.

The goals of the Vector Institute are to retain, repatriate and attract AI talent, to create more trained experts, and to feed that expertise into existing Canadian companies and startups.

Hospitals are expected to be a major partner, since health care is an intriguing application for AI. Last month, researchers from Stanford University announced they had trained a deep learning algorithm to identify potentially cancerous skin lesions with accuracy comparable to human dermatologists. The Toronto company Deep Genomics is using deep learning to read genomes and identify mutations that may lead to disease, among other things.

Intelligent algorithms can also be applied to tasks that might seem less virtuous, like reading private data to better target advertising. Zemel [Richard Zemel, the institute’s research director and a professor of computer science at U of T] says the centre is creating an ethics working group [emphasis mine] and maintaining ties with organizations that promote fairness and transparency in machine learning. As for privacy concerns, “that’s something we are well aware of. We don’t have a well-formed policy yet but we will fairly soon.”

The institute’s annual funding pales in comparison to the revenues of the American tech giants, which are measured in tens of billions. The risk the institute’s backers are taking is simply creating an even more robust machine learning PhD mill for the U.S.

“They obviously won’t all stay in Canada, but Toronto industry is very keen to get them,” Hinton said. “I think Trump might help there.” Two researchers on Hinton’s new Toronto-based team are Iranian, one of the countries targeted by U.S. President Donald Trump’s travel bans.

Ethics do seem to be a bit of an afterthought. Presumably the Vector Institute’s ‘ethics working group’ won’t include any regular folks. Is there any thought to what the rest of us think about these developments? As there will also be some collaboration with other proposed AI institutes including ones at the University of Montreal (Université de Montréal) and the University of Alberta (Kate McGillivray’s article coming up shortly mentions them), might the ethics group be centered in either Edmonton or Montreal? Interestingly, two Canadians (Timothy Caulfield at the University of Alberta and Eric Racine at Université de Montréa) testified at the US Commission for the Study of Bioethical Issues Feb. 10 – 11, 2014 meeting, the Brain research, ethics, and nanotechnology. Still speculating here but I imagine Caulfield and/or Racine could be persuaded to extend their expertise in ethics and the human brain to AI and its neural networks.

Getting back to the topic at hand the ‘AI sceneCanada’, Allen’s article is worth reading in its entirety if you have the time.

Kate McGillivray’s March 29, 2017 article for the Canadian Broadcasting Corporation’s (CBC) news online provides more details about the Canadian AI situation and the new strategies,

With artificial intelligence set to transform our world, a new institute is putting Toronto to the front of the line to lead the charge.

The Vector Institute for Artificial Intelligence, made possible by funding from the federal government revealed in the 2017 budget, will move into new digs in the MaRS Discovery District by the end of the year.

Vector’s funding comes partially from a $125 million investment announced in last Wednesday’s federal budget to launch a pan-Canadian artificial intelligence strategy, with similar institutes being established in Montreal and Edmonton.

“[A.I.] cuts across pretty well every sector of the economy,” said Dr. Alan Bernstein, CEO and president of the Canadian Institute for Advanced Research, the organization tasked with administering the federal program.

“Silicon Valley and England and other places really jumped on it, so we kind of lost the lead a little bit. I think the Canadian federal government has now realized that,” he said.

Stopping up the brain drain

Critical to the strategy’s success is building a homegrown base of A.I. experts and innovators — a problem in the last decade, despite pioneering work on so-called “Deep Learning” by Canadian scholars such as Yoshua Bengio and Geoffrey Hinton, a former University of Toronto professor who will now serve as Vector’s chief scientific advisor.

With few university faculty positions in Canada and with many innovative companies headquartered elsewhere, it has been tough to keep the few graduates specializing in A.I. in town.

“We were paying to educate people and shipping them south,” explained Ed Clark, chair of the Vector Institute and business advisor to Ontario Premier Kathleen Wynne.

The existence of that “fantastic science” will lean heavily on how much buy-in Vector and Canada’s other two A.I. centres get.

Toronto’s portion of the $125 million is a “great start,” said Bernstein, but taken alone, “it’s not enough money.”

“My estimate of the right amount of money to make a difference is a half a billion or so, and I think we will get there,” he said.

Jessica Murphy’s March 29, 2017 article for the British Broadcasting Corporation’s (BBC) news online offers some intriguing detail about the Canadian AI scene,

Canadian researchers have been behind some recent major breakthroughs in artificial intelligence. Now, the country is betting on becoming a big player in one of the hottest fields in technology, with help from the likes of Google and RBC [Royal Bank of Canada].

In an unassuming building on the University of Toronto’s downtown campus, Geoff Hinton laboured for years on the “lunatic fringe” of academia and artificial intelligence, pursuing research in an area of AI called neural networks.

Also known as “deep learning”, neural networks are computer programs that learn in similar way to human brains. The field showed early promise in the 1980s, but the tech sector turned its attention to other AI methods after that promise seemed slow to develop.

“The approaches that I thought were silly were in the ascendancy and the approach that I thought was the right approach was regarded as silly,” says the British-born [emphasis mine] professor, who splits his time between the university and Google, where he is a vice-president of engineering fellow.

Neural networks are used by the likes of Netflix to recommend what you should binge watch and smartphones with voice assistance tools. Google DeepMind’s AlphaGo AI used them to win against a human in the ancient game of Go in 2016.

Foteini Agrafioti, who heads up the new RBC Research in Machine Learning lab at the University of Toronto, said those recent innovations made AI attractive to researchers and the tech industry.

“Anything that’s powering Google’s engines right now is powered by deep learning,” she says.

Developments in the field helped jumpstart innovation and paved the way for the technology’s commercialisation. They also captured the attention of Google, IBM and Microsoft, and kicked off a hiring race in the field.

The renewed focus on neural networks has boosted the careers of early Canadian AI machine learning pioneers like Hinton, the University of Montreal’s Yoshua Bengio, and University of Alberta’s Richard Sutton.

Money from big tech is coming north, along with investments by domestic corporations like banking multinational RBC and auto parts giant Magna, and millions of dollars in government funding.

Former banking executive Ed Clark will head the institute, and says the goal is to make Toronto, which has the largest concentration of AI-related industries in Canada, one of the top five places in the world for AI innovation and business.

The founders also want it to serve as a magnet and retention tool for top talent aggressively head-hunted by US firms.

Clark says they want to “wake up” Canadian industry to the possibilities of AI, which is expected to have a massive impact on fields like healthcare, banking, manufacturing and transportation.

Google invested C$4.5m (US$3.4m/£2.7m) last November [2016] in the University of Montreal’s Montreal Institute for Learning Algorithms.

Microsoft is funding a Montreal startup, Element AI. The Seattle-based company also announced it would acquire Montreal-based Maluuba and help fund AI research at the University of Montreal and McGill University.

Thomson Reuters and General Motors both recently moved AI labs to Toronto.

RBC is also investing in the future of AI in Canada, including opening a machine learning lab headed by Agrafioti, co-funding a program to bring global AI talent and entrepreneurs to Toronto, and collaborating with Sutton and the University of Alberta’s Machine Intelligence Institute.

Canadian tech also sees the travel uncertainty created by the Trump administration in the US as making Canada more attractive to foreign talent. (One of Clark’s the selling points is that Toronto as an “open and diverse” city).

This may reverse the ‘brain drain’ but it appears Canada’s role as a ‘branch plant economy’ for foreign (usually US) companies could become an important discussion once more. From the ‘Foreign ownership of companies of Canada’ Wikipedia entry (Note: Links have been removed),

Historically, foreign ownership was a political issue in Canada in the late 1960s and early 1970s, when it was believed by some that U.S. investment had reached new heights (though its levels had actually remained stable for decades), and then in the 1980s, during debates over the Free Trade Agreement.

But the situation has changed, since in the interim period Canada itself became a major investor and owner of foreign corporations. Since the 1980s, Canada’s levels of investment and ownership in foreign companies have been larger than foreign investment and ownership in Canada. In some smaller countries, such as Montenegro, Canadian investment is sizable enough to make up a major portion of the economy. In Northern Ireland, for example, Canada is the largest foreign investor. By becoming foreign owners themselves, Canadians have become far less politically concerned about investment within Canada.

Of note is that Canada’s largest companies by value, and largest employers, tend to be foreign-owned in a way that is more typical of a developing nation than a G8 member. The best example is the automotive sector, one of Canada’s most important industries. It is dominated by American, German, and Japanese giants. Although this situation is not unique to Canada in the global context, it is unique among G-8 nations, and many other relatively small nations also have national automotive companies.

It’s interesting to note that sometimes Canadian companies are the big investors but that doesn’t change our basic position. And, as I’ve noted in other postings (including the March 24, 2017 posting), these government investments in science and technology won’t necessarily lead to a move away from our ‘branch plant economy’ towards an innovative Canada.

You can find out more about the Vector Institute for Artificial Intelligence here.

BTW, I noted that reference to Hinton as ‘British-born’ in the BBC article. He was educated in the UK and subsidized by UK taxpayers (from his Wikipedia entry; Note: Links have been removed),

Hinton was educated at King’s College, Cambridge graduating in 1970, with a Bachelor of Arts in experimental psychology.[1] He continued his study at the University of Edinburgh where he was awarded a PhD in artificial intelligence in 1977 for research supervised by H. Christopher Longuet-Higgins.[3][12]

It seems Canadians are not the only ones to experience  ‘brain drains’.

Finally, I wrote at length about a recent initiative taking place between the University of British Columbia (Vancouver, Canada) and the University of Washington (Seattle, Washington), the Cascadia Urban Analytics Cooperative in a Feb. 28, 2017 posting noting that the initiative is being funded by Microsoft to the tune $1M and is part of a larger cooperative effort between the province of British Columbia and the state of Washington. Artificial intelligence is not the only area where US technology companies are hedging their bets (against Trump’s administration which seems determined to terrify people from crossing US borders) by investing in Canada.

For anyone interested in a little more information about AI in the US and China, there’s today’s (March 31, 2017)earlier posting: China, US, and the race for artificial intelligence research domination.

The Canadian science scene and the 2017 Canadian federal budget

There’s not much happening in the 2017-18 budget in terms of new spending according to Paul Wells’ March 22, 2017 article for TheStar.com,

This is the 22nd or 23rd federal budget I’ve covered. And I’ve never seen the like of the one Bill Morneau introduced on Wednesday [March 22, 2017].

Not even in the last days of the Harper Conservatives did a budget provide for so little new spending — $1.3 billion in the current budget year, total, in all fields of government. That’s a little less than half of one per cent of all federal program spending for this year.

But times are tight. The future is a place where we can dream. So the dollars flow more freely in later years. In 2021-22, the budget’s fifth planning year, new spending peaks at $8.2 billion. Which will be about 2.4 per cent of all program spending.

He’s not alone in this 2017 federal budget analysis; CBC (Canadian Broadcasting Corporation) pundits, Chantal Hébert, Andrew Coyne, and Jennifer Ditchburn said much the same during their ‘At Issue’ segment of the March 22, 2017 broadcast of The National (news).

Before I focus on the science and technology budget, here are some general highlights from the CBC’s March 22, 2017 article on the 2017-18 budget announcement (Note: Links have been removed,

Here are highlights from the 2017 federal budget:

  • Deficit: $28.5 billion, up from $25.4 billion projected in the fall.
  • Trend: Deficits gradually decline over next five years — but still at $18.8 billion in 2021-22.
  • Housing: $11.2 billion over 11 years, already budgeted, will go to a national housing strategy.
  • Child care: $7 billion over 10 years, already budgeted, for new spaces, starting 2018-19.
  • Indigenous: $3.4 billion in new money over five years for infrastructure, health and education.
  • Defence: $8.4 billion in capital spending for equipment pushed forward to 2035.
  • Care givers: New care-giving benefit up to 15 weeks, starting next year.
  • Skills: New agency to research and measure skills development, starting 2018-19.
  • Innovation: $950 million over five years to support business-led “superclusters.”
  • Startups: $400 million over three years for a new venture capital catalyst initiative.
  • AI: $125 million to launch a pan-Canadian Artificial Intelligence Strategy.
  • Coding kids: $50 million over two years for initiatives to teach children to code.
  • Families: Option to extend parental leave up to 18 months.
  • Uber tax: GST to be collected on ride-sharing services.
  • Sin taxes: One cent more on a bottle of wine, five cents on 24 case of beer.
  • Bye-bye: No more Canada Savings Bonds.
  • Transit credit killed: 15 per cent non-refundable public transit tax credit phased out this year.

You can find the entire 2017-18 budget here.

Science and the 2017-18 budget

For anyone interested in the science news, you’ll find most of that in the 2017 budget’s Chapter 1 — Skills, Innovation and Middle Class jobs. As well, Wayne Kondro has written up a précis in his March 22, 2017 article for Science (magazine),

Finance officials, who speak on condition of anonymity during the budget lock-up, indicated the budgets of the granting councils, the main source of operational grants for university researchers, will be “static” until the government can assess recommendations that emerge from an expert panel formed in 2015 and headed by former University of Toronto President David Naylor to review basic science in Canada [highlighted in my June 15, 2016 posting ; $2M has been allocated for the advisor and associated secretariat]. Until then, the officials said, funding for the Natural Sciences and Engineering Research Council of Canada (NSERC) will remain at roughly $848 million, whereas that for the Canadian Institutes of Health Research (CIHR) will remain at $773 million, and for the Social Sciences and Humanities Research Council [SSHRC] at $547 million.

NSERC, though, will receive $8.1 million over 5 years to administer a PromoScience Program that introduces youth, particularly unrepresented groups like Aboriginal people and women, to science, technology, engineering, and mathematics through measures like “space camps and conservation projects.” CIHR, meanwhile, could receive modest amounts from separate plans to identify climate change health risks and to reduce drug and substance abuse, the officials added.

… Canada’s Innovation and Skills Plan, would funnel $600 million over 5 years allocated in 2016, and $112.5 million slated for public transit and green infrastructure, to create Silicon Valley–like “super clusters,” which the budget defined as “dense areas of business activity that contain large and small companies, post-secondary institutions and specialized talent and infrastructure.” …

… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”

… Among more specific measures are vows to: Use $87.7 million in previous allocations to the Canada Research Chairs program to create 25 “Canada 150 Research Chairs” honoring the nation’s 150th year of existence, provide $1.5 million per year to support the operations of the office of the as-yet-unappointed national science adviser [see my Dec. 7, 2016 post for information about the job posting, which is now closed]; provide $165.7 million [emphasis mine] over 5 years for the nonprofit organization Mitacs to create roughly 6300 more co-op positions for university students and grads, and provide $60.7 million over five years for new Canadian Space Agency projects, particularly for Canadian participation in the National Aeronautics and Space Administration’s next Mars Orbiter Mission.

Kondros was either reading an earlier version of the budget or made an error regarding Mitacs (from the budget in the “A New, Ambitious Approach to Work-Integrated Learning” subsection),

Mitacs has set an ambitious goal of providing 10,000 work-integrated learning placements for Canadian post-secondary students and graduates each year—up from the current level of around 3,750 placements. Budget 2017 proposes to provide $221 million [emphasis mine] over five years, starting in 2017–18, to achieve this goal and provide relevant work experience to Canadian students.

As well, the budget item for the Pan-Canadian Artificial Intelligence Strategy is $125M.

Moving from Kondros’ précis, the budget (in the “Positioning National Research Council Canada Within the Innovation and Skills Plan” subsection) announces support for these specific areas of science,

Stem Cell Research

The Stem Cell Network, established in 2001, is a national not-for-profit organization that helps translate stem cell research into clinical applications, commercial products and public policy. Its research holds great promise, offering the potential for new therapies and medical treatments for respiratory and heart diseases, cancer, diabetes, spinal cord injury, multiple sclerosis, Crohn’s disease, auto-immune disorders and Parkinson’s disease. To support this important work, Budget 2017 proposes to provide the Stem Cell Network with renewed funding of $6 million in 2018–19.

Space Exploration

Canada has a long and proud history as a space-faring nation. As our international partners prepare to chart new missions, Budget 2017 proposes investments that will underscore Canada’s commitment to innovation and leadership in space. Budget 2017 proposes to provide $80.9 million on a cash basis over five years, starting in 2017–18, for new projects through the Canadian Space Agency that will demonstrate and utilize Canadian innovations in space, including in the field of quantum technology as well as for Mars surface observation. The latter project will enable Canada to join the National Aeronautics and Space Administration’s (NASA’s) next Mars Orbiter Mission.

Quantum Information

The development of new quantum technologies has the potential to transform markets, create new industries and produce leading-edge jobs. The Institute for Quantum Computing is a world-leading Canadian research facility that furthers our understanding of these innovative technologies. Budget 2017 proposes to provide the Institute with renewed funding of $10 million over two years, starting in 2017–18.

Social Innovation

Through community-college partnerships, the Community and College Social Innovation Fund fosters positive social outcomes, such as the integration of vulnerable populations into Canadian communities. Following the success of this pilot program, Budget 2017 proposes to invest $10 million over two years, starting in 2017–18, to continue this work.

International Research Collaborations

The Canadian Institute for Advanced Research (CIFAR) connects Canadian researchers with collaborative research networks led by eminent Canadian and international researchers on topics that touch all humanity. Past collaborations facilitated by CIFAR are credited with fostering Canada’s leadership in artificial intelligence and deep learning. Budget 2017 proposes to provide renewed and enhanced funding of $35 million over five years, starting in 2017–18.

Earlier this week, I highlighted Canada’s strength in the field of regenerative medicine, specifically stem cells in a March 21, 2017 posting. The $6M in the current budget doesn’t look like increased funding but rather a one-year extension. I’m sure they’re happy to receive it  but I imagine it’s a little hard to plan major research projects when you’re not sure how long your funding will last.

As for Canadian leadership in artificial intelligence, that was news to me. Here’s more from the budget,

Canada a Pioneer in Deep Learning in Machines and Brains

CIFAR’s Learning in Machines & Brains program has shaken up the field of artificial intelligence by pioneering a technique called “deep learning,” a computer technique inspired by the human brain and neural networks, which is now routinely used by the likes of Google and Facebook. The program brings together computer scientists, biologists, neuroscientists, psychologists and others, and the result is rich collaborations that have propelled artificial intelligence research forward. The program is co-directed by one of Canada’s foremost experts in artificial intelligence, the Université de Montréal’s Yoshua Bengio, and for his many contributions to the program, the University of Toronto’s Geoffrey Hinton, another Canadian leader in this field, was awarded the title of Distinguished Fellow by CIFAR in 2014.

Meanwhile, from chapter 1 of the budget in the subsection titled “Preparing for the Digital Economy,” there is this provision for children,

Providing educational opportunities for digital skills development to Canadian girls and boys—from kindergarten to grade 12—will give them the head start they need to find and keep good, well-paying, in-demand jobs. To help provide coding and digital skills education to more young Canadians, the Government intends to launch a competitive process through which digital skills training organizations can apply for funding. Budget 2017 proposes to provide $50 million over two years, starting in 2017–18, to support these teaching initiatives.

I wonder if BC Premier Christy Clark is heaving a sigh of relief. At the 2016 #BCTECH Summit, she announced that students in BC would learn to code at school and in newly enhanced coding camp programmes (see my Jan. 19, 2016 posting). Interestingly, there was no mention of additional funding to support her initiative. I guess this money from the federal government comes at a good time as we will have a provincial election later this spring where she can announce the initiative again and, this time, mention there’s money for it.

Attracting brains from afar

Ivan Semeniuk in his March 23, 2017 article (for the Globe and Mail) reads between the lines to analyze the budget’s possible impact on Canadian science,

But a between-the-lines reading of the budget document suggests the government also has another audience in mind: uneasy scientists from the United States and Britain.

The federal government showed its hand at the 2017 #BCTECH Summit. From a March 16, 2017 article by Meera Bains for the CBC news online,

At the B.C. tech summit, Navdeep Bains, Canada’s minister of innovation, said the government will act quickly to fast track work permits to attract highly skilled talent from other countries.

“We’re taking the processing time, which takes months, and reducing it to two weeks for immigration processing for individuals [who] need to come here to help companies grow and scale up,” Bains said.

“So this is a big deal. It’s a game changer.”

That change will happen through the Global Talent Stream, a new program under the federal government’s temporary foreign worker program.  It’s scheduled to begin on June 12, 2017.

U.S. companies are taking notice and a Canadian firm, True North, is offering to help them set up shop.

“What we suggest is that they think about moving their operations, or at least a chunk of their operations, to Vancouver, set up a Canadian subsidiary,” said the company’s founder, Michael Tippett.

“And that subsidiary would be able to house and accommodate those employees.”

Industry experts says while the future is unclear for the tech sector in the U.S., it’s clear high tech in B.C. is gearing up to take advantage.

US business attempts to take advantage of Canada’s relative stability and openness to immigration would seem to be the motive for at least one cross border initiative, the Cascadia Urban Analytics Cooperative. From my Feb. 28, 2017 posting,

There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),

In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.

Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.

A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.

It gets better, it seems Microsoft has been positioning itself for a while if Matt Day’s analysis is correct (from my Feb. 28, 2017 posting),

Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),

Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.

The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.

Microsoft last year [2016] opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].

This was all prior to President Trump’s legislative moves in the US, which have at least one Canadian observer a little more gleeful than I’m comfortable with. From a March 21, 2017 article by Susan Lum  for CBC News online,

U.S. President Donald Trump’s efforts to limit travel into his country while simultaneously cutting money from science-based programs provides an opportunity for Canada’s science sector, says a leading Canadian researcher.

“This is Canada’s moment. I think it’s a time we should be bold,” said Alan Bernstein, president of CIFAR [which on March 22, 2017 was awarded $125M to launch the Pan Canada Artificial Intelligence Strategy in the Canadian federal budget announcement], a global research network that funds hundreds of scientists in 16 countries.

Bernstein believes there are many reasons why Canada has become increasingly attractive to scientists around the world, including the political climate in the United States and the Trump administration’s travel bans.

Thankfully, Bernstein calms down a bit,

“It used to be if you were a bright young person anywhere in the world, you would want to go to Harvard or Berkeley or Stanford, or what have you. Now I think you should give pause to that,” he said. “We have pretty good universities here [emphasis mine]. We speak English. We’re a welcoming society for immigrants.”​

Bernstein cautions that Canada should not be seen to be poaching scientists from the United States — but there is an opportunity.

“It’s as if we’ve been in a choir of an opera in the back of the stage and all of a sudden the stars all left the stage. And the audience is expecting us to sing an aria. So we should sing,” Bernstein said.

Bernstein said the federal government, with this week’s so-called innovation budget, can help Canada hit the right notes.

“Innovation is built on fundamental science, so I’m looking to see if the government is willing to support, in a big way, fundamental science in the country.”

Pretty good universities, eh? Thank you, Dr. Bernstein, for keeping some of the boosterism in check. Let’s leave the chest thumping to President Trump and his cronies.

Ivan Semeniuk’s March 23, 2017 article (for the Globe and Mail) provides more details about the situation in the US and in Britain,

Last week, Donald Trump’s first budget request made clear the U.S. President would significantly reduce or entirely eliminate research funding in areas such as climate science and renewable energy if permitted by Congress. Even the National Institutes of Health, which spearheads medical research in the United States and is historically supported across party lines, was unexpectedly targeted for a $6-billion (U.S.) cut that the White House said could be achieved through “efficiencies.”

In Britain, a recent survey found that 42 per cent of academics were considering leaving the country over worries about a less welcoming environment and the loss of research money that a split with the European Union is expected to bring.

In contrast, Canada’s upbeat language about science in the budget makes a not-so-subtle pitch for diversity and talent from abroad, including $117.6-million to establish 25 research chairs with the aim of attracting “top-tier international scholars.”

For good measure, the budget also includes funding for science promotion and $2-million annually for Canada’s yet-to-be-hired Chief Science Advisor, whose duties will include ensuring that government researchers can speak freely about their work.

“What we’ve been hearing over the last few months is that Canada is seen as a beacon, for its openness and for its commitment to science,” said Ms. Duncan [Kirsty Duncan, Minister of Science], who did not refer directly to either the United States or Britain in her comments.

Providing a less optimistic note, Erica Alini in her March 22, 2017 online article for Global News mentions a perennial problem, the Canadian brain drain,

The budget includes a slew of proposed reforms and boosted funding for existing training programs, as well as new skills-development resources for unemployed and underemployed Canadians not covered under current EI-funded programs.

There are initiatives to help women and indigenous people get degrees or training in science, technology, engineering and mathematics (the so-called STEM subjects) and even to teach kids as young as kindergarten-age to code.

But there was no mention of how to make sure Canadians with the right skills remain in Canada, TD’s DePratto {Toronto Dominion Bank} Economics; TD is currently experiencing a scandal {March 13, 2017 Huffington Post news item}] told Global News.

Canada ranks in the middle of the pack compared to other advanced economies when it comes to its share of its graduates in STEM fields, but the U.S. doesn’t shine either, said DePratto [Brian DePratto, senior economist at TD .

The key difference between Canada and the U.S. is the ability to retain domestic talent and attract brains from all over the world, he noted.

To be blunt, there may be some opportunities for Canadian science but it does well to remember (a) US businesses have no particular loyalty to Canada and (b) all it takes is an election to change any perceived advantages to disadvantages.

Digital policy and intellectual property issues

Dubbed by some as the ‘innovation’ budget (official title:  Building a Strong Middle Class), there is an attempt to address a longstanding innovation issue (from a March 22, 2017 posting by Michael Geist on his eponymous blog (Note: Links have been removed),

The release of today’s [march 22, 2017] federal budget is expected to include a significant emphasis on innovation, with the government revealing how it plans to spend (or re-allocate) hundreds of millions of dollars that is intended to support innovation. Canada’s dismal innovation record needs attention, but spending our way to a more innovative economy is unlikely to yield the desired results. While Navdeep Bains, the Innovation, Science and Economic Development Minister, has talked for months about the importance of innovation, Toronto Star columnist Paul Wells today delivers a cutting but accurate assessment of those efforts:

“This government is the first with a minister for innovation! He’s Navdeep Bains. He frequently posts photos of his meetings on Twitter, with the hashtag “#innovation.” That’s how you know there is innovation going on. A year and a half after he became the minister for #innovation, it’s not clear what Bains’s plans are. It’s pretty clear that within the government he has less than complete control over #innovation. There’s an advisory council on economic growth, chaired by the McKinsey guru Dominic Barton, which periodically reports to the government urging more #innovation.

There’s a science advisory panel, chaired by former University of Toronto president David Naylor, that delivered a report to Science Minister Kirsty Duncan more than three months ago. That report has vanished. One presumes that’s because it offered some advice. Whatever Bains proposes, it will have company.”

Wells is right. Bains has been very visible with plenty of meetings and public photo shoots but no obvious innovation policy direction. This represents a missed opportunity since Bains has plenty of policy tools at his disposal that could advance Canada’s innovation framework without focusing on government spending.

For example, Canada’s communications system – wireless and broadband Internet access – falls directly within his portfolio and is crucial for both business and consumers. Yet Bains has been largely missing in action on the file. He gave approval for the Bell – MTS merger that virtually everyone concedes will increase prices in the province and make the communications market less competitive. There are potential policy measures that could bring new competitors into the market (MVNOs [mobile virtual network operators] and municipal broadband) and that could make it easier for consumers to switch providers (ban on unlocking devices). Some of this falls to the CRTC, but government direction and emphasis would make a difference.

Even more troubling has been his near total invisibility on issues relating to new fees or taxes on Internet access and digital services. Canadian Heritage Minister Mélanie Joly has taken control of the issue with the possibility that Canadians could face increased costs for their Internet access or digital services through mandatory fees to contribute to Canadian content.  Leaving aside the policy objections to such an approach (reducing affordable access and the fact that foreign sources now contribute more toward Canadian English language TV production than Canadian broadcasters and distributors), Internet access and e-commerce are supposed to be Bains’ issue and they have a direct connection to the innovation file. How is it possible for the Innovation, Science and Economic Development Minister to have remained silent for months on the issue?

Bains has been largely missing on trade related innovation issues as well. My Globe and Mail column today focuses on a digital-era NAFTA, pointing to likely U.S. demands on data localization, data transfers, e-commerce rules, and net neutrality.  These are all issues that fall under Bains’ portfolio and will impact investment in Canadian networks and digital services. There are innovation opportunities for Canada here, but Bains has been content to leave the policy issues to others, who will be willing to sacrifice potential gains in those areas.

Intellectual property policy is yet another area that falls directly under Bains’ mandate with an obvious link to innovation, but he has done little on the file. Canada won a huge NAFTA victory late last week involving the Canadian patent system, which was challenged by pharmaceutical giant Eli Lilly. Why has Bains not promoted the decision as an affirmation of how Canada’s intellectual property rules?

On the copyright front, the government is scheduled to conduct a review of the Copyright Act later this year, but it is not clear whether Bains will take the lead or again cede responsibility to Joly. The Copyright Act is statutorily under the Industry Minister and reform offers the chance to kickstart innovation. …

For anyone who’s not familiar with this area, innovation is often code for commercialization of science and technology research efforts. These days, digital service and access policies and intellectual property policies are all key to research and innovation efforts.

The country that’s most often (except in mainstream Canadian news media) held up as an example of leadership in innovation is Estonia. The Economist profiled the country in a July 31, 2013 article and a July 7, 2016 article on apolitical.co provides and update.

Conclusions

Science monies for the tri-council science funding agencies (NSERC, SSHRC, and CIHR) are more or less flat but there were a number of line items in the federal budget which qualify as science funding. The $221M over five years for Mitacs, the $125M for the Pan-Canadian Artificial Intelligence Strategy, additional funding for the Canada research chairs, and some of the digital funding could also be included as part of the overall haul. This is in line with the former government’s (Stephen Harper’s Conservatives) penchant for keeping the tri-council’s budgets under control while spreading largesse elsewhere (notably the Perimeter Institute, TRIUMF [Canada’s National Laboratory for Particle and Nuclear Physics], and, in the 2015 budget, $243.5-million towards the Thirty Metre Telescope (TMT) — a massive astronomical observatory to be constructed on the summit of Mauna Kea, Hawaii, a $1.5-billion project). This has lead to some hard feelings in the past with regard to ‘big science’ projects getting what some have felt is an undeserved boost in finances while the ‘small fish’ are left scrabbling for the ever-diminishing (due to budget cuts in years past and inflation) pittances available from the tri-council agencies.

Mitacs, which started life as a federally funded Network Centre for Excellence focused on mathematics, has since shifted focus to become an innovation ‘champion’. You can find Mitacs here and you can find the organization’s March 2016 budget submission to the House of Commons Standing Committee on Finance here. At the time, they did not request a specific amount of money; they just asked for more.

The amount Mitacs expects to receive this year is over $40M which represents more than double what they received from the federal government and almost of 1/2 of their total income in the 2015-16 fiscal year according to their 2015-16 annual report (see p. 327 for the Mitacs Statement of Operations to March 31, 2016). In fact, the federal government forked over $39,900,189. in the 2015-16 fiscal year to be their largest supporter while Mitacs’ total income (receipts) was $81,993,390.

It’s a strange thing but too much money, etc. can be as bad as too little. I wish the folks Mitacs nothing but good luck with their windfall.

I don’t see anything in the budget that encourages innovation and investment from the industrial sector in Canada.

Finallyl, innovation is a cultural issue as much as it is a financial issue and having worked with a number of developers and start-up companies, the most popular business model is to develop a successful business that will be acquired by a large enterprise thereby allowing the entrepreneurs to retire before the age of 30 (or 40 at the latest). I don’t see anything from the government acknowledging the problem let alone any attempts to tackle it.

All in all, it was a decent budget with nothing in it to seriously offend anyone.